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KNOWLEDGE REPRESENTATION AND REASONING (KR)

« Afield historically at the heart of Artificial Intelligence m

) N

« Study formalisms (or languages) to

» represent various kinds of human knowledge
« do reasoning on these representations

« along the tradeoff expressivity / tractability of reasoning

- KR languages based on computational logic

In this talk: classical first-order logic (FOL)

Major conferences:
IJCAI, AAAI, KR
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OVERVIEW OF THE TUTORIAL

Part 1: Basics

Knowledge bases, Ontologies
Logical view of Queries and Data

Main KR formalisms to represent and reason with ontologies
Ontology-Mediated Query Answering

Part 2: KR formalisms and algorithmic approaches

Part 3: Decidability issues in the existential rule framework
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KNOWLEDGE BASED SYSTEMS

Knowledge Base Reasoning
(KB) Services

Vv

« General knowledge on the

application domain Fundamental tasks
« Cats are Mammals » - Checking the consistency
Ontology of the KB
« Factual Knowledge « Computing answers to a query
Description of specific individuals, over the KB
situations, ...

Félix is a Cat _ _
Reasoning algorithms associated

Factbase, Database with the KR language

Knowledge expressed in a KR language
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WHAT IS AN ONTOLOGY?

In computer science:
a formal specification of the knowledge of a particular domain

» which allows for machine processing
» that relies on the semantics of knowledge

> automated reasoning

Such a specification consists of
» avocabulary in terms of concepts and relations

» semantic relationships between these elements
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EXAMPLES OF ONTOLOGIES

Interior View of the Heart

o Medecine and life sciences :
hundreds of available ontologies

general medical ontologies
SNOMED CT (400 000 terms)

GALEN (> 30 000 terms)

specialized medical ontologies
FMA (anatomy)
NCI (cancer), ...

biology
agronomy El Crop Ontology

* Banana

* Barley www.cropontology.or
* Cassava 2 oy

* Chickpea Crop Ontology Curation Tool E] Intograted Breeding Platform

* Common bean
* Cowpea

o Information systems

* Lentil

* Maize

of large organizations and corporations ot Tnesse, ZEemn o ™R ST RIS

Pearl millet =
* Pigeon Pea -
* Potato O A e 7
*Soybean (USDA & IIT, .22 -
* Sweet Potato e et e e B -
* Rice ——— T
* Sorghum e
* Vitis (INRA) == e e
* Wheat 3 ommngme @

*Yam
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AT THE CORE OF ONTOLOGIES: CONCEPTS / CLASSES

o Concept / class : a category of entities (objects) that share properties
In FOL: unary predicate: Cat, Mammal

o Instance of class: a specific member of this class

In FOL: a term (variable or constant)

o Fundamental relation on classes : specialization (subsumption)
(«is a kind of », «subclass of »)

?2 Semantics : every instance of C1 is also instance of C2
C1 VX (C1(x) > C2(x)) vV x (Cat(x) > Mammal(x))

C1 subclass of C2
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AT THE HEART OF ONTOLOGIES: CONCEPTS / CLASSES

Disorder
™ Disease (SNOMED CT)

/\ Organism

Lung Disease Infectious Disease

T T\ Infecti/o:J's\Agent

Pneumonia Bacterial Viral _ .

T Disease  Disease Bacteria  Virus
Infectious :
Pheumonia Concepts.orgarylzed by

T specialization

However, an ontology is not

Bacterial Pneumonia i o
just a classification!

|
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ONTOLOGIES ARE MUCH MORE THAN CLASSIFICATIONS

« An ontology specifies the vocabulary of an application domain
and semantic relationships between the terms of the vocabulary»

Vocabulary

1. concepts / classes

2. relations (between instances)

+ properties of concepts

+ properties of relations

+ semantic relationships between concepts

+ semantic relationships between relations

+ other axioms that more generally express domain knowledge
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RELATIONS BETWEEN INSTANCES

Often these are binary relations (also called « roles » or « properties »)

dueTo Argument 1 : a Disorder
Argument 2 : an Organism or [...]

subrelation of

Argument 1 : a Disease
hasCausativeAgent Argument 2 : an Organism

VvV xVy (hasCA(x,y) =2 dueTo(x,y))

Signature of a relation : assigns a maximum concept to each argument
(« domain » and « range » in OWL)

Vv xVy (hasCA(x,y) = Disease(x) A Organism(y))
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EXAMPLES OF OTHER FREQUENT TYPES OF AXIOMS

* Negative constraints (disjointness between concepts, relations, ...)

