
On the ΠP
2 -Completeness of the Containment Problem

of Conjunctive Queries with Negation and Other
Problems

Marie-Laure Mugnier

LIRMM, Université de Montpellier,
161, rue Ada, F-34392 Montpellier cedex - France

mugnier@lirmm.fr

Abstract. This research note proves the ΠP
2 -completeness of several equivalent

problems: deduction in the first-order logical fragment composed of existential
conjunctive formulas, deduction in polarized graphs (which are simple concep-
tual graphs with negation on relations, built on a simplified vocabulary) and con-
tainment of conjunctive queries with negation. The exhibited reduction is essen-
tially due to Guillaume Bagan (November 2004)1.

Research Report LIRMM number 07004 - February 2007

1 Some equivalent problems

We consider the three following equivalent problems:

Deduction in FOL{∃,∧,¬a}
Input: two existentially closed conjunctions of (positive and negative) literals f1 and f2.
Question: does f1 |= f2 hold, i.e. is every model of f1 a model of f2?

To ease comparison with the following problems, we consider that the formulas are
in prenex form (all quantifiers are in front of the formula).

Deduction on polarized graphs (PGs)
Input: two polarized graphs G1 and G2.
Question: is G2 deducible from G1, i.e. is G1 inconsistent or is there a homomorphism
from G2 to each completion of G1?

For the definitions of polarized graph, homomorphism and completion, see section
3. See also [LM07] in relationship with the containment problem of conjunctive queries
with negation.

1 Guillaume Bagan proposed this reduction when he was a master student in Montpellier Uni-
versity in November 2004. It was an answer to the question of the complexity of deduction on
polarized graphs, that I raised during a master course.

Containment of conjunctive queries with negation
Input: two conjunctive queries with negation (but without inequalities) q1 and q2.
Question: is q1 contained in q2 (q1 v q2), i.e. is the set of answers to q1 included in the
set of answers to q2 for any database D?

Polarized graphs can be seen as a graph representation of FOL{∃,∧,¬a} formu-
las. More specifically, the logical translation of a polarized graph is a FOL{∃,∧,¬a}
formula (see the φ mapping, section 3), and each FOL{∃,∧,¬a} formula can be repre-
sented as a polarized graph, such that the notions of deduction coincide2. The equiva-
lence between the two first problems is shown in [ML06] (on more complex polarized
graphs). The logical view of queries has long been used in databases. See for instance
[AHV95]. Figure 1 illustrates these different views of the same object.

A* **

2

3 1 2

1

2
1

+r

+s+ans
12

2

−s

f=∃x∃y∃z(ans(x, y) ∧ r(x, y, A) ∧ s(z, A) ∧ ¬s(A, z))
q=ans(x, y) ← r(x, y, A) ∧ s(z, A) ∧ ¬s(A, z))

Fig. 1. Equivalent views of the same object: PG, FOL{∃,∧,¬a} formula and conjunctive query
with negation

One can identify the notions of substitution on FOL{∃,∧,¬a} formulas (in prenex
form), PG homomorphism and query homomorphism extended to the negative literals
(or subgoals) of a query. Similarly, one can identify the notions of canonical3 model of a
FOL{∃,∧,¬a} formula, completion of a consistent PG and completion of a consistent
conjunctive query with negation.

2 ΠP
2 -completeness Proof

The way the second problem is stated makes it clear that it is in ΠP
2 . Note that a com-

pletion has a size exponential in the maximum arity of a relation, but without loss of
generality we can assume that this size is bounded by a constant (or even by 2, as n-ary
relations can be polynomially transformed into binary relations).

The ΠP
2 -completeness is proven by reduction from the following ΠP

2 -complete
problem:

2 If we restrict the domain of φ to normal polarized graphs, i.e. PGs without two vertices labeled
by the same constant (the PG in Figure 1 is normal), φ is a bijection.

3 In a canonical model, the domain is the set of terms occurring in the formula.

2

Generalized Ramsey Number
Input: an undirected graph G = (V, E), where V is the set of vertices and E the set of
edges; a partial two-coloring σ of E (i.e. a partial function σ : E 7→ {0, 1}); and an
integer k.
Question: Does every total extension of σ produce a one-color k-clique4 (i.e. a k-clique
with all edges colored 0 or with all edges colored 1)?

See [SU02] for references to the ΠP
2 -completeness proof.

