Simple Conceptual Graphs with Atomic
Negation and Difference

Michel Leclere and Marie-Laure Mugnier

LIRMM, CNRS - Université Montpellier 2,
161, rue Ada, F-34392 Montpellier cedex, France,
{leclere,mugnier}@lirmm.fr

Abstract. This paper studies the introduction of atomic negation into
simple conceptual graphs. Several semantics of negation are explored
w.r.t. the deduction problem and the query answering problem. Sound
and complete algorithm schemes based on projection (or coref-projection)
are provided in all cases. The processing of equality /inequality is added
to the framework.

1 Introduction

Simple conceptual graphs (SGs) form the keystone of conceptual graphs (CGs).
They are equivalent to the positive conjunctive existential fragment of first-order-
logic [BM02]. The issue tackled in this paper is their extension with a restricted
form of negation, namely atomic negation (in logical terms, negation of form —p,
where p is an atom). Atomic negation allows to express knowledge as “this kind
of relation does not hold between these entities”, “this entity does not have this
property” or “this entity is not of this type”. This issue is studied both from
semantic and computational viewpoints.

The framework. The reader is assumed to be familiar with basic notions about
SGs. For further details about definitions and results used in this paper please
see [CMO04]. SGs are defined w.r.t. a vocabulary, called a support and denoted
by S. A support includes partially ordered sets of concept types and relations
Te and Tg. In the first sections we consider SGs without explicit coreference
links ; coreference will be introduced as the same time as difference (section
4). Note however that a SG may include several concept nodes with the same
individual marker, which is a case of implicit coreference. A SG is denoted by G =
(C, R, E, l), where C' and R are respectively the concept and relation nodes, E
is the family of edges and [is a mapping labeling nodes and edges (edges incident
to a relation node are labeled from 1 to the arity of the relation). r(c;...ck) is a
short notation for a relation node with type r and argument list (¢;...cx), where
c1...c, are (not necessarily distinct) concept nodes. @ is the classical translation
from SGs (and the support) into FOL and - denotes classical FOL deduction.
Given two SGs) and G, it is known that when G is in normal form, there
is a projection from @ to G if and only if ¢(S),P(G) + ¢(Q). With natural

conditions on coreference, a SG always possesses a unique normal form (which
we note nf(G) for a SG G). However, in case the normal form does not exist or
cannot be computed, coref-projection can be used instead of projection [CMO04].
In the sequel we use projection as the basic notion (knowing that it can be
replaced by coref-projection if necessary). We note G < @ (or Q = G) if there
is a projection from) to G. The deduction problem is then defined as follows.

Definition 1 (SG Deduction Problem). The SG deduction problem takes
two SGs G and Q) as input and asks whether QQ = G.

Another important problem is query answering. This problem takes as input
a knowledge base (KB) composed of SGs representing facts and a SG @ repre-
senting a query, and asks for all answers to @ in the KB. The query @ is seen
as a “pattern” allowing to extract knowledge from the KB. Generic nodes in the
query represent variables to instantiate with individual or generic nodes in the
base. With this interpretation, each projection from @ to G defines an answer
to Q. An answer can be seen as the projection itself, or it can be seen as the
subgraph of G induced by this projection. We call it the image graph of Q by .

Definition 2 (Image graph). Let w a projection from @ to G. The image
graph of Q by w, denoted by Image(Q,), is the subgraph of G induced by the
images of the nodes in Q by .

Distinct projections from @) to G may produce the same image graph, thus
defining answers as image graphs instead of projections induces a potential loss
of information. One advantage however of this answer definition is that the set
of answers can be seen as a SG. We thus have the property that the results
returned by a query are in the same form as the original data. This property is
mandatory to process complex queries, i.e. queries composed of simpler queries.

Definition 3 (SG query answering problem). Let Q be a query and G be
a KB. The query answering problem asks for the set of image graphs of Q by all
projections to G.

If we consider the query answering problem in its decision form (“is there
an answer to @ in the KB?”) we obtain the deduction problem (“is @ deducible
from the KB?”).

