
Reasoning	on	Data:	
	

The	Ontology-Mediated		
																					Query	Answering	Problem	

Marie-Laure Mugnier

University of Montpellier

UNILOG	School	–	Vichy	–	2018	

KNOWLEDGE	REPRESENTATION	AND	REASONING	(KR)	

•  A field historically at the heart of Artificial Intelligence

•  Study formalisms (or languages) to

•  represent various kinds of human knowledge
•  do reasoning on these representations

•  along the tradeoff expressivity / tractability of reasoning

à KR languages based on computational logic

 In this talk: classical first-order logic (FOL)

Major conferences:
IJCAI, AAAI, KR

M.-L.	Mugnier	–	UNILOG	School	– 2018 2	

Part	1:	Basics	

	Knowledge bases, Ontologies
 Logical view of Queries and Data
 Main KR formalisms to represent and reason with ontologies
 Ontology-Mediated Query Answering
 	 	 		

Part	2:	KR	formalisms	and	algorithmic	approaches	
		

Part	3:	Decidability	issues	in	the	existenFal	rule	framework 		
		

OVERVIEW	OF	THE	TUTORIAL	

M.-L.	Mugnier	–	UNILOG	School	– 2018 3	

Knowledge Base
(KB)

Reasoning
Services

•  General knowledge on the
application domain
« Cats are Mammals »

•  Factual Knowledge
Description of specific individuals,
situations, ...

 Félix is a Cat

 Factbase, Database

Fundamental tasks

•  Checking the consistency
of the KB

•  Computing answers to a query
over the KB

 ...

KNOWLEDGE	BASED	SYSTEMS	

Ontology

Knowledge expressed in a KR language

Reasoning algorithms associated
with the KR language

M.-L.	Mugnier	–	UNILOG	School	– 2018 4	

WHAT	IS	AN	ONTOLOGY?	

In computer science:

a formal specification of the knowledge of a particular domain

Ø  which allows for machine processing
Ø  that relies on the semantics of knowledge

 > automated reasoning

Such a specification consists of

Ø  a vocabulary in terms of concepts and relations

Ø  semantic relationships between these elements

M.-L.	Mugnier	–	UNILOG	School	– 2018 5	

EXAMPLES	OF	ONTOLOGIES	

¢  Medecine and life sciences :
 hundreds of available ontologies

�  general medical ontologies

 SNOMED CT (400 000 terms)
 GALEN (> 30 000 terms)

�  specialized medical ontologies
 FMA (anatomy)
 NCI (cancer), ...

�  biology
�  agronomy

¢  Information systems
of large organizations and corporations

 M.-L.	Mugnier	–	UNILOG	School	– 2018 6	

AT	THE	CORE	OF	ONTOLOGIES:	CONCEPTS	/	CLASSES	

¢  Concept	/	class	:	a	category	of	enSSes	(objects)	that	share	properSes	
	 	 	 	In	FOL:	unary	predicate:	Cat,	Mammal 	
		

¢  Instance	of	class:	a	specific	member	of	this	class	
	

¢  Fundamental	relaSon	on	classes	:	specializaFon	(subsumpFon)		
(«is	a	kind	of	»,	«subclass	of	»)	

SemanScs	:	every	instance	of	C1	is	also	instance	of	C2	

C1

C2

C1 subclass of C2

�x (C1(x) à C2(x)) �x (Cat(x) à Mammal(x))

In FOL: a term (variable or constant)

M.-L.	Mugnier	–	UNILOG	School	– 2018 7	

		
	
AT	THE	HEART	OF	ONTOLOGIES:	CONCEPTS	/	CLASSES	

Disease	

Lung	Disease	

Pneumonia	

InfecSous	
Pneumonia	

InfecSous	Disease	

Bacterial		
Disease	

Viral		
Disease	

Bacterial	Pneumonia	

Legionella	

InfecSous	Agent	

Bacteria	 Virus	

Organism	
Disorder	

However, an ontology is not
 just a classification!

Concepts organized by
specialization

(SNOMED	CT)	

M.-L.	Mugnier	–	UNILOG	School	– 2018 8	

ONTOLOGIES	ARE	MUCH	MORE	THAN	CLASSIFICATIONS	

Vocabulary

1.  concepts / classes

2.  relations (between instances)

« An ontology specifies the vocabulary of an application domain
and semantic relationships between the terms of the vocabulary»

+ semantic relationships between concepts

+ semantic relationships between relations

+ properties of relations

+ other axioms that more generally express domain knowledge

+ properties of concepts

M.-L.	Mugnier	–	UNILOG	School	– 2018 9	

RELATIONS	BETWEEN	INSTANCES	

Often these are binary relations (also called « roles » or « properties »)

subrelation of

Signature	of	a	relaSon	:	assigns	a	maximum	concept	to	each	argument		
										(«	domain	»	and	«	range	»	in	OWL)	

�x�y (hasCA(x,y) à dueTo(x,y))

dueTo		
		

hasCausaFveAgent	

�x�y (hasCA(x,y) à Disease(x) � Organism(y))

Argument	1	:	a	Disorder	
Argument	2	:	an	Organism	or	[...]	

Argument	1	:	a	Disease																															
Argument	2	:	an	Organism	

M.-L.	Mugnier	–	UNILOG	School	– 2018 10	

EXAMPLES	OF	OTHER	FREQUENT	TYPES	OF	AXIOMS	

•  Necessary	and/or	sufficient	properSes	of	concepts (ex: BacterialDisease)

•  Properties of relations

•  NegaSve	constraints	(disjointness	between	concepts,	relaSons,	...)	

Bacteria	∩	Virus	=	� �x	(Bacteria(x)	�	Virus(x)	à) 
�x	(Bacteria(x)	à	¬	Virus(x))	

�x (BacterialDisease(x) → �y (Bacteria(y) � hasCausativeAgent(x,y))

A bacterial disease is caused by a bacteria

inverse relations: �x�y (hasPart(x,y) ⟷ isPartOf(y,x))

symmetry, transitivity, ...

functional relation: �x�y�z (isPartOf(x,y) � isPartOf(x,z) → y = z)

M.-L.	Mugnier	–	UNILOG	School	– 2018 11	

WHAT	KINDS	OF	LANGUAGES	TO	EXPRESS	ONTOLOGIES?	

Hierarchies	of	classes	
Hierarchies	of	binary	relaSons	(called	«	properSes	»)	
Signatures	of	these	relaSons	(«	domain	»	and	«	range	»)	

	 	à	OWL	DL	fragment	of	RDF	Schema	(SemanSc	Web)	

DescripFon	Logics		
Rule-based	languages	 	Datalog,	existenSal	rules,		

	 	 	RDF	deducSve	rules,	Answer	Set	Programming	...	

Very light languages

 More expressive fragments of first-order logics

From a logical viewpoint: an	ontology	is	composed	of	
			
		a	finite	set	of	predicates	(to	express	concepts	and	relaSons)	
		a	finite	set	of	(closed)	formulas	over	these	predicates	
	 					of	the	form	�X	(condiFon[X]	à	conclusion[X])	

M.-L.	Mugnier	–	UNILOG	School	– 2018 12	

WHAT	ARE	ONTOLOGIES	GOOD	FOR?	

•  provide	a	common	vocabulary		

	à	it	is	easier	to	share	informaSon	
						(typically	between	experts	of	several	domains)	

	
•  constrain	the	meaning	of	terms	

				 	à	forces	to	explicit	not-said	things	and	to	remove	ambiguiSes		
																	hence	less	misunderstandings	

•  to	do	automated	reasoning,	basis	of	high-level	services	

	à 	find	implicit	links	between	pieces	of	knowledge	
	à	 	check	the	consistency	of	the	KB,	find	errors	in	modeling	
	à	 	enrich	data	query	answering		

	

M.-L.	Mugnier	–	UNILOG	School	– 2018 13	

«	find	all	paSents	affected	by	a	lung	disease		
			due	to	a	bacteria	»			

Data	

Query (SQL, SPARQL, MongoDB ...)

ONTOLOGY-MEDIATED	QUERY	ANSWERING	(EX:	MEDICAL	RECORDS)	

Database	(relaSonal,	RDF,	NoSQL,	...)		

??

PaSent	P	:	Diagnosis	=	«	legionella	»	

M.-L.	Mugnier	–	UNILOG	School	– 2018 14	

Données	Data	

Query

Knowledge Base

A	legionella	is	bacterial	pneumonia	
A	bacterial	pneumonia	is	a	pneumonia	
A	pneumonia	is	a	lung	disease	
A	bacterial	pneumonia	is	caused	by	a	bacteria		
If	x	is	caused	by	y	then	x	is	due	to	y	
If	the	diagnosis	of	a	paSent	x	contains	a	disease	y	then	
x	is	affected	by	y	

ONTOLOGY-MEDIATED	QUERY	ANSWERING		

«	find	all	paSents	affected	by	a	lung	disease		
			due	to	a	bacteria	»		

PaSent	P	:	Diagnosis	=	«	legionella	»	

Ontology	

M.-L.	Mugnier	–	UNILOG	School	– 2018 15	

Knowledge	base	

Query	

Ontology	

Adding	an	ontological	layer	on	top	of	data	

1-	Enrich	the	vocabulary		
	
allowing	to	abstract	from	a	specific	data	storage	

2	-	Infer	new	facts,	not	explicitely	stored,	
	
allowing	for	incomplete	data	representaSon		

Data	

ONTOLOGY-MEDIATED	QUERY	ANSWERING	(OMQA)	

M.-L.	Mugnier	–	UNILOG	School	– 2018 16	

Query

Ontology	

Data	

	
3	–	provide	a	unified	view	of	mulSple	sources	
	

Data	 Data	

ONTOLOGY-MEDIATED	QUERY	ANSWERING	(OMQA)	

