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Abstract

We consider basic conceptual graphs, namely simple conceptual graphs
(SGs), which are equivalent to the existential conjunctive positive fragment
of first-order logic. The fundamental problem, deduction, is performed by a
graph homomorphism, called projection. The existence of a projection from
a SG Q to a SG G means that the knowledge represented by Q is deducible
from the knowledge represented by G. In this framework, a knowledge base
is composed of SGs representing facts and a query is itself a SG. We focus on
the issue of querying SGs, which leads to consider another problem as being
fundamental, namely query answering. Each projection from a query to a
fact defines an answer to the query, an answer being itself a SG. The query
answering problem asks for all answers to a query.

This paper introduces atomic negation into this framework. Several un-
derstandings of negation are explored, which are all of interest in real world
applications. In particular we focus on situations where, in the context of in-
complete knowledge, classical negation is not satisfactory because deduction
can be proved but there is no answer to the query. We show that intuitionistic
deduction captures the notion of an answer and can be solved by projec-
tion checking. Algorithms are provided for all studied problems. They are
all based on projection. As a consequence, they can be combined to deal
with several kinds of negation simultaneously. Relationships with problems
on conjunctive queries in databases are recalled and extended. Finally, we
point out that this discussion can be put in the context of the semantic web
databases.
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1 Introduction

Conceptual graphs (CGs) are a knowledge representation formalism mathemati-
cally founded both on logics and graph theory [Sow84]. In this paper we focus
on basic conceptual graphs, called simple conceptual graphs (SGs). The essential
characteristics of SGs are the following:

• Knowledge is represented by labeled graphs, which describe entities and
relationships between these entities.

• Reasoning is performed by graph operations, mainly a labeled graph homo-
morphism called projection. Intuitively the existence of a projection from a
SG Q to a SG G means that the knowledge represented by Q is contained in
the knowledge represented by G.

• SGs are logically founded, projection being sound and complete w.r.t. de-
duction in first-order logic (FOL).

Although of limited expressiveness simple conceptual graphs can be seen as a
keystone of CGs for several kinds of reasons. With knowledge-based systems in
mind, an essential point is that a SG can be interpreted by an end-user (at least if
its drawing is not too big and complex). And a projection is understandable too,
for two reasons: it operates directly on the pieces of knowledge defined by the
user and it can be visualized in a natural way. Thus objects and reasonings are
at the user’s level. On the other hand, CGs do not suffer from the lack of formal
semantics which was the main criticism made to first semantic networks [Woo75]
[Bra77]. Besides these modeling qualities, SGs also have computational qualities.
Indeed labeled graph homomorphism (or, equivalently, relational structure homo-
morphism) is a fundamental notion in computer science. Using this notion, it can
be shown that projection checking is essentially the same problem as the constraint
satisfaction problem (CSP) or the conjunctive query containment (CQC) problem
in databases (see [KV00] for the equivalence between CSP and CQC, [Mug00]
for a synthesis on problems equivalent to projection checking and section 3.4 of
this paper for details about relationships with problems on queries in databases).
This allows to benefit from efficient algorithms developed in these domains, e.g.
filtering techniques [Bag03].

The fundamental problem on SGs, called deduction, takes as input two SGs
and asks whether there is a projection from the first one to the second one. In
this paper we focus on querying SGs, which leads to consider another problem as
being fundamental, namely query answering. The query answering problem takes
as input a knowledge base (KB) composed of SGs representing facts and a SG Q,
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which represents a query, and asks for all answers to Q in the KB. Each projection
from Q to a fact leads to an answer. If we consider the query answering problem
in its decision form (“is there an answer to Q in the KB?”) we obtain the deduction
problem (“is Q deducible from the KB?”).

Querying SGs with negation. SGs express conjunction of positive knowledge.
They are equivalent to the positive conjunctive existential fragment of FOL [BM02].
The question tackled in this paper is the introduction of a restricted form of nega-
tion into this framework, namely atomic negation (in logical terms, negation of
form ¬p, where p is an atom). Atomic negation allows to express knowledge like
“this kind of relation does not hold between these entities”, “this entity does not
have this property” or “this entity is not of this type”. This question is studied
from a semantic viewpoint (what does negation mean?) and from a computational
viewpoint (what is the complexity of the main problems?). An important guideline
is also to keep this extension as much as possible at the end-user level.

Let us point out that general conceptual graphs include negation, but in a way
that does not suit our needs. General CGs are obtained from SGs by adding boxes
representing negation, lines representing equality, and diagrammatic derivation
rules, following Peirce’s existential graphs (see [Sow84] for the original ideas,
[WL94] for a logically sound and complete formalization, [Dau02] for another
formalization called “concept graphs”). They are equivalent to FOL thus deduc-
tion becomes undecidable. Furthermore, notwithstanding the qualities general CGs
might have for diagrammatic logical reasoning, they are not at the end-user level
(see f.i. [BBV97]). As a matter of fact most applications are based on SGs and ex-
tensions keeping their intuitive appeal such as nested graphs, rules and constraints
(f.i. the SG-family in [BM02]). Notice that these latter extensions do not provide
negation.

Results. Several understandings of negation are explored in this paper, which are
all of interest in real world applications. Briefly, when a query asks “find the x and
y such that not r(x, y)”, “not” can be understood in several ways. It might mean
“the knowledge r(x, y) cannot be proved” or “the knowledge not r(x, y) can be
proved”. The first view is consistent with the closed-world assumption, the second
one with the open-world assumption. In turn, the notion of proof can have several
meanings. We point out that, as soon as negation is introduced, the classical FOL
deduction problem is no more equivalent with the query answering problem in its
decision form. Indeed, there are cases where classical deduction can be proved but
no answer can be exhibited. These situations exactly correspond to cases where
the law of excluded middle (“either A is true or not A is true”) is used in the proof.
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This observation leads to consider intuitionistic logic, in which the law of excluded
middle does not hold. It is shown that intuitionistic deduction exactly captures the
notion of an answer. Let us add that, independently of the notion of answer, there
are many cases in real world applications where the law of excluded middle is not
desirable, because neither (A) nor (not A) might hold. It is the case for instance
for a property like “being a smoker”: some people smoke occasionally, and cannot
be considered as smokers neither as non smokers. This point is not developed in
the present paper but we shall come back to it in the perspectives.

Basic algorithms are provided for deduction and query answering and for each
studied kind of negation. All algorithms use projection as the basic notion. In
particular, it is proved that projection is sound and complete with respect to in-
tuitionistic deduction in the logical fragment corresponding to SGs with atomic
negation. It follows that atomic negation can be introduced in SGs with no over-
head cost for the query answering problem. These algorithms can be combined to
deal with several kinds of negation simultaneously.

The tight relationships with query problems in databases are recalled and ex-
tended to SGs with negation. Finally, let us point out that our questions and results
are potentially transferable to semantic web databases. Indeed, SGs can express
RDFS in natural ways as shown by several authors (see the last section of this pa-
per) and the essential task in the RDFS context is to query knowledge. The issue
of extending RDFS with some kinds of negation, which seems unavoidable since
all existing knowledge-based and database systems do provide a form of negation,
is thus directly related to the topic of this paper.

Paper organization. The paper is organized as follows. Section 2 synthesizes
some basic definitions and results about SGs, and presents the query framework.
In section 3 SGs are extended with atomic negation, leading to polarized SGs.
Several understandings of negation are discussed and related with the projection
notion. Basic algorithms for solving all the query problems are provided. The
equivalences with problems on conjunctive queries in databases are pointed out.
This section ends with complexity issues. In section 4 perspectives are outlined
in relation with connected works. Proofs related to intuitionistic logic are given in
Appendix.
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Figure 1: Simple conceptual graph. The generic marker * is omitted in drawings.
A concept label (t,m) is written t:m.

2 Basic Notions: Simple Conceptual Graphs

In this section we synthesize basic definitions and results, mainly published in
[CM92] and [BM02]. SGs are the basic constructs. Standing alone they represent
queries and facts, but are building blocks for more complex kinds of knowledge,
as constraints and rules [BM02].

2.1 Syntax

All kinds of knowledge are defined with respect to a vocabulary called a support.

Definition 1 (Support) A support is a 4-tuple S = (TC , TR, I, τ). TC and TR are
two partially ordered finite sets, respectively of concept types and relation types.
TC possesses a greatest element, called the universal type, and denoted by >.
Relation types may be of any arity greater or equal to 1. Only relation types with
same arity are comparable. I is the set of individual markers. TC , TR and I are
pairwise disjoint. τ is a mapping from I to TC . We denote by ∗ the generic marker,
where ∗ /∈ I . The set I ∪ {∗} is partially ordered in the following way: ∗ is the
greatest element and elements of I are pairwise non comparable.

The partial orders on types are interpreted as specialization relations (t ≤ t ′

is read as t is a specialization of t′). In the sequel we will sometimes consider
supports with trivial partial orders, i.e. where distinct types are not comparable.
We call them flat supports.

A simple conceptual graph (SG) has two kinds of nodes: concept nodes rep-
resent entities of the application domain and relation nodes represent relationships
between these entities.
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Definition 2 (Simple Graph) A simple graph (SG) G, defined over a support S ,
is a 4-tuple (CG, RG, EG, lG) such that:

• (CG∪RG, EG) is a bipartite multigraph (there may be several edges between
two nodes). CG and RG are the (disjoint) node sets, respectively of concept
nodes and of relation nodes. EG is the multiset of edges.