Results. Several understandings of negation are explored in this paper, which
are all of interest in real world applications. Briefly, when a query asks “find the
x and y such that not r(z,y)”, “not” can be understood in several ways. It might
mean “the knowledge r(x,y) cannot be proven” or “the knowledge not r(x,y)
can be proven”. The first view is consistent with the closed-world assumption,
the second one with the open-world assumption. In turn, the notion of proof can
have several meanings. We point out that, as soon as negation is introduced, the
deduction problem is no longer equivalent with the query answering problem
in its decision form. Indeed, there are cases where classical deduction can be

proven but no answer can be exhibited. These situations exactly correspond to
cases where the law of excluded middle (“either A is true or not A is true”) is
used in the proof. This observation shifts the attention to logics in which the
law of excluded middle does not hold. We have chosen to consider one of these
logics, intuitionistic logic [Fit69]. It is shown that intuitionistic deduction exactly
captures the notion of an answer. Furthermore, we establish that projection
is sound and complete with respect to intuitionistic deduction in the logical
fragment corresponding to SGs with atomic negation. It follows that atomic
negation can be introduced in SGs with no overhead cost for the query answering
problem. We also give a projection-based algorithm scheme for deduction with
classical interpretation of negation. Finally, the processing of inequality is added
to this framework.

Related works. One may wonder why bother about atomic negation, as general
CGs (obtained from SGs by adding boxes representing negation, lines represent-
ing equality, and diagrammatic derivation rules, following Peirce’s existential
graphs) include general negation [Sow84] [WL94] [Dau03]. The main point is
that checking deduction becomes an undecidable problem. Another important
point is that, notwithstanding the qualities general CGs might have for dia-
grammatic logical reasoning, they are not at the application end-user level (see
fi. [BBV97]). Indeed, most applications are based on SGs and extensions that
keep their intuitive appeal such as nested graphs, rules and constraints (f.i. the
SG-family in [BMO02]). Note that these latter extensions do not provide negation.

Few works have considered SGs with atomic negation. Simonet exhibited ex-
amples showing that projection is not complete anymore and proposed an algo-
rithm based on an adaptation of the resolution method (unpublished note, 1998;
see also [Mug00]). In [Ker01] simpler examples were exhibited and it was shown
that projection remains complete in a very particular case (briefly when posi-
tive and negative relations are separated into distinct connected components).
[K1i05] gave examples of problems related to the introduction of negation on
relations (including equality) in the framework of protoconcept graphs (which
can be translated into the conceptual graphs considered in the present paper).
Moreover, as far as we know the problem of atomic negation in relationship with
query problems had never been explored.

Paper organization. Section 2 introduces atomic negation into SGs, leading
to polarized SGs. In section 3, several meanings of negation are discussed and
related with the projection notion. Algorithm schemes for solving all the deduc-
tion and query problems are provided. In section 4, the results are extended to
the processing of inequality. Due to space limitations, proofs are not included in
this paper. The reader is referred to [MLO05].

2 Polarized SGs

In this paper, we define atomic negation on relations only, but as explained below
the results can easily be translated to concept types. Besides positive relation

nodes, we now have negative relation nodes. A positive node is labeled by (r) or
(4+7), and a negative one by (—r), where r is a relation type. As in [Ker01], we
call polarized SGs (PGs) such SGs. A negative relation node with label (—r)
and neighbors (c;...c) expresses that “there is no relation r between ¢;...c” (or
if k =1, “c; does not possess the property r7); it is logically translated by &
into the literal —r(e;...er), where e; is the term assigned to ¢;. Let us consider
the very simple example of figure 1. G describes a situation where there is a pile
of three cubes A, B and C; A is blue and C' is not blue. Whether B is blue or
not is not specified.

‘ Cube: B‘ ‘ Color: Blue ‘

Fig. 1. Atomic negation

Projection on PGs is similar to projection on SGs with a simple extension
of the order on relation node labels. The opposite type order is considered for
negative labels: we set —r; < —rg if ro < 7ry.

Definition 4 (Extended order on relation labels). Given two relation la-
bels 1y and 1o, l1 <o if, either Iy and ly are both positive labels, say 1y = (r1)
and ly = (r3), and r1 < rq, orly and ly are both negative labels, say l; = (—r1)
and ly = (—r2), and 1 > ro.

Since negation is introduced a PG can be inconsistent.

Definition 5 (inconsistent PG). A PG is said to be inconsistent if its nor-
mal form contains two relation nodes +r(cy...ck) and —s(cy...c) with r < s.
Otherwise it is said to be consistent.