M.-L.	Mugnier	–	UNILOG	School	– 2018 17	

OMQA	EXAMPLE:	ONTOLOGICAL	KNOWLEDGE	

A	legionella	is	bacterial	pneumonia	
	
	
A	bacterial	pneumonia	is	a	pneumonia	
A	pneumonia	is	a	lung	disease	
A	bacterial	pneumonia	is	caused	by	a	bacteria		
	
	
If	x	is	caused	by	y	then	x	is	due	to	y	
	
	
If	the	diagnosis	of	a	paSent	x	contains	a	disease	y	then	x	is	affected	by	y	
	
	

�x	(Legionella(x)	→	BacterialPneumonia(x))	

�x	(BacterialPneumonia(x)	→	�y	(hasCausaSveAgent(x,y)	�	Bacteria(y)))		

�x�y	(hasCausaSveAgent(x,y)	→	dueTo(x,y))	

�x�y	((Diagnosis(x,y)	�	Disease(y))	→	isAffectedBy(x,y))		

M.-L.	Mugnier	–	UNILOG	School	– 2018 18	

FACTBASE	

RelaSonal	schema	:	 	finite	set	R	of	relaSons						à		predicates		
	 					 	infinite	domain	of	values			à		constants	

Factbase	:	usually	a	set	of	ground	atoms	(on	the	ontological	vocabulary)		
					seen	as	the	conjuncSon	of	these	atoms	

F	=	{	PaSent(P),	Diagnosis(P,M),	Legionella(M)	}		

A	relaFonal	database	may	naturally	be	viewed	as	a	factbase	

Instance	of	a	relaSon	r	:	 	finite	set	of	tuples	on	r							à		atoms	on	r	

r	
akr1	 akr2	
a1	
a2	
a1	

a2	
a3	
a1	

«	The	diagnosis	for	the	pa4ent	P	is	legionella	»	

Database	instance	=	{	instance	for	each	r	in	R	} 		à		factbase 								 		

{	r(a1,a2),	r(a2,a3),	r(a1,a1)	}	

M.-L.	Mugnier	–	UNILOG	School	– 2018 19	

CONJUNCTIVE	QUERIES	(CQ)	

«	 find all patients affected by a lung disease due to a bacteria	»	
	
q(x) = ∃y ∃z (Patient(x) � isAffBy(x,y) � LungDisease(y) � dueTo(y,z) � Bacteria(z))

A CQ is an existentially quantified conjunction of atoms
The free variables are the answer variables
If closed formula: Boolean CQ 	 	 		
	
Datalog	notaSon	
ans(x)	ß	PaSent(x),	isAffBy(x,y),	LungDisease(y),	dueTo(y,z),	Bacteria(z)	
Select-Join-Project	queries	in	relaSonal	algebra	(SQL)	
SELECT	...	FROM	…	WHERE		<join	condi4ons> 			 		
SPARQL	(semanSc	web	queries)	
SELECT	…	WHERE	<basic	graph	pa=ern> 	 	 				 		

M.-L.	Mugnier	–	UNILOG	School	– 2018 20	

ANSWERS	TO	A	CONJUNCTIVE	QUERY	

¢  The	answer	to	a	Boolean	CQ	q	in	F	is	yes	if	F	�	q					yes	=	()	
	

¢  		Let	the	CQ	q(x1,...,xk).	A	tuple	(a1	,	…,	ak)	of	constants	is	an	answer	to	q			
		with	respect	to	a	factbase	F	if		 	F	�	q[a1,...,ak],		
		where	q[a1,...,ak]	is	obtained	from	q(x1,...,xk)	by	replacing	each	xi	by	ai				

	
¢  Let	F	and	q	be	seen	as	sets	of	atoms.		A	homomorphism	h	from	q	to	F	is	a	

mapping	from	variables(q)	to	terms(F)	such	that	h(q)	
	F	

F	�	q()	iff		q	can	be	mapped	by	homomorphism	to	F	
	
(a1	,	…,	ak)	is	an	answer	to	q(x1,...,xk)	w.r.t.	F	iff		

	 	there	is	a	homomorphism	from	q	to	F	that	maps	each	xi	to	ai	
	

M.-L.	Mugnier	–	UNILOG	School	– 2018 21	

KEY	NOTION:	HOMOMORPHISM	

q(x)	=	∃	y	(movie(y)	∧	play(x,	y))		

Homomorphism	h	from	q	to	F:		
subsStuSon	of	var(q)	by	terms(F)	
such	that	h(q)	
	F	

F	

h1	:	x	à	a	
							y	à	m1	

h2	:	x	à	a	
							y	à	m2	

h1(q)	=	movie(m1)	∧	play(a,	m1)		

h2(q)	=	movie(m2)	∧	play(a,	m2)		

movie(m1)	
movie(m2)	
movie(m3)	
actor(a)	
actor(b)	
actor(c)		
play(a,m1)	
play(a,m2)	
play(c,m3)	

Answers:		obtained	by	restricSng	the	domains	of	homomorphisms	
	 	 	 	 															to	answer	variables	

x = a
x = c

h3	:	x	à	c	
							y	à	m3	 h3(q)	=	movie(x0)	∧	play(c,	m3)		

movie(y)	
	play(x,	y)		

M.-L.	Mugnier	–	UNILOG	School	– 2018 22	

« find all patients affected by a
l u n g d i s e a s e d u e t o a
bacteria »

q(x) = ∃y	∃z	(PaSent(x)	�	isAffectedBy(x,y)	�	
LungDisease(y)	�	dueTo(y,z)	�	Bacteria(z))		

Factbase = { Patient(P), Diagnosis(P,M), Legionella(M) } « The diagnosis for the
patient P is legionella »

Legionella	specialisa4on	of	LungDisease	and	BacterialDisease	(and	Disease)		
	hence	LungDisease(M)	 																											hence	BacterialDisease(M),	

	 	 	 	 	 								Disease(M)	

�x	(BacterianDisease(x)	→	�y	(hasCausaSveAgent(x,y)	�	Bacteria(y)))		
hence	hasCausaSveAgent(M,b)	and	Bacteria(b)	

�x�y	(hasCausaSveAgent(x,y)	→	dueTo(x,y))	
hence	dueTo(M,b)	

�x�y	((Diagnosis(x,y)	�	Disease(y))	→	isAffectedBy(x,y))		
hence	isAffectedBy(P,M)	 Answer : x = P

ON	THE	OMQA	EXAMPLE	

M.-L.	Mugnier	–	UNILOG	School	– 2018 23	

A	MORE	GENERAL	SCHEMA	

Query	

Ontology	

Data	 Data	 Data	

Mappings	from	data	to	facts	

	{	Database	query	⤳	Facts	}	

	
Factbase	

	

Conceptual	level	

DescripSon	of	the	applicaSon	domain	
with	a	high	abstracSon	level		

Query	using	the	vocabulary	of	the	ontology	

Factbase	(possibly	virtual)	
using	the	vocabulary	of	the	ontology	

Independent	and	heterogeneous	
data	sources	

The	answers	to	the	query	are	inferred	
from	the	knowledge	base	

«	Ontology-Based	Data	Access	»	
														[Poggi	et	al.,	JoDS,	2008]	

M.-L.	Mugnier	–	UNILOG	School	– 2018 24	

MAPPINGS	

q(x):	�n�s	PaSent_T	(x,n,s)								 	⤳		PaSent(x)	
	
q’(x):	�n�s	PaSent_T	(x,n,s)	�	DiagnosSc_T(x,y)	�	y	=	«	Legionella	»	

	 	 	 	⤳		�z	(diagnosis(x,z)	�	legionella(z))	

Patient_T [ID_PATIENT, NAME,SSN]

Diagnosis_T[ID_PATIENT, DISORDER]

PaSent	/1	
Diagnosis	/	2	
Legionella	/1	
	

Mapping:		database	query(X)	⤳	conjuncFon	with	free	variables		X 		

PaSent(P)	
Diagnosis(P,M)	
Legionella(M)	

PaSent_T	 Diagnosis_T	

...	
	
...	

id	 ssn	 dis	id	name	

⤳ P	
..	
..	

..	

..	

..	

..	

..	

..	

«	Leg.	»	
..	
..	

P	
..	
..	

M.-L.	Mugnier	–	UNILOG	School	– 2018 25	

Knowledge	base	

Query	

Ontology	

Factbase	

ONTOLOGY-MEDIATED	QUERY	ANSWERING	(OMQA)	

(Boolean)	conjuncSve	query	q	

Theory	O	in	a	suitable	FOL	fragment	

Set	of	ground	atoms	(or	existenSally	closed	formula)	F	

Fundamental decision problem

O, F � q ?

M.-L.	Mugnier	–	UNILOG	School	– 2018 26	

OVERVIEW	OF	THE	LECTURE	

Part	1:	Basics	

		

Part	2:	KR	formalisms	and	algorithmic	approaches	

	Outline of description logics – Horn DLs
 Existential Rules
 Materialization approach (forward chaining)
 Query rewriting approach (related to backward chaining)

	 		

Part	3:	Decidability	issues	in	the	existenFal	rule	framework 		
		

M.-L.	Mugnier	–	UNILOG	School	– 2018 27	

DESCRIPTION	LOGICS	

¢  A	family	of	KR	languages	for	represenSng	and	reasoning	with	ontologies	

¢  Mostly	correspond	to	decidable	fragments	of	FOL		

				(related	to	modal	proposiSonal	logic,	the	guarded	fragment	of	FOL,	...)	
	
