
Walking the Decidability Line for Rules with
Existential Variables (long version)

Jean-François Baget
INRIA Sophia-Antipolis

LIRMM

baget@lirmm.fr

Michel Leclère
LIRMM

Univ. Montpellier - CNRS

leclere@lirmm.fr

Marie-Laure Mugnier
LIRMM

Univ. Montpellier - CNRS

mugnier@lirmm.fr

Abstract

We consider positive rules in which the conclusion may contain existentially
quantified variables, which makes reasoning tasks (such as Deduction) undecid-
able. These rules have the same logical form as TGD (tuple-generating depen-
dencies) in databases and as conceptual graph rules. The aim of this paper is to
provide a clearer picture of the frontier between decidability and non-decidability
of reasoning with these rules. We show that Deduction remains undecidable with
a single rule; then we show that none of the known abstract decidable classes is
recognizable. Turning our attention to concrete decidable classes, we provide new
classes and classify all known classes by inclusion. Finally, we study, in a system-
atic way, the question “given two decidable sets of rules, is their union decidable?”,
and provide an answer for all known decidable cases except one.

Research Report LIRMM 09030 (December 2009)

1 Introduction
Rules are fundamental constructs in knowledge-based systems and databases. Here we
consider positive rules in first-order logic without functions, of form H → C, where
H and C are conjunctions of atoms, respectively called the hypothesis and conclu-
sion of the rule, and there might be existentially quantified variables in the conclusion.
E.g. the rule R = Human(x) → Parent(y, x) ∧ Human(y) stands for the formula
∀x(Human(x) → ∃y(Parent(y, x) ∧ Human(y))).

These rules correspond to a very general kind of integrity constraints in databases,
i.e. so-called tuple generating dependencies (TGD) [AHV95]. They are also equivalent
to conceptual graph rules [Sow84, BM02]. They generalize various kinds of constructs

1

used to represent implicit knowledge, such as rules in deductive databases, or onto-
logical knowledge such as rules expressing RDFS semantics [Hay04], constraints in
F-logic-Lite [CK06, CGK08] and some kinds of inclusions in description logics (DLs)
[BCM+03, BLMS08, CGL09].

Variables existentially quantified in the conclusion, associated with arbitrary com-
plex conjunctions of atoms, make these rules very expressive but also lead to undecid-
ability of reasoning. Several decidable classes have been exhibited, in both artificial
intelligence and databases. The aim of this paper is to bring a clearer picture of the
frontier between decidability and undecidability of reasoning.

An important task on knowledge bases (KB) consists of querying them with queries
at least equivalent to the fundamental queries in databases, i.e. conjunctive queries. We
consider knowledge bases composed of a set of facts, which are existentially closed
conjunctions of atoms, and a set of rules. The problem of deciding whether the KB
provides an answer to a conjunctive query is the same as deciding whether a fact is
deducible from the KB. This is the basic problem we consider, and we simply call it
DEDUCTION. Equivalent problems include rule deduction (is a rule deducible from a
KB?) as well as several fundamental problems in databases: conjunctive query contain-
ment w.r.t. a set of TGD, TGD implication and boolean conjunctive query answering
under constraints expressed by TGD.

Contributions. The main contributions of this paper are as follows.
1. After having recalled that very strong restrictions on the set of predicates or the

structure of rules maintain undecidability, we complete this gloomy picture by showing
that DEDUCTION remains undecidable even with a single rule (Th. 1). This result has
an important immediate consequence: adding a single rule to any set belonging to a
decidable class of rules can make the problem undecidable.

2. Even if the deduction problem is quickly undecidable, decidable classes have
long been defined and used. Decidable classes found in the literature are based on
various syntactic properties of rules. We begin our study of decidable cases by con-
sidering abstract characterizations of these classes based on the behavior of reasoning
mechanisms instead of syntactic properties. This yields three abstract classes. Two of
them are based on a forward chaining scheme: finite expansion sets [BM02], ensuring
that a finite number of rule applications is sufficient to answer any query, and the more
general bounded treewidth sets (bts), inspired by the work of [CGK08], that relies on
the finite treewidth model property of [Cou90]. The third class is based on a back-
ward chaining scheme: a finite unification set [BLMS09] ensures that any query can
be finitely rewritten. We prove another negative result: these abstract classes are not
recognizable, i.e. checking whether a given set of rules belongs to one of these classes
is undecidable (Th. 3).

3. Since abstract classes are not recognizable, we turn our attention to concrete
classes implementing their abstract behavior. These classes are defined by syntactic
properties of rules. They are less expressive but recognizable. We present a state of
the art of known concrete decidable classes, classified by inclusion, and introduce two
new decidable classes implementing the bts behavior: frontier-guarded rules and their
extension to weakly frontier-guarded sets of rules. These classes are generalizations of

2

the classes defined in [CGK08] and have the advantage of unifying some other known
classes [BLMS09]. We point out that their expressive power allows us to represent a set
of description logic statements that are particularly interesting in the context of the new
DLs tailored for conjunctive query answering. To show that (weakly) frontier-guarded
rules have the bts property, we introduce a simple tool, i.e. the Derivation Graph (DG),
as well as reduction operations on this graph. The fundamental property of this graph is
as follows: if every DG produced by a set of rules can be reduced to a tree, then this set
of rules has the bts property, which is especially the case for (weakly) frontier-guarded
rules (Th. 5).

4. Having a range of non-comparable concrete decidable classes at our disposal,
an interesting question is whether the union of two decidable classes remains decid-
able. This question is of utmost importance if we want to unit two ontologies for which
decidability of reasoning is ensured by different syntactic properties, or if, having im-
plemented the semantics of two KR languages with sets belonging to decidable classes,
we want to consider the language built from the union of both languages. We present
a systematic study of this question for all decidable classes we are aware of. With the
exceptions of disconnected rules, which are universally compatible, and of a still open
case, we show that the union of two incomparable decidable classes is never decid-
able (Th. 8 and Th. 9). These rather negative results on the rough union of decidable
cases highlight the interest of precisely studying interactions between rules. We outline
existing and future works in this direction.

2 Preliminaries

Facts and rules. We consider first-order logical languages with constants but no other
function symbols. A vocabulary V is composed of a set of predicates and a set of
constants. Hence, an atom on V is of form p(t1 . . . tk), where p is a predicate of arity
k in V and the ti are variables or constants in V . For a formula φ, we note terms(φ)
and vars(φ) resp. the terms and variables occurring in φ. We use the classical notions
of semantic consequence, noted |=, and equivalence, noted ≡.