Reduction. Let (G = (V, E), σ, k) be an instance of Generalized Ramsey Number. Let
L = {r, d, p} be a relational vocabulary where r and d are binary relations and p is a
unary relation. We build two relational structures G1 and G2 on L which can naturally
be seen as (consistent) polarized graphs (with all term vertices labeled by ∗). Hence
(G1, G2) is an instance of PG-deduction. G1 and G2 can also be seen as FOL{∃,∧,¬a}
formulas or conjunctive queries with negation. A term vertex (resp. relation vertex) in a
polarized graph corresponds to a term (resp. literal) in the associated formula or query;
r(u) (resp.¬r(u)) denotes a positive (resp. negative) relation vertex with label +r (resp.
−r) and list of neighbors u. Therefore, the following reduction is easily translated into
a reduction to the other problems.

The set of term vertices of G2 is C1 ∪ C2 where C1 and C2 are copies of the set
of edges of a k-clique (thus in each Ci there is one term vertex x for each edge ab of
a k-clique). There is a r(x, y) if {x, y} ⊆ C1 or {x, y} ⊆ C2, and x and y represent
distinct edges sharing a vertex (i.e. edges with a common endpoint) in the k-clique.
There is a d(x, y) between all distinct term vertices x and y in G2. There is a p(x) if
x ∈ C1 and ¬p(x) if x ∈ C2.

Intuitively: G2 is composed of two components, C1 and C2; for each component,
the term vertices and the relation vertices labeled by r represent the intersection graph
of the edges of a k-clique; distinct term vertices anywhere in G2 are related by d; the
term vertices in C1 are marked by p, those in C2 are marked by ¬p. p can be seen as
denoting the color 0 and ¬p the color 1.

The set of term vertices of G1 is C ′1 ∪ E ∪ C ′2 where, as for G2, C ′1 and C ′2 are
copies of the set of edges of a k-clique; E is a copy of the set of edges in G.

There is a r(x, y) if {x, y} ⊆ C ′1 or {x, y} ⊆ C ′2 or {x, y} ⊆ E, and x and y
represent distinct edges sharing a vertex. There is a d(x, y) between distinct vertices x
and y in C ′1 ∪ E and between distinct vertices x and y in E ∪ C ′2

5. There is a p(x) if
x ∈ C ′1, or x ∈ E and σ(x) is defined and equal to 0; there is a ¬p(x) if x ∈ C ′2, or
x ∈ E and σ(x) is defined and equal to 1.

Intuitively: G1 has the same components C1 and C2 as G2, but in addition there is
a component E representing the intersection graph of the edges of G. The elements in
E are marked by p, ¬p or nothing, depending of the color of the corresponding edge in
G. In G2, C1 and C2 are “directly connected” by d; in G1 they are not: E is between
them.

4 A clique is an undirected graph with all edges between distinct vertices. A k-clique is a clique
with k vertices.

5 It is not necessary to have d in both directions between C1 and C2 in G2, and between C′1 and
E and E and C′2 in G1: instead, d could lead from C1 to C2 in G2, and from C′1 to E and
from E to C′2 in G1.

3

Now, let us prove that all extension of σ produces a one-color k-clique if and only
if for all completion G∗1 of G1, there is a homomorphism from G2 to G∗1.

Note. We call subgraph “induced by” a set of term vertices S the subgraph with set of
vertices S plus all relation vertices having their neighbors in S.

First see that there is a bijection (say b) between an edge-coloring of G extending σ
and a {p}-completion of the subgraph induced by E in G1 . As the subgraphs induced
by C ′1 and C ′2 are already {p}-complete, such a completion is also a {p}-completion
of G1 itself. Also note that r and d occur only positively, thus they are not needed in
completions: there is a homomorphism from G2 to each {r, d, p}-completion of G1

iff there is a homomorphism from G2 to each {p}-completion of G1 (see property 2,
section 3).

Let σ′ be an extension of σ which produces a k-clique of color 0 (resp. 1). In b(σ′),
i.e. the completion of G1 assigned to σ′ by b, the subgraph induced by E contains
term vertices corresponding to the edges of a k-clique S, with all these vertices being
attached to a p relation vertex (resp. a ¬p relation vertex). Let us note edges(S) this
set of vertices. There is a homomorphism from G2 to the subgraph of b(σ′) induced by
C ′1 ∪ edges(S) (resp. C ′2 ∪ edges(S)).

Reciprocally, let G∗1 be a {p}-completion of G1 and let h be a homomorphism
from G2 to G∗1. See that h is necessarily injective on the set of term vertices in G2

due to the p relation vertices between all distinct term vertices in G2
6.h maps G2 either

to the subgraph of G∗1 induced by C ′1 and the vertices corresponding to the edges of
a k-clique all attached to a ¬p, or to the subgraph induced by C ′2 and the edges of a
k-clique all attached to a p. Thus, there is an extension of σ which produces a k-clique
of color 0 or of color 1.

