
RESEARCH REPORT

Deduction in existential conjunctive
first-order logic:

an algorithm and experiments

Khalil Ben Mohamed
benmohamed@lirmm.fr

Michel Leclère
leclere@lirmm.fr

Marie-Laure Mugnier
mugnier@lirmm.fr

March 2010 R.R.LIRMM 10010

161, rue Ada • 34392 Montpellier Cedex 5 • France
Tel. : 33 (0) 4 67 41 85 85 • Fax : 33 (0) 4 67 41 85 00 • www.lirmm.fr

Abstract

We consider the deduction problem in the existential conjunctive frag-
ment of first-order logic with atomic negation. This problem can be recast
in terms of other database and artificial intelligence problems, namely query
containment, clause entailment and boolean query answering. We refine an
algorithm scheme that was proposed for query containment, which itself im-
proves other known algorithms in databases. To study it experimentally, we
build a random generator and analyze the influence of several parameters on
the problem instance difficulty. Using this methodology, we experimentally
compare several heuristics. We also present preliminary results on the com-
parison of our algorithm, which is based on homomorphism checks, to the
theorem prover Prover9, which is based on the resolution method.

Keywords: Deduction, Negation, Conjunctive Queries with Negation, Graphs,
Homomorphism, Algorithm, Heuristics, Experiments

1

Contents

1 Introduction 2

2 Framework 3

3 Experimental methodology 8

4 Refinement of the algorithm 10

5 Comparison to logical approaches 14

6 Conclusion 15

1 Introduction

We consider deduction checking in the fragment of first-order logic (FOL) com-
posed of existentially closed conjunctions of literals (without functions). The de-
duction problem, called DEDUCTION in this paper, takes as input two formulas f
and g in this fragment and asks if f can be deduced from g (noted g ` f). DEDUC-
TION is representative of several fundamental artificial intelligence and database
problems. It can be immediately recast as a query containment checking prob-
lem, which is a fundamental database problem. This problem takes two queries
q1 and q2 as input, and asks if q1 is contained in q2, i.e. if the set of answers
to q1 is included in the set of answers to q2 for all databases (e.g. [AHV95]).
Algorithms based on query containment can be used to solve various problems,
such as query evaluation and optimization [CM77, ASU79] or rewriting queries
using views [Hal01]. So-called (positive) conjunctive queries form a class of nat-
ural and frequently used queries and are considered as basic queries in databases
[CM77, Ull89] and more recently in the semantic web. Conjunctive queries with
negation extend this class with negation on atoms. Query containment checking
for conjunctive queries with negation is essentially the same problem as DEDUC-
TION, in the sense that there are natural polynomial reductions from one problem
to another, which preserve the structure of the objects. Another related problem
in artificial intelligence is the clause entailment problem, i.e. a basic problem in
inductive logic programming [MR94]: given two clauses C1 and C2, does C1 en-
tail C2? If we consider first-order clauses, i.e. universally closed disjunctions
of literals, without function symbols, by contraposition we obtain an instance of
DEDUCTION. Query answering is a key problem in the domain of knowledge rep-
resentation and reasoning. Generally speaking, it takes a knowledge base and a

2

query as input and asks for the set of answers to the query that can be retrieved
from the knowledge base. When the query is boolean, i.e. with a yes/no answer,
the problem can be recast as checking whether the query can be deduced from the
knowledge base. When the knowledge base is simply composed of a set of posi-
tive and negative factual assertions, i.e. existentially closed conjunctions of literals
(possibly stored in a relational database), and the query is a boolean conjunctive
query with negation, we again obtain DEDUCTION. Integration of an ontology in
this knowledge base is discussed in the conclusion of this paper.

If the considered fragment is restricted to positive literals, deduction checking
is “only” NP-complete and this has been intensively studied from an algorithm
viewpoint, in particular in the form of the equivalent constraint satisfaction problem
[RvBW06]. In contrast, when atomic negation is considered, deduction checking
becomes Πp

2-complete1(e.g. [FNTU07]) and very few algorithms for solving it can
be found in the literature. Several algorithms have been proposed for the database
query containment problem [Ull97][WL03][LM07]. They all use homomorphism
as a core notion. We have not found logical algorithms dedicated to a problem
equivalent to DEDUCTION. Theorem provers in first-order logic consider more
general fragments.