• lG is a labeling function of the nodes and edges defined as follows. A con-
cept node c is labeled by a couple (type(c), marker(c)), where type(c) is an
element of TC , called its type, and marker(c) is an element of I∪{∗}, called
its marker. If marker(c) is an individual marker m then type(c) = τ(m). A
relation node r is labeled by type(r), an element of TR, called its type, and
the degree of r (i.e. the number of edges incident to r) must be equal to the
arity of type(r). Edges incident to a relation node r are totally ordered; there
are labeled from 1 to the degree of r.

Notations. An edge labeled by i connecting a relation node r and a concept node
c is denoted by (r, i, c). r = tr(c1, ..., ck) is a short notation for a relation node
r with type tr and incident edges (r, 1, c1) ... (r, k, ck). Notice that c1, ..., ck are
not necessarily distinct nodes.

A concept node with an individual marker represents a specific individual, it
is called an individual node (e.g. nodes with labels (Cube,A) and (Color, blue)
in figure 1 respectively refer to the cube A and the color blue). Otherwise it rep-
resents any entity of a given type and is called a generic node (e.g. the node with
label (Cube, ∗) in figure 1 represents a cube). In figure 1 the SG G can be intu-
itively interpreted as expressing that “there is a cube on top of the cube A, which
is between balls; the first cube and one ball both have color blue”.

2.2 Logical translation of SGs

SGs are provided with a semantics in FOL by mean of a mapping called Φ [Sow84].
Elements (TC , TR and I) of a support S are translated into elements of a logical
language L as follows: types are mapped to predicates with same arity and in-
dividual markers to constants. For simplicity, we consider that each constant or
predicate has the same name as the associated element of the support.

A set of formulas Φ(S) is assigned to any support S , translating the partial
orders on types. More specifically, for all types t1 and t2 such that t1 ≥ t2, one has
the formula ∀x1...xk(t2(x1, ..., xk) → t1(x1, ..., xk)), where k = 1 for concept
types, and k is otherwise the arity of the relation types.

Given any SG G, a formula Φ(G) is built as follows. A term is assigned to
each concept node: a distinct variable for each generic node, and the constant
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Figure 2: The projections from Q to G

corresponding to its marker otherwise. Then an atomic formula t(e) is associated
to each concept node, where t is the type of the node, and e is the term assigned to
this node. Similarly, an atomic formula t(e1, ... , ek) is assigned to each relation
node r = t(c1, ... , ck), ei denoting the term assigned to ci. Let α(G) be the
conjunction of these atomic formulas. Φ(G) is the existential closure of α(G).
E.g. the formula assigned to G in figure 1 could be ∃x∃y∃z (Cube(x)∧Ball(y)∧
Ball(z)∧Cube(A)∧Color(blue)∧onTop(x,A)∧prop(x, blue)∧prop(y, blue)∧
between(A, z, y)).

2.3 Deduction

The basic notion for doing reasoning is a graph homomorphism called projection.
Let us recall that a homomorphism h from a graph G1 to a graph G2 is a mapping
from the nodes of G1 to the nodes of G2 which preserves edges, i.e. if xy is an
edge of G1 then h(x)h(y) is an edge of G2. Intuitively, the existence of a projection
from a SG Q to a SG G means that the knowledge represented by Q is contained
in the knowledge represented by G.

Definition 3 (Projection) Let Q = (CQ, RQ, EQ, lQ) and G = (CG, RG, EG, lG)
be two SGs defined on a support S , a projection from Q to G is a mapping π from
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CQ to CG and from RQ to RG that preserves edges (it is a graph homomorphism)
and may specialize the labels of concept and relation nodes:

1. ∀(r, i, c) ∈ Q, (π(r), i, π(c)) ∈ G;

2. ∀x ∈ CQ ∪ RQ, lG(π(x)) ≤ lQ(x) (if x is a concept node, ≤ is the prod-
uct of the orders on TC and I ∪ {∗}, i.e. type(π(x)) ≤ type(x) and
marker(π(x)) ≤ marker(x); if x is a relation node, ≤ is simply the order
on TR).

Q is called the source SG while G is the target SG. We note Q � G (Q
subsumes G, Q is more general than G) or G � Q if there is a projection from Q
to G. In figure 2, Q represents the knowledge “there is an object on top of an object
and a blue object”. Assuming that Cube,Ball ≤ Object, there are two projections
from Q to G. Typically, Q could represent a query (for instance “find all objects x,
y and z, such that x is on top of y and z is a blue object”), G a fact, and projections
from Q to G define answers to Q. We shall detail this aspect later. The deduction
problem on SGs is defined as follows:

Definition 4 (SG Deduction Problem) The SG deduction problem takes as input
a SG G and a SG Q (defined on the same support) and asks whether Q � G.

This problem is NP-complete [CM92]. SG deduction is sound and complete
w.r.t. deduction in FOL (denoted by �), up to a normality condition for complete-
ness: a SG is in normal form if each individual marker appears at most once in
it1. The normal form of a SG G is the SG nf (G) obtained by merging concept
nodes having the same individual marker. This SG always exists, is unique and is
logically equivalent to the original SG.

Theorem 1 ([CM92][GW95]) Let Q and G be two SGs defined on a support S .
Then Q � nf(G) if and only if Φ(S),Φ(G) � Φ(Q).

In what follows, we assume that the target graph G is in normal form. However,
when relationships are established with logic, we specify nf(G) if G has to be in
normal form.

1Indeed, concept nodes with the same individual marker are mapped by Φ to the same constant.
Thus, a SG in normal form is logically equivalent to the SG obtained from it by splitting one of its
individual nodes into several nodes with the same individual marker, whereas there is no projection
from the former SG to the latter one.
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Figure 3: The f2g translation. f = ∃x∃y∃z (Cube(x) ∧ Ball(y) ∧ Ball(z) ∧
Cube(A) ∧ Color(blue) ∧ onTop(x,A) ∧ prop(x, blue) ∧ prop(y, blue) ∧
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Note about alternatives. Let us mention a variant of projection, which can be
used to achieve completeness without normalization (see the coref-projection in
[CM04]). The � relation can also be defined by a set of elementary graph opera-
tions ([Sow84, CM92] for the first definitions), in such as way that a sequence of
elementary operations corresponds to a projection or a coref-projection (depend-
ing on the exact composition of the operation set). We prefer to base reasoning
on a global mapping (projection/coref-projection) for modeling reasons as well as
computational reasons, as explained in the introduction.

Equivalence with the existential positive fragment of FOL SGs are equiva-
lent to the fragment of FOL composed of existentially closed conjunctive positive
formulas (with constants but without functions). Let us denote by FOL{∃,∧} this
fragment. The translation from FOL{∃,∧} to SGs is immediate. It maps a logical
language (composed of a finite set of predicates and sets of variables and constants)
into a flat support. All predicates are translated into relation types and a unique
concept type > is introduced. Formulas are mapped to normal SGs. See figure 3
for an example (where f can be seen as Φ(G) for G in figure 1) and [BM02] for
further developments.

Property 1 [BM02] There is a bijection, say f2g, from the set of FOL{∃, ∧}
formulas over a language L to the set of normal SGs on the flat support S naturally
associated to L.

For the translation in the other direction, the apparent problem is that formulas
assigned to the support by Φ are universally quantified. However, we can do with-
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out them. Indeed, SGs defined on a support can be polynomially transformed into
SGs on a flat support while preserving the � relation among them [BM02].

2.4 S-substitution

We now introduce notions that will be used throughout the paper’s proofs (and in
proofs only): S-substitution from a formula to a formula, acceptable model and a
good assignment from a formula to a model.

Notations. A logical language (denoted by L) provided with a partial order on
predicates (denoted by ≤L) is said to be ordered. Comparable predicates must
have the same arity. When predicates are pairwise not comparable the language
is said to be flat. Given an ordered language L we note O(L) the set of formulas
associated with the partial order. O(L) is equal to Φ(S) where S is the support
naturally associated with L. A (positive) literal is denoted by p(

→
e ) where p is a

predicate and (
→
e ) a tuple of terms.

The S-substitution can be seen as the logical translation of projection. When
the language is flat it corresponds to the classical logical substitution. Constants
are mapped for convenience.

Definition 5 (S-substitution) Let f and g be two formulas of FOL{∃,∧} on an
ordered language L. A S-substitution S from f to g is a mapping from terms
(variables and constants) of f to terms of g such that:

• for all constant a in f , S(a) = a;

• for all literal p(
→
e ) in f , there is a literal q(S(

→
e )) in g such that q≤Lp.

Property 2 (Equivalence S-substitution projection) Let G and H be two SGs.
There is a projection from G to nf(H) iff there is a S-substitution from Φ(G) to
Φ(H). Let f and g be two FOL{∃,∧} formulas on an ordered language. There is
a S-substitution from f to g iff there is a projection from f2g(f) to f2g(g) (where
f2g is the mapping defined in section 2.3).

More precisely, each projection π defines a S-substitution. We only need to
consider the restriction of π to concept nodes. Reciprocally, to each S-substitution
corresponds a set of projections which are identical on the concept nodes but can
vary on relations nodes.