3 Definitions and results relative to polarized graphs

The polarized graphs presented below are a simplification of graphs used in a knowl-
edge representation context [Ker01,ML06], where the vocabulary is more complex:
relation names are partially ordered; moreover term vertices are typed, with the types
being taken in a partially ordered set of types. See [ML06] for further details.

Definition 1 (polarized graph). Let us consider a vocabulary (R, dom) where R is a
finite set of relation names of any arity and dom a set of constant labels. A polarized
graph (PG) is an undirected bipartite graph G = (R, T, E, l) where R and T are
the (disjoint) sets of vertices, respectively called set of relation vertices and set of term
vertices, E is the family of edges (there may be several edges with the same extremities)
and l is the label mapping. For ri ∈ R, l(ri) = +r (ri is called a positive relation
vertex) or l(ri) = −r (ri is called a negative relation vertex) where r ∈ R; the degree
of ri (i.e. the number of edges incident to it) must be equal to the arity of r ; furthermore,
the edges incident to ri are totally ordered, which is represented by labeling edges from

6 A homomorphism from a clique C to a graph G is necessarily injective, but it is not true
anymore when we replace C and G by the intersection graphs of their edges. The role of the d
relation vertices in the subgraphs induced by C1 and by C2 is to enforce injectivity.

4

1 to the degree of ri. An edge labeled n between a relation vertex ri and a term vertex
t is denoted by (ri, n, t). For t ∈ T , either l(t) = ∗ (t is called a variable node) or
l(t) ∈ dom (t is called a constant node).

We consider here, without loss of generality, that PGs do not have redundant relation
vertices (i.e. with the same label and the same i-ith neighbors) and that each constant
of dom appears at most once in it.

Definition 2 (PG homomorphism). A PG homomorphism h from G = (RG, TG, EG, lG)
to H = (RH , TH , EH , lH) is a mapping from RG ∪ TG to RH ∪ TH such that:

1. for all r ∈ RG, h(r) ∈ RH ; for all t ∈ TG, h(t) ∈ TH

(h preserves bipartition)
2. if (r, n, t) ∈ G then (h(r), n, h(t)) ∈ H

(h preserves edges and their ordering)
3. for all r ∈ RG, lH(h(r)) = lG(r)

(h preserves relation labels)
4. for all t ∈ TG, if lG(t) ∈ dom then lH(h(t)) = lG(t), otherwise there is no

condition on lH(h(t))
(h may “instantiate” variables).

Definition 3 (inconsistent PG). A PG is said to be inconsistent if it contains two rela-
tion nodes with labels (+r) and (−r) and same neighborhood. Otherwise it is said to
be consistent.

The semantics of PGs is given by a translation to first-order-logic, say φ (according
to the name given to this mapping in conceptual graphs): briefly said, term nodes are
translated into terms (a distinct variable is assigned to each variable node) and relation
nodes into literals; the obtained formula is the existential closure of the conjunction of
all literals. According to this semantic, we often note r and ¬r the relation node labels
instead of +r and −r.

It can be easily checked that inconsistent PGs correspond to unsatisfiable formulas.
Positive PGs are translated into positive formulas; for this positive fragment it has been
proven that PG homomorphism is equivalent to logical deduction ([CM92], considering
that positive PGs are a particular case of simple conceptual graphs).

Definition 4. A consistent PG G is complete w.r.t. a set of relations R (in short: R-
complete), if for each relation r in R with arity k, for each k-tuple of term nodes u in G,
not necessarily distinct, G contains r(u) (a positive relation node labeled +r with list
of neighbors u) or ¬r(u) (a negative relation node labeled−r with list of neighbors u).

A complete PG is obtained from a PG G by repeatedly adding positive and negative
relation nodes (with neighbors already present in G), as long as it does not yield a
redundancy or an inconsistency. The following property justifies the definition of the
“PG deduction” problem given in the first section.

Property 1. [ML06] Given two PGs G1 and G2 (with G1 being consistent), φ(G1) |=
φ(G2) iff for each complete PG Gc

1 generated from G1 (w.r.t. the set of relation names
occurring in G1), there is a homomorphism from G2 to Gc

1.

5

Not all relation names occurring in G1 need to be considered:

Property 2. [LM07] If r is a relation name that does not have both positive and negative
occurrences in G1 and in G2, then r is not needed in the completion of G1 (i.e. G2 is
deducible from G1 iff G2 can be mapped by a homomorphism to each completion of
G1 built without considering r).

