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Abstract. This paper is an extended abstract of the talk given at
ICCS’09. Rules have long been considered as an essential component
of knowledge-based systems. We focus here on conceptual graph rules
and on the semantically equivalent knowledge constructs in logic and
databases, namely rules with existential variables and tuple-generating
dependencies. The aim of this presentation is to synthesize main de-
cidability, complexity and algorithmic results obtained on this kind of
rules. We emphasize the fact that the graph vision of rules has led to
new results.

1 Introduction

Rules have long been considered as an essential component of knowledge-based
systems. In this talk, we focus on rules in conceptual graphs (CG) and on the
equivalent knowledge constructs in logic and databases. For precise definitions
of all conceptual graph notions used in this presentation, we refer to [CM08].

A conceptual graph rule (in short R : H → C) can be seen as a pair (H, C)
of basic conceptual graphs, provided with a one to one correspondence between
a subset of generic nodes in H and a subset of generic nodes in C. H and C
are respectively called the hypothesis and the conclusion of the rule. The distin-
guished nodes in H and C are called connection nodes. Figure 1 shows a CG rule
(pictured with Cogui1). The correspondence between connection nodes is visu-
alized by dotted lines. The logical translation of this rule is ∀x∀y(Person(x) ∧
Person(y) ∧ siblingOf(x, y) → ∃z(Person(z) ∧ Parent(z, x) ∧ Parent(z, y)).
This kind of logical rule is more general than the (positive) rules usually con-
sidered in logic programming or deductive databases. Indeed, there might be
variables in the conclusion which are existentially quantified, hence the name
∀∃-rule given to this kind of formula in [BLMS09].

A ∀∃-rule has the same form as a very general kind of dependency studied in
databases called tuple-generating dependency (TGD) [AHV95]. It can also be
seen as an abstraction for ontological knowledge expressed in specific knowledge
representation languages, f.i. the RDFS rules [Hay04], constraints in F-logic-
Lite [CK06][CGK08], as well as some kinds of inclusions in description logics
[BCM+03].
1 http://www.lirmm.fr/cogui
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Fig. 1. A conceptual graph rule

Let us point out that, in conceptual graphs, concept types and relations are
ordered by a specialization relation, and that the processing of this order is di-
rectly integrated in conceptual graph mechanisms. This feature does not add
expressivity with respect to ∀∃-rules, since specialization orders can be trans-
lated into simple rules of form ∀x1...xk(t1(x1...xk) → t2(x1...xk)), where t1 is a
specialization of t2, k = 1 if t1 and t2 are concept types, otherwise k is the arity of
the relations. However, the specialization orders are managed with simple label
comparisons, which leads to more efficient knowledge processing mechanisms.

The aim of this presentation is to synthesize theoretical and algorithmic
results obtained on conceptual graph rules, as well as on the semantically equiv-
alent knowledge constructs in logic and databases, namely ∀∃-rules and tuple-
generating dependencies. We emphasize the fact that the graph vision of rules
has led to new results.

2 Deduction with CG Rules

A conceptual graph vocabulary, also called support, contains finite ordered sets
of concept types and of relations (as well as a set of individual markers, relation
signatures, assertions of disjointness between concept types, ...). It can be seen
as a very basic ontology. Basic conceptual graphs (BG) are used to express facts
and queries. They are logically translated into existentially closed conjunctions
of atoms. A BG itself can express a boolean database conjunctive query (i.e. with
a yes/no answer) and, when generic concept nodes are distinguished to represent
the answer part of the query, it is equivalent to a general conjunctive query. Let
us consider conceptual graph knowledge bases (KBs) composed of a vocabulary,
a set of facts (which can also be seen as a single fact) and a set of rules. Several
fundamental problems on these KBs are computationally equivalent, namely fact
deduction (is a fact deducible from a KB?), rule deduction (is a rule deducible
from a KB?) and boolean conjunctive query answering in presence of incomplete
knowledge (is a boolean conjunctive query deducible from a KB ?). Very simple
polynomial reductions allow to go from one problem to another. Since a fact can
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be seen as a rule with an empty hypothesis, fact deduction is a particular case
of rule deduction. In turn, rule deduction can be reduced to fact deduction. The
following transformation comes from [BV84] (and was applied to TGDs). Let K
be the KB and R be the rule for which we want to know if it is deducible from
the KB. Let R′ : H ′ → C′ be obtained from R by replacing, in each pair of
corresponding connection nodes, the generic marker by a new individual marker
that does not appear in K nor R. Let K ′ be obtained from K by adding the
new fact H ′. Then, R is deducible from K if and only if the fact C′ is deducible
from K ′. Since a fact has the same form as a boolean conjunctive query, the
equivalence of fact deduction and boolean query answering is immediate. From
now on, we focus on fact deduction, which we simply call Deduction (and all
results concerning this problem can be immediately recast in terms of the other
problems).