A conjunct is a (possibly infinite) conjunction of atoms. A fact is the existential
closure of a conjunct. W.l.o.g. we also see conjuncts and facts as sets of atoms. The
full fact w.r.t. a vocabulary V contains all ground atoms that can be built on V (thus
any fact on V is a semantic consequence of it). A rule R = (H, C) is a closed formula
of form ∀x1 . . . ∀xp(H → (∃z1 . . . ∃zqC)) where H and C are two finite non empty
conjuncts respectively called the hypothesis and the conclusion of R. The frontier
of R (notation fr(R)) is the set of variables occurring in both H and C: fr(R) =
vars(H) ∩ vars(C). In examples, we omit quantifiers and use the form H → C.
The Deduction problem. As the union of two facts is a fact, we identify a set
of facts with a single fact. A knowledge base K = (F,R) is composed of a fact
F and a set of rules R. We address the following consequence/deduction problem
(noted DEDUCTION in the following): “given a KB K = (F,R) and a fact Q (built
on the same vocabulary), is Q deducible from K (notation K |= Q) , i.e. does {F} ∪
R |= Q hold?”. An instance of this problem is denoted by (F,R, Q). As explained

3

in the introduction, this problem is a representative of several other problems. It is
undecidable (more precisely, it is semi-decidable).
Homomorphisms. Given a set of variables X and a set of terms T , a substitution
of X by T is a mapping from X to T . Let σ : X → T be a substitution, and F
be a fact. σ(F) denotes the fact obtained from F by replacing each occurrence of
x ∈ X ∩ terms(F) by σ(x). A safe substitution is a bijection from X to a set of new
variables (i.e. that do not appear in the formulas involved in the reasoning). Given
two facts F and Q, a homomorphism from Q to F is a substitution σ from vars(Q) to
terms(F) such that σ(Q) ⊆ F . If there is a homomorphism from Q to F , we say that
Q maps to F . It is well-known that homomorphism checking is sound and complete
w.r.t. logical deduction in the fragment of facts: given two facts F and Q, F |= Q iff
Q maps to F .
Forward Chaining. We assume in this paper that the reader is familiar with forward
and backward chaining paradigms. A rule R = (H, C) is applicable to a fact F if
there is a homomorphism σ from H to F . The application of R to F according to
σ produces a fact α(F,R, σ) = F ∪ σ(σ′(C)), where σ′ is a safe substitution of
var(C) \ fr(R). This application is said to be redundant if α(F,R, σ) ≡ F (it suffices
to check that α(F,R, σ) maps to F). A fact F ′ is called an R-derivation of F if there
is a finite sequence (called a derivation sequence) F = F0, F1, . . . , Fk = F ′ such
that for all 1 ≤ i ≤ k, there is a rule R = (H, C) ∈ R and a homomorphism σ
from H to Fi−1 with Fi = α(Fi−1, R, σ). This notion yields a sound and complete
forward mechanism: given a KB K = (F,R) and a fact Q, K |= Q iff Q maps to an
R-derivation of F [SM96].
Backward Chaining. The key operation in backward chaining is the unification be-
tween a fact Q, classically called a goal, and a rule conclusion, which produces a new
goal. Since a precise definition of a unifier is not needed in this paper, we refer for it to
[BLMS09]. Let µ be a unifier of a fact Q and the conclusion of a rule R. The rewriting
of Q w.r.t. µ and R is a fact noted β(Q, R, µ). A fact Q′ is called an R-rewriting of Q
if there is a finite sequence (called a rewriting sequence) Q = Q0, Q1, . . . , Qk = Q′

such that for all 1 ≤ i ≤ k, there is a rule R = (H, C) ∈ R and a unifier µ of Qi−1

and C with Qi = β(Qi−1, R, µ). This notion yields a sound and complete backward
mechanism: given a KB K = (F,R) and a fact Q, K |= Q iff there is an R-rewriting
of Q that maps to F [SM96][BLMS09].

3 A single rule encodes all rules
Even very strong restrictions are not sufficient to make DEDUCTION decidable. In
[Bag01], it is shown that DEDUCTION can be reduced to its restriction where the vo-
cabulary is limited to a single binary predicate name. In [BM02], it is proven that
DEDUCTION remains undecidable with rules with a frontier of size 2, and where the
hypothesis and conclusion are paths. In this section, we present another very strong
restriction (when the KB is restricted to a single rule) that is not sufficient to make the
problem decidable.

4

Theorem 1 DEDUCTION remains undecidable when the set of rules is restricted to a
single rule.

Proof: Let I = (F,R, Q) be an instance of DEDUCTION. By a transformation τ , we
build another instance τ(I) = (τ(F), τ(R), τ(Q)) with |τ(R)| = 1, such that I is a
positive instance if and only if τ(I) is. τ is defined as follows:

• Let V be the vocabulary obtained by considering the constants and the predi-
cates occurring in I . We consider a vocabulary Vτ obtained by replacing each
predicate name of arity k in V by a predicate (of same name) of arity k + 1
and by adding to this vocabulary two new constants f and g (f for “fact” and g
for “garbage”). Each atom p(t1, . . . , tk) defined on V is translated into an atom
p(t1, . . . , tk, t) on Vτ where t is either f (stating that this atom corresponds to
an atom in F or deduced from F), or g. Given a fact F over V , such a translation
is denoted τ(F, t).

• τ(F) is the disjoint union of two sets: a set Cf = τ(F, f) (the “fact compo-
nent”); and a set Cg = τ(U, g) (the “garbage component”) where U is the full
fact on V (since any fact on V can be deduced from U , this latter fact encodes
that everything is true, but is garbage).

• τ(Q) = τ(Q, f) (we want to deduce it from the part of τ(F) that corresponds to
F).

• Let R = {R1 . . . Rp}. W.l.o.g., assume that the sets of variables occurring
in each rule are pairwise disjoint. Let x1 . . . xp be new variables, i.e. not oc-
curring in R. Then τ(Ri) = (τ(Hi, xi), τ(Ci, xi)). τ(R) = {R = (H =
∪iτ(Hi, xi), C = ∪iτ(Ci, xi))} is composed of a single rule that encodes all
the previous ones.

Let us outline the main ideas of this transformation. Every rule in R is applicable
to the garbage component Cg , thus R is applicable to Cg , with variables x1 . . . xp

being necessarily mapped to the constant g. When a rule Ri is applicable to F by a
homomorphism h, then R is applicable to τ(F) with τ(Hi, xi) being mapped to Cf by
h∪{(xi, f)}, and the remaining Hj in H being mapped either to Cf or Cg. Conversely,
assume that R is applicable to τ(F): each τ(Hi, xi) is necessarily mapped to Cf or
to Cg; if τ(Hi, xi) is mapped to Cf , this corresponds to an application of Ri to F . If
all τ(Hi, xi) are mapped to Cg then the corresponding application of R is redundant
(by definition of the full fact). It follows that every derivation from F with the rules
in R can be translated into a derivation from τ(F) with R (with a natural extension
of the homomorphisms involved in the first derivation) and reciprocally (with a natural
decomposition of the homomorphisms involved in the second derivation). Finally, h
is a homomorphism from Q to a fact F ′ defined on V iff it is a homomorphism from
τ(Q) to τ(F ′) (and we have h(τ(Q)) ⊆ C ′f with C ′f = τ(F ′, f)).