Property 1. For any PG G on a support S, G is inconsistent iff &(S) U {P(G)}
is (logically) inconsistent.

Negation on concept types. Negation in concept labels can be defined in
a similar way. A concept node labeled by —t (and a marker) is interpreted as
“there is an entity that is not of type t”, and not as “there is not an entity of
type t”, that is we keep an existential interpretation. Since the universal concept
type is supposed to represent all entities, it cannot be negated. Let us point
out that, if negation on concept types is interesting from a modeling viewpoint,
it does not add expressiveness. Indeed concept types can be processed as unary

relation types. More precisely, consider SGs on a support S. Let S’ be the support
built by translating all concept types, except the universal type T, into unary
relation types (keeping the same partial order). The concept type set of S’ is
composed of the single type T. Then, SGs on S can be transformed into SGs on
&S’, while preserving projections and logical deduction: each concept node with
label (~t,m), where ~ ¢ can be positive or negative and ¢t # T, is translated
into a concept node with label (T,m) and one neighboring relation node with
label (~t). A simple and uniform way of processing negation on concepts and
relations thus involves applying the transformation sketched above, processing
the obtained graphs with algorithms given in this paper and, if needed, applying
the reverse transformation to present the results. Another solution is to adapt
the algorithms, which is straightforward.

3 Different kinds of atomic negation

In this section we study three ways of understanding negation in relation with
the notions of query and answer.

3.1 Closed-world assumption

A first way of understanding “not A” is “A is not present in the KB” (and
more generally A cannot be obtained from the KB by inference mechanisms).
Such a view is consistent with the “closed-world assumption” generally made in
databases and the “negation by failure” in logic programming. Although only
positive information needs to be represented in the KB, we will not forbid a PG
representing facts to contain negative relations. A completed PG is obtained from
a PG by expliciting in a negative way all missing information about relations.
Then a query is not mapped to the original KB but rather to its completed
version.

Definition 6 (completed PG). The completed PG of a PG G, denoted by
completed(Q), defined over a support S, is the only PG obtained from the normal
form of G by adding all possible negative relations: for all relation type r of arity
k in S, for all concept nodes c;...c, if there is no relation v'(c;...ck) in nf(G)
with v’ < r, add the relation —r(cy...ck).

Definition 7 (CWA-PG deduction problem). The PG deduction problem
with closed-world assumption semantics takes two PGs @ and G as input and
asks whether Q = completed(G).

The mapping to classical logical deduction is obtained via the completed KB:

Property 2. Let @ and G be PGSs defined on a support S, with G being consis-
tent. Q = completed(G) if and only if &(S), P(completed(G)) F H(Q).

Definition 8 (CWA-PG query answering problem). Let Q) be a (polarized)
query and G be a (polarized) KB. The query answering problem asks for the
image graphs of Q by all projections to completed(G).

Obviously the completed PG (or the part of it concerning the negated rela-
tions of the query) does not have to be computed in practice. Indeed, let Q* be
the subgraph obtained from @ by considering concept nodes and solely positive
relations. We have to select the projections from Q@ to G that do not lead to
“map” a negative relation in) to a contradictory positive relation in G.

Definition 9. A negative relation —r(cy...cx) in a PG Q is satisfied by a projec-
tion w from Q* to a PG G if G does not contain a positive node +s(m(c1)...m(cx))
with s < r.

Property 3. Let @ and G be two PGs defined over a support S, with G being
consistent. There is a bijection from the set of projections from Q to G satisfy-
ing all negative relations in @ to the set of projections from @ to completed(QG).

Algorithms 1 and 2 take advantage of this property. In algorithm 2, Ans(Q, 7)
is the PG obtained from Image(Q™,7) by adding negative relations correspond-
ing to negative relations in @ (i.e. for each —r(c;...c;) in @, one adds —r(w(cy)...7w(ck))
to Image(Q™,m)). In other words, Ans(Q,) is the image of Q by a projection
(extending) to completed(G) and not to G. Indeed, the closed-world assump-
tion cannot be made on answer graphs, as the absence of a relation in an answer
graph could come from the absence in the KB but also from its absence in the
query. For instance, consider figure 2, which shows the only answer obtained by
applying the query @ to the KB G in figure 1; the relation of label (—prop) is
added whereas it does not appear in G.