There are two classical ways of processing rules. Forward chaining starts from
the facts and applies rules to facts to produce new facts. A derivation is a
sequence of rule applications leading from an initial fact to an enriched fact.
Backward chaining starts from a question, usually called a goal, and tries to
build a derivation leading to an answer to this goal in a backward manner. We
assume that the reader is familiar with both paradigms.

Conceptual graph rules are provided with sound and complete forward and
backward chaining mechanisms, which operate directly on their graph form. For
forward chaining, the basic notion is the BG homomorphism, classically called
projection in the CG community (however, we do prefer to use the term homo-
morphism because it relates this notion to relational algebra and graph theory;
moreover, the CG projection may be confused with the projection operator in re-
lational algebra). The fundamental property is that BG homomorphism is sound
and complete with respect to logical deduction [CM92]: given two BGs G and
H built on a vocabulary V , there is a homomorphism from G to H if and only if
Φ(G) can be deduced from Φ(H) and Φ(V) (for the completeness part, either H
has to be in a normal form, or a variant of homomorphism can be used to avoid
this normality condition [CM04]). Homomorphism checking is NP-complete. A
rule R : H → C can be applied to a fact F if there is a homomorphism h from
H to F . Applying R to F according to h consists of “adding” C to F in a way
defined by h (each connection node in C is merged with the image by h of the
corresponding connection node in H). This yields a sound and complete mech-
anism: given a KB K composed of a vocabulary V , a fact F and set of rules
R, and a query Q (also built on V), there is a derivation from F to a fact F ′

using rules of R, and a homomorphism from Q to F ′, if and only if Φ(Q) can be
deduced from Φ(K) (i.e. Φ(V) ∪ Φ(R) ∪ {Φ(F )}) [SM96].

Backward chaining relies on a unification operation, between part of a cur-
rent goal and a rule conclusion. In logic programming, the conclusion of a rule
consists of a single atom, thus unification involves one atom of the goal and the
atom of a conclusion. [GW95] proposed a sound and complete backward mech-
anism for conceptual graph rules very similar to this mechanism. The goal is
split into trivial subgraphs composed of a relation node and its neighbors. Then,
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unification involves a trivial subgraph of the goal and an atom of the conclu-
sion. In [SM96], a more complex unification operation is defined, which aims
at exploiting the complex structure of a conceptual graph rule: it allows one to
process conclusions and goals without decomposing them into trivial subgraphs.
This mechanism will be detailed in section 4.

It is easily checked that forward chaining may not halt, even with criteria avoid-
ing redundant applications of rules. Backward chaining may not halt either. The
fundamental reason is that Deduction is not decidable, but only semi-decidable.
This has been first proven for TGDs in [BV84]. Two other proofs for CGs can be
found in [Bag01] (with a reduction from the halting problem of a Turing machine,
which proves that Deduction with rules is a computation model) and in [BM02]
(with a reduction from the word problem in a semi-thue system). It thus important
to define large and meaningful cases in which the problem is decidable. Decidable
cases may be defined by an abstract property which guarantees decidability. How-
ever, such an abstract property is generally not provided with a finite procedure
allowing to determine whether a given set of rules has the property or not. The next
step is thus to exhibit concrete cases, which fulfill the abstract property and can
be recognized by a finite procedure. The conditions defining concrete cases may be
relative to each rule independently or to a set of rules.