¢  Variable-free	syntax		

¢  Used	to	be	called	«	concept	languages	»:	
	from	concept	and	role	names	(unary	and	binary	predicates)	
	and	a	set	of	constructors	
	define	complex	concepts	(more	recently:	complex	roles)	

	
¢  An	ontology	is	a	set	of	axioms	that	state	inclusions	between	concepts		
			 	 	 	 													 	 		(and	between	roles)	
	

M.-L.	Mugnier	–	UNILOG	School	– 2018 28	

DESCRIPTION	LOGICS:	BUILDING	BLOCKS	(SYNTAX)	
Vocabulary	

Atomic	concepts:	 	Human,	Parent,	Student	…						(unary	predicates)	
Atomic	roles:		 	parentOf,	siblingOf,	… 						(binary	predicates)	
	

Complex	concepts	and	roles	can	be	built	using	a	set	of	constructors		
(which	depends	on	each	parFcular	DL)	
	

		conjuncSon	(П),	disjuncSon	(�),	negaSon	(¬)		
		Human	П	¬Parent 	Female	�	Male	

						
					 	restricted	forms	of	existenSal	and	universal	quanSficaSon	(�,�)		

	∃parentOf.(Female	П	Student) 	�parentOf.Male	
		
		 	inverse	of	a	role	(-),	composiSon	of	roles	(o)	
	 	∃parentOf- 	parentOf	o	parentOf	

M.-L.	Mugnier	–	UNILOG	School	– 2018 29	

DESCRIPTION	LOGICS:	BUILDING	BLOCKS	(SEMANTICS)	

To	each	concept	is	assigned	a	FOL	sentence	with	free	variable	x 		
	
Human 	 	 	 	Human(x)	

	
						Human	П	¬Parent 				 	 	Human(x)	�¬Parent(x)	
	
							∃parentOf.(Female	П	Student) 	 	∃y	(parentOf(x,y)	�	Female(y)		

	 	 	 	 	 	 	�	Student(y))	
						�parentOf.Female 	 	 	�y	(parentOf(x,y)	à	Female(y))	
		
		To	each	role	is	assigned	a	FOL	sentence	with	2	free	variables	x	and	y 		
	
				parentOf	o	parentOf 	 	 	∃z	(parentOf(x,z)	�	parentOf(z,y))	

M.-L.	Mugnier	–	UNILOG	School	– 2018 30	

DESCRIPTION	LOGICS:	KNOWLEDGE	BASE	

Knowledge	Base	=	TBox	(ontology)	+	ABox	(factbase)	
Tbox:	axioms	of	the	form	C1	�	C2					∀x	(fol(C1)	à	fol(C2))	

																																	or						r1	�	r2 	∀x∀y	(fol(r1)	à	fol(r2))													

	
	
	
	

Abox	:	set	of	ground	facts 	 	parentOf(A,B),	Female(A),	…	

	
	

Human	�	Male	�	Female 	 	∀x	(Human(x)	à	Male(x)	�	Female(x))	
	
Adult	�	¬	Child	 	 	 	∀x	(Adult(x)	∧	Child(x)	à	⊥)	
	
Parent	�	�parentOf 	 	∀x	(Parent(x)	à	�y	parentOf(x,y))	
	
HappyFather	�	�parentOf.Female 	∀x	(HP(x)	à(�y(parentOf(x,y)	à	Female(y))	
	
Human	�	�parentOf-.Human 	∀x	(Human(x)	à	�y	(parentOf(y,x)	∧	Human(y)))	
	
parentOf	o	parentOf	�	ancestorOf 	∀x∀y	(�z(parentOf(x,z)	∧	parentOf(z,y))	à		

	 	 	 	 	 	 											ancestorOf(x,y)		

M.-L.	Mugnier	–	UNILOG	School	– 2018 31	

DESCRIPTION	LOGICS:	STANDARD	REASONING	TASKS	
Standard	reasoning	tasks	on	a	KB	(T,A)	

¢  Concept	subsumpSon 	 	T	�	C	�	D	?	
¢  Concept	saSsfiability	 	 	is	C	saSsfiable	w.r.t.	T ?	
¢  KB	saSsfiability	 	 	is	(T,A)	saSsfiable	?	

¢  Instance	checking 	 	(T,A)	�	C(b),	where	b	is	a	constant?		

	
	

Concept	subsumpSon	 	T	�	C	�	D		iff	(T, {C(a),¬D(a)})	unsaSsfiable	
Concept	saSsfiability 	C	saSsfiable	w.r.t.	T iff		(T, {C(a)})	saSsfiable	

Instance	checking	 		(T,A)	�	C(b)	iff	(T,A�{¬C(b)})	unsaSsfiable	
	

All	these	tasks	can	be	expressed	in	terms	of	KB	(un)saSsfiability		
provided	that	the	constructors	in	the	considered	DL	allow	for	it	
	

Query	answering	beyond	instance	checking?	
cannot	be	reduced	to	the	standard	reasoning	tasks	

				
M.-L.	Mugnier	–	UNILOG	School	– 2018 32	

EVOLUTION	OF	DLS	

¢  Concepts:	
		

¢  TBox	axioms:	only	concept	inclusions

SaSsfiability	and	instance	checking	in	ALC	are:	
	EXPTIME-complete	in	combined	complexity	
	coNP-complete	in	data	complexity	

Even	worse	if	we	add	inverse	roles:	2EXPTIME-complete	in	combined	complexity	

Standard	expressive	DL ALC

M.-L.	Mugnier	–	UNILOG	School	– 2018 33	

TWO	COMPLEXITY	MEASURES	FOR	QUERY	ANSWERING	PROBLEMS	

Combined complexity (usual complexity measure)

 The input is O, F and q

Data complexity

 The input is F
 (O and q supposed to be fixed)

This distinction comes from database theory:
the size of the query is negligible compared to the size of the data

Problem: Given a KB = (O, F), with O the ontology and F the factbase,
 and a query q, is q entailed by the KB?

E.g.,	
q	Boolean	CQ,	F	factbase	
Does	F	�	q	?	

NP-complete	(combined)	
PTime	(data)	

M.-L.	Mugnier	–	UNILOG	School	– 2018 34	

EVOLUTION	OF	DLS	

¢  Concepts:	
		

¢  TBox	axioms:	only	concept	inclusions

SaSsfiability	and	instance	checking	in	ALC	are:	
	EXPTIME-complete	in	combined	complexity	
	coNP-complete	in	data	complexity	

Even	worse	if	we	add	inverse	roles:	2EXPTIME-complete	in	combined	complexity	

Two	factors	led	to	the	evoluFon	of	descripFon	logics:	
	
1.  pracScal	use	(e.g.	SNOMED	CT):	people	mostly	use	conjuncSon	and	existenSal		

	 	 	 	 	 	 					quanSficaSon	
2.  complexity	too	high	for	query	answering	problems	

Standard	expressive	DL ALC

M.-L.	Mugnier	–	UNILOG	School	– 2018 35	

NEW	DLS	WITH	LOWER	COMPLEXITY	

DL-LiteR		
	
	

EL	 	 										

	 		
	
	
Common	feature:	no	disjuncSon	(no	«	true	»	negaSon) 	 		
Then	a	saSsfiable	KB	has	a	unique	canonical	model	M:		

	For	any	Boolean	CQ	q,	KB	�	q	iff	M	is	a	model	of	q	
	
Reasoning	techniques	for	these	lighter	DLs		
are	very	similar	to	forward	or	backward	chaining	in	rule-base	systems		

where	

where	 Large	TBoxes	
ClassificaSon	

Large	ABoxes	
Query	answering	

M.-L.	Mugnier	–	UNILOG	School	– 2018 36	

COMPLEXITY	INTRODUCED	BY	DISJUNCTION	OR	NEGATION	

q(): �x�y (Blue(x) � on(x,y) � Other(y))

C
B
A

T: T � Blue � Other
A: Blue(A), Other(C), on(A,B), on(B,C)

To answer q, we have to consider two cases:

 in each model of the KB, either Blue(B) or Other(B) holds

Similarly if we replace T by: ¬Blue � Other (equivalent	axiom)	

KB (T,A)

Note that Other � ¬Blue is harmless: it is just a disjointness constraint

M.-L.	Mugnier	–	UNILOG	School	– 2018 37	

IN	SUMMARY	

DL ontology (TBox) has axioms of the form

 ∀x (fol(C1) à fol(C2))

 ∀x∀y (fol(r1) à fol(r2)) where	fol(r)	is	a	path	of	atomic	roles	or	their	inverses			
	

With the new DLs: left and right parts of the implication are both
 existentially quantified conjunctions of atoms

 called « Horn description logics »

DLs essentially satisfy the tree model property:

 if a KB is satisfiable then it has a « tree-shaped » model

M.-L.	Mugnier	–	UNILOG	School	– 2018 38	

WHY	«	HORN	DLS	»	ON	AN	EXAMPLE	

EL	Axiom	

	
		

	
	
	
Let	us	skolemize	(u	and	v	resp.	replaced	by	f1(x)	and	f2(x)):	
	
	
	we	obtain	a	set	of	3	Horn	clauses	(with	skolem	terms)	
	
	
	

	Hence	the	name	Horn	descripFon	logics	

FOL	transla4on	

prenex	form	

M.-L.	Mugnier	–	UNILOG	School	– 2018 39	

X,	Y,	Z	:	
sets	of	variables	

 ∀x	(actor(x)	à		∃	z	play(x,z))	

EXISTENTIAL	RULES	

∀X	∀Y	(Body	[X,Y]	à	∃	Z	Head	[X,Z])			

any positive conjunction (without functional symbols except constants)

Key point: ability to assert the existence of unknown entities

Crucial for representing ontological knowledge in open domains

See « value invention » in databases

 ∀x ∀y (siblingOf(x,y) à ∃ z (parentOf(z,x) ∧ parentOf(z,y)))

we often simplify by omitting universal quantifiers

M.-L.	Mugnier	–	UNILOG	School	– 2018 40	

DATA	/	FACTS	

m1	
m2	
?x	

RelaSonal	database	 RDF	

rdf:type

a				m1	
a				m2	
c						?x	

		ex:actor	

AbstracFon	in	first-order	logic	(FOL)	

∃x	(movie(m1)	∧	movie(m2)	∧	movie(x)	
					actor(a)	∧	actor(b)	∧	actor(c)	
					play(a,m1)	∧	play(a,m2)	∧	play(c,x))				

Etc.	

ex:play Movie	 Play	Actor	

a	
b	
c	

ex:b	

rdf:type

rdf:type

		ex:movie	

rdf:type ex:a	 ex:m1	

ex:c	

rdf:type

ex:m2	

ex:play

We	generalize	here		
the	classical	noSon	of	a	fact		
by	allowing	existenSal	variables	
	
fact	/	factbase	=		
existenFally	closed	conjuncFon	of	atoms	

rdf:type

...	
...	