In this paper, we refine the algorithm scheme introduced in [LM07] for query
containment checking, which itself improves other algorithms proposed in databases.
To study it experimentally, we build a random generator and analyze the influence
of several parameters on the problem instance difficulty. We experimentally com-
pare several heuristics using this methodology. We also present preliminary results
obtained on the comparison of our algorithm, which is based on homomorphism,
to logical provers, namely the free tools Prover9 (the successor of the Otter prover
[McC03b]), based on the resolution method, and its complementary tool Mace4
[McC03a].

Paper layout. Section 2 introduces the framework. In Section 3, we present our
experimental methodology and choices. Section 4 is devoted to the comparison of
several heuristics, which leads to refine the algorithm. First results on the compar-
ison to logical provers are presented in Section 5. Section 6 outlines the prospects
of this work.

2 Framework

We note FOL{∃,∧,¬a} the fragment of FOL composed of existentially closed
conjunctions of literals, with constants but without other function symbols. A for-

1Πp
2 = (co-NP)NP

3

mula in FOL{∃,∧,¬a} can also be seen as a set of (positive and negative) literals.
In [LM07], queries (i.e. formulas in the present paper) are seen as labeled

graphs. This allows us to rely on graph notions that have no simple equivalent in
logic (such as pure subgraphs, see later). More precisely, a formula f is represented
as a bipartite, undirected and labeled graph F , called polarized graph (PG), with
two kinds of nodes: term nodes and predicate nodes. Each term of the formula
becomes a term node, that is unlabeled if it is a variable, otherwise it is labeled
by the constant itself. A positive (resp. negative) literal with predicate r becomes
a predicate node labeled +r (resp. −r) and it is linked to the nodes assigned
to its terms. The labels on edges correspond to the position of each term in the
literal (see Figure 1 for an example). For simplicity, the subgraph corresponding
to a literal, i.e. induced by a predicate node and its neighbors, is also called a
literal. We note it +r(t1, . . . , tn) (resp. −r(t1, . . . , tn)) if the predicate node has
label +r (resp. −r) and list of neighbors t1, . . . , tn. The notation ∼r(t1, . . . , tn)
indicates that the literal with predicate r may be positive or negative. Literals
+r(t1, . . . , tn) and −r(u1, . . . , un) with the same predicate but different signs are
said to be opposite. Literals +r(t1, . . . , tn) and −r(t1, . . . , tn) with the same list
of arguments are said to be contradictory. Given a predicate node label (resp.
literal) l, l denotes the complementary predicate label (resp. literal) of l, i.e. it is
obtained from l by reversing its sign. Formulas are denoted by small letters (f and
g) and the associated graphs by the corresponding capital letters (F and G). We
note G ` F iff g ` f . A PG is consistent if it does not contain two contradictory
literals (i.e. the associated formula is satisfiable).

Homomorphism is a core notion in this work. A homomorphism h from a
PG F to a PG G is a mapping from nodes of F to nodes of G, which preserves
bipartition (the image of a term - resp predicate - node is a term - resp. predicate -
node), preserves edges (if rt is an edge with label i in F then h(r)h(t) is an edge
with label i in G), preserves predicate node labels (a predicate node and its image
have the same label) and can instantiate term node labels (if a term node is labeled
by a constant, its image has the same label, otherwise the image can be any label).
On the associated formulas f and g, it corresponds to a substitution h from f to g
such that h(f) ⊆ g. When there is a homomorphism h from F to G, we say that
F maps to G by h. F is called the source graph and G the target graph.

Definition 1 (Complete graph and completion) Let G be a consistent PG. It is
complete w.r.t. a set of predicatesP , if for each p ∈ P with arity k, for each k-tuple
of term nodes (not necessarily distinct) t1, . . . , tk in G, it contains +p(t1, . . . , tk)
or −p(t1, . . . , tk). A completion G′ of G is a PG obtained from G by repeatedly
adding new predicate nodes (on term nodes present in G) without yielding incon-
sistency of G. Each addition is a completion step. A completion of G is called

4

total if it is a complete graph w.r.t. the set of predicates considered, otherwise it is
called partial.