Note that k + 1-ary predicates are not required for such a result: with an additional
encoding, the same result can be obtained using only unary and binary predicates. ¤

5

4 Known abstract classes are not recognizable
We distinguish between several kinds of known decidable cases according to the prop-
erties defining them:

• abstract classes are defined by abstract properties that ensure decidability but
for which the existence of a procedure for deciding whether a given set of rules
fullfils the property is not obvious; in fact, we show in this section that none of
the three known abstract classes is recognizable;

• concrete classes are defined by syntactic properties. These properties can be de-
fined on a set of rules–they are called global properties–or on each rule individually–
they are called individual properties.

The decidable concrete classes found in the literature can be grouped into three ab-
stract classes according to the properties that underlie their decidability: finite expan-
sion sets are based on the finiteness of forward chaining; in their extension to bounded-
treewidth sets, the produced facts have a tree-like structure, which allows to stop the
forward chaining when the size of the facts is sufficient to conclude w.r.t. a given query;
finite unification sets are based on the finiteness of backward chaining. We prove that
none of them is recognizable.

A set of rules is called a finite expansion set (fes) if it is guaranteed, for any fact,
that after a finite number of rule applications all further rule applications will become
redundant, i.e. produce facts equivalent to the current fact.

Definition 1 (finite expansion set) [BM02] R is called a fes if for any fact F , there
is an R-derivation F ′ of F such that for every rule R = (H,C) ∈ R, for every
homomorphism σ from H to F ′, α(F ′, R, σ) maps to F ′.

If R is a fes, any forward chaining algorithm that builds a derivation sequence
and stops when all rule applications are redundant, then checks if Q maps to the fact
obtained, is complete and halts in finite time.

The following definition of a bounded treewidth set of rules (Def. 3) basically fol-
lows from [CGK08]. This abstract class translates the fundamental property underlying
the concrete decidable classes in this latter paper.

A fact can naturally be seen as a hypergraph whose nodes are the terms in the fact
and whose hyperedges encode atoms. The primal graph of this hypergraph has the
same set of nodes (terms) and there is an edge between two nodes is they belong to the
same hyperedge (atom). The following treewidth definition for a fact corresponds to
the usual definition for the associated primal graph.

Definition 2 (Treewidth of a fact) Let F be a (possibly infinite) fact. A tree decom-
position of F is a (possibly infinite) tree T = (X = {X1, . . . , Xk, . . .}, U) where:

1. the Xi are sets of terms of F with
⋃

i Xi = terms(F);

2. For each atom a in F , there is Xi ∈ X s.t. terms(a) ⊆ Xi;

6

3. For each term e in F , the subgraph of T induced by the nodes Xi such that
e ∈ Xi is connected.

The width of a tree decomposition T is the size of the largest node of T , minus 1.
The treewidth of a fact F is the minimal width among all its possible tree decomposi-
tions.

Definition 3 (Bounded treewidth set) (basically [CGK08]) A set of rules R is called
a bounded treewidth set (bts) if for any fact F there exists an integer b such that, for
any fact F ′ that can be R-derived from F , treewidth(F ′) ≤ b.

Theorem 2 (Decidability of b.t.s) 1 The restriction of DEDUCTION to bounded treewidth
sets of rules is decidable.

Proof: Let R be a bts. Then for any fact F , there exists a bound b such that any fact
R-derivable from F has treewidth at most b. Consider the infinite fact F ∗ defined as
the union of all facts R-derivable from F . F ∗ is universal for F and R, i.e. any fact
consequence of {F} ∪ R is consequence of F ∗. Thanks to the treewidth compactness
theorem [Tho88], F ∗ has bounded treewidth. Since F ∗ is universal, it follows that for
any fact Q, both F ∗ ∧Q and F ∗ ∧ ¬Q have a model of bounded treewidth when they
are satisfiable. We conclude with [Cou90], that states that classes of first-order logic
having the bounded treewidth model property are decidable. ¤

A fes is a bts, since the finite saturated graph generated by a fes from an initial fact
F has treewidth bounded by a polynomial in the size of F (or an exponential if the
arity of predicates is not assumed to be bounded).

With finite unification sets, the finiteness of backward chaining is based on the
finiteness of the set of most general rewritings of Q.

Definition 4 (Finite unification set) [BLMS09] A set of rules R is called a finite uni-
fication set (fus) if for every fact Q, there is a finite set Q of R-rewritings of Q such
that, for any R-rewriting Q′ of Q, there is an R-rewriting Q′′ in Q that maps to Q′.

We show now that fes, bts and fus yield abstract characterizations that are undecid-
able, with a proof applying to the three abstract classes.

Theorem 3 Deciding if a set R is a finite expansion (resp. finite unification, resp.
bounded treewidth) set is not decidable.

The proof of this theorem relies on the following lemmas.

Lemma 1 Let (F,R, Q) be an instance of DEDUCTION. Let V be the vocabulary
obtained by considering predicates and constants occurring in F , R and Q. We note
R′ = allrules(F,R, Q) = R ∪ {∅ → F ;Q → U} a new set of rules, where U is the
full fact.

Then F,R |= Q iff ∅,R′ |= U .

1This theorem is an immediate generalization of Th. 23 in [CGK08], that applies to the concrete bts class
called “weakly guarded TGD”.

7

Proof: Since the fact F and the rule ∅ → F are equivalent, we will prove successively
both directions of the equivalence F,R |= Q iff F,R∪ {Q → U} |= U .
(⇒) Immediate, since F,R |= Q and Q, {Q → U} |= U ⇒ F,R′ |= U .
(⇐) If F,R′ |= U , then there exists a derivation F = F0, F1,, Fk such that Fk |=
U . Suppose that the rule RU = Q → U is not used in this derivation. Then F,R |= U
and since any fact can be deduced from U , we have F,R |= Q. Otherwise, let us
consider the smallest i such that Fi is obtained from Fi−1 by the application of rule
RU . It means that there is a homomorphism from Q to Fi−1 (applicability of the rule)
and that F,R |= Fi−1 (RU was not needed). Then F,R |= Q. ¤

Lemma 2 Let (F,R, Q) be an instance of DEDUCTION. Let R′ = allrules(F,R, Q)
be defined as in lemma 1. If ∅,R′ |= U , then R′ is a fes, a fus, and a bts.