...	

...	

m_id	 a_id	 m_id	 a_id	

_:x	

M.-L.	Mugnier	–	UNILOG	School	– 2018 41	

LABELLED	HYPERGRAPH	/	GRAPH	REPRESENTATION		
¢  A	fact	or	a	set	of	facts		can	be	seen	as	a	set	of	atoms		
						 		

									movie(m1),	movie(m2),		movie(x),	actor(a),		actor(b),		actor(c),	
								play(a,m1),	play(a,m2),			play(c,x)				
	
	
à	hence	a	hypergraph		
					or	its	associated	biparFte	(mulF-)graph	

	

	

	
	
	p	
vi
e	

1	
2	

3	
4	

p(x,y,a,x),			r(x,y)	

•  one	(labelled)	node	per	term	
•  one	(labelled)	node	per	atom	(~	hyperedge)	
•  totally	ordered	edges	

1	

2	

a	

	
	r	
	

x

y

M.-L.	Mugnier	–	UNILOG	School	– 2018 42	

	
movie
vie	

m1	 m2	

	a	 	b	 	c	

	
movie
vie	

	
actor
vie	

	
play
vie	

	
movie
vie	

1	 1	 1	

1	 1	1	

2	 2	 2	

1	 1	 1	

If	predicates	are	at	most	binary:		
atom	nodes	can	be	replaced	by	labels	and	directed	edges	

a

m1 m2

b c

play

actor	 actor	actor	

movie	 movie	 movie	

	
	actor	
	

	
	actor	
	

	
	play	
	

	
	play	
	

movie(m1),	movie(m2),		movie(x),	actor(a),		actor(b),		actor(c),	
play(a,m1),	play(a,m2),			play(c,x)				

M.-L.	Mugnier	–	UNILOG	School	– 2018 43	

GRAPH	HOMOMORPHISMS	(1)	

•  Let	G1=(V1,E1)	to	G2=(V2,E2)		be	classical	graphs.	
							
Homomorphism	h	from	G1	to	G2: 	mapping	from	V1	to	V2	s.	t.	

	 	 	 	for	every	edge	(u,v)	in	E1,	(h(u),h(v))	is	in	E2		

maps	to	 maps	to	

M.-L.	Mugnier	–	UNILOG	School	– 2018 44	

a

m1 m2

b c
play

actor	 actor	actor	

movie	 movie	 movie	

GRAPH	HOMOMORPHISMS	(2)	

•  Let	G1=(V1,E1)	to	G2=(V2,E2)		be	classical	graphs.	
							
Homomorphism	h	from	G1	to	G2: 	mapping	from	V1	to	V2	s.	t.	

	 	 	 	for	every	edge	(u,v)	in	E1,	(h(u),h(v))	is	in	E2		

•  If	there	are		labels:	they	have	to	be	``kept’’	as	well	

play

movie	

q	 F	

M.-L.	Mugnier	–	UNILOG	School	– 2018 45	

GRAPH	HOMOMORPHISMS	(3)	

•  Let	G1=(V1,E1)	to	G2=(V2,E2)		be	classical	graphs.	
							
Homomorphism	h	from	G1	to	G2: 	mapping	from	V1	to	V2	s.	t.	

	 	 	 	for	every	edge	(u,v)	in	E1,	(h(u),h(v))	is	in	E2		

•  If	there	are		labels:	they	have	to	be	``kept’’	as	well	

play
1

2

1
movie

q	
F	

	
movie
vie	

m1	 m2	

	a	 	b	 	c	

	
movie
vie	

	
actor
vie	

	
play
vie	

	
movie
vie	

1	 1	 1	

1	 1	1	

2	 2	 2	

1	 1	 1	

	
	actor	
	

	
	actor	
	

	
	play	
	

	
	play	
	

M.-L.	Mugnier	–	UNILOG	School	– 2018 46	

 ∀x ∀y (siblingOf(x,y) à ∃ z (parentOf(z,x) ∧ parentOf(z,y)))

graph graph

P

P 2	

S

1	

2	

2	

1	

1

GRAPH	VIEW	OF	EXISTENTIAL	RULES	

∀X	∀Y	(Body	[X,Y]	à	∃	Z	Head	[X,Z])			

s

p

p

The	rule	head	has	2	kinds	of	variables:	
-	fronFer:	shared	with	the	body	
-	existenFal	(new	``blank’’	nodes)	

x	 x	

y	

y	

z	z	

M.-L.	Mugnier	–	UNILOG	School	– 2018 47	

 F = siblingOf(a,b)

 R = ∀x ∀y (siblingOf(x,y) à ∃ z (parentOf(z,x) ∧ parentOf(z,y)))

F�=	∃	z0	(siblingOf(a,b)	∧	parentOf(z0,a)	∧	parentOf(z0,b))	

s

p

p

a

b

s

R	is	applicable	to	F	if	there	is	a	homomorphism	h		
from	body(R)	to	F	

			x	à	a	
			y	à	b	

Applying	R	to	F	w.r.t.	h	produces	F	∪	h(head(R))	
where	a	new	variable	is	created	for	each	existenSal	variable	in	R	

a

b

s

p

p

GENERATION	OF	FRESH	(UNKNOWN)	INDIVIDUALS	

R F

M.-L.	Mugnier	–	UNILOG	School	– 2018 48	

EXISTENTIAL	RULE	FRAMEWORK	(LOGICAL	/	GRAPHICAL)		

q(x)	=	∃	y	(movie(y)	∧	play(x,	y))		
	
	

Data	/	
Facts	

« Pure » existential
rules

Equality rules

Negative Constraints

Conjunctive Queries

∀x (actor(x) à ∃ z (movie(z) ∧ play(x,z)))

∀x ∀y ∀z (movie(y) ∧ director(x,y) ∧ director(z,y)
 à x = z)

∀x (movie(x) ∧ person(x) à ⊥)

movie(m1)
play(a,m1)
play(c, x)
...

M.-L.	Mugnier	–	UNILOG	School	– 2018 49	

MULTIPLE	THEORETICAL	FOUNDATIONS	

Datalog	(70-80s)		

Conceptual	
Graphs	
[Sowa	1984]	

logical
translation

+ « value
 invention »

��-rules,	existenFal	Rules	[Baget+	IJCAI	2009]		

Datalog+/-	 																						[Cali+	PODS	2009]	

[Chein	Mugnier		
						1992,	2009]		

•  Same	logical	form	as	«	Tuple-GeneraSng	Dependencies	»	(TGDs)		
long	studied	in	relaSonal	databases	

Lightweight	DescripSon	Logics,	
e.g.	OWL	2	tractable	profiles	
More	generally,	Horn	DLs	

+ «unrestricted cycles » on variables
+ unbounded arity

M.-L.	Mugnier	–	UNILOG	School	– 2018 50	

u  The	FOL	translaSon	of	Horn	DLs	yields	existenSal	rules	
u  ExistenSal	rules	are	strictly	more	expressive:	

siblingOf(x,y)	à∃z	(parentOf(z,x)	∧	parentOf(z,y))	
	
cannot	be	expressed	in	most	DLs	because	of	the	«	cycle	on	
variables	»	
(needs	role		composi4on: 	s		�	p	o	p)	

u  The		unbounded	predicate	arity	allows	for	more	flexibility:		
	à	direct	translaSon	of	database	relaSons	
	à	adding	contextual	informaSon	is	easy	(provenance,	trust,	etc.)	

	

EXISTENTIAL	RULES	ARE	MORE	EXPRESSIVE	THAN	HORN-DLS	

s
p

p

x	

y	

z	

More	complex	interac4ons	between	variables	cannot	be	expressed	at	all	in	DLs		

Unsurprisingly,	this	added	expressivity	has	a	cost	

M.-L.	Mugnier	–	UNILOG	School	– 2018 51	

¢  Fundamental	decision	problem	

					Input:		K=	(F,	R)	knowledge	base 		
																		q	Boolean	conjuncSve	query	
					QuesSon:	is	q	entailed	by	K ?	
	
¢  This	problem	is	not	decidable	

	f.i.	[Beeri	Vardi	ICALP	1981]	on	TGDs	
					even	with	a	single	rule		[Baget	&	al.	KR	2010]	
	
à  find	«	decidable	»	classes	of	rules	

	with	good	expressivity/tractability	tradeoff	

EXISTENTIAL	RULE	FRAMEWORK		

Data	/	
Facts	

« Pure » existential
rules

Equality rules

Negative Constraints

Conjunctive Queries

M.-L.	Mugnier	–	UNILOG	School	– 2018 52	

atomic
body

frontier-1

weakly-
guarded

weakly
frontier-guarded

datalog

guarded

weakly-
acyclic

acyclic
Graph of Rule Dependencies

wa-GRD jointly-
acyclic

frontier-
guarded

jointly-fg

sticky-join

w-sticky-join

sticky

w-sticky

1970s	

2003	 2004	

Since 2008

(PARTIAL)	MAP	OF	DECIDABLE	CLASSES		

DL-LiteR EL

M.-L.	Mugnier	–	UNILOG	School	– 2018 53	

FUNDAMENTAL	NOTIONS	FOR	REASONING	IN	FOL(�,∧)	

¢  Back	to	the	posiFve	conjuncFve	existenFal	fragment	of	FOL:	FOL(�,∧)	

¢  Allows	to	express	facts	and	(Boolean)	conjuncFve	queries	
¢  Such	formulas	can	be	seen	as	sets	of	atoms,	labelled	graphs,	relaSonal	

structures,	...	
¢  Homomorphism	is	a	fundamental	noSon	in	this	fragment:	