Algorithm 1: CWADeduction
Data: PGs Q and G
Result: true if Q can be deduced from G with CWA, false otherwise
begin

Compute P the set of projections from QT to G;

forall T € P do
Good «+ true;

1 forall negative relation —r(c1 ... cx) in Q do
if there is s(m(c1) ... w(cx)) in G with s < r then
L Good « false ; // m is not good
exit this for loop ;

2 if Good then return true;

return false;
end

3.2 Open-world assumption

Let us now interpret the example in figure 1 with open-world assumption:
nothing is known about the color of the cube B. Seen as a yes/no question,
@ asks whether there is a blue cube on top of a non-blue cube. Seen as a

Algorithm 2: CWAQueryAnswering

Data: PGs Q and G

Result: the set of answers to @ in G with closed-world assumption
begin

Compute P the set of projections from QT to G;

Answers «— (;

forall 7 € P do
Good « true;

1 forall negative relation —r(c1 ... cx) in Q do
if there is s(m(c1) ... m(ck)) in G with s < r then
L Good « false; // m is not good
exit this for loop ;

2 if Good then Answers «— Answers U {Ans(Q,m)};

return Answers;
end

Fig. 2. Single result obtained by applying the CWA-PG query answering in figure 1

query, @ asks for exhibiting objects having these properties. In both cases, what
should be answered to Q7 Let us first point out that spontaneously a non-
logician (an end-user for instance) would say that the answer to the yes/no
question is no. This intuition corresponds to the observation that there is no
answer to the query. However, in classical FOL, the answer to the yes/no ques-
tion is yes. Indeed the logical formulas assigned to Q and G by & are respec-
tively of form @(Q) = FxJy (p(x, Blue) A —p(y, Blue) A r(z,y)) and &(G) =
p(A, Blue) Ar(A,B) Ar(B,C) A —p(C, Blue) (where p = prop, r = onTop and
atoms assigned to concept nodes are ignored). &(Q) can be deduced from @(G)
using the valid formula p(B, Blue) V —p(B, Blue) (every model of &(G) satisfies
either p(B,blue) or —p(B,blue) ; $(Q) is obtained by interpreting x and y as
B and C if p(B,blue) holds, and as A and B in the opposite case). Classical
deduction thus ensures that there is a “solution” to @ but it is not able to con-
struct it. Hence, there is no answer to) as a query. This example leads to the
following observations:

— The assertions “@ is (classically) deducible from G” and “the set of answers
to @ in G is not empty” might disagree. In other words, deduction and
the decision problem associated with query answering are different problems
(which was not the case for SGs).

— The difference between the notions of deduction and the existence of an
answer is due to the use of the law of excluded middle, which states here
that “either B is blue or it is not blue”.

Trying to formalize the preceding observations led us to distinguish two se-
mantics for negative relations, namely according to intuitionistic logic and to
classical logic. In intuitionistic logic, the law of excluded middle does not hold.
In fact, this logic appears to br completely in line with the notion of answer,
as detailed later: @ is intuitionistically deducible from G if and only if the set
of answers to G is not empty. Note we do not claim that intuitionistic logic is
the only logic suitable to our framework. Another candidate would have been
3-value logic, in which 3 truth vales are considered instead of 2: true, false and
undetermined.

Intuitionistic negation Intuitionistic logic is a well-established logic belonging
to constructive mathematics [Fit69]. It is built upon the notion of constructive
proof, which rejects the reductio-ad-absurdum reasoning. For instance, a proof
of (AV B) is given by a proof of A or a proof of B; a proof that the falsity of
(AV B) leads to a contradiction does not yield a proof of (AV B) since it does not
determine which of A or B is true. Intuitionistic (natural) deduction rules are
those of classical logic except that the absurdity rule (from I'—A F L deduce
I' B A) does not hold. Clearly each theorem of intuitionistic logic is a theorem
of classical logic but not conversely. Some characteristic examples of classical
logic theorems not provable in intuitionistic logic are (4V —A), (-——A — A) and
((A— B) — (mAV B)). We denote by H- intuitionistic deduction (recall that F
is classical deduction). The relationship between classical and intuitionistic logic
in the logical fragment of PGs can be expressed as follows:

Property 4. For any predicate r with arity k, let £(r) be the formula Vz; ... a
(r(x1, ..y zk)V-r(xy, ...,). Given a support S, let £s be the set of formulas
E(r) for all predicates r corresponding to relation types in S. Then: &(S), &s,
&(G) H ¢(Q) if and only if &(S), ¢(G) - 2(Q).