Bacteria N Virus =9 V x (Bacteria(x) A Virus(x) 2 1)
V x (Bacteria(x) = = Virus(x))

* Necessary and/or sufficient properties of concepts (ex: BacterialDisease)

A bacterial disease is caused by a bacteria

V x (BacterialDisease(x) — 3y (Bacteria(y) A hasCausativeAgent(x,y))

* Properties of relations

inverse relations: VxVy (hasPart(x,y) <= isPartOf(y,x))

symmetry, transitivity, ...

functional relation: VxVyV z (isPartOf(x,y) A isPartOf(x,z) — y = z)
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WHAT KINDS OF LANGUAGES TO EXPRESS ONTOLOGIES?

Very light languages

Hierarchies of classes
Hierarchies of binary relations (called « properties »)
Signatures of these relations (« domain » and « range »)
- OWL DL fragment of RDF Schema (Semantic Web)

More expressive fragments of first-order logics

Description Logics
Rule-based languages Datalog, existential rules,

RDF deductive rules, Answer Set Programming ...

From a logical viewpoint: an ontology is composed of
a finite set of predicates (to express concepts and relations)

a finite set of (closed) formulas over these predicates
of the form V X (condition[X] = conclusion[X])
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WHAT ARE ONTOLOGIES GOOD FOR?

* provide a common vocabulary

—> it is easier to share information
(typically between experts of several domains)

* constrain the meaning of terms
—> forces to explicit not-said things and to remove ambiguities
hence less misunderstandings

* to do automated reasoning, basis of high-level services

> find implicit links between pieces of knowledge
> check the consistency of the KB, find errors in modeling
- enrich data query answering
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ONTOLOGY-MEDIATED QUERY ANSWERING (EX: MEDICAL RECORDS)

Query (SQL, SPARQL, MongoDB ...)

« find all patients affected by a lung disease
due to a bacteria »

77

Patient P : Diagnosis = « legionella »

Database (relational, RDF, NoSQL, ...)
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ONTOLOGY-MEDIATED QUERY ANSWERING

« find all patients affected by a lung disease

ue .
Query due to a bacteria »

Patient P : Diagnosis = « legionella »

Knowledge Base
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ONTOLOGY-MEDIATED QUERY ANSWERING (OMOQA)

Adding an ontological layer on top of data

1- Enrich the vocabulary

allowing to abstract from a specific data storage

2 - Infer new facts, not explicitely stored,

allowing for incomplete data representation

Knowledge base
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ONTOLOGY-MEDIATED QUERY ANSWERING (OMOQA)

3 — provide a unified view of multiple sources

Query

v

M.-L. Mugnier — UNILOG School — 2018

17



OMOQA EXAMPLE: ONTOLOGICAL KNOWLEDGE

A legionella is bacterial pneumonia

V x (Legionella(x) - BacterialPneumonia(x))

A bacterial pneumonia is a pneumonia
A pneumonia is a lung disease
A bacterial pneumonia is caused by a bacteria

¥ x (BacterialPneumonia(x) = 3y (hasCausativeAgent(x,y) A Bacteria(y)))

If x is caused by y then x is due toy

V x Vy (hasCausativeAgent(x,y) - dueTo(x,y))

If the diagnosis of a patient x contains a disease y then x is affected by y

V xV'y ((Diagnosis(x,y) A\ Disease(y)) = isAffectedBy(x,y))
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FACTBASE

Factbase : usually a set of ground atoms (on the ontological vocabulary)

seen as the conjunction of these atoms

« The diagnosis for the patient P is legionella »
F = { Patient(P), Diagnosis(P,M), Legionella(M) }

A relational database may naturally be viewed as a factbase

Relational schema : finite set R of relations > predicates
infinite domain of values - constants

Instance of a relationr : finite set of tuplesonr > atomsonr

r {r(al,a2), r(a2,a3), r(al,al)}

attrl attr2
al | a2
a2 | a3
al | al

Database instance = {instance foreachrin R} - factbase
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CONJUNCTIVE QUERIES (CQ)

« find all patients affected by a lung disease due to a bacteria »

q(x) = dy Iz (Patient(x) A isAffBy(x,y) A LungDisease(y) A dueTo(y,z) A Bacteria(z))

A CQ is an existentially quantified conjunction of atoms
The free variables are the answer variables
If closed formula: Boolean CQ

Datalog notation

ans(x) € Patient(x), isAffBy(x,y), LungDisease(y), dueTo(y,z), Bacteria(z)
Select-Join-Project queries in relational algebra (SQL)