Obviously, if the forward chaining is guaranteed to halt with a kind of rules,
then Deduction is decidable in this particular case. This leads to the following
abstract property: a set of rules is called a finite expansion set if it is guaranteed,
for any fact, that after a finite number of rule applications, all further rule
applications will become redundant, i.e. will produce facts equivalent to the
current fact; Deduction is decidable for finite expansion sets of rules [BM02].
Two concrete cases of finite expansion sets of rules are range-restricted rules
and disconnected rules. A range-restricted rule is such that all concept nodes of
the conclusion are either connection nodes or nodes with an individual marker
(in logical terms: it is a ∀∃-rule without existentially quantified variable in the
conclusion, which corresponds to a range-restricted rule in positive Datalog).
A disconnected rule has no connection nodes. Deduction with a set of range-
restricted rules or a set of disconnected rules is NP-complete (assuming that the
arity of relations is bounded), thus is in the same complexity as Deduction
with facts only, which involves a simple homomorphism test.

In [BLMS09], a similar abstract property is exhibited in relation with back-
ward chaining. Given a goal Q and a rule R, a rewriting of Q with R is a graph
obtained by a unification of Q with the conclusion of R. A set of rules R is called
a finite unification set if it is guaranteed, for any goal, that there is a finite set
Q of rewritings of Q with rules in R, such that any other possible rewriting of
Q is more specific than an element of Q. Two concrete cases of finite unification
sets are exhibited in [BLMS09]: atomic hypothesis rules and domain restricted
rules. In an atomic hypothesis rule, the hypothesis contains a single atom. These
rules are particularly well adapted to express necessary properties of concepts
or relations in ontological languages, without any restriction on the form of the
conclusion (i.e. rules of form C(x) → P or r(x1 . . . xk) → P , where C is a concept
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type, r a k-ary relation and P any set of atoms). The second kind of rules does
not put any restriction on the form of the hypothesis but constrains the form of
the conclusion: in a domain restricted rule, each atom of the conclusion contains
all or none of the variables in the hypothesis. The complexity of Deduction for
these particular kinds of rules has not been studied yet.

Other decidable cases are not based on individual properties of rules but on
interactions between rules and will be presented in the next sections.

3 Equivalent Problems in Databases

Tuple-generating dependencies (TGDs) are a very general class of dependencies,
encoding most dependencies in databases [AHV95]. They have exactly the same
logical form as ∀∃-rules. If a TGD is not satisfied by a database instance, it is
possible to repair the database instance by extending it with new atoms. The
procedure that enforces the validity of a set of TGDs is called the chase: it
is equivalent to forward chaining. The chase was first introduced for the TGD
implication problem: given a set of TGDs T , and a TGD t, is t implied by T ? (this
problem is the same as the above rule deduction problem). A related problem is
the query containment problem under a set of TGDs: given a set of TGDs T , and
two conjunctive queries q1 and q2, is the the set of answers to q1 included in the
set of answers to q2 for any database satisfying T (i.e. satisfying each TGD in
T ) ? A problem more recently introduced is query answering on incomplete data
[CLR03]: given a set of TGDs T , a database instance D, that may not satisfy T ,
a conjunctive query q and a tuple of values t, is t an answer to q in a database
instance obtained from D by enforcing T ? All these problems can be proven
equivalent to Deduction.

Interestingly, very recent results have exhibited classes of TGDs for which
the problem is decidable even if the chase does not halt [CGK08]. The abstract
property is that when all facts generated by a set of rules have a “bounded
treewidth” then Deduction is decidable. Note that this class of rules includes
finite expansion sets, but not finite unification sets. Concrete cases of rules sat-
isfying this abstract property are the guarded TGDs, and their generalization
to weakly guarded TGDs. A TGD is guarded if its body (i.e. hypothesis) in-
cludes an atom, called guard, that contains all variables occurring in the body.
Weakly guarded TGDs are an extension of guarded TGDs that requires guards
to contain only some variables in the body (see [CGK08] for a precise defini-
tion). This property cannot be checked independently on each rule, but requires
to consider the whole set of rules. It is shown that the problem is EXPTIME-
complete (with the assumption of bounded predicate arities) for weakly guarded
TGDs, and even for guarded TGDs. It becomes NP-complete when, moreover,
the number of predicates appearing in the TGDs is bounded.