4 PGs and conjunctive queries with negation

Let us first recall classical database definitions (see f.i. [AHV95]). A database schema
S = (R, dom) includes a finite set of relations R and a countably infinite set of con-
stants dom. Each relation has an arity (not equal to zero) defining the number of its
arguments. A database instance D (or simply a database) over S maps each k-ary re-
lation ri of R to a finite subset of domk (denoted D(ri)). A conjunctive query (with
negation) is of form:

q = ans(u) ← r1(u1), ... rn(un),¬s1(v1), ... ¬sm(vm) n ≥ 0, m ≥ 0, n + m ≥ 1

where r1 ... rn, s1 ... sm are relations, ans is a special relation not belonging to R, u
and u1 ... un, v1 ... vm are tuples of terms (variables or constants of dom), and each
variable of u occurs at least once in the body of the rule. Without loss of generality, we
assume that the same literal does not appear twice in the body of the rule. A positive
query is a query without negative literals (m = 0, thus n ≥ 1). A query is inconsistent
if it contains two opposite literals (i.e. ∃ i, j 1 ≤ i ≤ n, 1 ≤ j ≤ m such that
ri(ui) = sj(vj)), otherwise it is consistent.

Given a query q = ans(u) ← r1(u1), ... rn(un), ¬s1(v1), ... ¬sm(vm) and a
database D on S, q(D) denotes the set of answers to q in D; q(D) is the set of tuples
µ(u) where µ is a substitution of the variables in q by constants in dom such that for
any i in {1, ..., n}, µ(ui) ∈ D(ri) and for any j in {1, ..., m}, µ(vj) 6∈ D(sj). When
the arity of ans is 0, q(D) is the set {()} if there is such a substitution µ, otherwise
it is ∅. If q(D) is not empty, D is said to answer the query. A query q1 is said to be
contained in a query q2, noted q1 v q2, if for any database D, q1(D) ⊆ q2(D). The
conjunctive query containment problem takes as input two conjunctive queries q1 and
q2 and asks whether q1 v q2.

There is an obvious mapping from databases notions to PG notions. To a database
schema is naturally assigned a vocabulary of PGs. A database D can naturally be seen as
a totally instantiated (i.e. without variable vertices) positive PG on this vocabulary. The
body qb of a query q can naturally be seen as a PG. A whole query q can be transformed
into a PG as follows. We add to the vocabulary special relation names ansi for each
possible arity i, possibly 0 (which corresponds to boolean queries). Then the head of
q (say ans(t1...tq)) is mapped to a positive relation node with label ansq and with
neighborhood the term nodes assigned to ti

7. A query homomorphism extended to
negative literals can then be seen as a PG homomorphism.

7 This transformation is from [CMS98]. Note that we could use one unary relation per position
in the head as in the transformation from a query to a database in [CM77] but then only queries
with the same arity of ans should be compared.

6

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[CM77] A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries in
relational databases. In 9th ACM Symposium on Theory of Computing, pages 77–90,
1977.

[CM92] M. Chein and M.-L. Mugnier. Conceptual Graphs: Fundamental Notions. Revue
d’Intelligence Artificielle, 6(4):365–406, 1992.

[CMS98] M. Chein, M.-L. Mugnier, and G. Simonet. Nested Graphs: A Graph-based Knowl-
edge Representation Model with FOL Semantics. In Proc. of KR’98, pages 524–534.
Morgan Kaufmann, 1998. Revised version available at http://www.lirmm.fr/˜mugnier/.

[Ker01] G. Kerdiles. Saying it with Pictures: a Logical Landscape of Conceptual Graphs. PhD
thesis, Univ. Montpellier II / Amsterdam, Nov. 2001.

[LM07] M. Leclère and M.L. Mugnier. Some algorithmic improvments for the containment
problem of conjunctive queries with negation. In ICDT’07, number 4353 in LNCS,
pages 404–418. Springer, 2007.

[ML06] M.L. Mugnier and M. Leclère. On querying simple conceptual graphs
with negation. Data and Knowledge Engineering (DKE), 2006. In press,
doi:10.1016/j.datak.2006.03.008. To be published in Volume 60, Issue 3, Pages 435-
624 (March 2007).

[SU02] Marcus Schaefer and Chris Umans. Completeness in the polynomial-time hierarchy: A
compendium. Sigact News. Last updated: 8/20/06, available on M. Schaefer’s home-
pagee, 2002.

7