Proof: Assume ∅,R′ |= U . We successively prove all three implications:
1) It follows that, for any fact H on V , we have H,R′ |= U and then the forward
chaining algorithm produces in finite time a fact F ′ such that F ′ |= U (from semi-
decidability of DEDUCTION proven with forward chaining). Thus F ′ ≡ U and any fact
that can be derived from F ′ is also equivalent to U : it means that R′ is a fes.
2) Since all fes are also bts, R′ is also a bts.
3) It follows that, for any fact Q′, we have ∅,R′ |= Q′ and then a breadth-first ex-
ploration of all possible rewritings of Q′ will produce ∅ in finite time (from semi-
decidability of DEDUCTION proven with backward chaining). Since ∅ is more general
than any other rewriting of Q′, R′ is a fus. ¤
Proof: [Th. 3] (By absurd). Assume there exists a halting, sound and complete algo-
rithm that determines whether a set of rules is a fes (resp. a bts, resp. a fus). Then we
exhibit the following halting, sound and complete algorithm for DEDUCTION.

Data: (F,R, Q) an instance of DEDUCTION
Result: YES iff F,R |= Q, NO otherwise.
if R′ = allrules(F,R, Q) is a fes (resp. fus, resp. bts) then1

return YES iff ∅,R′ |= U , and NO otherwise;2

else return NO;3

This algorithm halts: the condition in line 1 is checked in finite time (our hypoth-
esis), and if this condition is fulfilled then the semantic consequence (line 2) can also
be checked in finite time. This algorithm is also sound and complete: line 2 returns
the correct answer (lemma 1) and, assuming the condition is not verified, line 3 also
returns the correct answer (from lemma 1 and contrapositive of lemma 2, we have “if
R′ is not a fes then F,R 6|= Q”). ¤

5 Extending concrete classes
Since abstract classes are not recognizable, it is important to have as large as possible
concrete subclasses of these abstract classes. In this section, we first review known
concrete cases. Then we introduce new concrete classes that generalize all known
concrete bts classes based on individual criteria.

8

5.1 Known concrete cases
Let us begin with the list of concrete classes based on individual criteria (we mention
after each case the abstract argument that was initially used to prove decidability).

• range restricted rules (rr), which do not have existentially quantified variables
[fes]. They correspond to rules in positive Datalog;

• disconnected rules (disc), whose frontier is empty [BM02] [fes]; note that the
hypothesis and conclusion may share constants (but not variables);

• guarded rules (g), such that an atom of the hypothesis contains (“guards”) all
variables of the hypothesis [CGK08] [bts];

• atomic hypothesis rules (ah), whose hypothesis is restricted to a single atom
[BLMS09] [fus]. They are special guarded rules, thus are also bts;

• domain-restricted rules (dr), in which each atom in the conclusion contains all
or none of the variables in the hypothesis [BLMS09] [fus] ; they include disc
rules, which are thus also fus.

Example 1
R1 = r(x, y) ∧ r(y, z) → r(x, z) is only rr
R2 = r(x, y) ∧ r(y, z) → r(u, v) is only disc (and dr since disc ⊆ dr)
R3 = t(x, y, z) ∧ q(x) → t(y, z, u) is only g
R4 = t(x, y, z) → t(y, z, u) ∧ q(y) is only ah (and g)
R5 = r(x, y) ∧ r(y, z) → o(x, y, z, t) ∧ r(t, u) is only dr
R6 = r(x, y) ∧ r(y, z) → r(z, u) does not belong to any of the above classes.

Let us also mention the database inclusion dependencies (ID) in which the hypoth-
esis and conclusion are restricted to a single atom. The original decidability proof for
IDs was complex [JK84]. Since IDs are special ah, both bts and fus argument yield
simple new proofs. In [BLMS09] the case of rules with a frontier of size one (fr1)
is mentioned (unpublished proof from Baget). In previous example, R6 is the only
fr1-rule. Note that fr1-rules, g-rules and disc-rules are incomparable classes. The three
classes will be seen as subclasses of the more general class of frontier-guarded rules
introduced hereafter.

Let us now turn our attention to concrete classes defined by global properties. The
g-rule class is generalized by the class of weakly guarded rules (wg), in which only
some variables of the hypothesis need to be guarded [CGK08]. Given a set of rules R,
a position i in a predicate p (notation (i, p)) is said to be affected if it may contain a new
variable generated by forward chaining, i.e.: (1) if there is a rule conclusion containing
an atom with predicate p and an existentially quantified variable at position i, then
position (i, p) is affected; (2) if a rule hypothesis contains a variable x appearing at an
affected position (i, p) and x appears in the conclusion of this rule in position (j, q)
then (j, q) is affected. Given R, a weak guard in a rule (H,C) ∈ R is an atom in
H that contains all variables in H that occur only in affected positions (i.e. do not
occur in a non-affected position); these variables are said to be affected. R is said to be
weakly guarded if each rule in R has a weak guard. In previous example, {R2}, {R5}

9

and {R6} are not weakly guarded. wg are bts [CGK08]. Special cases of wg-rules are
g-rules (a guard is a weak guard) and rr-rules (no position is affected), both based on
individual properties.

Two other concrete classes defined by global properties found in the literature are
weakly acyclic rules (wa) [FKMP03][DT03] and sets of rules with an acyclic graph of
rule dependencies (aGRD) [Bag04].

The first graph, introduced for TGD and called dependency graph2, encodes vari-
able sharing between positions in predicates. The nodes represent the positions in
predicates (cf. the notation (p,i) introduced for wg rules). For each rule R = (H, C)
and each variable x in H occurring in position (p, i): if x ∈ fr(R), there is an edge
from (p, i) to each position of x in C; furthermore, for each existential variable y in
C (i.e. y ∈ var(C) \ fr(R)) occurring in position (q, j), there is a special edge from
(p, i) to (q, j). The set of rules is weakly acyclic if this graph has no circuit passing
through a special edge.

The graph of rule dependencies encodes possible interactions between rules: the
nodes represent the rules and there is an edge from R1 to R2 iff an application of the
rule R1 may create a new application of the rule R2 (with this abstract condition being
effectively implemented by a unification operation). aGRD is the case where this
graph is without circuit3.

5.2 New concrete cases
Definition 5 ((Weakly) Frontierly-guarded rules) Given a set of variables S, a rule
is S-guarded if an atom of its hypothesis contains (at least) all variables in S. A
rule is frontier-guarded (fg) if it is S-guarded with S being its frontier. A set of rules is
weakly frontier-guarded (wfg) if each rule is S-guarded with S being the set of affected
variables in its frontier.

The class of frontier-guarded rules includes g-rules, fr1-rules and disc-rules. The
class of weakly frontier-guarded rules generalizes it as well as the class of weakly
guarded rules, which itself generalizes range-restricted rules. In particular, it covers all
known decidable classes (to the best of our knowledge) having the bounded treewidth
set property and based on individual criteria.