If F and G have only positive literals, G ` F iff F maps to G. When we
consider positive and negative literals, only one side of this property remains true:
if F maps to G then G ` F ; the converse is false, as shown in Example 1.

Example 1 See figure 1: F does not map to G but g ` f . Indeed, if we complete
g w.r.t. predicate p, we obtain the formula g′ (equivalent to g): g′ = (g ∧ p(b) ∧
p(c)) ∨ (g ∧ ¬p(b) ∧ p(c)) ∨ (g ∧ p(b) ∧ ¬p(c)) ∨ (g ∧ ¬p(b) ∧ ¬p(c)). Each of
the four conjunctions of g′ is a way to complete g w.r.t. p. F maps to each of the
graphs associated with them. Thus f is deductible from g′.

+p

+s

−p

x y

F 1 1

1 2

+p

+s+s +sa b c

−p

d

G 1 1

1 1 22 2 1

f = ∃x∃y (p(x) ∧ s(x, y) ∧ ¬p(y))
g = p(a) ∧ s(a, b) ∧ s(b, c) ∧ s(c, d) ∧ ¬p(d)

Figure 1: Polarized graphs associated with f and g.

One way to solve DEDUCTION is therefore to generate all total completions
obtained from G using predicates appearing in G, and then to test if F maps to
each of these graphs.

Theorem 1 [LM07] Let F and G be two PGs (with G consistent), G ` F iff for
all Gc, total completion of G w.r.t. the set of predicates appearing in G, F maps to
Gc.

We can restrict the set of predicates considered to those appearing in opposite
literals both in F and in G [LM07]. In the sequel, this set is called the completion
vocabulary of F and G and denoted V .

A brute-force approach, introduced in [Ull97], consists of computing the set
of total completions of G and checking the existence of a homomorphism from
F to each of them. However, the complexity of this algorithm is prohibitive:
O(2(nG)k×|V|×hom(F,Gc)), where nG is the number of term nodes in G, k is the
maximum arity of a predicate, V is the completion vocabulary and hom(F,Gc) is
the complexity of checking the existence of a homomorphism2 from F to Gc.

2Homomorphism checking is NP-complete. A brute-force algorithm solves it in O(nnF
G), where

nF is the number of term nodes in F .

5

Two types of improvements of this method are proposed in [LM07]. First, let
us consider the space leading from G to its total completions and partially ordered
by the relation “subgraph of”. This space is explored as a binary tree with G as
root. The children of a node are obtained by adding, to the graph associated with
this node (say G′), a predicate node in positive and negative form (each of the two
new graphs is thus obtained by a completion step from G′). The aim is to find a set
of partial completions covering the set of total completions of G, i.e. the question
becomes: “Is there a set of partial completions {G1, . . . , Gn} such that (1) F maps
to each Gi for i = 1 . . . n; (2) each total completion Gc of G is covered by a Gi

(i.e. Gi is a subgraph of Gc) ?” After each completion step, we check whether F
maps to the current partial completion: if yes, this completion is one of the sought
Gi, otherwise the exploration continues.

Figure 2 illustrates this method on the very easy case of Example 1. Two graphs
G1 and G2 are built from G, respectively by adding +p(c) and −p(c). F maps to
G1, thus there is no need to complete G1. F does not map to G2: two graphs
G3 and G4 are built from G2, by adding +p(b) and −p(b) to G2. F maps to G3

and to G4, respectively. Finally, the set proving that F is deductible from G is
{G1, G3, G4} (and there are four total completions of G w.r.t. p). Algorithm 1
implements this method (the numbers in the margin are relative to the refinements
studied in Section 4).

3G G4

G1 G2

G
+p(c) −p(c)

+p(b) −p(b) +p(b) −p(b)

Figure 2: The search tree of Example 1. Each black dot represents a Gc and each
square a Gi.