Let us denote by M = (D, δ) a classical FOL model of a language L where D
is the non-empty domain and δ maps each constant of L to an element of D and
each k-ary predicate to a subset of Dk.
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Definition 6 (Acceptable model) A classical model M = (D, δ) is acceptable

w.r.t. an ordered language L if it satisfies: for all predicate p, if (
→
d ) ∈ δ(p) then

for all q ≥L p, (
→
d ) ∈ δ(q).

Property 3 M is acceptable for L iff M |= O(L) (i.e. each formula of O(L) is
true in M ).

Without loss of generality we consider that formulas in FOL{∃,∧} are in
prenex form (all quantifiers precede the conjunction of literals). For this fragment,
a formula f is true for a model M if there exists a special mapping from f to M ,
called a good assignment.

Definition 7 (Good assignment) Given a FOL{∃,∧} formula f in prenex form
and a model M = (D, δ), a good assignment of f to M is a mapping α from the
terms of f to D such that:

• for all constant c of f , α(c) = δ(c);

• for all literal p(
→
e ), (α(

→
e )) ∈ δ(p).

A proof of soundness and completeness of the S-substitution can be based on
previous definitions and properties. Notice it yields a new proof of theorem 1
(soundness and completeness of projection).

Property 4 (S-substitution soundness) Let f and g be two formulas of FOL{∃,∧}
on an ordered language L. If there is a S-substitution from f to g then O(L), g |=
f .

Proof. Let S be a S-substitution from f to g. Let M = (D, δ) be any model of
O(L) and g. Let α be a good assignment of g to M . M has to be acceptable thus
α ◦ S defines a good assignment from f to M . M is thus a model of f . 2

Property 5 (S-substitution completeness) Let f and g be two formulas of FOL{∃,∧}
on an ordered language L. If O(L), g |= f then there is a S-substitution from f to
g.

Proof. Since every model satisfying g and O(L) also satisfies f , we choose one
from which we can build the desired S-substitution. Let M = (D, δ) be an accept-
able model, such that D is the set of terms of g, δ is the identity over constants
and for each k-ary predicate q of L, δ(q) is given by the literals of g with predicate

11



p ≤L q (i.e. (
→
e ) ∈ δ(q) if there is p(

→
e ) in g with p ≤L q). Let α be a good

assignment of f to M . By construction of M , α is a mapping from terms of f to
terms of g. Let q(

→
e ) be a literal of f , one has (α(

→
e )) ∈ δ(q). There is thus a literal

p(α(
→
e )) in g with p ≤L q. It follows that α is a S-substitution from f to g. 2

2.5 Queries and answers

Classical applications built upon SGs consider a base composed of SGs expressing
facts and search this base by queries which are themselves SGs. The notion of
answer can be defined in different ways depending on the application context.

In an information retrieval context, the base can be seen as a set of couples
of form (G, ref) where G is a SG annotating a document and ref is a reference
to this document (for instance [CG05]). In this framework, a query Q represents
a piece of information searched by the user and the set of answers is the subset
of couples (G, ref) in the base such that the knowledge asserted by G entails the
knowledge asked by Q. A couple (G, ref) is thus an answer if there is a projection
from Q to G, which corresponds to solve the SG deduction problem2 Each SG can
be searched independently.

In a knowledge-based system context, the knowledge base (KB) is simply com-
posed of SGs expressing facts. As SGs need not to be connected graphs, these SGs
can be seen as composing a single SG. In the sequel, the graph G represents the
entire knowledge base. A query, hence the notion of answer, can be interpreted in
different ways.

• A query Q can be seen as a representation of “yes/no question”: “Is the
knowledge represented by Q asserted by the KB?” The answer is thus a
boolean, which is true if and only if there is a projection from Q to G. The
problem to solve is thus the SG deduction problem on the entire base.

• A query Q can be seen as a “pattern” allowing to extract knowledge from
the KB. Generic nodes in the query represent variables to instantiate with
individual or generic nodes in the base. With this interpretation, each pro-
jection from Q to G defines an answer to Q. An answer can be seen as the
projection itself, which to each node of the query associates a node of the
base. Or it can be seen as the subgraph of G induced by this projection. We
call it the image graph of Q by π.

2Notice we restrict the framework to the so-called exact answers, whereas information retrieval
systems often extend the query mechanism to retrieve approximate answers.
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Definition 8 (Image graph) Let π a projection from Q to G. The image graph of
Q by π, denoted by Image(Q,π), is the subgraph of G induced by the images of
the nodes in Q by π.

The gray subgraphs of G in figure 2 are the two image graphs of Q induced by
the projections indicated by dashed arrows. Note that distinct projections from Q
to G may produce the same image graph, thus defining answers as image graphs
instead of projections induces a potential loss of information. One advantage how-
ever of this definition of an answer is that the set of answers can be seen as a SG.
We thus have the property that the results returned by a query are in the same form
as the original data. This property is mandatory to process complex queries, i.e.
queries composed of simpler queries. In complex query processing, the answers
to a query are considered as a KB to process another query (e.g. [BK03]). This
semantics of query/answering is for instance the one retained in the semantic web
context in [GHM04], where the so-called pre-answer corresponds to our set of an-
swers, and two ways of passing from a pre-answer to a single graph are analyzed.

The definition of the query answering problem that will be used in next sections
is the following:

Definition 9 (SG query answering problem) Let Q be a query and G be a KB.
The query answering problem asks for the set of image graphs of Q by all projec-
tions to G.

3 Different Kinds of Atomic Negation

SGs describe the world in terms of conjunctions of positive assertions. With the
idea of keeping decidability of reasoning and graph operations, we are interested in
a restricted form of negation, atomic negation. In this paper, we define negation on
relations only, but as explained below the results can easily be translated to concept
types.

3.1 Polarized SGs

Beside positive relation nodes, we now have negative relation nodes. A positive
node is labeled by (r) or (+r), and a negative one by (−r), where r is a relation
type. We call polarized SGs (PGs) such SGs (as in [Ker01]).

A negative relation node with label (−r) and neighbors (c1 ...ck) expresses
that “there is not the relation r between c1 ... ck” (or if k = 1, “c1 does not possess
the property r”); it is logically translated by Φ into the literal ¬r(e1 ...ek), where
ei is the term assigned to ci.
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Projection on PGs is similar to projection on SGs with a simple extension of
the order on relation node labels:

Definition 10 (Extended order on relation labels) Given two relation labels l1
and l2, l1 ≤ l2 if, either l1 and l2 are both positive labels, say l1 = (r1) and
l2 = (r2), and r1 ≤ r2, or l1 and l2 are both negative labels, say l1 = (−r1) and
l2 = (−r2), and r1 ≥ r2. In other words, the opposite type order is considered for
negative nodes.

Negation on concept types. Negation in concept labels can defined in a similar
way. A concept node labeled by −t (and a marker) is interpreted as “there exists
an entity which is not of type t”, and not as “there does not exist an entity of
type t”, that is we keep an existential interpretation. Since the universal concept
type is supposed to represent all entities, it cannot be negated. Let us point out
that, if negation on concept types is interesting from a modeling viewpoint, it does
not add expressiveness. Indeed concept types can be processed as unary relation
types. More precisely, consider SGs on a support S . Let S ′ be the support built by
translating all concept types, except the universal type >, into unary relation types
(keeping the same partial order). The concept type set of S ′ is composed of the
single type>. Then, SGs on S can be transformed into SGs on S ′, while preserving
projections and logical deduction: each concept node with label (∼ t,m), where
∼ t can be positive or negative and t 6= top, is translated into a concept node with
label (>,m) and one neighboring relation node with label (∼ t). For an example,
see the transformation from the SG of figure 1 to the SG of figure 3. A simple
and uniform way of processing negation on concepts and relations consists thus in
applying the transformation suggested above, processing the obtained graphs with
algorithms given in this paper and, if needed, applying the reverse transformation
to present the results.

Relationships with FOL. Let us denote by FOL{∃,∧,¬a} the extension of FOL{∃,∧}
to negative literals. The transformations between FOL {∃,∧} and SGs presented in
section 2.3 are naturally extended to transformations between PGs and FOL{∃,∧,¬a}.
PGs are thus equivalent to the FOL{∃,∧,¬a} fragment. Similarly, the notions of
S-substitution and good assignment defined for SGs in section 2.4 (and used in
proofs) can be extended to PGs in a straightforward way:

Definition 11 (Extension of S-substitution) Let f and g be two formulas of FOL{∃,∧,¬a}
on an ordered language L. A S-substitution S from f to g is a mapping from terms
(variables and constants) of f to terms of g such that:

14



• for all constant a in f , S(a) = a ;

• for all positive literal p(
→
e ) in f , there is a positive literal q(S(

→
e )) in g such

that q ≤L p.

• for all negative literal ¬ p(
→
e ) in f , there is a negative literal ¬ q(S(

→
e )) in

g such that q ≥L p.

Definition 12 (Good assignment) Given a model M = (D, δ), a good assign-
ment α of a formula f in FOL{∃,∧,¬a} to M is a mapping α from the terms of
f to D, which maps each constant c to δ(c), and such that, for all positive literal
p(

→
e ), α(

→
e ) ∈ δ(p) and for all negative literal ¬p(

→
e ), α(

→
e ) 6∈ δ(p).