	
�  An	interpretaSon	I 	is	a	model	of	a	sentence	f	iff		there	is	a	homomorphism	

from	f	to	I

�  One	can	define	homomorphisms	between	interpretaSons.	Then:		
					If	I1	maps	to	I2	then,	for	any	f,	I1	model	of	f	�	I2	model	of	f	
	

�  To	a	formula	f,	we	assign	its	isomorphic	model	M(f)	(aka	canonical	model)	
							

M.-L.	Mugnier	–	UNILOG	School	– 2018 54	

MODEL	ISOMORPHIC	TO	A	FOL(�,∧)	FORMULA	

To	a	formula	f	in	FOL(�,∧),	we	assign	its	isomorphic	model	M(f)		
	 	 	 						also	called	canonical	model		

	
	f	=	�x�y�z	(p(x,y)	∧	p(y,z)	∧	r(x,z,a))	

	
	M(f):	 	D	=	{dx,	dy,	dz,	a}	
	 	pM(f)	=	{	(dx,dy),	(dy,dz)	}	
	 	rM(f)	=	{	(dx,	dz,	da)	}	

The	canonical	model	M(f)	is	universal:	for	all	M’	model	of	f,	M(f)	maps	to	M’	

	
for	any	f	and	g	in	FOL(�,∧),		g	�	f		iff		M(g)	is	a	model	of	f	iff		f	maps	to		g	
	

M.-L.	Mugnier	–	UNILOG	School	– 2018 55	

ADDING	RANGE-RESTRICTED	(=	DATALOG)	RULES	TO	FACTS	

K = (F, R) where		
	R	is	a	set	of	range-restricted	rules	(i.e.,	var(head)	
var(body))	

	F	is	a	factbase	(rules	with	an	empty	body):	ground	atoms		
	
By	applying	rules	from	R	starSng	from	F,	a	unique	result	is	obtained:		
the	saturaFon	of	F	(denoted	by	F*)	
F*	is	finite	since	no	new	variable	is	created	
F*	is	a	core	(no	redundancies)	
	
	

 F

 q

 R

F*

The	nice	properSes	of	FOL(�,∧)	are	kept:		
	

	F*	is	a	universal	model	of	K
	
	
Hence:		for	any	CQ	q,	K ⊨ q iff q maps to F*

M.-L.	Mugnier	–	UNILOG	School	– 2018 56	

KNOWLEDGE	BASES	WITH	EXISTENTIAL	RULES	

K = (F, R) where		
												R	is	a	set	of	existenFal	rules	
													F	is	a	factbase	(rules	with	an	empty	body):	existenSal	conjuncSons	of	atoms	

		

Main	change:	F*	can	be	infinite		

	
R	=	person(x)	à	�y	hasParent(x,y)	∧	person(y)	

∧		person(y0)	∧	hasParent(a,	y0)	

∧		person(y1)	∧	hasParent(y0,	y1)	 Etc.	

F	=	person(a)	

	but	it	remains	a	universal	model	
	
hence K ⊨ q iff q maps	to	F* 	

M.-L.	Mugnier	–	UNILOG	School	– 2018 57	

 F

 q

 R

« bottom-up »
« chase » (TGDs)

APPROACH	1	TO	RULES	:	FORWARD	CHAINING	/	MATERIALISATION	

K= (F, R)

K ⊨ q iff q maps by homomorphism to F*

Pros: materialisation offline, then online query answering is fast

Cons: volume of the materialisation

 needs writing access rights to the data
 not feasible if data is distributed among several databases
 not adapted if data change frequently

F*

M.-L.	Mugnier	–	UNILOG	School	– 2018 58	

EXAMPLE	(MATERIALIZATION)	

x = a y = m1
x = a y = m2
x = b y = z0
x = c y = x0

movie(m1)	
movie(m2)	
movie(x0)	
movieActor(a)	
movieActor(b)	
play(a,m1)	
play(a,m2)	
play(c,x0)	

	∀x	(movieActor(x)	à	∃	z	(movie(z)	∧	play(x,z)))	

q(x) = ∃ y (movie(y) ∧ play(x, y))

« find those who play in a movie »

SaturaFon	

movie(z0)
play(b,z0)

M.-L.	Mugnier	–	UNILOG	School	– 2018 59	

« top-down »
decomposition into
 2 steps [DL-Lite]

APPROACH	2	TO	RULES	:	BACKWARD	CHAINING	/	QUERY	REWRITING	

 R

Rewriting into a set of CQs, seen as a
union of conjunctive queries (UCQ)

and more generally into a
« first-order » query (core SQL query)

 F

 q K= (F, R)

Query rewriting is independant from any factbase. For any F,
 F,R	�	q	iff	F	�	Q				(i.e.,	if	Q	is	a	UCQ:	there	is	qi	�	Q	with	F	�	qi)	

Q

Pros: independent from the data
Cons: rewriting done at query time, easily leads to huge and unusual queries

M.-L.	Mugnier	–	UNILOG	School	– 2018 60	

EXAMPLE	

 Rewq(x) = ∃ y (movie(y) ∧ play(x, y)) � movieActor(x)

 Query rewriting

x = a y = m1
x = a y = m2
x = c y = x0

x = a
x = b

movie(m1)	
movie(m2)	
movie(x0)	
movieActor(a)	
movieActor(b)	
play(a,m1)	
play(a,m2)	
play(c,x0)	

	∀x	(movieActor(x)	à	∃	z	(movie(z)	∧	play(x,z)))	

q(x) = ∃ y (movie(y) ∧ play(x, y))

« find those who play in a movie »

M.-L.	Mugnier	–	UNILOG	School	– 2018 61	

BACKWARD CHAINING SCHEME!

UnificaSon	by	a	unifier	u	(of	q’	and	h’)		

Body	 										Head			q’	

Query	rewriSng	

Body	

 Basic	step:	
Query	q	 Rule	R	

New	query	

h’	

Direct rewriting of q with R and u = u(q \ q’) � u(body(R))

M.-L.	Mugnier	–	UNILOG	School	– 2018 62	

BASIC	PROPERTIES	(1)	

Let	F2	be	obtained	from	F1	by	the	applicaSon	of	Rule	R	
Let	a	query	Q1	that	maps	to	F2	by	a	homomorphism	that	uses	at	least	one	atom		

	 	 	 	 	 	 									brought	by	R	
	
Then	there	is	Q2,	a	direct	rewriSng	of		Q1	with	R,	such	that	Q2	maps	to	F1	

F1	 F2	
application of R

Q1	

h1

Q2	

h2

direct rewriting with R

and
h1	uses	F2\F1	

The reciprocal property holds

M.-L.	Mugnier	–	UNILOG	School	– 2018 63	

BASIC	PROPERTIES	(2)	

F1	 F2	
application of R

Q1	

h1

Q2	

h2

direct rewriting with R

Let	Q2	be	a	direct	rewriSng	of	Q1	with	Rule	R			
Let	F1	be	a	factbase	such	that	Q2	maps	to	F2	
	
Then	there	is	an	applicaSon	of	R	to	F1	that	produces	F2	such	that	Q2	maps	to	F1	

M.-L.	Mugnier	–	UNILOG	School	– 2018 64	

For	any	conjuncSve	query	q,	for	any	factbase	F,		
for	any	set	of	rules:	
	
there	is	a	homomorphism	from	q	to	F’,	where	F’	is	obtained	
from	F	by	a	rule	applicaSon	sequence	of	length	≤	n	
	
iff	
	
there	is	a	homomorphism	from	q’	to	F,	where	q’	is	obtained	
from	q	by	a	rewriSng	sequence	of	length	≤	n	

EQUIVALENCE	DERIVATION	/	REWRITING		SEQUENCES			

F1	 F2	

Q1	

h1

Q2	

h2

F1	 F2	

Q1	

h1

Q2	

h2

s.t. h1 uses	F2	\	F1	

M.-L.	Mugnier	–	UNILOG	School	– 2018 65	

TAKING	INTO	ACCOUNT	EXISTENTIAL	VARIABLES	IN	RULE	HEADS	(1)	

¢  We	want	a	complete	set	of	sound	rewriSngs	(set	of	CQs):	
		qi	s.t.			for	any	F,	if	F	⊨	qi	then	F,R	⊨	q	

	
R	=	person(x)	à	�y	hasParent(x,y)	
q	=	hasParent(v,w),	denSst(w)	
u	=	{	x	�	v,	y	�	w	}	
rew(q,R,u)	=	qi	=	person(v),	denSst(w)	
	

		

									qi		is	unsound:	
									F	=	person(Maria),	denSst(Giorgos)	
								F	⊨		qi		however	(F,{R})	does	not	entail	q	
											

(1)	If	w	in	q	is	unified	with	an	existenSal	variable	of	R,	then	all	atoms	in	
which	w	occur	must	be	part	of	the	unificaSon	

M.-L.	Mugnier	–	UNILOG	School	– 2018 66	

TAKING	INTO	ACCOUNT	EXISTENTIAL	VARIABLES	IN	RULE	HEADS	(2)	

R	=	p(x)	à	�z1�z2	r(x,z1),	r(x,z2),	s(z1,z2)	
q	=	r(v,w),	s(w,w)	
u	=	{x	�	v,	z1	�	w,	z2		�	w}	
rew(q,R,u)	=	qi	=	p(v)	
	
	
	
(2)	An	existenSal	variable	of	R	cannot	be	unified	with	another	term	in	head(R)	

qi	is	unsound:	
	
F	=	p(a)	
F	⊨ qi 	however	(F,{R})	does	not	entail	q	

M.-L.	Mugnier	–	UNILOG	School	– 2018 67	

PIECE-UNIFIER	(FOR	BOOLEAN	CQS)	

A	piece-unifier	u	of	q’�	q	and	h’
	head(R)		
is	a	subsStuSon	of	var(q’	+	h’)	by	terms(q’+	h’)							[if	x	is	unchanged,	we	write	u(x)	=	x]	
such	that	:			
¢  u(q’)	=	u(h’)	

¢  existenSal	variables	of	h’	are	unified	only	with	variables	of	q’	that	do	not	occur	 in	(q	\	q’)		
						(i.e.,	if	x	is	existenSal	and	u(x)	=	u(t),	then	t	is	a	variable	of	q’	and	not	of	(q	\	q’))	

Query	q	 Rule	R	

q’
body	 head	

h’

variables	shared	by	
	q’	and	(q	\	q’)	

To	extend	the	noSon	to	general	CQs:		
universal	variables	cannot	be	unified	with	answer	variables	

M.-L.	Mugnier	–	UNILOG	School	– 2018 68	

EXAMPLE	

R	=	twin(x,y)	à	�z	motherOf(z,x)	∧	motherOf(z,y)	

q	=	motherOf(v,w)	∧	motherOf(v,t)	∧	Female(w)	∧	Male(t)		?	