6

Algorithm 1: recCheck(G)
Input: a consistent PG G
Data: F , V
Result: true if G ` F , false otherwise
begin

if there is a homomorphism from F to G then return true ;
if G is complete w.r.t. V then return false ;

(3) *** Filtering step ***\
(1) Choose r ∈ V and t1, . . . , tn in G such that +r(t1, . . . , tn) 6∈ G and

−r(t1, . . . , tn) 6∈ G ;
Let G′ be obtained from G by adding +r(t1, . . . , tn) ;
Let G′′ be obtained from G by adding −r(t1, . . . , tn) ;

(2) return recCheck(G′) AND recCheck(G′′) ;
end

The second kind of improvement consists of identifying subgraphs of F for
which there must be a homomorphism to G when G ` F . Such a subgraph, say
F ′, can be used as a filter to detect a failure before entering the completion process:
if F ′ does not map to G, then G 0 F . In [WL03], this property is exhibited for F+,
which is the set of all positive literals in F . This result is generalized in [LM07]
with the notions of pure subgraph and compatible homomorphism.

Definition 2 (pure subgraph) A PG is said to be pure if it does not contain oppo-
site literals (i.e. each predicate appears only in one form, positive or negative). A
pure subgraph of F is a subgraph of F that contains all term nodes in F (but not
necessarily all predicate nodes)3 and is pure.

We will use the following notations for pure subgraphs of F :

• Fmax denotes a pure subgraph that is maximal for inclusion;

• F+ is the Fmax with all positive predicate nodes in F ;

• F− is the Fmax with all negative predicate nodes in F ;

• FMax denotes a Fmax of maximal cardinality.

Moreover, a homomorphism from a pure subgraph of F to G has to be “com-
patible” with a homomorphism from F to a total completion of G. Hence, the
following definition:

3Note that this subgraph does not necessarily correspond to a set of literals because some term
nodes may be isolated.

7

Definition 3 (Border, Compatible homomorphism) Let F and G be two PGs
and F ′ be a pure subgraph of F . The predicate nodes of F \ F ′ are called bor-
der predicate nodes of F ′ w.r.t. F . A homomorphism h from F ′ to G is said
to be compatible w.r.t. F if, for each border predicate node inducing the literal
∼p(t1, . . . , tk), the opposite literal ∼p(h(t1), . . . , h(tk)) is not in G.4

Theorem 2 [LM07] If G ` F then, for each pure subgraph F ′ of F , there is a
compatible homomorphism from F ′ to G w.r.t. F .

The following filtering step can thus be performed before the recursive algo-
rithm:

1. select some Fmax;

2. if there is no compatible homomorphism from Fmax to G then return false.

3 Experimental methodology

Due to the lack of benchmarks or real-world data available for the studied problem,
we built a random generator of polarized graphs. The chosen parameters are as
follows:

• the number of term nodes (i.e. the number of terms in the associated for-
mula)5;

• the number of distinct predicates;

• the arity of these predicates (set at 2 in the following experiments);

• the density per predicate, which is, for each predicate p, the ratio of the
number of literals with predicate p in the graph to the number of literals with
predicate p in a total completion of this graph w.r.t. {p}.

• the percentage of negation per predicate, which is, for each predicate p, the
percentage of negative literals with predicate p among all literals with pred-
icate p in the graph.

4To ensure that a compatible homomorphism from F ′ to G can be extended to a homo-
morphism from F to a total completion of G, the following condition should also be satisfied:
for each pair of opposite border predicate nodes respectively on (c1, . . . , ck) and (d1, . . . , dk),
(h(c1), . . . , h(ck)) 6= (h(d1), . . . , h(dk)). However, this condition is necessarily satisfied if F ′

is a pure subgraph that is maximal for inclusion, thus we omit it in this paper.
5We do not generate constants; indeed, constants tend to make the problem easier to solve because

there are fewer potential homomorphisms; moreover, this parameter does not influence the studied
heuristics.