It is immediately checked that the equivalence between S-substitution and pro-
jection is preserved (extension of property 2).

Property 6 (Equivalence S-substitution projection on PGs) Let G and H be two
PGs. There is a projection from G to nf(H) iff there is a S-substitution from Φ(G)
to Φ(H). Let f and g be two FOL{∃,∧¬a} formulas on an ordered language.
There is a S-substitution from f to g iff there is a projection from f2g(f) to f2g(g)
(where f2g becomes the natural extension of mapping defined in section 2.3).

Since negation is introduced, a PG can be inconsistent.

Definition 13 (inconsistent PG) A PG is said to be inconsistent if its normal form
contains two relation nodes +r(c1...ck) and −s(c1...ck) with r ≤ s. Otherwise it
is said to be consistent.

Property 7 For any PG G on a support S , G is inconsistent iff Φ(S)∪ {Φ(G)} is
(logically) inconsistent.

Proof. (→): trivial. (←): see that Φ(S) cannot be inconsistent since it contains
positive information only. Now consider the clausal form of Φ(S),Φ(G): the only
way to deduce the empty clause from it is to have two clauses of form r(

→
e ) and

¬s(
→
e ) with same argument list

→
e and r ≤ s (which allows to obtain ¬(r(

→
e )) from

¬s(
→
e ) and Φ(S)). 2

This extension is straightforward but its precise semantics needs discussion.
Let us consider the very simple example of figure 4. G describes a situation where
there is a pile of three cubes A, B and C; A is blue and C is not blue. Whether B
is blue or not is not specified. There are two classical ways of considering missing
information, known as closed-world assumption (CWA) or open-world assumption
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Figure 4: Atomic negation

(OWA). In the first case, knowledge about the world is supposed to be complete.
Only positive information needs to be encoded in the base, negative information
being obtained by difference with the content of the base. A missing information
is thus considered as being false. In the second case a missing information is simply
not known.

In the two following subsections we will study three ways of understanding
negation in relation with the notions of query and answer. The last subsection is
devoted to computational complexity considerations, after a detour to databases.

3.2 Closed-world assumption

A first way of understanding “not A” is “A is not present in the knowledge base”
(and more generally A cannot be obtained from the knowledge base by the infer-
ence mechanisms). Such a view is consistent with the “closed-world assumption”
generally made in databases, and the “negation by failure” in logic programming.
Although only positive information needs to be represented in the base, we will
not forbid a PG representing facts to contain negative relations (figure 5: G and G ′

encode the same knowledge).
A completed PG is obtained from a PG by expliciting in a negative way all

missing information about relations. Then a query is not mapped to the original
base but to its completed version.

Definition 14 (completed PG) The completed PG of a PG G, denoted by completed(G),
defined over a support S , is the unique PG obtained from the normal form of G by
adding all possible negative relations: for all relation type r of arity k in S , for all
concept nodes c1 ...ck , if there is no relation r′(c1 ...ck) in nf(G) with r′ ≤ r, add
the relation −r(c1 ...ck).
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Figure 5: Closed-world assumption

Definition 15 (CWA-PG deduction problem) The PG deduction problem with closed-
world assumption semantics takes as input two PGs Q and G and asks whether
Q � completed(G).

The mapping to classical logical deduction is obtained via the completed base:

Property 8 Let Q and G be two polarized SGs defined on a support S , G being
consistent. Q � completed(G) if and only if Φ(S),Φ(completed(G)) |= Φ(Q).

Definition 16 (CWA-PG query answering problem) Let Q be a (polarized) query
and G be a (polarized) KB. The query answering problem asks for the image
graphs of Q by all projections to completed(G).

Obviously the completed PG (or the part of it concerning the negated relations
of the query) does not have to be computed in practice. Indeed let Q+ be the sub-
graph obtained from Q by considering concept nodes and solely positive relations.
One only has to compute the projections from Q+ to G and select those that do not
lead to “map” a negative relation in Q to a contradictory positive relation in G.

Definition 17 A negative relation −r(c1 ... ck) from a PG Q is satisfied by a pro-
jection π from Q+ to a PG G if G does not contain a positive node +s(Π(c1) ... Π(ck))
with s ≤ r.

The following property is immediately checked:

Property 9 Let Q and G be two PGs defined over a support S and let us assume
that G is consistent. There is a bijection from the set of projections from Q+ to G
such that each negative relation of Q is satisfied, to the set of projections from Q
to completed(G).
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Figure 6: Single result obtained by applying CWA-PG query answering to figure 4

Algorithm 1 for deduction and algorithm 2 for query answering take advantage
from this property. In the second algorithm, Ans(Q,π) is the PG obtained from
the image graph of Q+ by π by adding negative relations corresponding to negative
relations in Q (i.e. for each −r(c1 ... ck) in Q, one adds −r(π(c1) ... π(ck)) to
π(Q+)). In other words, Ans(Q,π) is the image of Q by a projection (extending
π) to completed(G) and not to G. Indeed, the closed-world assumption cannot be
made on answer graphs: the absence of a relation in an answer graph would not im-
ply its absence in the KB, it could come from its absence in the query. For instance,
consider the figure 6, which shows the unique answer obtained by processing the
query Q to the KB G in figure 4. The relation of label (−prop) is added whereas
it does not appear in G.

Algorithm 1: CWADeduction
Data: PGs Q and G
Result: true if Q can be deduced from G with CWA, false otherwise
begin

Compute P the set of projections from Q+ to G;
forall π ∈ P do

Good← true;
forall negative relation −r(c1 ... ck) in Q do

if there is s(π(c1) ... π(ck)) in G with r ≤ s then
// π is not good
Good← false;
exit this for loop ;

if Good then return true;
return false;

end
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Algorithm 2: CWAQueryAnswering
Data: PGs Q and G
Result: the set of answers to Q in G with closed-world assumption
begin

Compute P the set of projections from Q+ to G;
Answers← ∅;
forall π ∈ P do

Good← true;
forall negative relation −r(c1 ... ck) in Q do

if there is s(π(c1) ... π(ck)) in G with r ≤ s then
// π is not good
Good← false;
exit this for loop ;

if Good then Answers← Answers ∪ {Ans(Q,π)};
return Answers;

end

3.3 Open-world assumption

Let us now interpret the example of figure 4 with open-world assumption: nothing
is known about the color of the cube B. Seen as a yes/no question, Q asks whether
there is a blue cube on top of a non blue cube. Seen as a query, Q asks for exhibiting
objects having these properties. In both cases, what should be answered to Q?

Let us first point out that spontaneously a non-logician (an end-user for in-
stance) would say that the answer to the yes/no question is no. This intuition
corresponds to the observation that there is no answer to the query. However in
classical FOL the answer to the yes/no question is yes. Indeed the logical formulas
assigned to Q and G by Φ are respectively of form Φ(Q) = ∃x∃y (p(x,Blue) ∧
¬p(y,Blue)∧r(x, y)) and Φ(G) = p(A,Blue)∧r(A,B)∧r(B,C)∧¬p(C,Blue)
(where p = prop, r = onTop and atoms assigned to concept nodes are ig-
nored). Φ(Q) can be deduced from Φ(G) using the valid formula p(B,Blue) ∨
¬p(B,Blue) (every model of Φ(G) satisfies either p(B, blue) or ¬p(B, blue) ;
Φ(Q) is obtained by interpreting x and y as B and C if p(B, blue) holds, and as
A and B in the opposite case). Classical deduction thus ensures there exists a “so-
lution” to Q but it is not able to construct it. Hence there is no answer to Q as a
query.

This example leads to the following observations:

• The assertions “Q is (classically) deducible from G” and “the set of answers
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to Q in G is not empty” might disagree. In other words, deduction and the
decision problem associated with query answering are different problems
(which was not the case in SGs).

• The difference between the notions of deduction and the existence of an
answer is due to the use of the law of excluded middle, which states here
that “either B is blue or it is not blue”.

Trying to formalize preceding observations has led us to distinguish two se-
mantics for negative relations, with respect to two logics: intuitionistic logic and
classical logic. In intuitionistic logic, the law of excluded middle does not hold. In
fact this logic appears to capture exactly the notion of answer, as detailed in next
section: Q is intuitionistically deducible from G if and only if the set of answers
to G is not empty. Notice we do not claim that intuitionistic logic is the only logic
suitable to our framework. Beside the fact that its deduction translates exactly the
notion of answer, an interest of this logic is that its formulas are the same as in
classical logic.

3.3.1 Intuitionistic negation

Intuitionistic logic is a well-established logic belonging to constructive mathemat-
ics [Fit69]. It is built upon the notion of constructive proof, which rejects the
reductio-ad-absurdum reasoning. For instance, a proof of (A ∨ B) is given by a
proof of A or a proof of B ; a proof that the falsity of (A ∨ B) leads to a con-
tradiction does not yield a proof of (A ∨ B) since it does not determine which of
A or B is true. The intuitionistic (natural) deduction rules are those of classical
logic except that the absurdity rule (from Γ,¬A � ⊥ deduce Γ � A) does not hold.
Clearly each theorem of intuitionistic logic is a theorem of classical logic but not
conversely. Some characteristic examples of classical logic theorems not provable
in intuitionistic logic are (A ∨ ¬A), (¬¬A→ A) and ((A→ B)→ (¬A ∨B)).