Let us come back to the example in figure 1. According to intuitionistic
logic, formula p(B, Blue) V —p(B, Blue) can be considered as true only if it can
be shown that p(B, Blue) is true, or that —p(B, Blue) is true. Since none of
these two statements can be proven,) cannot be deduced; hence the answer
to @ as a yes/no question is no, which corresponds to the fact that there is no
answer to @ as a query. Such an interpretation of a yes/no question can be seen
as the query answering problem in its decision form which asks for the existence
of an answer, that is the existence of a projection. This problem is equivalent to
intuitionistic deduction checking, as shown by the next theorem.

Property 5. A polarized SG G defined on a support S is inconsistent iff &(S) U
{®(G)} is intuitionistically inconsistent.

Theorem 1. Let @ and G be two polarized SGs defined on a support S, with
G being consistent. Q = nf(G) if and only if (S),P(G) H P(Q).

This theorem yields the following property, which shows that intuitionistic
negation is completely in line with the notion of answer to a query.

Property 6. Given two PGs @ and G, when @ is deducible from G with classical
negation but not with intuitionistic negation, there is no answer to @ in G.

We are now able to define the intuitionistic deduction problem as well as the
query answering problem in terms of projection.

Definition 10 (OWA-PG intuitionistic deduction problem). The PG in-
tuitionistic deduction problem takes two PGs QQ and G as input and asks whether

Q=G

Definition 11 (OWA-PG query answering problem). The OWA-PG query
answering problem takes two PGs Q and G as input and asks for the set of image
graphs of Q by all projections to G.

Classical negation The classical semantic of negation leads to a case-based
reasoning: if a relation is not asserted in a fact, either it is true or its negation is
true. We thus have to consider all ways of completing the knowledge asserted by
a PG. The next definition specifies the notion of the completion of a PG relative
to a support S.

Definition 12 (Complete PG). A complete PG on a support S is a consistent
(normal) PG satisfying the following condition: for each relation type r of arity k
in S, for each k-tuple of concept nodes (c1...ck), where ¢;...ci are not necessarily
distinct nodes, there is a relation +s(cy...ck) with s < r or (exclusive) there is
a relation —s(cy...ck) with s > r. A PG is complete w.r.t. a subset of relation
types T C Tg if the completion considers only elements of T'.

Property 7. If a relation node is added to a complete PG, either this relation
node is redundant (there is already a relation node with the same neighbor list
and a label less or equal to it) or it makes the PG inconsistent.

A complete PG is obtained from G by repeatedly adding positive and nega-
tive relations as long as adding a relation brings new information and does not
yield an inconsistency. The so-called completed PG defined for closed-world as-
sumption (cf. section 3.1) is a particular case of a complete PG obtained from G
by adding negative relations only. Since a PG G is a finite graph defined over a
finite support, the number of different complete PGs that can be obtained from
G is finite. We can now define deduction on PGs.

Definition 13 (OWA-PG (classical) deduction problem). The PG (clas-
sical) deduction problem with open-world assumption semantics takes two PGs

@ and G as input and asks whether each complete PG G° obtained from G is
such that Q = G°.

10

This problem is known to be IIZ-complete (II2 is co-NPNF) whereas de-
duction on SGs is NP-complete. The following property expresses that the PG
deduction is sound and complete with respect to the classical deduction in FOL.

Theorem 2. Let @ and G be two PGs defined on a support S. G is a consistent
PG. Then Q can be (classically) deduced from nf(G) if and only if (S), P(G) E

2(Q).

Algorithm 3 presents a brute-force algorithm scheme for OWA deduction.
Let us recall that the other OWA problems (intuitionistic deduction and query
answering) are directly based on projection. An immediate observation for gen-
erating the G¢ is that we do not need to consider all relations types but only
those appearing in). The algorithm generates all complete PGs relative to this
set of types and for each of them checks whether Q can be projected to it. A
complete graph to which) cannot be projected can be seen as a counter-example
to the assertion that @ is deducible from G. Although algorithm improvments
are beyond the scope of this paper, let us outline an improved way of checking
deduction. Consider the space of graphs G leading from G to its completions
(and ordered by subgraph inclusion). The question “is there a projection from @
to each G° € G?” can be reformulated as “is there a set of (incomparable) SGs
{G1 ,..., G} in this space, which covers G, i.e. each G° € G has one of the G;
as subgraph, and such that there is projection from @ to each G;?”. The brute-
force algorithm takes G as the covering set. A more efficient method consists in
building a covering set by incrementally completing GG, one relation node after
another.