SELECT ... FROM ... WHERE <join conditions>

SPARQL (semantic web queries)

SELECT ... WHERE <basic graph pattern>
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ANSWERS TO A CONJUNCTIVE QUERY

o The answer to a Boolean CQqgin Fisyesif F=qg yes=()

o Letthe CQq(x,...,x,). Atuple (a,, ..., a, ) of constants is an answer to g
with respect to a factbase Fif FFqla,...,a,],
where gla,,...,a,] is obtained from q(x,,...,x,) by replacing each x; by g,

o Let Fand g be seen as sets of atoms. A homomorphism h from gto Fisa
mapping from variables(q) to terms(F) such that h(q) & F

F=q() iff g can be mapped by homomorphism to F

(a,, .., a,)is an answer to g(x,,...,X,) w.r.t. Fiff
there is a homomorphism from g to F that maps each x; to g,
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KEY NOTION: HOMOMORPHISM

q(x) =3y (movie(y) A play(x, y)) movie(y) movie(m1)
play(x, y) movie(m?2)
movie(m3)
Homomorphism h from g to F: actor(a)
substitution of var(qg) by terms(F) actor(b)
play(a,m1)
hl:x > ,
;,(9 ;1 h1(q) = movie(m1) A play(a, m1) play(a,m2)
play(c,m3)
h2:x—> a
v > m2 h2(q) = movie(m2) A play(a, m2)
h3:x—=>c .
v > m3 h3(qg) = movie(x0) A play(c, m3)
Answers: obtained by restricting the domains of homomorphisms X
to answer variables X

M.-L. Mugnier — UNILOG School — 2018
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ON THE OMQA EXAMPLE

q(X) — Ely 37 (Patient(x) A iSAﬁeCtEdBY(X,Y) A « find all patients affected by a

LungDisease(y) A dueTo(y,z) A Bacteria(z)) ngtgri:)')sease due to a

_ : : : , « The diagnosis for the
Factbase = { Patient(P), Diagnosis(P,M), Legionella(M) } patient P is legionella »

-
i Legionella specialisation of LungDisease and BacterialDisease (and Disease)
: hence LungDisease(M) hence BacterialDisease(M),
I Disease(M)

' V x (BacterianDisease(x) > 3y (hasCausativeAgent(x,y) A Bacteria(y)))
, ' hence hasCausativeAgent(M,b) and Bacteria(b)

| V xV'y (hasCausativeAgent(x,y) = dueTo(x,y))

: hence dueTo(M,b)

|

1 VxVy ((Diagnosis(x,y) A\ Disease(y)) = isAffectedBy(x,y)) rA- ------ F_’ i
' hence isAffectedBy(P,M) LANSwer - x =k
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« Ontology-Based Data Access »
A MORE GENERAL SCHEMA ozt ot ol JoDS. 2008

Conceptual level

Query using the vocabulary of the ontology

Description of the application domain
with a high abstraction level

Factbase (possibly virtual)

using the vocabulary of the ontology
Factbase
The answers to the query are inferred
from the knowledge base

Mappings from data to facts
{ Database query ~ Facts }

Independent and heterogeneous
data sources

M.-L. Mugnier — UNILOG School — 2018
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MAPPINGS

Patient T [ID_PATIENT, NAME,SSN] Patient /1
Diagnosis / 2
Diagnosis_T[ID_PATIENT, DISORDER] Legionella /1

Mapping: database query(X) ~ conjunction with free variables X

g(x): I n3ds Patient_T (x,n,s) ~ Patient(x)

q’(x): I n s Patient_T (x,n,s) A Diagnostic_T(x,y) Ay = « Legionella »
~ 1z (diagnosis(x,z) A legionella(z))

Patient(P)

Diagnosis(P,M)
« Leg. » ~> )
. I Legionella(M)
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ONTOLOGY-MEDIATED QUERY ANSWERING (OMOQA)

Query (Boolean) conjunctive query g

----------------------------------------------------------

- .