8

An instance of DEDUCTION is obtained by generating a pair (F,G) of polar-
ized graphs. In our first experiments, we only built connected graphs (otherwise,
the generated instance can be decomposed into several instances of DEDUCTION).
However, we observed that connectivity had no notable influence on the results,
thus we just build random graphs without isolated nodes (i.e. each generated graph
corresponds to a formula in FOL{∃,∧,¬a}). In this paper, we chose the same
number of term nodes for both graphs. The difficulty of the problem led us to
restrict this number to between 5 and 8 term nodes. Beyond 9 term nodes, the run-
ning time was bigger and bigger. The program is written in Java. The experiments
were performed on a Sun fire X4100 Server AMD Opteron 252, equipped with a
2.6 GHz Dual-Core CPU and 4G of RAM, under Linux.

In the sequel we adopt the following notations: nbT represents the number of
term nodes, nbPred the number of distinct predicates, SD (resp. TD) the Source
(resp. Target) graph Density per predicate and neg the percentage of negation per
predicate.

In order to discriminate between different techniques on random data, it seems
preferable to run them on “difficult” instances of the problem (i.e. pairs of graphs).
We thus ran the recCheck algorithm while varying a given parameter, in order
to characterize the influence of this parameter on the difficulty. The difficulty was
measured in three different ways: the running time, the size of the search tree and
the number of homomorphism checks (when more than one homomorphism check
can be done at each node of the tree). For each value of the varying parameter,
we considered 1000 instances and computed the mean search cost of the results on
these instances (with a timeout set at 10 minutes).

We first studied the influence of the respective densities of both graphs with a
single predicate and 50% of negation: see Figure 3, which shows the curves for the
most difficult values of SD.

One can expect that increasing the number of predicates occurring in graphs
increases the difficulty, in terms of running time as well as the size of the searched
space. Indeed, the number of completions increases exponentially (there are (2n

2
G)nbPred

total completions for nbPred predicates). These intuitions are only partially vali-
dated by the experiments: see Table 1, which shows, for each number of predicates,
the density values at the difficulty peak (the first row corresponds to the curve with
SD=0.24 in Figure 3). We observe that the difficulty increases up to a certain num-
ber of predicates (3 here, with a CPU time of 4912 and a Tree size of 72549) and
beyond this value, it continuously decreases. Moreover, the higher the number of
predicates, the lower SD which entailed the greatest difficulty peak, and the higher
the difference between TD and SD at the difficulty peak.

Concerning the negation percentage, we checked that the maximal difficulty
is obtained when there are as many negative predicate nodes as positive predicate

9

Figure 3: Influence of densities : nbT=5, nbPred=1, neg=50%.

NbPred SD TD CPU time (ms) Tree size
1 0.24 0.28 20 68
2 0.08 0.16 3155 53225
3 0.08 0.4 4912 72549
4 0.08 0.68 3101 44089
5 0.08 0.76 683 8483

Table 1: Influence of the number of predicates : nbT=5, neg=50%.

nodes. In the sequel we only show the CPU time when the three difficulty measures
are correlated.

4 Refinement of the algorithm

In this section, we analyze three refinements of Algorithm 1, which concern the
following aspects:

1. the choice of the next literal to add;

2. the choice of the child to explore first;

3. dynamic filtering at each node of the search tree.

10

1. Since the search space is explored in a depth-first manner, the choice of the
next literal to add, i.e. ∼r(t1, . . . , tn) in Algorithm 1 (Point 1), is crucial. A brutal
technique consists of choosing r and t1, . . . , tn randomly. Our proposal is to guide
this choice by a compatible homomorphism, say h, from a Fmax to the current
G. More precisely, the border predicate nodes ∼r(e1, . . . en) w.r.t. this Fmax can
be divided into two categories. In the first category, we have the border nodes s.t.
∼r(h(e1) . . . h(en)) ∈ G, which can be used to extend h; if all border nodes are
in this category, h can be extended to a homomorphism from F to G. The choice
of the literal to add is based on a node ∼r(e1, . . . en) in the second category: r is
its predicate symbol and t1, . . . , tn = h(e1) . . . h(en) are its neighbors (note that
neither∼r(h(e1) . . . h(en)) nor∼r(h(e1) . . . h(en)) is in G since∼r(e1, . . . en) is
in the second category and h is compatible). Intuitively, the idea is to give priority
to predicate nodes potentially able to transform this compatible homomorphism
into a homomorphism from F to a (partial) completion of G, say G′. If so, all
completions including G′ are avoided.