R	=	twin(x,y)	à	�z	motherOf(z,x)	∧	motherOf(z,y)	

q	=	motherOf(v,w)	∧	motherOf(v,t)	∧	Female(w)	∧	Male(t)		?	

piece-unifier	u1 = {z � v,	x	� w, y	 � w}	

rewrite(q,R,u1)	=	motherOf(v,t) ∧	Female(w)	∧	Male(w) ∧ twin(w,w) 	

R	=	twin(x,y)	à	�z	motherOf(z,x)	∧	motherOf(z,y)	

q	=	motherOf(v,w)	∧	motherOf(v,t)	∧	Female(w)	∧	Male(t)		?	

piece-unifier	u2 = {z	 � v,	x � w,	y � t}	

rewrite(q,R,u2)	=	twin(w,t)	∧	Female(w)	∧	Male(t)	

If	we	rewrite	again	
this	query	we	could	
remove	the	first	atom	

M.-L.	Mugnier	–	UNILOG	School	– 2018 69	

WHAT	IF	WE	SKOLEMIZED	RULES?		

									qi	is	unsound:	
									F	=	person(Maria),	denSst(Giorgos)	
								F	⊨		qi		however	(F,{R})	does	not	entail	q	
											

R	=	person(x)	à	�y	hasParent(x,y)	
q	=	hasParent(v,w),	denSst(w)	
u = { x � v, y � w }
rew(q,R,u)	=	qi	=	person(v),	denSst(w)	

Skolem(R)	=	person(x)	à	hasParent(x,f(x))	

Classical	most	general	unifier	of	hasParent(x,f(x))	and	hasParent(v,w):	v	�	x	and	w	�	f(x)	
			
rew(q,R,u)	=	denSst(f(x))	�	person	(x) which	cannot	be	unified	with	a	rule	head	

											 										(would	not	be	kept	in	the	ouput	since	it	contains	a	skolem	funcSon	

We	could	skolemize	the	rules	and	rely	on	usual	m.g.u.	
then	keep	only	rewriSngs	without	skolem	funcSon	

	 	 	but	this	would	create	useless	intermediate	rewriSngs	

M.-L.	Mugnier	–	UNILOG	School	– 2018 70	

WHY	«	PIECES	»?	

A	piece	is	a	unit	of	knowledge	brought	by	a	rule:	
	
¢  FronFer	variables	(and	constants)	act	as	cutpoints	to	decompose	rule	heads		

	into	pieces	(«	minimal	non-empty	subsets	glued	by	existenSal	variables	»)	
	

R	=	b(x)à	�y	�z	p(x,y)	∧	p(y,z)	∧	p(z,x)	∧	q(x,x)	 x	 y	

z	

¢  A	rule	with	k	pieces	can	be	decomposed	into	k	rules,	one	for	each	piece,	while	
keeping	the	same	body	

¢  It	cannot	be	further	decomposed	(except	by	introducing	new	predicates)	
	

b(x)à	�y�z p(x,y)	∧	p(y,z)	∧	p(z,x)	

b(x)àq(x,x)	

M.-L.	Mugnier	–	UNILOG	School	– 2018 71	

DECOMPOSITION	OF	RULES	INTO	ATOMIC	HEAD	RULES	(1)	

R:				b(x)à	�y	�z p(x,y)	∧	p(y,z)	∧	p(z,x)	 rule with single-piece head

Decomposition into rules with atomic head
by introducing a fresh predicate

R0:				b(x)	à	�y�z pR	(x,y,z)	
	
R1:		pR(x,y,z)	à	p(x,y)	
	
R2:		pR(x,y,z)	à	p(y,z)	
	
R3:		pR(x,y,z)	à	p(z,x)	

We lose the structure of the head

•  much less efficient query rewriting

•  may even lead to lose the property
of having a finite universal model

 (if the set of rules has this property)

M.-L.	Mugnier	–	UNILOG	School	– 2018 72	

DECOMPOSITION	OF	RULES	INTO	ATOMIC	HEAD	RULES	(2)	

R	:	p(x,y)	→	�z	p(y,z),	p(z,y)	
	

F	:	p(a,b)	

a	 b	 z0	 ...	
F1	

F2	

z1	

z2	

F2≡ F1 (F2 maps	to	F1)
	
hence	F*≡ F1
	

Finite	universal	model			

AÅer	decomposiSon	into	atomic	head	rules:		

R0	:	p(x,y)	→	�z	pR(y,z)	
R1	:	pR(y,z)	à	p(y,z)	
R2	:	pR(y,z)	à	p(z,y)	

a	 b	 z0	 ...	
F1	

F2	

z1	

z2	

F2				F1		

No	finite	universal		
					model			

M.-L.	Mugnier	–	UNILOG	School	– 2018 73	

OVERVIEW	OF	THE	LECTURE	

Part	1:	Basics 		
	 		

Part	2:	KR	formalisms	and	algorithmic	approaches	
		

Part	3:	Decidability	issues	in	the	existenFal	rule	framework	

		
	Undecidability	of	the	fundamental	problem	
	Generic	properSes	that	ensure	decidability	

	Main	«	concrete	»	decidable	classes	of	existenSal	rules 		
		

M.-L.	Mugnier	–	UNILOG	School	– 2018 74	

However,	here:		query	rewriSng	with	R	is	finite	for	any	q	
	 		

SATURATION	MAY	NOT	HALT	

R	=	person(x)	à	hasParent(x,y)	∧	person(y)	

∧		person(y0)	∧	hasParent(a,	y0)	

∧		person(y1)	∧	hasParent(y0,	y1)	

F	=	person(a)	

No	redundancies	are	added	
The	KB	has	no	finite	universal	model 	 		

M.-L.	Mugnier	–	UNILOG	School	– 2018 75	

R	=	friend(u,v)	∧	friend(v,w)	à	friend(u,w)	

q	=	friend(Giorgos,Maria)	

q1	=	friend(Giorgos,	v0)	∧	friend	(v0,Maria)			

q2	=	friend(Giorgos,	v1)	∧	friend(v1,	v0)	∧	friend	(v0,Maria)			

q2’	=	friend(Giorgos,	v0)	∧	friend(v0,	v1)	∧	friend	(v1,Maria)			

q2	and	q2’	
are	equivalent	

Etc.	q3	=	friend(Giorgos,	v2)	∧	friend(v2,	v1)	∧	friend(v1,	v0)	∧	friend	(v1,Maria)			

QUERY	REWRITING	MAY	NOT	HALT	

However,	here:		saturaSon	with	R	is	finite	for	any	F	

There are cases where both processes do not halt
(even if the factbase is known)

There	is	an	infinite	number	of	non-redundant	rewriSngs	

M.-L.	Mugnier	–	UNILOG	School	– 2018 76	

UNDECIDABILITY	OF	THE	FUNDAMENTAL	PROBLEM	

Fundamental	decision	problem	
					Input:		K=	(F,	R)	knowledge	base,	q	Boolean	conjuncSve	query	
					QuesSon:	is	q	entailed	by	K	?	

This problem is undecidable (only semi-decidable)

E.g. proof by reduction from the word problem in a semi-Thue system

There is a one-step derivation from a word w to w’ if
 there is a rule wi à wj in G, and w = w1wiw2, w' = w1wjw2

w’ is derived from w if

 there is a (finite) sequence of one-step derivations from w to w’

Input: a set G of rules of the form wi à wj, 2 words w0 and wf

Question: is it possible to derive (exactly) wf from w0 using the rules in G?