Algorithm 3: OWAC(lassicalDeduction

Data: PGs @Q and G, G being consistent
Result: true if @ can be (classically) deduced from G, false otherwise
begin

Compute G the set of complete PG obtained from G w.r.t. relation types in

oF

forall G¢ € G do

if there is no projection from @Q to G° then
L return false ; // G° is a counter-example

return true;
end

4 Equality and difference

In this section we extend previous framework to equality and inequality, also
called coreference and difference. Equality is classically represented in concep-
tual graphs by a special feature called a coreference link. A coreference link

11

relates two concept nodes and indicates that these nodes represent the same
entity. See figure 3: coreference links are represented by dashed lines; in addition
there is an implicit coreference link between two nodes with the same individual
marker (here ¢; and ¢5). Formally, coreference can be defined as an equivalence
relation, denoted by coref, added to a SG, such that nodes with the same individ-
ual marker necessarily belong to the same equivalence class. As most knowlegde
representation formalisms, conceptual graphs make the “unique name assump-
tion” (UNA). Consequently, nodes with different individual markers necessarily
belong to different equivalence classes. In addition, coreferent concepts must have
compatible types (see the discussion in [CMO04]). Let us point out that equality
does not bring more expressiveness to SGs (at least in the context of UNA).
Indeed a SG with coreference, say G, is logically equivalent to the normal SG
nf(G) obtained by merging all nodes belonging to the same coreference class
(see figure 3). We present it for clarity reasons, since difference is naturally seen
as the negation of coreference.

ir

L

Fig. 3. Coreference: coref= {{c1, cs, cs},{ce, ca}}

Let us introduce inequality (or difference) as a special element of the SG
syntax, called a difference link. A difference link between two nodes c¢; and ¢
expresses that ¢; and ¢y represent distinct entities. See Figure 4: difference links
are represented by crossed lines. Due to the unique name assumption, there is
an implicit difference link between nodes having distinct individual markers.
Formally, difference is added to SGs as a symmetrical and antireflexive relation
on concept nodes, called dif. In next definitions, we distinguish between the set
of explicit coreference and difference links (Ecores and Ey;r) and the relations
(coref and dif) obtained from explicit and implicit links.

G
1 1
o

2

2

Fig. 4. PG7: Q is classically deducible from G

12

Definition 14 (PG7). A (polarized) SG with equality and inequality (notation
PG7) is a 6-tuple (C, R, E, I, Ecoref, Eaif) where:

— (C,R, E, 1) is a (polarized) SG;
— FEeores and Eq;¢ are sets of specific edges between distinct nodes of C.

Definition 15 (coref relation). The relation coref on a PG* G = (C, R, E, l, Ecoref, Faif)
18 the equivalence relation over C defined as the reflexive and transitive closure
of the union of:

— the symmetrical relation induced by Ecores over C;
— amplicit links due to multiple occurrences of individual markers: {{c,c'} | ¢, €
C, marker(c) # * and marker(c) = marker(c')};

Before defining dif, we introduce a relation Dif on the equivalence classes
of coref.

Definition 16 (Dif relation). The relation Dif on a PG G = (C, R, E, I, Ecoref, Faiy)
1s the symmetrical relation over equivalence classes of coref defined as the union

of:

1. the symmetrical relation induced by Eg;r: {{C1,C2} | there are c; € C1, ¢ca €
Cy with {01702} S Edif};

2. implicit links due to unique name assumption: {{Cy,C2} | there are ¢1 €
C1, co € Cy with marker(c1) # *, marker(ca) # x and marker(c;) #
marker(ca)};

3. implicit links due to incompatible types (in the sense of [CMO04]): {{C1,C2} | there
are ¢ € C1, ¢ € Cy such that type(cy) and type(cs) are incompatible };

4. implicit links due to contradictory relations: {(C1, C2) | there are c; € C1, ¢a €
Cy and r1 = +t(dy...dg), r2 = —s(ei1...eq) € R such that t < s and for all
k € {1..q}, one has {d1,ex} € coref except for exactly one value of k.