The relationship between classical and intuitionistic logic can be expressed as
follows in our framework:

Property 10 Let us call law of excluded middle formula associated with a predi-
cate r with arity k, the formula E(r) = ∀x1 ... xk (r(x1, ..., xk)∨¬r(x1, ..., xk)).
Given a support S , let ES be the set of formulas E(r) for all predicates r corre-
sponding to relation types in S . Then: Φ(Q) is intuitionistically deducible from
Φ(S), ES , Φ(G) if and only if Φ(Q) is classically deducible from Φ(S), Φ(G).

Let us come back to the example of figure 4. According to intuitionistic logic
the formula p(B,Blue) ∨ ¬p(B,Blue) can be considered as true only if it can be
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shown that p(B,Blue) is true, or that ¬p(B,Blue) is true. Since none of these
two statements can be proved, Q cannot be deduced; hence the answer to Q as a
yes/no question is no, which corresponds to the fact that there is no answer to Q
as a query. Such an interpretation of a yes/no question can be seen as the query
answering problem in its decision form which asks for the existence of an answer.
In the following, we call this problem PG intuitionistic deduction.

Definition 18 (PG intuitionistic deduction problem) The PG intuitionistic deduc-
tion problem (with open-world assumption) takes as input two PGs Q and G and
asks whether Q � G.

Independently of the notion of answer, there are a lot of real world applications
in which the law of excluded middle is not desirable, or not desirable for all prop-
erties or relations. It might be the case that properties or relations are neither true
nor false, because they cannot be determined with certainty (for instance it might
not be true that a cube is either blue or not blue, because its color might be not
“really” blue ...) or they intrinsically admit “truth value gaps” (recall the example
of the property “being a smoker” given in the introduction and see [Wag03] for a
discussion about the need of taking into account this kind of semantics). In these
cases intuitionistic deduction has to be chosen rather than classical deduction.

Definition 19 (OWA-PG query answering problem) Let Q be a (polarized) query
and G be a (polarized) KB. The query answering problem asks for image graphs
from Q by all projections to G.

The following properties and theorem establish the soundness and complete-
ness of PG intuitionistic deduction w.r.t. deduction in intuitionistic logic, noted
. Since the proofs require notions of intuitionistic logic (as its formal semantics
based on Kripke’s models) we have put them in appendix.

Property 11 (S-Substitution soundness) Let f and g be two formulas of FOL{∃,∧,¬a}
on an ordered language L. If there is a S-substitution from f to g thenO(L), g  f .

Property 12 (S-substitution completeness) Let f and g be two formulas of FOL{∃,∧,¬a}
on an ordered language L. If f(L)∪{g} is consistent and O(L), g  f then there
is a S-substitution from f to g.

Property 13 A polarized SG G defined on a support S is inconsistent iff Φ(S) ∪
{Φ(G)} is intuitionistically inconsistent.

Theorem 2 Let Q and G be two polarized SGs defined on a support S , with G is
consistent. Q � nf(G) if and only if Φ(S),Φ(G)  Φ(Q).
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This theorem yields the following property, which shows that intuitionistic
negation captures exactly the notion of answer to a query.

Property 14 Given two PGs Q and G, when Q is deducible from G with classical
negation but not with intuitionistic negation, there is no answer to Q in G.

3.3.2 Classical negation

The classical semantics of negation leads to a case-based reasoning: if a relation
is not asserted in a fact, either it is true or its negation is true. We thus have to
consider all ways of completing the knowledge asserted by a PG. Next definition
specify the notion of the completion of a PG relative to a support S .

Definition 20 (Complete PG) A complete PG on a support S is a PG satisfying
the following condition: for each relation type r of arity k in S , for each k-tuple of
concept nodes (c1...ck), where c1...ck are not necessarily distinct nodes, there is a
relation +s(c1...ck) with s ≤ r or (exclusive) there is a relation −s(c1...ck) with
s ≥ r. A PG is complete w.r.t. a subset of relation types T ⊆ TR if the completion
considers only elements of T .

Property 15 If a relation node is added to a complete PG, either this relation
node is redundant (there is already a relation node with the same neighbor list and
a label less or equal to it) or it makes the PG inconsistent.

A complete PG is obtained from G by repeatedly adding positive and negative
relations as long as adding a relation brings new information and does not yield an
inconsistency. The so-called completed PG defined for closed-world assumption
(cf. section 3.2) is a particular case of a complete PG obtained from G by adding
negative relations only. Since a PG G is a finite graph defined over a finite support,
the number of different complete PGs that can be obtained from G is finite. We
can now define deduction on PGs.

Definition 21 (OWA-PG (classical) deduction problem) The PG (classical) de-
duction problem with open-world assumption semantics takes as input two PGs
Q and G and asks whether each complete PG Gc obtained from G is such that
Q � Gc.

The following property expresses that PG deduction is sound and complete
with respect to classical deduction in FOL{∃,∧,¬a}.

Theorem 3 Let Q and G be two PGs defined on a support S . G is a consistent
PG. Then Q can be (classically) deduced from nf(G) if and only if Φ(S),Φ(G) �

Φ(Q).
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Proof. ⇒ Assume Q can be deduced from nf (G) (actually the nf is not needed
in this direction). Let M be a model of Φ(S),Φ(G). By definition of complete
graphs, there is a complete graph, say G′, obtained from nf(G), such that M is
a model of Φ(G′). By hypothesis there is a projection from Q to G′, thus a S-
substitution from Φ(Q) to Φ(G′). The composition of the assignment from Φ(G′)
to M and this S-substitution defines a good assignment from Φ(Q) to M . M is
thus a model of Φ(Q).
⇐ Let G′ be a complete SG obtained from nf(G). Consider M the canonical

model of Φ(G′) (the domain is made by the terms of the formula as in the model in
property 5’s proof) and make it acceptable. M is a model of Φ(G) and Φ(S). Thus
it is a model of Φ(Q) by hypothesis. There is thus a good assignment from Φ(Q) to
M , which is here a mapping from Φ(Q) to Φ(G′). This mapping is a S-substitution
from Φ(Q) to Φ(G′). There is thus a projection from Q to nf(G′) = G′ (G′ being
built from nf(G) it is in normal form). 2

Algorithms 3 presents a naı̈ve algorithm for OWA deduction. Algorithms for
the other problems in the OWA case are recalled to ease comparison (see algorithms
4 5). An immediate observation for generating complete PGs containing G is that
we do not need to consider all relations types but only those appearing in Q. The
algorithm generates all complete PGs relative to this set of types and for each of
them checks whether Q can be projected to it. A complete graph to which Q cannot
be projected can be seen as a counter-example to the assertion that Q is deducible
from G. Since fine-grained algorithms lie out of the scope of this paper we do not
present a more efficient algorithm. Note however that this brute-force algorithm
can be improved by benefiting from the algorithm of [WL03], which solves an
equivalent problem on database queries, as pointed out in next section.

Algorithm 3: OWAClassicalDeduction
Data: PGs Q and G, G being consistent
Result: true if Q can be (classically) deduced from G, false otherwise
begin

Compute G the set of complete PG obtained from G w.r.t. the relation
types in Q;
forall Gc ∈ G do

if there is no projection from Q to Gc then
// Gc is a counter-example
return false;

return true;
end
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Algorithm 4: OWAIntuitionisticDeduction
Data: PGs Q and G
Result: true if Q is intuitionistically deducible from G, false otherwise
begin

if there is a projection from Q to G then return true;
else return false;

end

Algorithm 5: OWAQueryAnswering
Data: PGs Q and G
Result: the set of answers to Q in G with OWA
begin

Answers← ∅;
forall projection π from Q to G do

// Let Image(Q,π) be the image of Q by π
Answers← Answers ∪ {Image(Q,π)};

return Answers;
end

3.4 Equivalences with conjunctive query problems in databases

The similarity between query problems in SGs and in databases has been often
pointed out. In [CMS98] the strong equivalence between SG deduction and con-
junctive query containment is shown. In this section we synthesize and make pre-
cise the relationships between SG deduction and two problems in databases: query
evaluation and query containment. We then extend them to PGs and conjunctive
queries with negation.

Basic notions about databases Let us first recall some database definitions and
results, according to a logic-based perspective (this presentation is based on [AHV95]).
A database schema S = (R, dom) includes a finite set of relation names R and a
set of constants dom. A (positive) conjunctive query can be seen as a rule of the
following form: q = ans(u) ← r1(u1), ... rn(un), n ≥ 1, where r1 ... rn are
relation names, ans is a special relation name not belonging to R, u and u1 ... un

are tuples of terms (variables or constants of dom), and each variable of u occurs
at least once in u1 ... un. Without loss of generality we assume that a same atom
does not appear twice in the right part of the rule. A database instance D over S
maps each k-ary relation ri of R to a finite subset of domk (denoted D(ri)). Given
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a query q = ans(u) ← r1(u1), ... rn(un) and an instance D on S, q(D) denotes
the set of answers to q in D; q(D) is the set of tuples µ(u) where µ is a substi-
tution of the variables in q by constants in dom such that for any j in {1, ..., n},
µ(uj) ∈ D(rj). When the arity of ans is 0, q(D) is the set {()} if there is such a
substitution µ, otherwise it is ∅.