Example 2
R7 = r(x, y) ∧ C(y) ∧ r(x, z) ∧ D(z) → s(x, u) ∧ E(u) is not g but fr1 since the
frontier is restricted to x, thus it is fg.
R8 = r(x, y) ∧ r(y, z) → s(x, u) ∧ s(y, u) is not g nor fr1 but it is fg.
R9 = r(x, z) ∧ s(y, z) → s(y, u) ∧ r(u, x) is not fg (the frontier is {x, y}); taken as a
singleton it is not wg either (the affected variables in H are x and z), but it is wfg (since

2We use here the terminology of [FKMP03], developed in [FKMP05].
3Unfortunately, the term “acyclic” is ambiguous when used on directed graphs. In this paper, by acyclic

we mean without any undirected cycle (i.e. the underlying undirected graph is a forest). We keep the
expressions “acyclic GRD” and “weakly acyclic” that come from other papers, but precise that they refer to
circuits.

10

r(x, z) guards x, which is the only variable both affected and in the frontier).
In the first example, R2, R3, R4, R6 are all fg; R5, which is dr, is neither fg nor wfg.

Rules allow us to express some description logic statements, especially those form-
ing the core of recent DLs directed towards efficient query answering, typically: in-
clusions between concepts built with conjunction (u) and full existential restriction
(∃r.C), as well as role inclusions, domain and range restrictions, reflexivity and tran-
sitivity role properties ... The first-order translation of these statements yields rules
that, besides the fact that they have an “acyclic” hypothesis and conclusion, are spe-
cial cases of previous concrete classes. For instance, [CGL09] shows that DL-Lite
statements can be seen as guarded rules. Another example is ELHdr

⊥ [LTW09]: it
can be easily checked that all inclusions4 in this DL are fr1-rules or ID, thus they are
fg-rules. E.g. the rule R7 in example 2 translates the following ELHdr

⊥ inclusion:
∃r.C u ∃r.D v ∃s.E. Rules expressing transitivity are not fg, but rr, thus both wg
and wfg. The weakly frontier-guarded class thus seems particularly appropriate for
studying these new DLs as rules.

In the following, we prove that (weakly) frontier-guarded rule sets are bounded
treewidth sets. We introduce the notion of a derivation graph. This graph is of interest
in itself because it allows us to explain properties of rules by structural properties of
the facts they produce. We call frontier atom in a rule R an atom in the hypothesis of
R that contains at least one frontier variable. Frontier atoms play an important role in
the next definitions.

Definition 6 (Derivation Graph) Let D = (F = F0, F1, . . . , Fn = F ′) be a deriva-
tion sequence. The Derivation Graph assigned to D is the directed graph GD =
(X , E, newAtoms, label), where X is the set of nodes, E is the set of edges, and
newAtoms and label are functions respectively labeling nodes and edges, such that:

• X = {X0 . . . Xn},

• newAtoms assigns to each xi ∈ X the set of atoms created at step i, i.e.
newAtoms(X0) = F and for 1 ≤ i ≤ n, newAtoms(Xi) = Fi \ Fi−1. Fur-
thermore, we note terms(Xi) = terms(newAtoms(Xi)).

• there is an edge (Xi, Xj) in E if: let Fj = α(Fj−1, R, σ); there are a ∈
newAtoms(Xi) and b a frontier atom in R with σ(b) = a; label(Xi, Xj) =
{e ∈ terms(Xi)|∃a ∈ newAtoms(Xi) s.t. e ∈ terms(a), ∃b frontier atom in
R with x ∈ terms(b) ∩ fr(R), σ(b) = a and σ(x) = e}.

Roughly speaking, nodes and their labeling encode atoms created at each derivation
step; each edge (Xi, Xj) expresses that the homomorphism σ from a rule hypothesis
H to Fj−1, that has led to Fj , has mapped at least one frontier atom in H to an atom
(in Fj−1) created in Fi; the label of (Xi, Xj) indicates the terms in Fi that are used
to produce the new atoms in Fj . By definition, a derivation graph has no circuit, but
it is generally not acyclic (i.e. it is not a tree, or a forest if not connected). Every
application of a disconnected rule leads to a node initially isolated, thus the graph may
be not connected.

4We assume that⊥ is processed by a negative constraint, which does not interfere with query answering.

11

Property 1 (Decomposition properties) Let (F,R) be a KB such that no rule in R
has a constant in its conclusion. Then, for any R-derivation D from F = F0 to
Fn = F ′, GD satisfies the following properties, called the decomposition properties
w.r.t. F ′:

1.
⋃

i Xi = terms(F ′);

2. For each atom a in F ′, there is Xi ∈ X s.t. a ∈ newAtoms(Xi);

3. For each term e in F ′, the subgraph of GD induced by the nodes Xi such that
e ∈ terms(Xi) is connected.

4. For each Xi ∈ X , the size of terms(Xi) is bounded by an integer that depends
only on the size the KB (here max(|terms(F)|, |terms(Ci)|Ri∈R).

Proof: The proof of conditions 1), 2) and 4) being immediate, we focus here on condi-
tion 3). Every edge labeled e links two nodes containing e. For each term e in F ′, there
exists Xe a node corresponding to Fe, the first derived graph in which e appears (if e
has been generated by a rule application then Xe identifies that rule application, oth-
erwise e belongs to F and Xe = X0). Moreover, if Xi contains a term e then Fe (the
graph associated to Xe) has been generated before Fi in the derivation sequence. We
can thus establish the following property: “for each node Xi such that e ∈ terms(Xi),
there exists a path from Xe to Xi in which all nodes contain e and all edge labels
contain e”. This property can be easily proven by a recurrence on the length of the
derivation from Fe to Fi. ¤

Note that the third decomposition property is not true for constants occurring in
a rule conclusion. We will process these constants in a special way together with the
notion of affected variable.

Property 1 expresses that DG satisfies the properties of a tree decomposition of F ′

(seen as a graph) except that it is not —yet— acyclic. We now introduce operations
that allow to build an acyclic graph from DG for some classes of rules, while keeping
these properties.

Definition 7 (Reduction operations on Derivation Graphs)

• Redundant edge removal. Let (Xi, Xk) and (Xj , Xk) be two edges with the
same endpoint. If a term e appears in label(Xi, Xk) and label(Xj , Xk), then e
can be removed from one of the label sets. If the label of an edge becomes empty,
then the edge is removed.

• Edge contraction. Let (Xi, Xj) be an edge. If terms(Xj) ⊆ terms(Xi)
then Xi and Xj can be merged into a node X such that newAtoms(X) =
newAtoms(Xi)∪newAtoms(Xj). This merging involves the removal of (Xi, Xj)
and, in all other edges incidental to Xi or Xj , Xi and Xj are replaced by X ,
with multiedges being replaced by a single edge labeled by the union of their
labels.