M.-L.	Mugnier	–	UNILOG	School	– 2018 77	

REDUCTION	FROM	THE	WORD	PROBLEM	
From	G,	w0	and	wf	we	build	a	KB	(F, R)	and	a	Boolean	CQ	q		

Vocabulary 	constants:	the	lekers	occuring	in	G,	w0	and	wf	
	 	 			+	two	special	constants	B	and	E	
	 	binary	predicates:	succ	and	val	

Factbase	F	=	T(w0,	B,	E)	

Set	of	rules	R	is	obtained	by	translaSng	each	rule		wi	à	wj	into	the	existenSal	rule		
 �x �y (T(wi,x,y)à T(wj,x,y))	

To	a	word	w	=	a1...an	we	assign	the	following	graph	T(w,x,y)	
	 					where	the	zi	are	existenSal	variables	and	x,y	are	free	

x	 y	

Query	q	=	T(wf,	B,	E)	

Key:	any	word	w	derivable	from	w0	with	G	corresponds	to	a	path	T(w, B, E)
									in	the	saturaSon	of	F	by	R,	and	reciprocally			

M.-L.	Mugnier	–	UNILOG	School	– 2018 78	

finite saturation

bounded treewidth
saturation

finite UCQ rewriting

atomic
body (linear)

frontier-1

weakly-
guarded

weakly
frontier-guarded

datalog

guarded

weakly-
acyclic

acyclic
GRD

wa-GRD jointly-
acyclic

frontier-
guarded

jointly-fg

sticky-join

w-sticky-j

sticky

weakly-sticky

(PARTIAL)	MAP	OF	DECIDABLE	CASES	

DL-Lite

EL

M.-L.	Mugnier	–	UNILOG	School	– 2018 79	

GENERIC	PROPERTIES	THAT	ENSURE	DECIDABILITY	

Three	generic	kinds	of	properSes	ensuring	decidability:	
	
-  SaturaSon	by	Forward	Chaining	halts	for	any	factbase		

(«	finite	expansion	set	»,	fes)	
		

-  Query	rewriSng	halts	for	any	conjuncSve	query	
(«	finite	unificaSon	set	»,	fus,	or	UCQ-rewritability)	
		

-  SaturaSon	by	Forward	Chaining	may	not	halt	but	for	any	factbase	
the	generated	facts	have	a	tree-like	structure	(«	bounded	treewidth	set	»,	bts)	

None	of	these	properSes	is	recognizable	[Baget+	KR	10]	
		
but	these	properSes	provide	generic	algorithmic	schemes		

M.-L.	Mugnier	–	UNILOG	School	– 2018 80	

No existential variables

Main	Classes	with	Finite	SaturaFon	(fes)	

Datalog

Acyclic position
dependency graph

Weak-
acyclicity

Acyclic Graph of
 Rule Dependencies Acyclic

GRD

Joint-
acyclicity

Acyclic existential
dependency graph

GRD with fes
strongly
connected
components

fes-GRD

[Baget	KR�04]	

[Baget	KR�04]	

[Deutsch+	ICDT�03]	
[Fagin+	ICDT	03]	

[Krötzsch+		
	IJCAI�11]	

Position dependency graph: nodes are positions in predicates
 edges show how existential variables are propagated

Graph of rule dependencies: nodes are rules
 edges express that a rule may lead to trigger a rule

M.-L. Mugnier – UNILOG School – 2018 81

WEAK-ACYCLICITY	

R1:	p(x)	→	�y	r(x,y)	�	q(y)	
R2:	r(x,y)	→	p(x)	

PosiFon	dependency	graph	
		nodes:	posiSons	(p,i)	in	predicates	
		edges:	for	each	fronSer	variable	x	in	posiSon	(p,i)	in	a	rule	body	
	 	-	an	edge	from	(p,i)	to	each	posiSon	(q,j)	of	x	in	the	rule	head	

	-	a	special	edge	from	(p,i)	to	each	posiSon	of	an	existenSal	in	the	rule	head	
	
R	is	weakly-acyclic	if	its	posiSon	graph	contains	no	circuit	with	a	special	edge	(*)	

weakly	acyclic	

not	weakly	acyclic	
	
special	edge	(p,1)	à	(r,1)	due	to	R1	
													edge	(r,1)	à	(p,1)	due	to	R2		

R1:	p(x)	→	�y�z	r(x,y)	�	r(y,z)	�	r(z,x)		
R2:	r(x,y)	�	r(y,x)	→	p(x)	

M.-L.	Mugnier	–	UNILOG	School	– 2018 82	

ACYCLIC	GRAPH	OF	RULE	DEPENDENCY	
Graph	of	Rule	Dependencies	
				nodes:	the	rules	
				edges:	an	edge	from	Ri	to	Rj	if	an	applicaSon	of	Ri	may	lead	to	trigger	a	new		

	 	 	 							applicaSon	of	Rj	(«	Rj	depends	on	Ri	»)	
	
Dependency	can	be	effecSvely	computed	by	checking	if	there	is	a	piece-unifier	of	

	 	 	 	 			 	body(Rj)	and	head(Ri)	

These	examples	show	that	weak-acyclicity	and	acyclic	GRD	are	incomparable	criteria	
Common	generalizaSons	of	these	two	noSons	have	been	defined	

Cyclic	GRD	since	R1	and	R2	
depend	on	each	other	

R1:	p(x)	→	�y	r(x,y)	�	q(y)	
R2:	r(x,y)	→	p(x)	

R1:	p(x)	→	�y�z	r(x,y)	�	r(y,z)	�	r(z,x)		
R2:	r(x,y)	�	r(y,x)	→	p(x)	

M.-L.	Mugnier	–	UNILOG	School	– 2018 83	

E.g. inclusion dependencies,
necessary properties of
concepts / relations

Main	Classes	with	Finite	Query	RewriFng	(fus)	

Atomic-
body Sticky Domain-

restricted

Sticky-
join Each head atom contains

all or none of
the body variables

E.g. concept product
Elephant(x) ∧ Mouse(y) à bigger-than(x,y)

[Cali+		
PVLDB	2010]	

[Baget+	IJCAI�09]	
[Baget+	IJCAI�09]	

[Cali+	RR�10]	

= linear Datalog+
[Cali+	PODS	2009]	

Body restricted
 to a single atom

Restricts multiple
occurrences
of body variables
that do not occur
in all head atoms

Each head atom contains all the
body variables

E.g. Human(x) à	parentOf(y,x) ∧	Human(y)
is atomic-body, sticky and domain-restricted

M.-L. Mugnier – UNILOG School – 2018 84

Width	of	a	tree	decomposiSon	=	max	number	of	nodes	in	a	bag	(minus	1)	
Treewidth	of	a	graph	=	min	width	over	all	decomposiSon	trees	of	this	graph	

r

a

p(a,b)	q(b,z0)	r(a,b,t0)	p(b,t0)	q(t0,z1)	r(b,t0,t1)	
p(t0,t1)	

DecomposiFon	tree	
1)	each	node	(term)	appears	in	a	bag	
2)	each	hyperedge	(atom)	has	all	its	nodes	in	a	bag	
3)	for	each	node	x,	the	subgraph	induced	by	the	bags	containing	x	is	connected	

b

r

t0	

z0	 a	b		

node	

hyper	
edge	

DecomposiFon	Tree	/	Treewidth	

p p p

q q

z1	

t1	
b	z0		 a	b	t0			

t0	z1		 b	t0	t1			

p(a,b)

q(b,z0)

r(a,b,t0)
p(b,t0)

r(b,t0,t1)
p(t0,t1)

q(t0,z1)

M.-L. Mugnier – UNILOG School – 2018 85

The decidability proof does not provide a halting algorithm
(relies on the bounded treewidth model property [Courcelle	90])

R is bts if the forward chaining with R generates facts with bounded treewidth:
 i.e., for any factbase F, there is an integer b s.t.
 any factbase R -derived from F has treewidth bounded by b

F

Bounded	Treewidth	of	the	Derived	Facts	(bts)	

EssenSally	[Cali	Goklob	Kifer	KR’08]	

fes (finite saturation) is included in bts
(bound given by the number of terms in the finite saturation)

M.-L. Mugnier – UNILOG School – 2018 86

An atom in the body
guards all the body
variables

Guard only the frontier

Guard only affected
variables
(i.e.possibly mapped
to new existentials)

Guard only affected variables
from the frontier

Frontier: variables shared
 by the body and the head

Some	Recognizable	bts	(and	not	fes)	Classes	of	Rules	

guarded
	[Cali+	KR’	08]	

weakly
guarded

[Cali+	KR�08]	The frontier
has size 1

[Baget+	KR�10]	

frontier
guarded

[Baget+	KR�10]	

weakly
frontier
guarded

[Baget+	IJCAI�09]	

frontier
1

r(x,y) ∧ r(y,z) ∧ s(x,y,z) à �u r(y,u) ∧ r(z,u) r(x,y) ∧ r(y,z) ∧ r(x,z) à �u r(z,u)

r(x,y) ∧ r(y,z) à
r(y,u) ∧ r(z,u)

datalog

These classes are moreover « greedy bts » => a halting algorithm [Baget+	IJCAI�11]	
M.-L. Mugnier – UNILOG School – 2018 87

Greedy	bts	

R1 = p(x,y) à ∃z p(y,z)
R2 = p(x,y) ∧ q(x,z) à ∃t r(x,y,t) ∧ p(y,t)

F = p(a,b) 	 a	b		

b	z0		 a	b	t0			

t0	z1		 b	t0	t1			

p(a,b)	

q(b,z0)		
r(a,b,t0)		
p(b,t0)		

r(b,t0,t1)		
p(t0,t1)		q(t0,z1)		

R1	 R2	

R1	 R2	

Greedy construction of a decomposition tree of derived facts

with bounded width

Etc.	

M.-L. Mugnier – UNILOG School – 2018 88

The	«	Greedy	bts	»	Property		[Baget+ IJCAI�11]

T0 T0 = terms(F) + {constants}

F

T0 ∪
var(h(H))

 B

 H

h

Derived facts Decomposition tree

All bags contain T0
F	

h(H)	

For	any	factbase,	for	each	rule	applicaSon,		
fronSer	variables	not	being	mapped	to	iniSal	terms	are	jointly	mapped	to		
variables	occurring	in	atoms	added	by	a	single	previous	rule	applicaSon	

M.-L. Mugnier – UNILOG School – 2018 89

Main	Ideas	of	the	Algorithm	for	gbts	(1)	

	
1.  Bag	pakern	=	{	homomorphisms	from	part	of	a	rule	body	to	«	current	fact	»										

																									that	use	some	terms	of	the	bag	}	
	

•  	A	rule	is	applicable	to	the	current	factbase	iff	a	bag	pakern	contains	its	body	
•  FC	can	be	performed	on	the	decorated	tree	

	
2.  Equivalence	relaSon	on	bags	

	
	Only	one	bag	per	equivalence	class	is	developed	
	The	other	nodes	are	blocked	

	

Bounded	number	of	equivalence	classes	à	finite	«	full	blocked	tree	»	T*	
		

Build	a	finite	decomposiSon	tree	that	encodes	a	potenSally	infinite	fact	

M.-L. Mugnier – UNILOG School – 2018 90

Main	Ideas	of	the	Algorithm	for	gbts	(2)	

[Baget+	IJCAI	2011]			q	added	as	a	rule	«	q	à	match	»	
	

q	is	entailed	iff	match	occurs	in	a	bag	pa=ern	
												i.e.,	q	maps	by	homomorphism	to	atoms(T*)	

	
[Thomazo+	KR	2012]		offline	/online	separaSon	

	
	(1)	compilaSon:	tree	T*	built	independently	from	any	query	

					(2)	querying:	any	q	is	entailed	iff	it	maps	by	*-homomorphism	to	T*	
	 		i.e.	q	maps	by	homomorphism	to	a	bounded	«	development	»	of	T*	

		
	
		
	

		

Query	this	finite	decomposiSon	tree	

M.-L. Mugnier – UNILOG School – 2018 91

Data	Complexity	of	gbts	Classes	

guarded

weakly
guarded

frontier
guarded

weakly
frontier
guarded

frontier
1

 Datalog
(fes)

ExpTime-c

PTime-c

Previous	algorithm	is	worst-case	opSmal	on	gbts	
for	data	/	combined	complexity.	

