On the Π_2^P -Completeness of the Containment Problem of Conjunctive Queries with Negation and Other Problems

Marie-Laure Mugnier

LIRMM, Université de Montpellier, 161, rue Ada, F-34392 Montpellier cedex - France mugnier@lirmm.fr

Abstract. This research note proves the Π_2^P -completeness of several equivalent problems: deduction in the first-order logical fragment composed of existential conjunctive formulas, deduction in polarized graphs (which are simple conceptual graphs with negation on relations, built on a simplified vocabulary) and containment of conjunctive queries with negation. The exhibited reduction is essentially due to Guillaume Bagan (November 2004)¹.

Research Report LIRMM number 07004 - February 2007

1 Some equivalent problems

We consider the three following equivalent problems:

Deduction in $FOL\{\exists, \land, \neg_a\}$

Input: two existentially closed conjunctions of (positive and negative) literals f_1 and f_2 . Question: does $f_1 \models f_2$ hold, i.e. is every model of f_1 a model of f_2 ?

To ease comparison with the following problems, we consider that the formulas are in prenex form (all quantifiers are in front of the formula).

Deduction on polarized graphs (PGs)

Input: two polarized graphs G_1 and G_2 .

Question: is G_2 deducible from G_1 , i.e. is G_1 inconsistent or is there a homomorphism from G_2 to each completion of G_1 ?

For the definitions of polarized graph, homomorphism and completion, see section 3. See also [LM07] in relationship with the containment problem of conjunctive queries with negation.

¹ Guillaume Bagan proposed this reduction when he was a master student in Montpellier University in November 2004. It was an answer to the question of the complexity of deduction on polarized graphs, that I raised during a master course.

Containment of conjunctive queries with negation

Input: two conjunctive queries with negation (but without inequalities) q_1 and q_2 . Question: is q_1 contained in q_2 ($q_1 \sqsubseteq q_2$), i.e. is the set of answers to q_1 included in the set of answers to q_2 for any database D?

Polarized graphs can be seen as a graph representation of FOL $\{\exists, \land, \neg_a\}$ formulas. More specifically, the logical translation of a polarized graph is a FOL $\{\exists, \land, \neg_a\}$ formula (see the ϕ mapping, section 3), and each FOL $\{\exists, \land, \neg_a\}$ formula can be represented as a polarized graph, such that the notions of deduction coincide². The equivalence between the two first problems is shown in [ML06] (on more complex polarized graphs). The logical view of queries has long been used in databases. See for instance [AHV95]. Figure 1 illustrates these different views of the same object.

$$q=ans(x,y) \leftarrow r(x,y,A) \land s(z,A) \land \neg s(A,z))$$

Fig. 1. Equivalent views of the same object: PG, FOL $\{\exists, \land, \neg_a\}$ formula and conjunctive query with negation

One can identify the notions of substitution on FOL $\{\exists, \land, \neg_a\}$ formulas (in prenex form), PG homomorphism and query homomorphism extended to the negative literals (or subgoals) of a query. Similarly, one can identify the notions of canonical³ model of a FOL $\{\exists, \land, \neg_a\}$ formula, completion of a consistent PG and completion of a consistent conjunctive query with negation.

2 Π_2^P -completeness Proof

The way the second problem is stated makes it clear that it is in Π_2^P . Note that a completion has a size exponential in the maximum arity of a relation, but without loss of generality we can assume that this size is bounded by a constant (or even by 2, as n-ary relations can be polynomially transformed into binary relations).

The Π_2^P -completeness is proven by reduction from the following Π_2^P -complete problem:

² If we restrict the domain of ϕ to *normal* polarized graphs, i.e. PGs without two vertices labeled by the same constant (the PG in Figure 1 is normal), ϕ is a bijection.

³ In a canonical model, the domain is the set of terms occurring in the formula.

Generalized Ramsey Number

Input: an undirected graph G = (V, E), where V is the set of vertices and E the set of edges; a partial two-coloring σ of E (i.e. a partial function $\sigma : E \mapsto \{0, 1\}$); and an integer k.

Question: Does every total extension of σ produce a one-color k-clique⁴ (i.e. a k-clique with all edges colored 0 or with all edges colored 1)?

See [SU02] for references to the Π_2^P -completeness proof.

Reduction. Let $(G = (V, E), \sigma, k)$ be an instance of Generalized Ramsey Number. Let $L = \{r, d, p\}$ be a relational vocabulary where r and d are binary relations and p is a unary relation. We build two relational structures G_1 and G_2 on L which can naturally be seen as (consistent) polarized graphs (with all term vertices labeled by *). Hence (G_1, G_2) is an instance of PG-deduction. G_1 and G_2 can also be seen as FOL $\{\exists, \land, \neg_a\}$ formulas or conjunctive queries with negation. A term vertex (resp. relation vertex) in a polarized graph corresponds to a term (resp. literal) in the associated formula or query; r(u) (resp. $\neg r(u)$) denotes a positive (resp. negative) relation vertex with label +r (resp. -r) and list of neighbors u. Therefore, the following reduction is easily translated into a reduction to the other problems.