Property 2 The above operations preserve the decomposition properties w.r.t. F ′.

12

Proof: Conditions 1), 2) and 4) are trivially respected by both operations. No atom (and
thus no term) disappears in the derivation graph, and no node receives any additional
atom (since the only merging of nodes happens when a set is included in the other).

Condition 3) is satisfied by edge contraction, which does not change the connec-
tivity of the graph. Let us consider redundant edge removal. For each node X that
contains a term e there exists a path from Xe to X (see proof of prop. 1)in which
all nodes and edges are labeled e. Moreover, nodes incident to an edge labeled e also
contain e, thus if a node Xk has two parents Xi and Xj , these two latter nodes also
contain e and then there is a second path from Xe to Xk. By removing one of these
edges, it is impossible to disconnect the set of nodes containing e. ¤

Theorem 4 Let R be a set of rules without constant in conclusion. If for all R-
derivation D, GD can be reduced to an acyclic graph then R is a bounded treewidth
set.

Proof: Follows from Prop. 1 and 2. ¤

Property 3 If all rules are range-restricted and without constant in their conclusion,
then any derivation graph with these rules can be reduced to a single node by a se-
quence of edge contractions.

Proof: If all rules are rr, all terms in generated atoms are contained in the root of the
derivation graph. We can thus iteratively contract all edges of the derivation graph into
the root. ¤

Property 4 If all rules are frontier-guarded and without constant in their conclusion,
then any derivation graph with these rules can be reduced to an acyclic graph.

Proof: We show that if a node X of the derivation graph is the destination of n ≥ 2
distinct edges, then n − 1 of them can be suppressed by redundant edge removal.
We begin by pointing out that, to be the destination of an edge, X must have been
obtained by applying some rule R that contains at least one frontier node (i.e. R is not
disc). Moreover, by definition of a derivation graph, these edges’ labels are necessarily
a subset of the terms that were images of the frontier nodes of R. In frontier-guarded
rules, the guard g of R (i.e. the atom containing the frontier) generates an edge (Xg, X)
in the derivation graph, where Xg contains the image of g. This edge is labeled by all
terms of the frontier of R, and thus any other edge whose destination is X is redundant
with (Xg, X) and can be removed. ¤

Property 5 Frontierly guarded rules without constant in their conclusion are bts.

Proof: Immediate consequence of prop. 4 and theorem 4. ¤
To cover rules that introduce constants, as well as weakly frontier-guarded rules,

we extend the notion of derivation graph.

Definition 8 (Extended Derivation Graph) Given a set of terms T and a derivation
graph GD, the extension of GD with T , notation GD[T], is obtained from GD with the
following sequence of operations:

13

1. the mapping terms is modified: for each Xi, terms(Xi) = terms(newAtoms(Xi))∪
T (i.e. the terms of T are added everywhere);

2. all terms occurring in T are removed from the labels in edges; if a label becomes
empty, then the edge is removed;

3. for each connected component in GD that does not include X0, a node Xi with-
out incoming edge is chosen and the edge (X0, Xi) is added with label T .

Property 6 GD[T] satisfies the decomposition properties, with the bound on |terms(Xi)|
being increased by |T |; furthermore GD[T] does not contain new cycles w.r.t. GD.

Proof: There is no suppression of atoms so the terms and atoms of F ′ remain covered.
We add at most |T | terms to each node thus the width (and consequently the treewidth)
of the derivation graph is at most increased by |T |. Global connectivity is ensured since
T is added to all nodes of the derivation graph. Since edges are added only to reconnect
disconnected components, no circuit is created. ¤

Theorem 4 and properties 3, 4, 5 can be extended to rules with constants in their
conclusion by considering the extended derivation graph with T being the set of con-
stants occurring in rule conclusions.

Property 7 Let R be a set of rules and let C be the set of constants occurring in the
rule conclusions. If R is frontier-guarded, then, for any R-derivation D, GD[C] can
be reduced to a tree. If R is weakly frontier-guarded, then, for any R-derivation D,
GD[C ∪ terms(F)] can be reduced to a tree.

Proof: The proof is similar to the proofs of properties 4 and 6. A key property is that
a non-affected variable in a rule hypothesis is never mapped to a new variable (i.e. not
occurring in the initial fact) by an application of this rule. ¤

Theorem 5 Weakly frontier-guarded rule sets are bts.

Figure 1 summarizes inclusions between decidable cases. All inclusions are strict
and no inclusion is omitted (i.e. classes not related in the schema are indeed incompa-
rable). The examples provided in the preceding allow to check most cases and it is easy
to build other examples proving this claim. We add below some examples showing the
incomparability of classes based on global criteria, namely wa, aGRD and wfg.

Example 3
{q(x) → p(z, x), p(x, z)∧ p(y, z) → r(x, y)} is wa and aGRD but is not wfg because
the frontier variables x and y in the second rule are affected but not guarded
p(x, y) → p(y, z) is wfg (because it is fr1) but it is not wa neither aGRD (this rule
depends on itself).
p(x, y) ∧ q(y) → p(y, z) ∧ s(z) is aGRD and wfg (because it is fr1) but it is not wa.
q(x) ∧ p(x, y) → q(y) ∧ r(y, z) is wa and wfg (because it is fr1) but it is not aGRD
(this rule depends on itself).

14

aGRD

wg

g

fg

fr1

fes

wa id

ah

rr disc

wfg

dr

fusbts

Figure 1: Inclusions between decidable cases

6 Study of the union of decidable classes
Let us say that two classes are incompatible if the union of two sets respectively be-
longing to these classes may be undecidable.

6.1 Universal compatibility of disconnected rules
We first prove that disconnected rules are compatible with any decidable set of rules.

Theorem 6 LetR = R0∪Rdisc be a set of rules, where Rdisc is a set of disconnected
rules. If R0 is decidable, then R also is.

Proof: The key property of a disconnected rule is that it needs to be applied only
once: any further application of it is redundant. Assume we have an algorithm for
DEDUCTION, say Ded, that decides in finite time if F,R0 |= Q for any F and Q. We
extend this algorithm to an algorithm that decides in finite time if F,R |= Q for any F
and Q, as follows:

15

Data: (F,R = R0 ∪Rdisc, Q)
Result: YES iff F,R |= Q, NO otherwise.
F ′ ← F ;
repeat

forall RD = (HD, CD) ∈ Rdisc do
if Ded(F ′,R0, CD) then

F ′ ← F ′ ∪ {CD} (with a safe substitution);
Remove RD from Rdisc;

until stability of Rdisc ;
return Ded(F ′,R0, Q);

¤

6.2 Incompatibility results
We say that two sets of rulesR1 andR2 are equivalent w.r.t. a vocabulary V if, for any
fact F built on V , the sets of facts on V deducible respectively from knowledge bases
(F,R1) and (F,R2) are equals. Let us now consider two simple transformations from
a rule into an equivalent pair of rules:

• τ1 rewrites a rule R = (H,C) into two rules:
Rh = H → R(x1 . . . xp) and
Rc = R(x1 . . . xp) → C, where {x1 . . . xp} = vars(H) and R is a new predi-
cate (i.e. not belonging to the vocabulary) assigned to the rule. Note that Rh is
both range-restricted and domain restricted, and Rc is atomic hypothesis.