Sets 2, 3 and 4 could be deduced from set 1 and knowledge in the support
but we prefer adding them explicitely in Dif. Set 4 is illustrated by figure 5:
the relation nodes have opposite labels and coreferent neighborhood except for
c and ¢’; making ¢ and ¢’ coreferent would lead to an inconsistent graph.

Definition 17 (dif relation). The relation dif on a PG G = (C, R, E, I, Ecoref, Faif)
is the symmetrical relation over C' defined as the cartesian product of all pairs
of coref classes belonging to Dif (i.e. if {C1,C2} € Dif then for all c; € Cy and
co € Co, {c1,c0} € dif).

For a PG¥ in normal form, one has dif = Dif. A PG¥ is consistent if it does
not contain contradictory information, i.e. it is consistent as a PG and coref
and dif are not contradictory (coref Ndif = 0). Note that dif and Dif are
then antireflexive.

The FOL formula assigned to a PG7 translates coreference by assigning the
same term (variable or constant) to coreferent nodes, or equivalently, by adding
an atom e; = eg for each pair of coreferent nodes with assigned terms e; and es.

13

Fig. 5. Implicit dif link

dif is translated by #. Every consistent PG7 possesses a normal form which is
obtained by merging all concept nodes of the same coref class (note that this is a
generalization of the normal form of SGs, where coref is implicitly defined, two
nodes being in the same coref class if and only if they have the same individual
marker). The obtained PG is logically equivalent to the original one.

Let us come back to (positive) SGs and consider the processing of corefer-
ence and/or difference. A projection 7 from @ to G has to respect coreference:
for all nodes ¢; and cg of Q, if {c1,c2} € corefg then {m(c1),7(c2)} € corefa
(note 7(c1) and 7(c2) can be the same node). As for positive SGs without coref-
erence, completeness is obtained only if the target SG is in normal form. Re-
call that projection can be replaced by coref-projection to ensure completeness
without this condition. If difference is added to SGs, projection has to respect
the dif relation as well: for all nodes ¢; and cp of @, if {ci,c2} € difg then
{m(c1),m(c2)} € difg. Concerning completeness, the same discussion as for neg-
ative relations about the use of the law of excluded middle can be brought as
illustrated by figure 4. The formulas assigned to G and @Q are respectively @(G) =
JxIy3Iz (r(z, 2) Ar(y, z) A—=(x =y)) and &(Q) = zTy (r(z, y) A—~(x =1y)).
&(Q) can be (classically) deduced from &(G), using the law of excluded mid-
dle for z = z and/or y = z, while there is no projection from @ to G. As for
PGs, projection is sound with respect to classical deduction and intuitionistic
deduction, and it is complete for intuitionistic deduction only.

The extension to PG7s of algorithms designed for PGs is easy. In the CWA
case, nodes of the KB G not known as being coreferent are considered as being
connected by a dif link. Thus a projection 7 from QT to G has to satisfy: for all
nodes ¢; and ¢p in Q, if {c1,c2} € difg then {m(c1),m(c2)} & corefe (or simply
m(c1) # m(eg) if G is in normal form). The algorithms 1 (deduction) and 2 (query
answering) are extended by insertion of a new step checking this condition be-
tween steps 1 and 2. In the OWA case, no changes are to be done for query
answering (algorithm ??) and intuitionistic deduction (algorithm ??). The fact
that projection preserves coreference and difference is sufficient. Concerning clas-
sical deduction, case-based reasoning has to be done as for negative relations.
Algorithm 4 is a brute-force algorithm computing all dif-complete PG7 (i.e.
forall ¢, ¢’ distinct concept nodes, either {c,c'} € dif or {c,c'} € coref). Com-
puting completions incrementally during deduction checking would of course be
more efficient. Note that case 1 updates coref but may also involve updating di f

14

(due to potential contradictory relations as illustrated in figure 5), while case 2
updates dif only.