Figure 4 shows the results obtained with the following choices:

• random choice;

• random choice + filter: random choice and F+ as filter (i.e. at each recCheck
step a compatible homomorphism from F+ to G is looked for: if none exists,
the false value is returned);

• guided choice: F+ used both as a filter and as a guide.

Note that the guided choice comes with an implicit filter: indeed, when a com-
patible homomorphism from F+ to a partial completion of G (say G′) is sought,
the false value is returned if none exists (since G′ 0 F). In order to only discrimi-
nate choice heuristics, we also considered a random choice with a filter.

As expected, the guided choice is always much better than the random choice
(with or without filter): on the guided choice peaks (TD=0.15 and TD=0.2), it
is almost 11 and 8 times better than the random choice with filter. The greatest
difference is for TD=0.25 with the guided choice almost 116 times better than the
random choice with filter.

2. Experiments have shown that the order in which the children of a node, i.e. G′

and G′′ in Algorithm 1 (Point 2), are explored is important. Assume that Point 1
in Algorithm 1 relies on a guiding subgraph. Consider Figure 5, where F+ is the
guiding subgraph (hence the border is composed of negative predicate nodes): we
see that it is always better to explore G′ before G′′. If we take F− as the guid-
ing subgraph, then the inverse order is better. More generally, let ∼r(e1 . . . en)

11

Figure 4: Influence of the completion choice : nbT=7, nbPred=1, SD=0.14,
neg=50%.

be the border node that defines the literal to add. Let us call h-extension (resp.
h-contradiction) the graph built from G by adding ∼ r(h(e1) . . . h(en)) (resp.
∼r(h(e1) . . . h(en))). See Example 2. It is better to first explore the child cor-
responding to the h-contradiction. Intuitively, by contradicting the compatible ho-
momorphism found, this gives priority to failure detection.

Example 2 See Figure 1. F+ = {+p(x),+s(x, y)}. Let F+ be the guiding sub-
graph. The only border node of F+ w.r.t. F is −p(y). h = {(x, a), (y, b)} is
the only compatible homomorphism from F+ to G. The h-extension (resp. h-
contradiction) is obtained by adding +p(b) (resp. −p(b)).

3. The last improvement consists of performing dynamic filtering at each node of
the search tree. Once again, the aim is to detect a failure sooner. More precisely,
we consider a set of Fmax and check if there is a compatible homomorphism from
each element in this set to the newly generated graph. Figure 6 shows the results
obtained with the following configurations:

• Max: FMax as guide and no filter;

• Max-Max: FMax as guide and FMax (the subgraph on the predicate nodes
in F \ FMax) as filter;

• Max-all: FMax as guide and all other Fmax as filters.

12

Figure 5: Influence of the exploration order : nbT=7, nbPred=3, SD=0.06,
neg=50%.

Configuration CPU time (ms) Tree size Hom check
Max 3939 2423 3675

Max-Max 3868 2394 3858
Max-all 3570 1088 6338

Table 2: Influence of the dynamic filtering: nbT=8, nbPred=3, SD=0.03, TD=0.16,
neg=50%.

Unsurprisingly, the stronger the dynamic filtering, the smaller the size of the
search tree (Figure 6). The CPU time is almost the same for all configurations (and
all TD values) though Max-all checks much more homomorphisms than the others
(see Table 2 at the difficulty peak). Since our current algorithm for homomorphism
checking can be improved, these results show that Max-all is the best choice.

The algorithm finally obtained is shown in Algorithm 2 and subalgorithms 3
and 4. It is initially called with (G, ∅). The second parameter is used to memorize
the compatible homomorphism found for the father of the current node, in the case
where this node is an h-extension of its father (see G′′ in the algorithm); otherwise,
the compatible homomorphism for its father has been contradicted and a new one
has to be computed, which is done in the chooseCompletionLiteral subalgorithm
(Algorithm 3).