• τ2 is similar to τ1, except that the atom R(...) contains all variables in the rule:
Rh = H → R(y1 . . . yk) and
R(y1 . . . yk) → C, where {y1 . . . yk} = vars(R). Note that, among other prop-
erties, Rh is domain-restricted, while Rc is range-restricted.

Property 8 Any set of rules can be split into an equivalent set of rules by τ1 or τ2.

Proof: For τ1, we prove that, given a set of rules R and a fact F , both on a vocabulary
V , there is an R-derivation from F to a fact F ′ iff there is a τ1(R)-derivation from F
to a fact F ′′ s.t. the restriction of F ′′ to the vocabulary V is isomorphic to F ′. For
each part of the equivalence, the proof can be done by recurrence on the length of a
derivation. In the ⇒ direction, it suffices to decompose each step of the R-derivation
according to τ . In the⇐ direction, we show that any τ(R)-derivation can be reordered
so that the rule applications corresponding to the application of a rule in R are consec-
utive in the derivation. The reason is that the atom R(. . .) added by a rule application
according to a given homomorphism keeps (at least) all information needed to apply R
according to this homomorphism and cannot be used to apply another rule. For τ2, the
⇒ direction holds. The ⇐ direction holds for a τ2(R)-derivation that is “complete”
w.r.t. the R(. . .) atoms, i.e. such that all rules applicable w.r.t. a homomorphism to
an R(. . .) atom have been applied. Since any τ2(R)-derivation can be completed in a
minimal way, we obtain the equivalence between R and τ2(R). ¤

16

Theorem 7 Any instance of DEDUCTION can be reduced to an instance of DEDUC-
TION with a set of rules restricted to two rules, such that each rule belongs to a decid-
able class.

Proof: From Th.1, any instance of DEDUCTION can be encoded by an instance with a
single rule, say R. By splitting R with τ1 or τ2, we obtain the wanted pair of rules. ¤

If we furthermore consider the concrete classes of the rules obtained by both trans-
formations, we obtain the following result:

Theorem 8 DEDUCTION remains undecidable if R is composed of

• a range-restricted rule and an atomic-hypothesis rule

• a range-restricted rule and a domain-restricted rule

• an atomic-hypothesis rule and a domain-restricted rule.

Since ah-rules are also g-rules, this implies that g-rules are incompatible with rr-
rules and dr-rules. The case of fr1 is more tricky. We did not find any transformation
from general rules into fr1 rules (and other rules belonging to compatible decidable
classes). To prove the incompatibility of fr1 and rr (Th. 9), we use a reduction from
the halting problem of a Turing Machine. This reduction transforms an instance of the
halting problem into an instance of DEDUCTION, in which all rules are either fr1 or rr
(the proof is omitted because of space requirements). The compatibility of fr1 and dr
is an open question.

Theorem 9 DEDUCTION remains undecidable if R is composed of fr1-rules and rr-
rules.

Proof: (Sketch) We consider the halting problem of a Turing machine: given a Turing
machineM (with an infinite tape and a single final state) and a word m, s.t. the head of
M initially points to the first symbol of m, does M accept m, i.e. is there a sequence
of transitions leading M to the final state ? We build a reduction from this problem to
DEDUCTION, such that each rule obtained is fr1 or rr. Let us call configuration a global
state of the Turing machine, i.e. its current control state, the content of the tape and the
position of the head. The basic idea of the translation is that each transition is translated
into a logical rule. However, whereas transitions can be seen as rewriting rules, logical
rules are only able to add atoms. To simulate the rewriting of a configuration, we add a
library of eight rules, called hereafter the copy rules. The rule assigned to a transition
creates three new cells (a copy of the current cell, that contains the new symbol, and
neighboring cells with the new position of the head), and the copy rules build the other
relevant cells at the right and at the left of these new cells.

Let (M,m) be an instance of the halting problem. We build an instance (F,R, Q)
of DEDUCTION as follows.

The vocabulary is composed of:

• binary predicates: Succ to encode the succession of cells (Succ(x, y) means that
the cell x is followed by the cell y); V alue to indicate the content of a given cell

17

(V alue(x, y) means that the cell x contains the symbol y); Head to indicate the
current position of the head and the current control state (Head(x, y) means that
the head points to cell x and the current state is y); Next to encode the rewriting
of a cell (Next(x, y) means that cell x is rewritten as cell y); Copyr (resp.
Copyl) to rebuild the right (resp. the left) part of the word after a transition:
Copyr(x, y) and Copyl(x, y) both mean that cell y is a copy of cell x in the next
configuration;

• constants: each state Ti and each symbol vi are translated into constants with the
same name. Furthermore, there are three special constants, noted ¤ (the value
of an empty cell), B (for Begin) and E (for End).

Let m = m1 . . .mk and let T0 be the initial state. F is obtained from this initial con-
figuration. m is translated into a path of atoms with predicate Succ (a “Succ-path”) on
variables x1 . . . xk, as well as atoms with predicate V alue that relate each xi with the
symbol mi; for the needs of the copy mechanism, we actually translate the following
word: “¤ m1 . . . mk ¤”, and add special markers B and E at the extremities of this
word. More precisely:
F = {Succ(B, x0),
Succ(x0, x1), . . . Succ(xk, xk+1),
Succ(xk+1, E),
V alue(x0, ¤), V alue(xk+1, ¤),
V alue(x1,m1), . . . V alue(xk,mk),
Head(x1, T0)}.

Note that there are no atoms V alue(B, . . .) and V alue(E, . . .).
Let δ = (Ti, vp) → (Tj , vq, d) be a transition, with d ∈ {r, l} indicating a move to

the right (r) or to the left (l): δ can be read as “if the current state is Ti and the head
points to the symbol vp, then take state Ti, replace vp by vq and move to the right/left”.
Let R(δ) be the logical rule assigned to δ. If d = r, we have:

R(δ) = Head(x, Ti)∧V alue(x, vp) → Next(x, y)∧Succ(y, t)∧V alue(y, vq)∧
Head(t, Tj). This rule is fr1. The case d = l is symmetrical: the head moves to the
left.