The set of term vertices of G_2 is $C_1 \cup C_2$ where C_1 and C_2 are copies of the set of edges of a k-clique (thus in each C_i there is one term vertex x for each edge ab of a k-clique). There is a r(x, y) if $\{x, y\} \subseteq C_1$ or $\{x, y\} \subseteq C_2$, and x and y represent distinct edges sharing a vertex (i.e. edges with a common endpoint) in the k-clique. There is a d(x, y) between all distinct term vertices x and y in G_2 . There is a p(x) if $x \in C_1$ and $\neg p(x)$ if $x \in C_2$.

Intuitively: G_2 is composed of two components, C_1 and C_2 ; for each component, the term vertices and the relation vertices labeled by r represent the intersection graph of the edges of a k-clique; distinct term vertices anywhere in G_2 are related by d; the term vertices in C_1 are marked by p, those in C_2 are marked by $\neg p$. p can be seen as denoting the color 0 and $\neg p$ the color 1.

The set of term vertices of G_1 is $C'_1 \cup E \cup C'_2$ where, as for G_2 , C'_1 and C'_2 are copies of the set of edges of a k-clique; E is a copy of the set of edges in G.

There is a r(x, y) if $\{x, y\} \subseteq C'_1$ or $\{x, y\} \subseteq C'_2$ or $\{x, y\} \subseteq E$, and x and y represent distinct edges sharing a vertex. There is a d(x, y) between distinct vertices x and y in $C'_1 \cup E$ and between distinct vertices x and y in $E \cup C'_2$. There is a p(x) if $x \in C'_1$, or $x \in E$ and $\sigma(x)$ is defined and equal to 0; there is a $\neg p(x)$ if $x \in C'_2$, or $x \in E$ and $\sigma(x)$ is defined and equal to 1.

Intuitively: G_1 has the same components C_1 and C_2 as G_2 , but in addition there is a component E representing the intersection graph of the edges of G. The elements in E are marked by p, $\neg p$ or nothing, depending of the color of the corresponding edge in G. In G_2 , C_1 and C_2 are "directly connected" by d; in G_1 they are not: E is between them.

⁴ A clique is an undirected graph with all edges between distinct vertices. A *k*-clique is a clique with *k* vertices.

⁵ It is not necessary to have d in both directions between C_1 and C_2 in G_2 , and between C'_1 and E and E and C'2 in G_1 : instead, d could lead from C_1 to C_2 in G_2 , and from C'_1 to E and from E to C'2 in G_1 .

Now, let us prove that all extension of σ produces a one-color k-clique if and only if for all completion G_{*1} of G_1 , there is a homomorphism from G_2 to G_{*1} .

Note. We call subgraph "induced by" a set of term vertices S the subgraph with set of vertices S plus all relation vertices having their neighbors in S.

First see that there is a *bijection* (say *b*) between an edge-coloring of *G* extending σ and a $\{p\}$ -completion of the subgraph induced by *E* in *G*₁. As the subgraphs induced by *C*'₁ and *C*'₂ are already $\{p\}$ -complete, such a completion is also a $\{p\}$ -completion of *G*₁ itself. Also note that *r* and *d* occur only positively, thus they are not needed in completions: there is a homomorphism from *G*₂ to each $\{r, d, p\}$ -completion of *G*₁ (see property 2, section 3).

Let σ' be an extension of σ which produces a k-clique of color 0 (resp. 1). In $b(\sigma')$, i.e. the completion of G_1 assigned to σ' by b, the subgraph induced by E contains term vertices corresponding to the edges of a k-clique S, with all these vertices being attached to a p relation vertex (resp. a $\neg p$ relation vertex). Let us note edges(S) this set of vertices. There is a homomorphism from G_2 to the subgraph of $b(\sigma')$ induced by $C'_1 \cup edges(S)$ (resp. $C'_2 \cup edges(S)$).

Reciprocally, let G_{*_1} be a $\{p\}$ -completion of G_1 and let h be a homomorphism from G_2 to G_{*_1} . See that h is necessarily injective on the set of term vertices in G_2 due to the p relation vertices between all distinct term vertices in G_2^6 . h maps G_2 either to the subgraph of G_{*_1} induced by C'_1 and the vertices corresponding to the edges of a k-clique all attached to a $\neg p$, or to the subgraph induced by C'_2 and the edges of a k-clique all attached to a p. Thus, there is an extension of σ which produces a k-clique of color 0 or of color 1.