Theory O in a suitable FOL fragment

Factbase

Set of ground atoms (or existentially closed formula) F

Fundamental decision problem

O, F=q 7

Knowledge base
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OVERVIEW OF THE LECTURE

Part 1: Basics

Part 2: KR formalisms and algorithmic approaches

Outline of description logics — Horn DLs

Existential Rules

Materialization approach (forward chaining)

Query rewriting approach (related to backward chaining)

Part 3: Decidability issues in the existential rule framework
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DESCRIPTION LOGICS

o A family of KR languages for representing and reasoning with ontologies

o Mostly correspond to decidable fragments of FOL
(related to modal propositional logic, the guarded fragment of FOL, ...)

o Variable-free syntax

o Used to be called « concept languages »:
from concept and role names (unary and binary predicates)
and a set of constructors

define complex concepts (more recently: complex roles)

o An ontology is a set of axioms that state inclusions between concepts
(and between roles)

M.-L. Mugnier — UNILOG School — 2018
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DESCRIPTION LOGICS: BUILDING BLOCKS (SYNTAX)

Vocabulary
Atomic concepts: Human, Parent, Student ...  (unary predicates)
Atomic roles: parentOf, siblingOf, ... (binary predicates)

Complex concepts and roles can be built using a set of constructors
(which depends on each particular DL)

conjunction (M), disjunction (L), negation (-)
Human I -Parent Female | Male

restricted forms of existential and universal quantification (3,V)
dparentOf.(Female I Student) YV parentOf.Male

inverse of a role (7), composition of roles (o)

JparentOf parentOf o parentOf
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DESCRIPTION LOGICS: BUILDING BLOCKS (SEMANTICS)

To each concept is assigned a FOL sentence with free variable x

Human Human(x)
Human I -Parent Human(x) A-Parent(x)
dparentOf.(Female I Student) dy (parentOf(x,y) A Female(y)

A Student(y))
V parentOf.Female Vy (parentOf(x,y) = Female(y))

To each role is assigned a FOL sentence with 2 free variables x and y

parentOf o parentOf dz (parentOf(x,z) A parentOf(z,y))

M.-L. Mugnier — UNILOG School — 2018
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DESCRIPTION LOGICS: KNOWLEDGE BASE

Knowledge Base = TBox (ontology) + ABox (factbase)

Tbox: axioms of the form CLE C2 Vx ( fol(C1) = fol(C2))
or r1Cr2 VxVy(fol(rl) - fol(r2))

Human E Male U Female Vx (Human(x) =2 Male(x) V Female(x))
Adult E - Child Vx (Adult(x) A Child(x) = 1)
Parent L 3 parentOf Vx (Parent(x) = 3y parentOf(x,y) )

HappyFather C ¥V parentOf.Female Vx (HP(x) 2 (V y(parentOf(x,y) 2 Female(y))

Human C 3 parentOf .Human Vx (Human(x) 2 3y (parentOf(y,x) A Human(y)))

parentOf o parentOf L ancestorOf VxVy (3 z(parentOf(x,z) A parentOf(z,y)) 2
ancestorOf(x,y)

Abox : set of ground facts parentOf(A,B), Female(A), ...
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DESCRIPTION LOGICS: STANDARD REASONING TASKS

Standard reasoning tasks on a KB (T,A)

o Concept subsumption TECED?

o Concept satisfiability is C satisfiable w.r.t. T ?

o KB satisfiability is (T,A) satisfiable ?

o Instance checking (T,A) F C(b), where b is a constant?

All these tasks can be expressed in terms of KB (un)satisfiability
provided that the constructors in the considered DL allow for it

Concept subsumption TH=CLED iff (T, {C(a),-D(a)}) unsatisfiable
Concept satisfiability C satisfiable w.r.t. T iff (T, {C(a)}) satisfiable
Instance checking (T,A) = C(b) iff (T,AU{-C(b)}) unsatisfiable

Query answering beyond instance checking?
cannot be reduced to the standard reasoning tasks
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EVOLUTION OF DLS

Standard expressive DL ALC

o Concepts: C :=T|A|CiNCy|3R.C|-C|CiUCy|VR.C

o TBox axioms: only concept inclusions

Satisfiability and instance checking in ALC are:
EXPTIME-complete in combined complexity
coNP-complete in data complexity

Even worse if we add inverse roles: 2EXPTIME-complete in combined complexity
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TWO COMPLEXITY MEASURES FOR QUERY ANSWERING PROBLEMS

Problem: Given a KB = (O, F), with O the ontology and F the factbase,
and a query q, is q entailed by the KB?

Combined complexity (usual complexity measure) ¢ g

q Boolean CQ, F factbase
The input is O, Fand g Does FEq?