Algorithm 4: AllCompleteGraphsForDif

Data: a PG G
Result: the set of all (normal) dif-complete PG* obtainable from G
begin
CompleteSet +— 0;
CompleteRec(G);
return CompleteSet;
end

Procedure CompleteRec(G)

Data: a PG G
Result: this procedure computes recursively the completion of G; it has access
to all data of the main algorithm (alg. 4)

begin
if dif Ucoref is complete then

// all pair of distinct concept nodes are in dif or coref
| CompleteSet <+ CompleteSet U{G};

else

Choose two (distinct) nodes ¢, ¢’ in G such that {c, ¢’} € dif U coref;
// case 1: make them coreferent

let G1 be obtained from G by adding {c,c'} to Ecores

| CompleteRec(G1);

// case 2: make them ‘‘different’’

let G2 be obtained from G by adding {c,c'} to Eas

| CompleteRec(G2);

end

5 Perspectives

In this paper we study separately three kinds of negation. In practice it may be
useful to combine them. An interesting approach in this perspective is that of G.
Wagner [Wag03] who, after an analysis of different kinds of negation that can be
found in existing systems and languages, as well as in natural language, proposes
to distinguish between several kinds of predicates. Predicates are separated into
total predicates and partial predicates that may have “truth value gaps” (that
is it may be the case that neither P nor =P is true). The law of excluded middle
applies to the first ones but not the second ones. Total predicates can be open or

15

closed, according to the underlying completeness assumption, namely OWA or
CWA. A kind of negation corresponds to each kind of predicate. The proposed
logic for distinguishing between these three kinds of predicates is a partial logic
with three truth values (true, false and undefined). Although we do not consider
the same logical framework, the above three kinds of predicates correspond to
the three cases analyzed in the present paper. Similar to Wagner’s proposal,
we could combine the three ways of processing negation. If information about a
relation type is assumed to be complete, closed-world negation is used. If it is not,
the question is whether the law of excluded middle applies or not. If the answer
is yes, the negation for this relation type is the classical negation, otherwise it is
the intuitionistic negation. Since all mechanisms defined in this paper are based
on projection (or coref-projection), combining them is not difficult.

References

[BBV97] C. Bos, B. Botella, and P. Vanheeghe. Modeling and Simulating Human
Behaviors with Conceptual Graphs. In Proc. of ICCS’97, volume 1257 of
LNAI pages 275-289. Springer, 1997.

[BM02] J.-F. Baget and M.-L. Mugnier. The Complexity of Rules and Constraints.
JAIR, 16:425-465, 2002.

[CM04] M. Chein and M.-L. Mugnier. Types and Coreference in Simple Conceptual
Graphs. In Proc. ICCS’04, volume 3127 of LNAI, pages 303-318. Springer,
2004.

[Dau03] Frithjof Dau. The Logic System of Concept Graphs with Negation And Its
Relationship to Predicate Logic, volume 2892 of LNCS. Springer, 2003.

[Fit69] M. C. Fitting. Intuitionistic Logic, Model Theory and Forcing. North Holland,
Amsterdam, 1969.

[Ker01] G. Kerdiles. Saying it with Pictures: a Logical Landscape of Concep-
tual Graphs. PhD thesis, Univ. Montpellier II / Amsterdam, Nov. 2001.
http://turing.wins.uva.nl/ kerdiles/.

[K1i05] J. Klinger. Local Negation in Concept Graphs. In Proc. of ICCS’05, volume
3596 of LNAI pages 209-222. Springer, 2005.

[MLO05] M.L. Mugnier and M. Leclére. On Querying Simple Conceptual Graphs with
Negation. Research Report LIRMM 05-051, revised version to appear in Data
and Knowledge Engineering, 2006, July 2005.

[Mug00] M.-L. Mugnier. Knowledge Representation and Reasoning based on Graph
Homomorphism. In Proc. ICCS’00, volume 1867 of LNAI, pages 172-192.
Springer, 2000.

[Sow84] J. F. Sowa. Conceptual Structures: Information Processing in Mind and Ma-
chine. Addison-Wesley, 1984.

[Wag03] G. Wagner. Web Rules Need Two Kinds of Negation. In Proc. 1st Inter-
national Workshop PPSWS3, volume 2901 of LNCS, pages —. Springer, 2003.
http://tmitwww.tm.tue.nl/staff/gwagner.

[WL94] M. Wermelinger and J.G. Lopes. Basic Conceptual Structures Theory. In
Proc. ICCS’98, volume 835 of LNAI, pages 144-159. Springer, 1994.