3 Definitions and results relative to polarized graphs

The *polarized graphs* presented below are a simplification of graphs used in a knowledge representation context [Ker01,ML06], where the vocabulary is more complex: relation names are partially ordered; moreover term vertices are typed, with the types being taken in a partially ordered set of types. See [ML06] for further details.

Definition 1 (polarized graph). Let us consider a vocabulary (\mathcal{R}, dom) where \mathcal{R} is a finite set of relation names of any arity and dom a set of constant labels. A polarized graph (PG) is an undirected bipartite graph G = (R, T, E, l) where R and T are the (disjoint) sets of vertices, respectively called set of relation vertices and set of term vertices, E is the family of edges (there may be several edges with the same extremities) and l is the label mapping. For $r_i \in R$, $l(r_i) = +r$ (r_i is called a positive relation vertex) or $l(r_i) = -r$ (r_i is called a negative relation vertex) where $r \in \mathcal{R}$; the degree of r_i (i.e. the number of edges incident to it) must be equal to the arity of r; furthermore, the edges incident to r_i are totally ordered, which is represented by labeling edges from

⁶ A homomorphism from a clique C to a graph G is necessarily injective, but it is not true anymore when we replace C and G by the intersection graphs of their edges. The role of the d relation vertices in the subgraphs induced by C_1 and by C_2 is to enforce injectivity.

I to the degree of r_i . An edge labeled *n* between a relation vertex r_i and a term vertex *t* is denoted by (r_i, n, t) . For $t \in T$, either l(t) = * (*t* is called a variable node) or $l(t) \in dom$ (*t* is called a constant node).

We consider here, without loss of generality, that PGs do not have redundant relation vertices (i.e. with the same label and the same i-ith neighbors) and that each constant of dom appears at most once in it.

Definition 2 (PG homomorphism). A PG homomorphism h from $G = (R_G, T_G, E_G, l_G)$ to $H = (R_H, T_H, E_H, l_H)$ is a mapping from $R_G \cup T_G$ to $R_H \cup T_H$ such that:

- 1. for all $r \in R_G$, $h(r) \in R_H$; for all $t \in T_G$, $h(t) \in T_H$ (*h* preserves bipartition)
- 2. *if* $(r, n, t) \in G$ *then* $(h(r), n, h(t)) \in H$ (*h* preserves edges and their ordering)
- 3. for all $r \in R_G$, $l_H(h(r)) = l_G(r)$ (h preserves relation labels)
- 4. for all $t \in T_G$, if $l_G(t) \in dom$ then $l_H(h(t)) = l_G(t)$, otherwise there is no condition on $l_H(h(t))$ (h may "instantiate" variables).

Definition 3 (inconsistent PG). A PG is said to be inconsistent if it contains two relation nodes with labels (+r) and (-r) and same neighborhood. Otherwise it is said to be consistent.

The semantics of PGs is given by a translation to first-order-logic, say ϕ (according to the name given to this mapping in conceptual graphs): briefly said, term nodes are translated into terms (a distinct variable is assigned to each variable node) and relation nodes into literals; the obtained formula is the existential closure of the conjunction of all literals. According to this semantic, we often note r and $\neg r$ the relation node labels instead of +r and -r.

It can be easily checked that inconsistent PGs correspond to unsatisfiable formulas. Positive PGs are translated into positive formulas; for this positive fragment it has been proven that PG homomorphism is equivalent to logical deduction ([CM92], considering that positive PGs are a particular case of simple conceptual graphs).

Definition 4. A consistent PG G is complete w.r.t. a set of relations R (in short: R-complete), if for each relation r in R with arity k, for each k-tuple of term nodes u in G, not necessarily distinct, G contains r(u) (a positive relation node labeled +r with list of neighbors u) or $\neg r(u)$ (a negative relation node labeled -r with list of neighbors u).

A complete PG is obtained from a PG G by repeatedly adding positive and negative relation nodes (with neighbors already present in G), as long as it does not yield a redundancy or an inconsistency. The following property justifies the definition of the "PG deduction" problem given in the first section.

Property 1. [ML06] Given two PGs G_1 and G_2 (with G_1 being consistent), $\phi(G_1) \models \phi(G_2)$ iff for each complete PG G_1^c generated from G_1 (w.r.t. the set of relation names occurring in G_1), there is a homomorphism from G_2 to G_1^c .

Not all relation names occurring in G_1 need to be considered:

Property 2. [LM07] If r is a relation name that does not have both positive and negative occurrences in G_1 and in G_2 , then r is not needed in the completion of G_1 (i.e. G_2 is deducible from G_1 iff G_2 can be mapped by a homomorphism to each completion of G_1 built without considering r).