The conjunctive query evaluation problem is the following: given a database
instance D and a conjunctive query q, does D contain an answer to q ? In practice
one is interested in computing D(q), the set of answers to q in D.

A query q is said to contain a query q′ (q′ ⊆ q) if, for any instance D on
S, q′(D) ⊆ q(D). The conjunctive query containment problem is the associated
problem: given two queries q and q′, does q contain q′? This problem can be
reformulated as a query homomorphism problem, where a homomorphism is de-
fined as follows. A homomorphism from q = ans(u) ← r1(u1), ... rn(un) to
q′ = ans′(u′) ← r′1(u

′
1), ... r′n′(u′

n′) is a substitution θ of the variables of q by
terms of q′ (variables or constants of dom) such that θ(u) = u′ (thus u and u′

have the same size) and for any j in {1, ..., n}, there is i in {1, ..., n′} such that
θ(rj(uj)) = r′i(u

′
i). The homomorphism theorem proves that, given two queries q

and q′, q contains q′ iff there is a homomorphism from q to q ′ .

Equivalence with SG deduction The query evaluation problem and the query
containment problem can both be polynomially transformed into the deduction
problem over SGs, by way of the following mapping d2g from database notions
to SG notions. Notice that d2g is essentially the same as the transformation f2g
from FOL{∃,∧} to SGs (section 2.3). To a database schema is naturally assigned
a flat support: R is mapped to the set TR of relations types and dom is mapped
to the set of individual markers I . There is only one concept type >. A database
instance D can then naturally be seen as a totally instantiated SG d2g(D) on this
support (i.e. there are no generic nodes) and the right part qr of a query q can be
naturally translated into a SG d2g(qr). Each projection from d2g(qr) to d2g(D)
defines an answer from which the part corresponding to ans can be selected.

The ans part can be represented in the SG framework by means of the lambda-
SG notion. A lambda-SG L1 = (c1 ... ck)Q is a SG Q with a tuple of distinguished
concept nodes (c1 ... ck) [Sow84]. In drawings the distinguished generic concept
nodes are usually marked by naming their generic marker (see Q2 in figure 7-right).
A projection from a lambda-SG L1 = (c1 ... ck)Q to a SG G is a projection from
Q to G. A projection from a lambda-SG L1 = (c1 ... ck)Q1 to a lambda-SG L2 =
(d1 ... dk)Q2 is a projection from Q1 to Q2 which maps each ci to di. A conjunctive
query q can be translated into a lambda-SG d2g(q) = (c1 ... ck)d2g(qr), where the
distinguished nodes c1 ... ck correspond to the arguments of ans. One obtains the
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Figure 7: Transformations from a database query to a SG

following property:

Property 16 The conjunctive query evaluation problem can be polynomially re-
duced to the SG deduction problem (or equivalently to the SG query answering
problem in its decision form) by the mapping d2g, in such a way that the set D(q)
is in bijection with the set of tuples (π(c1) ... π(ck)), where π is a projection from
d2g(q) to d2g(D).

To transform the database query containment problem into the SG deduction
problem, there are two ways of mapping queries to SGs (figure 7): either ans is
mapped to a special relation type and the query is mapped to a SG (as in [CMS98]),
or the query is mapped to a lambda-SG as previously. It is immediately checked
that in both cases one obtains the following property: given two queries, q and
q′ over a database schema S, every homomorphism from q to q ′ yields a projec-
tion from d2g(q) to d2g(q′) over the flat support d2g(S), and reciprocally. More-
over this correspondence between homomorphisms and projections is a one-to-one
mapping.

Property 17 (basically [CMS98]) The database query containment problem can
be polynomially reduced to the SG deduction problem by the mapping d2g, in such
a way that the set of homomorphisms from q to q ′ is in bijection with the set of
projections from d2g(q) to d2g(q′).

Finally, let us point out that, since SGs on a support can be (polynomially)
transformed into SGs on a flat support while preserving projections, SG deduction
can in turn be (polynomially) transformed into conjunctive query evaluation and
conjunctive query containment.
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Decision problem CWA OWA
Query answering NP-Complete NP-complete

Intuitionistic Deduction NP-Complete NP-complete
Classical Deduction NP-Complete Π2

P -complete

Table 1: Time complexity

Extension to conjunctive queries with negation and PGs. Preceding results
can be directly extended to (safe) queries with atomic negation, i.e. queries with
the following form:

q = ans(u)← r1(u1), ... rn(un),¬s1(y1), ... ¬sm(ym) n ≥ 1, m ≥ 0

The query evaluation problem makes the closed-world assumption and is thus
equivalent to PG-CWA deduction. The query containment problem is equivalent
to PG-OWA classical deduction. [Ull97] presents the first algorithm for solving
query containment. In [WL03] a more efficient algorithm is presented. This algo-
rithm is based on the containment mapping notion, which corresponds to the query
homomorphism for positive queries and can be translated into the PG projection.

3.5 Complexity

Let us end this section with computational complexity issues. Given the tight rela-
tionships with databases problems, a “query” can be seen as a polarized graph or
a conjunctive query with negation, and a “base” as a polarized graph (or a set of
polarized graphs) or a database.

Table 1 summarizes the complexity for the three following problems, with
closed-world and open-world assumptions:

• Query answering in its decisional form: Given a query Q and a base G, is
the set of answers to Q in G non empty?

• Intuitionistic deduction: Given a query Q and a a base G, is Q intuitionisti-
cally deducible from G?

• Classical deduction: Given a query Q and a a base G, is Q classically de-
ducible from G?

All NP-complete results follow from the NP-completeness of projection check-
ing. We consider here the usual complexity definition, which takes into account the
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size of the input, that is both the query and the base. In databases, for query answer-
ing problems, there is a distinction between data complexity, query complexity and
combined complexity. Data complexity considers that the size of the query is in-
significant with respect to the size of the database; the query is thus fixed and not
part of the input of the problem. In the contrary, for query complexity, the database
is fixed. Combined complexity is the usual complexity.

A naı̈ve algorithm for checking the existence of a projection from Q to G con-
sists in generating and testing all mappings from Q to G. The number of mappings
is bounded by size(G)size(Q) and testing is obviously polynomial in the size of Q
and G. Thus the problem is polynomial for data complexity.

If we consider combined complexity, specific polynomial cases are known for
projection checking. Roughly said, the problem becomes polynomial when Q has
a tree-like structure (see [GLS01] for a general synthesis and [Ker01] in the frame-
work of SGs). This particular case is interesting in a query answering context
where the source SG (a query here, but in more expressive fragments, the hypoth-
esis of a rule, the trigger of a constraint, ...) is generally small and structurally
simple, whereas the target SG (the base) can be complex. Notice that the problem
remains NP-complete in its query complexity version when Q is a tree (one obtains
the H-coloring problem [HNZ96]).

In comparison [Ull97] argues that classical deduction checking for PGs is Π2
P -

complete (Π2
P is co-NP NP ). As far as we know no efficient particular cases have

been exhibited. In the worst case, known algorithms for projection checking will
generate all complete graphs w.r.t. the relation types appearing in Q. This number
is exponential in the size of the concept node set of the fact graph, thus the prob-
lem is not polynomial for data complexity. Consider for instance that Q contains
relations of a single type t of arity k. The number of complete graphs generated
is bounded by 2|CG|k (since for each tuple of concept nodes in G, say c1, ..., ck,
we have t(c1, ..., ck) or ¬t(c1, ..., ck)). If T relation types are considered, then
(2|CG |k)T graphs can be generated. The choice between classical and intuitionistic
deduction has thus important consequences on the practical solving of deduction.
The combinatorial exploding introduced by the case-based reasoning of classical
deduction can be a crucial problem if the base is big and quick answers are re-
quired. A way of reducing the complexity overhead can be to apply the law of
excluded middle on certain relations only, depending on their semantics, as dis-
cussed in section 4.2.
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4 Related Works and Perspectives

In section 3.4 relationships with problems on queries in databases have been closely
examined. This final section is devoted to other connected works and perspectives
in relation with these works.

4.1 Conceptual graphs

As mentioned in the introduction, conceptual graphs are built in two stages: SGs
equivalent to existential conjunctive FOL and general conceptual graphs equivalent
to FOL obtained by nesting SGs into boxes representing negation. There is thus
a big gap of expressiveness between the two stages. Extensions of SGs have been
developed, keeping positive knowledge, as positive rules of form ”if condition then
conclusion” (where condition and conclusion are lambda-SGs sharing the distin-
guished nodes; see [BM02] for a study of their expressiveness and complexity).

Few works have considered atomic negation, that is polarized SGs. Examples
showing that projection is not complete for polarized graphs have been exhibited
and an algorithm based on an adaptation of the resolution method has been pro-
posed (G. Simonet, unpublished note, 1998). In [Ker01] simpler examples are
exhibited and it is shown that projection is complete on polarized SGs on a very
particular case (briefly when positive and negative relations are separated into dis-
tinct connected components). As far as we know the problem of atomic negation in
relationship with query problems had never been explored. The next step consists
in extending this work to integrate particular cases of rules for which problems
remain decidable.