Can	be	specialized	to	be	opSmal	on	these	gbts	subclasses	
M.-L. Mugnier – UNILOG School – 2018 92

FES GBTS

FUS

linear

frontier-1

weakly-
guarded

weakly
frontier-guarded

Datalog

guarded weakly-
acyclic

aGRD
jointly-
acyclic frontier-

guarded

jointly-fg

sticky-join

w-sticky-join

sticky

weakly-sticky

DL-Lite

EL

MFA

glut-fg (BTS)

domain-
restricted

super-weak-
acyclic

M.-L.	Mugnier	–	UNILOG	School	– 2018 93	

CONCLUSION	

•  Reasoning	with	ontologies	is	becoming	central	in	many	data-centric		
applicaSons	

	
•  Solid	theoreScal	foundaSons	with	a	range	of	ontological	formalisms	

that	offer	various	tradeoff	expressivity/complexity	

•  Ongoing	research	
•  Go	beyond	(unions	of)	conjuncSve	queries,	e.g.	combine	them	with	

navigaSonal	queries	like	regular	path	queries	
•  New	query	rewriSng	techniques	that	target	more	powerful	

langages,	e.g.	Datalog	
•  New	query	answering	techniques	that	combine	materialisaSon	and	

query	rewriSng	
•  Study	the	interacSon	of	the	ontology	with	mappings,	which	is	key	

to	efficient	query	answering	over	heterogeneous	data	
•  RepresenSng	and	reasoning	with	temporal	and	spaSal	data	

•  Dealing	with	data	inconsistencies 	 	 	
M.-L.	Mugnier	–	UNILOG	School	– 2018 94	

(Small) Bibliography

Bienvenu	M.,	Leclère	M.,	Mugnier,	M.-L.	and	Rousset,	M.-C., Reasoning with Ontologies, 	
chapter	6,	volume	1	in	«	A	guided	tour	of	arSficial	intelligence	research	»,	Springer,	to	
appear.		
	
IntroducFons	to	several	aspects	of	ontology-mediated	query	answering	with	descripFon	
logics	or	existenFal	rules	in		the	Reasoning	Web	summer	school	books:	
	
in	parScular:		
	
	Bienvenu,	M.	and	OrSz,	M.	(2015).	Ontology-mediated	query	answering	with	data	tractable	
descripSon	logics.	11th	InternaSonal	Reasoning	Web	Summer	School	,	volume	9203	of	
LNCS	,	pages	218–307.	Springer.	
	
	Mugnier,	M.	and	Thomazo,	M.	(2014).	An	introducSon	to	ontology-based	query	answering	
with	existenSal	rules.	10th	InternaSonal	Reasoning	Web	Summer	School,	volume	8714	of	
LNCS,	pages	245–278.	Springer.		
	
	Goklob,	G.,	Orsi,	G.,	Pieris,	A.,	and	Simkus,	M.	(2012).	Datalog	and	its	extensions	
for	semanSc	web	databases.	10th	InternaSonal	Reasoning	Web	Summer	School	,volume	
7487	of	LNCS,	pages	54–77.	Springer.	

These	syntheses	provide	further	references		
M.-L.	Mugnier	–	UNILOG	School	– 2018 95	

APPENDIX:	FURTHER	DETAILS	

¢  Fundamental	definiSons	and	properSes	for	the		FOL(�,∧)	fragment	

¢  Piece-unifiers	

M.-L.	Mugnier	–	UNILOG	School	– 2018 96	

INTERPRETATIONS	/	MODELS	(1)	

¢  Vocabulary	V	=	(P,	C),	where	 	P	=	finite	set	of	predicates	
	 	 	 	C	=	set	of	constants	

¢  InterpretaFon	I		=	(DI ,	.I)	of	V,	where	
	 	 	 	DI	≠	ø 	(domain)		
	 	 	 	for	all	c	in	C,	cI	in	DI

	 	 	 	for	all	p	in	P	with	arity	k,	pI	
DI
k	

¢  Furthermore,	unique	name	assumpSon:	for	all	c	and	d	in	C,	cI	≠	dI		

¢  Simplifying	assumpSon	(in	line	with	the	unique	name	assumpSon):	
		C		
	DI		and	for	all	c	in	C,	cI	=	c	

V = ({p/2, r/3 }, {a, b})

I: DI = {a, b, d1} pI = { (b, a), (b, d1), (d1, b) }

 rI = { (d1, d1, a) }

¢  I	is	a	model	of	f	(built	on	V)	if	f	is	true	in	I

M.-L.	Mugnier	–	UNILOG	School	– 2018 97	

INTERPRETATIONS	/	MODELS	(2)	

¢  Let	f	in	FOL(�,∧).	I	is	a	model	of	f	iff		
	 	 	there	is	a	mapping	v	from	terms(f)	to	DI	such	that	

										 	 	 														for	all	p(e1,	...,	ek)	in	f,		(v(e1),	...,	v(ek))	in	pI	

 I: DI = {a, b, d1} pI = {(b, a), (b, d1), (d1, b)}
 rI = {(d1, d1, a)}
 f = �x�y�z (p(x, y) ∧ p(y, z) ∧ r(x, z, a))

	 	v:	 	x	↦ d1 y	↦ b z	↦ d1

	
¢  InterpretaSons	can	be	seen	as	sets	of	atoms		

(with	elements	from	D	\	C	seen	as	variables)	
	

																																										p(b,a), p(b,x1), p(x1,b), r(x1, x1,a)	
	
¢  I 	is	a	model	of	f	iff	there	is	a	homomorphism	from	f	to	I	

	
	

M.-L.	Mugnier	–	UNILOG	School	– 2018 98	

HOMOMORPHISMS	AGAIN	AND	AGAIN	

¢  One	can	define	homomorphisms	between	interpretaFons	
¢  We	have:	

	If	I1	maps	I2	then,	for	any	f,		I1	model	of	f	�	I2	model	of	f		
		

¢  To	a	formula	f	in	FOL(�,∧),	we	assign	its	isomorphic	model	M(f)		
	 	 	 										(also	called	canonical	model)	

	
 f	=	�x�y�z	(p(x,y)	∧	p(y,z)	∧	r(x,z,a))	

	
	M(f):	 	D	=	{dx,	dy,	dz,	a}	
	 	pM(f)	=	{	(dx,dy),	(dy,dz)	}	
	 	rM(f)	=	{	(dx,	dz,	da)	}	

M.-L.	Mugnier	–	UNILOG	School	– 2018 99	

NICE	SEMANTIC	PROPERTIES	OF	FOL(�,∧)		

¢  The	canonical	model	M(f)	is	universal,	i.e.,	for	all	M’	model	of	f,	M(f)	
maps	to	M’	

	
Proof:	Let	M’	model	of	f.	Then,	f	maps	to	M’.	Since	M(f)	isomorphic	to	f,	M(f)	
maps	to	M’	

	

¢  g	⊨	f		(i.e.,	every	model	of	g	is	a	model	of	f)	iff		
					f	maps	by	homomorphism	to	M(g)	iff		
				f	maps	by	homomorphism	to		g	
	
Proof:		
⇒	Assume	g	⊨	f.	In	parScular	M(g)	is	a	model	of	f,	hence	f	maps	to	M(g)	

⇐	Assume	f	maps	to	M(g).	Since	M(g)	is	universal:	for	any	M’	model	of	g,		
f	maps	to	M’,		i.e.,	M’	is	a	model	of	f,	hence	g	⊨	f		

M.-L.	Mugnier	–	UNILOG	School	– 2018 100	

WHY	«	PIECES	»	?	(CONT’D)	–	PIECE-UNIFIERS	

¢  UnificaSon	must	«	map	»	parts	of	q	according	to	«	pieces	»	that	can	be	
provided	by	a	rule	applicaSon	

					(otherwise	it	is	unsound	or	useless)	 body	 head	

body	 head	

specializa4on	of	the	fron4er	

homomorphism	

The	terms	of	q	unified	with	the	fronSer	
(or	with	constants)	cut	q	into	«	pieces	»	
	
⇒ enSre	«	pieces	»	of	q	must	be	mapped	
						to	the	pieces	of	the	rule	

R

q

M.-L.	Mugnier	–	UNILOG	School	– 2018 102	

PIECE-UNIFIER:	ALTERNATIVE	DEFINITION	

Let	u1:	fronSer(R)	à	fronSer	(R)	�	constants	
(u1	is	a	specializaSon	of	the	fronSer	of	R)	
	
Let	u2	be	a	homomorphism	from	q’�	q	to	u1(head(R))	
		
Cutpoints:	terms	of	q’	mapped	to	u1(fron4er(R))	

	 																	or	to	constants	
The	cutpoints	cut	q	into	«	pieces	»	
	
u1+u2	is	a	piece-unifier	if	q’	is	composed	of	pieces	

	

body	 head	

body	 head	

u1

u2

M.-L.	Mugnier	–	UNILOG	School	– 2018 103	