4 PGs and conjunctive queries with negation

Let us first recall classical database definitions (see f.i. [AHV95]). A database schema S = (R, dom) includes a finite set of relations R and a countably infinite set of constants dom. Each relation has an arity (not equal to zero) defining the number of its arguments. A database instance D (or simply a database) over S maps each k-ary relation r_i of R to a finite subset of dom^k (denoted $D(r_i)$). A conjunctive query (with negation) is of form:

$$q = ans(u) \leftarrow r_1(u_1), \ \dots \ r_n(u_n), \neg s_1(v_1), \ \dots \ \neg s_m(v_m) \ n \ge 0, \ m \ge 0, \ n+m \ge 1$$

where $r_1 \ldots r_n, s_1 \ldots s_m$ are relations, ans is a special relation not belonging to R, uand $u_1 \ldots u_n, v_1 \ldots v_m$ are tuples of terms (variables or constants of dom), and each variable of u occurs at least once in the body of the rule. Without loss of generality, we assume that the same literal does not appear twice in the body of the rule. A *positive query* is a query without negative literals (m = 0, thus $n \ge 1$). A query is *inconsistent* if it contains two opposite literals (i.e. $\exists i, j \ 1 \le i \le n, \ 1 \le j \le m$ such that $r_i(u_i) = s_j(v_j)$), otherwise it is consistent.

Given a query $q = ans(u) \leftarrow r_1(u_1), \dots r_n(u_n), \neg s_1(v_1), \dots \neg s_m(v_m)$ and a database D on S, q(D) denotes the *set of answers* to q in D; q(D) is the set of tuples $\mu(u)$ where μ is a substitution of the variables in q by constants in *dom* such that for any i in $\{1, \dots, n\}, \mu(u_i) \in D(r_i)$ and for any j in $\{1, \dots, m\}, \mu(v_j) \notin D(s_j)$. When the arity of *ans* is 0, q(D) is the set $\{()\}$ if there is such a substitution μ , otherwise it is \emptyset . If q(D) is not empty, D is said to *answer* the query. A query q_1 is said to be *contained* in a query q_2 , noted $q_1 \sqsubseteq q_2$, if for any database D, $q_1(D) \subseteq q_2(D)$. The *conjunctive query containment problem* takes as input two conjunctive queries q_1 and q_2 and asks whether $q_1 \sqsubseteq q_2$.

There is an obvious mapping from databases notions to PG notions. To a database schema is naturally assigned a vocabulary of PGs. A database D can naturally be seen as a totally instantiated (i.e. without variable vertices) positive PG on this vocabulary. The body q_b of a query q can naturally be seen as a PG. A whole query q can be transformed into a PG as follows. We add to the vocabulary special relation names ans_i for each possible arity i, possibly 0 (which corresponds to boolean queries). Then the head of q (say $ans(t_1...t_q)$) is mapped to a positive relation node with label ans_q and with neighborhood the term nodes assigned to t_i ⁷. A query homomorphism extended to negative literals can then be seen as a PG homomorphism.

⁷ This transformation is from [CMS98]. Note that we could use one unary relation per position in the head as in the transformation from a query to a database in [CM77] but then only queries with the same arity of *ans* should be compared.

References

- [AHV95] S. Abiteboul, R. Hull, and V. Vianu. *Foundations of Databases*. Addison-Wesley, 1995.
- [CM77] A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries in relational databases. In 9th ACM Symposium on Theory of Computing, pages 77–90, 1977.
- [CM92] M. Chein and M.-L. Mugnier. Conceptual Graphs: Fundamental Notions. Revue d'Intelligence Artificielle, 6(4):365–406, 1992.
- [CMS98] M. Chein, M.-L. Mugnier, and G. Simonet. Nested Graphs: A Graph-based Knowledge Representation Model with FOL Semantics. In *Proc. of KR'98*, pages 524–534. Morgan Kaufmann, 1998. Revised version available at http://www.lirmm.fr/mugnier/.
- [Ker01] G. Kerdiles. Saying it with Pictures: a Logical Landscape of Conceptual Graphs. PhD thesis, Univ. Montpellier II / Amsterdam, Nov. 2001.
- [LM07] M. Leclère and M.L. Mugnier. Some algorithmic improvements for the containment problem of conjunctive queries with negation. In *ICDT'07*, number 4353 in LNCS, pages 404–418. Springer, 2007.
- [ML06] M.L. Mugnier and M. Leclère. On querying simple conceptual graphs with negation. *Data and Knowledge Engineering (DKE)*, 2006. In press, doi:10.1016/j.datak.2006.03.008. To be published in Volume 60, Issue 3, Pages 435-624 (March 2007).
- [SU02] Marcus Schaefer and Chris Umans. Completeness in the polynomial-time hierarchy: A compendium. Sigact News. Last updated: 8/20/06, available on M. Schaefer's homepagee, 2002.