4.2 Combining the three kinds of negation

In practice it may be useful to combine different kinds of negation. An interesting
approach in this perspective is that of G. Wagner [Wag91] [Wag03] who, after an
analysis of different kinds of negation that can be found in existing systems and
languages, as well as in natural language, proposes to distinguish between several
kinds of predicates. Predicates are separated into total predicates and partial pred-
icates that may have “truth value gaps” (that is it may be the case that neither P
nor ¬P is true). The law of excluded middle applies to the first ones but not the
second ones. Total predicates can be open or closed, according to the underlying
completeness assumption, namely OWA or CWA. To each kind of predicate cor-
responds a kind of negation. The proposed logic for distinguishing between these
three kinds of predicates is a partial logic with three truth values (true, false and
undefined). Let us point out that computational aspects (complexity of deduction
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and algorithms) are not tackled.
Although we do not consider the same logical framework, the above three kinds

of predicates correspond to the three cases analyzed in the present paper. Similarly
to Wagner’s proposal, we could combine the three ways of processing negation. If
information about a relation type is assumed to be complete, closed-world negation
is used. If it is not, the question is whether the law of excluded middle applies or
not. If the answer is yes, the negation for this relation type is the classical negation,
otherwise it is the intuitionistic negation. Since all mechanisms defined in this
paper are based on projection, combining them is not difficult.

4.3 Extended queries

Another issue, which might involve the use of several kinds of negation, is that
of processing extended queries. Let us consider the simple extension where a
query is not simply a SG but a SG with distinguished nodes defining the part to
be considered to build an answer (similarly to the lambda-SGs used in section 3.4
to translate conjunctive queries, except that there is no ordering on distinguished
concept nodes). Classically in SGs, question marks on nodes are used to define
this part (see Q2 and Q3 in figure 8). Now an answer to a query is not the image
graph itself, but the image graph restricted to the images of the nodes with question
marks. This extension has no incidence for the CWA case. Nor in the OWA case if
intuitionistic deduction is considered for the deduction problem. But has important
consequences when deduction is based on the classical negation. Let us recall that
each time classical deduction and intuitionistic deduction disagree, no answer can
be exhibited. Now if an answer is built w.r.t. a subgraph of the query, it is possible
to “mix” intuitionistic deduction and classical deduction.

As an illustration, figure 8 considers again the example of the cubes in figure
4, adding the information that these cubes belong to a certain scene. Three queries
are considered:

• Q1 is a query without question mark. It becomes a “yes/no” query in this
new framework. Q1 asks whether this SG can be deduced from G. Since we
consider classical deduction, the answer is “yes” (cf. section 3.3);

• If question marks are put on all generic concept nodes of the query, yielding
Q2, the query asks for “all scenes and pairs of cubes such that the cubes (one
blue and the other not blue) belong to the scene and the blue one is on top of
the other”. There is no answer to Q2;

• In Q3 the sole question mark is on the node representing the scene; the query
asks for “all scenes containing a blue cube on top of a non blue cube”. In this
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Figure 8: Queries with question marks

case, classical deduction yields an answer, which is the node [Scene:34].
Indeed, for all complete graphs Gc obtainable from G there is a projection
from Q3 to Gc mapping the node [Scene:?] to the node [Scene:34].

A natural extension to previous framework is the following:

Definition 22 (Stable projection) Given a query Q, let us note Q? the subgraph
of Q composed of nodes with question marks. A PG G contains an answer to Q
if there is a projection from Q? to G and, for each complete SG Gc that can be
obtained from G, this projection can be extended to a projection from Q to Gc .
Such a projection is called a stable projection. It defines an image graph for Q?,
which is an answer to Q.

Notice that when Q? is empty, G contains an answer to Q if and only if it can
be classically deduced from G (since there is a projection from the empty graph to
any graph).

Definition 23 (Query answering with classical deduction) Let Q be a (polarized)
query and G be a (polarized) KB. The query answering problem asks for all sub-
graphs G′ of G such that there is a stable projection, say π, from Q? to G, and
π(Q?) = G′.
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A question directly related to these definitions is whether the notion of a stable
projection could be replaced by the notion of a “stable image graph”. Indeed, an
answer being an image graph, the existence of an answer could be based on the ex-
istence of the same image graph for a set of projections from Q? to G (such that for
all Gc one of these projections can be extended to a projection from Q? to Gc). As
an example, consider the query Q4 in figure 9 which asks for “all scenes and sets
of three cubes3 belonging to the scene such that one of these cubes is blue, another
is not blue, and the former is on top of the latter”. With the stable image graph no-
tion, the graph [Scene:34] [Cube:A] [Cube:B] [Cube:C] would be
considered as an answer to Q4.

The logical semantics of this extension is still to study. An important distinc-
tion is to be made with Wagner’s proposal presented above. In his proposal, the
semantics of negation is attached to the kind of relation. Now, it is attached to the
status of the node in the query. How could both approaches be combined?

4.4 Application to the semantic web

The semantic web enhances the web by adding semantic metadata to resources for
better enabling computers and people to work in cooperation [BLHL01]. The basic
metadata language of the semantic web is the Resource Description Format (RDF)
language and its extensions (RDFS, OWL...) [GK04].

Several works have shown that RDFS can be translated into the SG framework,
RDFS-entailment being processed by way of projection. In [Bag04] the relation-
ships between the two formalisms are formally studied. A translation from RDFS

3The three nodes representing the cubes are supposed to be pairwise connected by difference links
which indicate that they represent distinct entities; as the notions of equality and inequality are not
in the scope of this paper we do not represent these links.
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to SGs preserving the model-theoretic semantics of RDFS [Hay04] is built and it is
proved that projection is sound and complete w.r.t. RDFS-entailment. In [CDH00]
another translation is proposed, from which the RDFS semantic search engine,
Corese [CDKFZ04], has been developed. Corese allows to query RDFS metadata
by a query language (in which basic queries correspond to the query graphs pro-
posed in section 4.3) compatible with the SPARQL proposal of the RDF-query
language [PS05]. Two essential differences between the semantic web databases
and traditional databases are on one hand the presence of blank nodes (which cor-
respond to the generic nodes of conceptual graphs and play the role of variables)
and the open-world assumption concerning the representation of knowledge. The
query answering problem in the SG framework becomes very close to the same
problem in semantic web databases, as studied in [GHM04]. The issue discussed
here is thus directly related to the issue of introducing negation into RDFS (as
proposed in [AADW04] for instance).

A Appendix: Projection and intuitionistic logic

This section proves that projection on polarized SGs is sound and complete with
respect to deduction in intuitionistic FOL (theorem 2).

A.1 Semantics of intuitionistic logic

The semantics of intuitionistic logic can be defined as a possible world semantics,
based on Kripke models. A model is given by a set of worlds and a partial order
on this set. Intuitively, each world represents a state of knowledge about a domain
and knowledge increases monotonically as we go from a world to its successors. A
world can be seen as a classical FOL model and the relation between worlds as the
representation of the growth of knowledge. Please notice that following definitions
consider logical languages without functions.

Definition 24 (Kripke model) Let L = (SP , SC , SV ) be a FOL language com-
posed of three pairwise disjoint sets (resp. predicate, constant, and variable sym-
bols). A Kripke model for L is a 5-tuple M = (W,≤, D,C, F ), where:

• W is a non-empty set (each element of W is called a point or a world of M );

• ≤ is a partial order on W ;

• D is a mapping which assigns to each m ∈ W a non-empty set D(m),
called the domain of m, such that: for all m1, m2 ∈ S, if m1 ≤ m2 then
D(m1) ⊆ D(m2);
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• C is a mapping which assigns to each (m, c) of W × SC an element of
D(m) such that: for all m1, m2 ∈ W , if m1 ≤ m2 then for each c ∈ SC ,
C(m1, c) = C(m2, c);

• F is a mapping which assigns to each element m ∈ W a set of atomic
formulas of form p(d1, ...dn) with p ∈ SP and d1, ... dn ∈ D(m) such that:
for all m1, m2 ∈W , if m1 ≤ m2 then F (m1) ⊆ F (m2).

The forcing relation is defined by extending F to all formulas. A ground atomic
formula is forced in m if the formula obtained from it by replacing constants with
the associated elements of D(m) belongs to F (m). The forcing relation is induc-
tively defined below. To simplify notations we extend formulas to formulas where
some terms (variables or constants) have been replaced by elements of a domain.

Definition 25 (Forcing relation) Let L be a first order language without func-
tional symbols and let M be a Kripke model for L. The forcing relation, denoted
by , between M and F(L,M) the set of well-formed formulas on L extended
to elements of domains occurring in M , is defined as follows (where m denotes
a point of M , fa, f1 and f2 denote wffs of F(L,M), and fa is a ground atomic
formula):

• m  fa iff fa[c1/C(m, c1), ..., cq/C(m, cq)] ∈ F (m), where c1 ... cq are
the constants appearing in fa;

• m  f1 ∧ f2 iff m  f1 and m  f2;

• m  f1 ∨ f2 iff m  f1 or m  f2;

• m  ∃xf1 iff there exists t ∈ D(m) such that m  f1[x/t];

• m  f1 → f2 iff for every m′ ∈ W such that m ≤ m′, if m′
 f1 then

m′
 f2;

• m  ¬f1 iff for every m′ ∈W such that m ≤ m′, m′ 6 f1;

• m  ∀xf1 iff for every m′ ∈W such that m ≤ m′ and for every t ∈ D(m′),
m′

 f1[x/t].