13

Figure 6: Dynamic filtering : nbT=8, nbPred=3, SD=0.03, neg=50%.

5 Comparison to logical approaches

We first tried to translate the problem into UNSAT (propositional unsatisfiability)
in order to use SAT solvers. we rely on a translation which is not “straightforward”
[BLM08]. The number of obtained clauses is equal to the number of compatible
homomorphisms from a special subgraph of F (built with predicates outside the
completion vocabulary), say F ′, to G. The size of a clause is bounded by |F F ′|.
Note that the size of the obtained propositional formula is exponential in the size
of the initial formulas. Some experiments with our random generator have shown
that the cost of the translation step is prohibitive. We thus turned our attention to
general first-order theorem provers. For the moment, we have considered the free
tools Prover9 and Mace4. Prover9 is based on the resolution method and Mace4
enumerates models by domains of increasing size. These tools are complementary:
Prover9 looks for a proof and Mace4 looks for a model that is a counterexample.

To compare both algorithms, we ran recCheckPlus and Prover9-Mace4 on
the same instances: we use the combination Prover9-Mace4 because Prover9 alone
was too slow (e.g. for the instances of Figure 7 there are 871 timeouts if we con-
sider only Prover9, with timeout set to 10mn), that is why we added Mace4 which
concludes faster in timeout cases. When we consider the combination Prover9-
Mace4 there is no timeout for the instances of Figure 7, thus the mean CPU time
decreases significantly. In other side Mace4 alone only stop when it find a counter-
model (it does not stop when the formula F → G is valid). For each instance,
we ran both Prover9 and Mace4 (there are used as black-boxes: we launch the

14

program and take the time returned by the program itself) and we stopped when
the fastest concluded. The first experiments show that recCheckPlus is faster
than the combination of Prover9 and Mace4: see for example Figure 7, where
recCheckPlus is 10 times better for TD=0.4. These are only preliminary re-
sults, further experiments are needed to refine the comparison.

Figure 7: Comparison of recCheckPlus and Prover9-Mace4 : nbT=7, nbPred=3,
SD=0.06, neg=50%.

One may argue that, even if Prover9 is a well-known theorem prover, it is not
the fastest tool today. On the other hand, these first results are very encouraging
since our central homomorphism operation could be optimized. For the time be-
ing, it is a straightforward translation of the forward-checking algorithm known for
the constraint satisfaction problem (CSP) and we have checked that our homomor-
phism check is much slower than the best known CSP solvers.

6 Conclusion

Our experiments show that the problem is really complex in practice in the dif-
ficult area. This may be an argument in favor of restricting conjunctive queries
with negation (to pure queries for instance) or using alternative kinds of negation.
Closed-world negation is often used. However, even in this case, good algorithms
are required for comparing queries (cf. the query containment problem, which
is the basis of many mechanisms in databases) and we again find the deduction
problem with classical negation.

15

Ontologies play a central role in knowledge bases, and this role is increas-
ing in databases. A lightweight ontology, in the form of a partial order, or more
generally a preorder, on predicates (i.e. on the concepts and predicates of the on-
tology) can be taken into account without increasing complexity. Note that, in this
case, we obtain exactly the deduction problem in a fragment of conceptual graphs
[Ker01][ML07]. Homomorphism is extended in a straightforward way to take the
partial order into account. The heuristics studied here still work with an exten-
sion of opposite literals: +r(t1, . . . , tn) and −s(u1, . . . , un) are opposite if r ≥ s
(then, a pure subgraph is defined as previously with this extended definition). How
this work can be extended to more complex ontologies is an open issue. On the
experimental side, further work includes precise comparison with techniques used
by logical solvers.

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases: The
Logical Level. Addison-Wesley, 1995.

[ASU79] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences among relational
expressions. SIAM J. Comput., 8(2):218–246, 1979.

[BLM08] K. Ben Mohamed, M. Leclère, and M.-L. Mugnier. De la déduction
dans le fragment {∃,∧,¬a} de la logique du premier ordre à sat.
Journées Nationales de lIA Fondamentale, oct 2008.