To implement the copy mechanism, we have four rules to copy the right part of the
word, and four symmetrical rules to copy its left part. Here are the four “right-copy”
rules:
Rr1 = Succ(x, y) ∧ Next(x, z) ∧ Succ(z, u) ∧ V alue(y, v) → Copyr(y, u) ∧
V alue(u, v)
Rr2 = Copyr(x, y) → Succ(y, z)
Rr3 = Succ(x, y) ∧ Copyr(x, z) ∧ Succ(z, u) ∧ V alue(y, v) → Copyr(y, u) ∧
V alue(u, v)
Rr4 = Succ(x,E) ∧ Copyr(x, y) ∧ Succ(y, z) → V alue(z, ¤) ∧ Succ(z, E).

Rr2 is fr1 and the other rules are rr (with Rr4 begin also fr1). In the “left-copy”
rules, say Rl1 . . . Rl4, Copyl is used in an obvious way instead of Copyr, with B
replacing E. R contains these eight copy rules and one rule R(δ) per transition δ.
Finally, Q encodes the fact that the head is in the final state: Q = {Head(x, Tf)},
where Tf is the final state.

18

The proof relies on the following equivalence: there is a derivation of F that con-
tains a “Succ-path” from B to E encoding a word m′, with Head(x, T) and V alue(x,m′

i),
iff the configuration of the Turing machine with m on the tape, the head pointing to a
cell containing m′

i and control state T is attainable. The ⇒ direction of this equiva-
lence is proven by induction on the length of a derivation sequence. The ⇐ direction
is proven by induction on the number of transition applications.

¤
The following table synthesizes decidability results for the union of decidable classes

based on individual criteria; ND means “not preserving decidability.
rr fes (wa)
id/ah fg ND
g fg ND g
fr1 fg ND fg fg
fg fg ND fg fg fg
dr dr ND ND ND Open ND

disc rr id/ah g fr1 fg

We can also conclude for concrete classes based on global criteria, i.e. wg, wfg,
wa and aGRD: all of them are incompatible, which includes the incompatibility of
each class with itself (indeed, the union of two sets satisfying a global property does
generally not satisfy this property; only one added rule may lead to violate any of the
above criteria).

Theorem 10 The union of two sets belonging to classes wg, wfg, wa and aGRD does
not preserve decidability.

Proof: See that the transformation τ1 decomposes a rule into two rules Rh and Rc s.t.
{Rh} and {Rc} are each wa, aGRD and wg. Let I be any instance of DEDUCTION. I
is transformed into an instance containing a single rule by the reduction in the proof of
Th. 1. Let I ′ be the instance obtained by applying τ1 to this rule. The set of rules in
I ′ is the union of two (singleton) sets both wa, aGRD and wg. Since I ′ is a positive
instance iff I is, we have the result. ¤

It follows from previous results that abstract classes are incompatible:

Theorem 11 The union of two sets belonging to classes fes, bts or fus does not pre-
serve decidability.

Proof: Follows from Th. 8 (for all possible pairs exceptfes/fes) and 10 (for the pair
fes/fes). ¤

To conclude, the rough union of two sets of rules belonging to different decid-
able classes almost always leads to undecidability. The precise study of interactions
between rules, as done in [BLMS09], is thus a promising approach. DEDUCTION is de-
cidable when the graph of rule dependencies has no circuit (we have the aGRD class).
Even more interesting is the fact that when all connected components of this graph are
fes (resp. fus, resp. bts), then the set of rules is a fes (resp. fus, resp. bts). This combi-
nation of abstract classes effectively combines any concrete classes implementing their
behavior, and thus takes all classes presented here into account as well as those we are

19

not yet aware of . With additional conditions on this graph, it is possible to combine a
bts and a fus into a new decidable class (that strictly contains both bts and fus) using a
mixed forward/backward chaining algorithm. This shows that using abstract classes is
a powerful method for building generic decidability results.

7 Perspectives
We have pointed out the interest of precisely studying interactions between rules to
enlarge decidable cases. Two techniques for encoding these interactions can be found
in the literature and have been mentioned above: one relies on the graph of rule de-
pendencies and the other on a graph of position dependencies. Both graphs encode
different kinds of interactions between rules. We are currently investigating a method
that combines these two techniques with the aim of gaining greater insight into inter-
actions between rules.

Other future work includes precise studies of DEDUCTION complexity for all con-
crete decidable cases (pursuing the results in [BM02] and [CGK08]), including rela-
tionships with description logics tailored to solve similar problems (e.g. conjunctive
query answering).

Acknowledgements. We thank Georg Gottlob for useful references.

References
[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,

1995.

[Bag01] J.-F. Baget. Représenter des connaissances et raisonner avec des hypergraphes: de
la projection à la dérivation sous contraintes. PhD thesis, Université Montpellier
II, Nov. 2001.

[Bag04] J.-F. Baget. Improving the forward chaining algorithm for conceptual graphs rules.
In KR, pages 407–414. AAAI Press, 2004.

[BCM+03] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook. Cambridge University Press, 2003.

[BLMS08] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. Dl-SR: a lite DL with
expressive rules: Preliminary results. In Description Logics, 2008.

[BLMS09] J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. Extending decidable cases
for rules with existential variables. In IJCAI, pages 677–682, 2009.

[BM02] J.-F. Baget and M.-L. Mugnier. The Complexity of Rules and Constraints. JAIR,
16:425–465, 2002.

[CGK08] A. Calı̀, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering
under expressive relational constraints. In KR, pages 70–80, 2008.

[CGL09] A. Calı̀, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for
tractable query answering over ontologies. In PODS, pages 77–86, 2009.

[CK06] A. Calı̀ and M. Kifer. Containment of conjunctive object meta-queries. In VLDB,
pages 942–952, 2006.

20

[Cou90] B. Courcelle. The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Inf. Comput., 85(1):12–75, 1990.

[DT03] A. Deutsch and V. Tannen. Reformulation of xml queries and constraints. In ICDT,
pages 225–241, 2003.

[FKMP03] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and
query answering. In ICDT, pages 207–224, 2003.

[FKMP05] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and
query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

[Hay04] P. Hayes, editor. RDF Semantics. W3C Recommendation. W3C, 2004.

[JK84] D.S. Johnson and A.C. Klug. Testing containment of conjunctive queries under
functional and inclusion dependencies. JCSS, 28(1):167–189, 1984.

[LTW09] C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering in the description
logic el using a relational database system. In IJCAI, pages 2070–2075, 2009.

[SM96] E. Salvat and M.-L. Mugnier. Sound and Complete Forward and Backward Chain-
ings of Graph Rules. In ICCS’96, LNAI 1115, pages 248–262. Springer, 1996.

[Sow84] J. F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, 1984.

[Tho88] R. Thomas. The tree-width compactness theorem for hypergraphs.
http://people.math.gatech.edu/ thomas/PAP/twcpt.pdf, 1988.

21