4 Graph Rules: The Added Value

In this section, we focus on backward chaining and on how the graph structure
allows to obtain new results. Graphs are a natural construct for representing
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complex structures. In previously cited results on TGDs, conclusions of rules
are restricted to one atom, as it is usually the case in logic programming. This
restriction does not lead to a loss of expressivity since any set of rules can
be rewritten (in linear time) as a set of rules with one atom in conclusion.
Indeed, a rule H → C can be equivalently encoded by a set of rules {H →
R(t1, ..., tk), (R(t1, ..., tk) → Ac)Ac∈C)}, where R is a new predicate assigned
to the rule and t1...tk are the terms occurring in C. However, beside loss in
readability, this rewriting leads to a loss in efficiency and weaker decidability
results [BLMS09].

The sound and complete backward chaining outlined in this section is based
on the notions of a piece and the associated piece-based unification [SM96]. Let us
mention that these notions have been defined for conceptual graph rules obeying
two constraints. First, two corresponding connection nodes have the same type.
Secondly, an individual marker always occurs with the same concept type. As a
consequence of these restrictions, a rule application to a fact F never restricts
labels of existing nodes in F . It only adds new nodes to F . These restrictions
do not lead to a loss in expressivity in the sense that concept types can be
equivalently represented as unary relations. However, to work directly on general
conceptual graph rules, the notions of piece and piece-based unification presented
hereafter would need to be extended. These restrictions do not apply in a logical
setting, since there is no distinction between concept types and relations, which
are all predicates.

A cutpoint of a rule is either a connection node or a node with an individual
marker. A piece of a rule is a (non empty) subgraph of its conclusion, in which
any two nodes are connected by a path that does not go through a cutpoint
(however, a cutpoint can be an extremity of such a path), and to which no more
nodes can be added while preserving this property. A way of understanding
pieces is as follows: assume that all cutpoints of the rule conclusion are deleted;
each connected component obtained after this deletion belongs to a separate
piece; each piece itself is obtained from such a connected component by adding
again the cutpoints linked to its nodes (if any) as well as the associated edges.
For instance, the rule in Figure 1 has two cutpoints and a single piece. These
graph notions can be translated into logical notions in a straightforward way
(see [BLMS09]). For instance, the rule R = ∀x∀y(p(x, y) → ∃z∃t∃u(p(x, z) ∧
p(z, t) ∧ p(t, x) ∧ p(x, u))) has one cutpoint, which is x, and two pieces defined
by the sets of atoms {p(x, z), p(z, t), p(t, x)} and {p(x, u)}.

The idea behind piece is that a piece can be seen as a “unit” of knowledge
brought by a rule application in forward chaining. Indeed, a rule R can be
decomposed into an equivalent set of rules with the same hypothesis and exactly
one piece in conclusion. More precisely, any rule R : H → C, such that C
contains k pieces C1, . . . , Ck, is equivalent to the set of rules {H → Ci}1≤i≤k.
Moreover, the conclusions of these rules cannot be further decomposed while
keeping a set of conceptual graph rules with the same semantics as R (provided
of course that H is not modified, otherwise see the above decomposition).
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We do not recall the definition of piece-based unification, which would require
more technical developments (see [SM96] [CM08] in the CG framework, and
[BLMS09] for ∀∃-rules). The important point for the backward chaining mech-
anism is that piece-based unification allows it to be guided by the structure
of rules and goals. An experimental comparison between piece-based backward
chaining and Prolog resolution was led in [CS98].

Another important point is that it allows to characterize exactly the notion of
dependency between rules. Generally speaking, compiling a knowledge base con-
sists in preprocessing it off-line, so that the compiled form obtained can be used
on-line to accelerate reasoning tasks (e.g. query answering). Concerning rules, a
classical compilation technique consists in precomputing a graph encoding de-
pendencies between rules. This technique allows us to improve the efficiency of
forward and backward chaining mechanisms.

Given rules R1 and R2, R2 is said to depend on R1 if the application of R1 on
a fact may trigger a new application of R2, i.e. if there exists a fact F to which
R1 can be applied leading to a fact F ′, such that there is a homomorphism from
the hypothesis of R2 to F ′, that is not a homomorphism from the hypothesis
of R2 to F . It is easy to define necessary conditions for a rule to depend from
another: f.i. if R2 depends on R1 then there is an atom in H2 that can be
unified (in the logical classical meaning) with an atom in C. Characterizing
dependency by effectively computable necessary and sufficient conditions is less
obvious.