Definition 26 (Semantics of intuitionistic logic) Let F and f denote respectively
a set of formulas and a formula on a language L. Let M denote a Kripke model for
L and m denote a point of M . m forces F (denoted by m  F ) iff for all f ∈ F ,
m  f . M forces F (denoted by M  F ) iff for every m ∈M , m  F . f is valid
(denoted by  f ) iff for all M , M  f . F is inconsistent iff there is no M with
M  F .
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Example: to prove that f = (p(a) ∨¬p(a)) is not valid we build a model which
does not force f . Take for instance a model with two worlds, m0 and m1, m0 < m1

such that C(m0, a) = C(m1, a) = e, p(e) ∈ F (m1) but p(e) 6∈ F (m0). We have
m0 6 p(a) and, since m1  p(a), m0 6 ¬p(a). Thus m0 6 p(a) ∨ ¬p(a).

Definition 27 (Intuitionistic deduction) Let F and f be respectively a set of for-
mulas and a formula on a language L. f is deduced from F (denoted by F  f )
iff for every Kripke model M for L, if M  F then M  f .

A.2 Soundness and completeness of projection w.r.t. intuitionistic de-
duction

Notations. A positive (resp. negative) literal is denoted by p(v) (resp. ¬p(v)),
where p is a predicate and v is a sequence of terms. When the considered literal
can be either positive or negative it is denoted by∼p(v). For a literal l, induced(l)
denotes the set of literals induced by l according to the partial order on predicates
i.e. induced(p(v)) = {q(v)|q ≥ p} and induced(¬p(v)) = {¬q(v)|q ≤ p}.
Given a formula f of FOL{∃,∧,¬a}, induced(f) is the union of sets of literals
induced by each literal of f .

In order to focus on the essential points we first show the soundness and com-
pleteness of projection in the flat case. Thus, the set Φ(S) is empty and a projection
maps nodes to nodes with the same type.

A.2.1 Flat case

Preliminary observations. W.l.o.g. we consider that formulas of FOL{∃,∧,¬a}
are in prenex form. The notion of a good assignment defined previously for clas-
sical models is translated into Kripke models. For this fragment a point m of a
Kripke model forces a formula f of a language L iff there is a mapping α from the
terms of f to D(m) which maps each constant c to C(m, c), such that m forces
α(f) the conjunction of literals obtained from f by replacing each term t by α(t).
m forces α(f) iff it forces each of its (positive or negative) literals. α is called a
good assignment of f to m.

Property 18 (S-substitution soundness in the flat case) Let f and g be two for-
mulas of FOL{∃,∧,¬a}. If there is a S-substitution S from f to g then g  f .

Proof. Let M be any Kripke model that forces g and let m be any point of M .
Since m forces g, there exists a good assignment α from g to m. By definition of
α, m forces each -positive or negative- literal of α(g). Now take the mapping α◦S
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which maps the terms of f into D(m). We show it is a good assignment of f into
m. Let ∼p(v) be any literal of f . Then ∼p(S(v)) is a literal of g by definition of
S. Thus by definition of α, m forces ∼p(α(S(v))). α◦S being a good assignment
of f into m, m forces f . Thus M  f . 2

Property 19 (S-substitution completeness in the flat case) Let f and g be two
formulas of FOL{∃,∧,¬a}. If {g} is not inconsistent and g  f then there is a
S-substitution from f to g.

Proof. Since every model which forces g also forces f , we choose one from
which we can build the desired S-substitution. We call it the canonical model of g.
This model, say M , is built as follows. All points m have the same domain D(m),
which is the set of terms of g. M has a tree structure, with a root m0. m0 has two
successors, m+ and m−. F (m0) contains all positive literals of g. m− does not
add anything to m0, while m+ adds all positive literals p(v) such that neither p(v)
nor ¬p(v) appears in g. M has the following property: let Lg be the set of literals
that can be built using predicates and terms appearing in g; for all literal ∼ p(v)
of Lg, M forces ∼ p(v) iff ∼ p(v) is a literal of g (notice this property could not
be ensured with a classical model). Indeed, let p(v) be a positive literal of g; p(v)
is forced by m0 thus by M . Let ¬p(v) be a negative literal of g; no point forces
p(v), thus M forces ¬p(v). Finally, let ∼ p(v) be a literal such that neither p(v)
nor ¬p(v) appears in g: p(v) is forced by m+ while ¬p(v) is forced by m−, thus
none of these two literals is forced by M . Notice that we could consider a model
with two points instead of three, the root being just a convenient point representing
exactly what is forced by all points, thus by M .

Now, M forces g (with a good assignment equal to the identity) thus by hy-
pothesis M forces f . Let αf be a good assignment from f to any world m of M .
By definition of D(m), αf is a mapping from the terms of f to the terms of g. Let
∼ p(v) be a literal of f . m forces ∼ p(αf (v)), which, by construction of M , is in
g. αf is thus a S-substitution from f into g. 2

Example. Let us consider the formula assigned to the SG G in figure 4 and its
canonical model M . F (m0) and F (m−) contain on(A,B), on(B,C), cube(A),
cube(B), cube(C) and blue(A). F (m+) contains on(A,A), on(A,C), on(B,A), on(B,B), on(C,A),
on(C,B), on(C,C), blue(B). ¬blue(C) is forced in M because no point forces
it, while ¬blue(B) is not forced because m+ forces blue(B).
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A.2.2 Ordered case

Given an ordered language L,O(L) denotes the set of formulas associated with the
partial order (O(L) is equal to Φ(S) where S is the support naturally associated
with L).

Definition 28 A Kripke model M is acceptable w.r.t. an ordered language L iff the
forcing relation is compatible with the partial order on predicates i.e. for all point
m in M and all elements d1 ... dk of D(m), if p(d1 ... dk) ∈ F (m) then, for all
q ≥ p, q(d1 ... dk) ∈ F (m).

Notice that a Kripke model is acceptable w.r.t. L iff it forces O(L).

Property 11 (S-substitution soundness in the ordered case) Let f and g be two
formulas of FOL{∃,∧,¬a} on an ordered language L. If there is a S-substitution
from f to g then O(L), g  f .

Proof. Let us take a model M that forces g and O(L). M is thus an acceptable
model. The proof is similar to that of property 18 (flat case). Let m be any point
of M and let α be a good assignment of g into m. We show that α ◦ S which
maps the terms of f to D(m) is a good assignment. Let p(v) be a positive literal
of f . By definition of S there is a predicate q ≤ p such that q(S(v)) is in g.
Thus m forces q(α(S(v))). Since M is acceptable, m forces p(α(S(v))). Now
let ¬p(v) be a negative literal of f . By definition of S there is a predicate q ≥ p
such that ¬q(S(v)) is in g. Thus m forces ¬q(α(S(v))). Since M is acceptable,
m forces the formula ∀x1...xk p(x1...xk) → q(x1...xk), therefore it forces the
formula ∀x1...xk ¬q(x1...xk)→ ¬p(x1...xk) (notice that the reciprocal deduction
does not hold in intuitionistic logic). Thus m forces ¬p(α(S(v))). 2

Property 12 (S-substitution completeness in the ordered case) Let f and g be
two formulas of FOL{∃,∧,¬a} on an ordered language L. If O(L) ∪ {g} is not
inconsistent and O(L), g  f then there is a S-substitution from f to g.

Proof. The proof is similar to that of property 19 (flat case). Instead of consider-
ing the literals of g we consider the literals induced by g, i.e. induced(g). 2

In order to translate these results into the SG framework, we first have to notice
that the notion of SG inconsistency corresponds to intuitionistic logical inconsis-
tency.
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Property 13 A polarized SG G defined on a support S is inconsistent iff Φ(S)∪
{Φ(G)} is intuitionistically inconsistent.

Proof. Let g = Φ(G). (←): if G is not inconsistent it is easy to build a classical
FOL model which satisfies Φ(S) ∪ {g}. It is also a Kripke model forcing Φ(S) ∪
{g}. (→): reciprocally, let m be any point of a Kripke model M forcing Φ(S)∪{g}
and let α be a good assignment of g into m. If g contains two literals p(v) and
¬q(v) with p ≤ q then m forces p(α(v)) and ¬q(α(v)), and, since M is acceptable,
m also forces q(α(v)). Thus M is not a Kripke model. 2

Theorem 2 Let Q and G be two polarized SGs defined on a support S , with G
is not inconsistent. Q � nf(G) if and only if Φ(S),Φ(G)  Φ(Q).

Proof. If Q � nf (G) there is a S-substitution from Φ(Q) to Φ(G), these formulas
being defined on the ordered language L such that O(L) = Φ(S) (property 6).
By property 11, Φ(S),Φ(G)  Φ(Q). Reciprocally, if G is not inconsistent and
Φ(S),Φ(G)  Φ(Q) there is a S-substitution from Φ(Q) to Φ(G) (properties 12
and 13) thus a projection from Q to nf (G) (property 6).

2
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