[CM77] A.K. Chandra and P.M. Merlin. Optimal implementation of conjunc-
tive queries in relational databases. In 9th ACM Symposium on Theory
of Computing, pages 77–90, 1977.

[FNTU07] C. Farré, W. Nutt, E. Teniente, and T. Urpı́. Containment of conjunc-
tive queries over databases with null values. In ICDT 2007, volume
4353 of LNCS, pages 389–403. Springer, 2007.

[Hal01] A. Y. Halevy. Answering queries using views: A survey. VLDB Jour-
nal, 10(4):270–294, 2001.

[Ker01] G. Kerdiles. Saying it with Pictures: a logical landscape of conceptual
graphs. PhD thesis, Univ. Montpellier II / Amsterdam, Nov. 2001.

[LM07] M. Leclère and M.-L. Mugnier. Some Algorithmic Improvments for
the Containment Problem of Conjunctive Queries with Negation. In

16

Proc. of ICDT’07, volume 4353 of LNCS, pages 401–418. Springer,
2007.

[McC03a] William McCune. Mace4 reference manual and guide. CoRR,
cs.SC/0310055, 2003.

[McC03b] William McCune. Otter 3.3 reference manual. CoRR, cs.SC/0310056,
2003.

[ML07] M.-L. Mugnier and M. Leclère. On querying simple conceptual graphs
with negation. Data Knowl. Eng., 60(3):468–493, 2007.

[MR94] S. Muggleton and L. De Raedt. Inductive logic programming: Theory
and methods. J. Log. Program., 19/20:629–679, 1994.

[RvBW06] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint
Programming. Elsevier, 2006.

[Ull89] J. D. Ullman. Principles of Database and Knowledge-Base Systems,
Volume II. Computer Science Press, 1989.

[Ull97] Jeffrey D. Ullman. Information Integration Using Logical Views.
In Proc. of ICDT’97, volume 1186 of LNCS, pages 19–40. Springer,
1997.

[WL03] F. Wei and G. Lausen. Containment of Conjunctive Queries with Safe
Negation. In International Conference on Database Theory (ICDT),
2003.

17

Algorithm 2: recCheckPlus(G, h)
Input: a consistent PG G and a compatible homomorphism h from the

guiding subgraph to the father of G (empty for the root)
Data: F , V
Result: true if G ` F , false otherwise
begin

if there is a homomorphism from F to G then return true ;
if G is complete w.r.t. V then return false ;

(3) if dynamicFiltering(G) = failure then return false ;
(1) l, h← chooseCompletionLiteral(G, h) ;

if l = failure then return false ;
Let G′ be obtained from G by adding l ;
Let G′′ be obtained from G by adding l ;

(2) return recCheckPlus(G′, ∅) AND recCheckPlus(G′′, h) ;
end

Algorithm 3: chooseCompletionLiteral(G, h)
Input: a consistent PG G and a compatible homomorphism h from the

guiding subgraph to the father of G (empty for the root)
Data: F and a pure subgraph F ′ of F maximal for the inclusion (i.e. a

Fmax or a FMax)
Result: a completion literal if there is one, and the associated guiding

compatible homomorphism, otherwise failure
begin

if h = ∅ then h← findCompatibleHomomorphism(F, F ′, G) ;
if h= failure then return failure ;
Choose ∼r(t1, . . . , tn) ∈ F \ F ′ s.t. neither ∼r(h(t1), . . . , h(tn)) nor
∼r(h(t1), . . . , h(tn)) is in G ;
return ∼r(h(t1), . . . , h(tn)) ;

end

18

Algorithm 4: dynamicFiltering(G)
Input: a consistent PG G
Data: F and a set of pairs L = {(F ′′

1 , h
′′
1), . . . , (F

′′
n , h

′′
n)} where F

′′
i is a

pure subgraph used to filter and h
′′
i is a compatible homomorphism

from F
′′
i to the father of G (empty if G is the root)

Result: success or failure
begin

foreach (F ′′, h′′) ∈ L do
if h′′ is contradicted by the last relation node added to G then

h′′ ← findCompatibleHomomorphism(F, F ′′, G) ;
if h′′ = failure then return failure ;

return success ;
end

19