Piece-based unification yields such an effective characterization: R2 depends
on R1 if and only if there is a piece-based unification of H2 with R1 (see [Bag04])
for an equivalent characterization restricted to rules without constants, [BS06]
for this result on conceptual graph rules, and [BLMS09] for this result in a logical
framework).

Given a set of rules R, the graph of rule dependencies (GRD) of R is the
directed graph with node set R, and such that there is a (directed) edge from
R1 to R2 if and only if R2 depends on R1 (“an application of R1 may trig-
ger a new application of R2”). As far as we know, piece unification yields the
first effective characterization of this graph. Very recently, in the context of
databases, [DNR08] defined a notion equivalent to the GRD on TGDs (“the
chase graph”), but no constructive characterization of this graph was provided
in this paper.

The GRD has two interests. It allows to speed up forward or backward chain-
ing and it leads to new decidability results. About the first point, a simple use of
the GRD is the following. Assume that the set of facts is considered as a single
graph, say F , and classified in the GRD as a rule with an empty hypothesis. F is
necessarily a source (node without ingoing edge) in the GRD. The query or goal,
say Q, can also be classified in the GRD as a rule with an empty conclusion. Q
is necessarily a sink (node without outgoing edge) in the GRD. Then, to answer
a given Q, the only rules to consider are the rules corresponding to nodes in the
GRD on a path from F to Q. Let us consider a basic forward chaining algo-
rithm, that proceeds in a breadth-first way, i.e. at each step it computes all new
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(and non redundant) rule applications w.r.t the current fact, then applies them
producing a new fact. The rules to consider in the first step are the successors
of F in the GRD. Then, the rules to consider at a given step i, i > 1, are the
rules successors of rules applied at step i − 1. For further improvements of the
forward and backward chaining mechanisms, see [Bag04] (forward chaining) and
[BS06] (both mechanisms).

Concerning decidability results, the structure of the GRD provides informa-
tion of how the rules interact with each other. It can be easily checked that
if the GRD has no circuit (including no loop), then Deduction is decidable.
This result can be extended to a GRD in which each strongly connected com-
ponent2 is a finite expansion set of rules, i.e. circuits inside a finite expansion
set of rules are allowed [Bag04]. A similar result holds for a GRD in which
each strongly connected component is a finite unification set of rules [BLMS09].
Note that Deduction may not be decidable in a GRD where each strongly
connected component is either a finite expansion set or a finite unification set.
However, there is a way of combining both notions that guarantees a finite pro-
cedure [BLMS09]: assume that the set of rules R can be partitioned into two
sets, R1 and R2, such that R1 is a finite expansion set, R2 is a finite unifica-
tion set, and there is no edge from a rule in R2 to a rule in R1 in the GRD;
in this case, one can first use forward chaining on F with R1, which leads to
a fact F ′; then, backward chaining is used on F ′ and R2 to compute a set of
rewritings of Q and check if there is a homomorphism from a rewriting in this
set to F ′; the mechanism obtained halts in all cases, and is sound and com-
plete [BLMS09]. This result can be extended by combining it with the results
in [CGK08]: see [BLMS09], which also provides a map of all known decidable
cases.

Let us end by emphasizing the role of the piece notion in these results, which
is a natural notion when rules are considered in their graph form because it
relies on the path notion. Of course, it can be translated into a logical setting
(see [BLMS09]) but it does not rely on logical notions.

5 Conclusion

In this presentation, we have synthesized main decidability and complexity re-
sults obtained on a kind of rules which takes several forms in the literature,
namely conceptual graph rules, ∀∃-rules and TGDs. We have shown that the
graph vision of rules can lead to new notions and results. Some of the decidabil-
ity results for concrete cases still have to be completed by complexity results.
Further work also includes the design of forward and backward chaining algo-
rithms exploiting as much as possible the graph of rule dependencies.

2 Two nodes x and y are in the same strongly connected component if there is a path
from x to y and a path from y to x; strongly connected components in the GRD
represent maximal sets of rules that mutually depend, directly or indirectly, on each
other.
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