NP-complete (combined)

Data complexity PTime (data)

The input is F
(O and g supposed to be fixed)

This distinction comes from database theory:
the size of the query is negligible compared to the size of the data
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EVOLUTION OF DLS

Standard expressive DL ALC

o Concepts:

C ::T|A|ClﬂCQ|E|R.C|—'C|01UCQ|VR.C

o TBox axioms: only concept inclusions

Satisfiability and instance checking in ALC are:

Even worse if we add inverse roles: 2EXPTIME-complete in combined complexity

EXPTIME-complete in combined complexity
coNP-complete in data complexity

Two factors led to the evolution of description logics:

1. practical use (e.g. SNOMED CT): people mostly use conjunction and existential
guantification

2. complexity too high for query answering problems

M.-L. Mugnier — UNILOG School — 2018
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NEw DLS WITH LOWER COMPLEXITY

DL-Liteg BiCBy, BiC-By S CS; S LC=S
Where Large ABoxes
Query answering
B :=A|38 S :=R|R
tL C1 C C
where Large TBoxes

Classification

C ::T|A|C1HCQ|E|R.C

Common feature: no disjunction (no « true » negation)

Then a satisfiable KB has a unique canonical model M:

For any Boolean CQ g, KB = g iff M is a model of g

Reasoning techniques for these lighter DLs
are very similar to forward or backward chaining in rule-base systems
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COMPLEXITY INTRODUCED BY DISJUNCTION OR NEGATION

KB (T,A)
A -V
T T C Blue u Other B -‘
A: Blue(A), Other(C), on(A,B), on(B,C) C

g(): Ix3y (Blue(x) A on(x,y) A Other(y))

To answer g, we have to consider two cases:

in each model of the KB, either Blue(B) or Other(B) holds

Similarly if we replace T by: 7Blue C Other (equivalent axiom)

Note that Other L =Blue is harmless: it is just a disjointness constraint
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IN SUMMARY

DL ontology (TBox) has axioms of the form

Vx (fol(C,) = fol(C,))

VxVy (fol(r,) = fol(r,)) where fol(r) is a path of atomic roles or their inverses

DLs essentially satisfy the tree model property:

if a KB is satisfiable then it has a « tree-shaped » model

With the new DLs: left and right parts of the implication are both
existentially quantified conjunctions of atoms

called « Horn description logics »

M.-L. Mugnier — UNILOG School — 2018
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WHY « HORN DLS » ON AN EXAMPLE

EL Axiom CM3R.TC 3S3R.B
FOL translation  Va((C(z) A IyR(z,y)) — Fu(S(z, u) A Fo(R(u,v) A B(v))))
VaVy((C(z) A R(z, ) — Fudv(S(z, u) A R(u,v) A B(v)))
prenexform — yr3u3uVy(~C(z) V ~R(z,y) V (S(x,u) A R(u,v) A B(v)))

Let us skolemize (u and v resp. replaced by f,(x) and f,(x)):

VzVy(=C(z) V =R(z,y) V (S(z, f1(2)) A R(fi(z), f2(2)) A B(f2(2))))

we obtain a set of 3 Horn clauses (with skolem terms)
(=C(@)V-R(z,y)VS(z, fi(z))) (-C(z)V-R(z,y)VR(f1(z), f2(z))) (~C(z)V-R(z,y)AB(f2(2))))

Hence the name Horn description logics
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EXISTENTIAL RULES

VX VY (Body [X,Y] 2 3 ZHead [X,Z]) |X,VY,2Z:

\/, sets of variables

any positive conjunction (without functional symbols except constants)

Vx (actor(x) 2 Iz play(x,z))
Vx Vy ( siblingOf(x,y) 2 I z (parentOf(z,x) A parentOf(z,y)) )

we often simplify by omitting universal quantifiers

Key point: ability to assert the existence of unknown entities
Crucial for representing ontological knowledge in open domains

See « value invention » in databases
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DATA / FACTS

Relational database

Abstraction in first-order logic (FOL)

We generalize here
the classical notion of a fact
by allowing existential variables

fact / factbase =
existentially closed conjunction of atoms
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LABELLED HYPERGRAPH / GRAPH REPRESENTATION

o A fact or a set of facts can be seen as a set of atoms

— hence a hypergraph
or its associated bipartite (multi-)graph

* one (labelled) node per term
* one (labelled) node per atom (~ hyperedge)

* totally ordered edges

/p(x,y,a,X), r(x,y) \

M.-L. Mugnier — UNILOG School — 2018
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[ G G G\ ™
actor actor actor
1 1 1
a b C

b c
1 1 YA g3
1 a“’ S &
play play pI?D
2 2 2 m1 | | m2
m1l m2 movie movie movie
1 1

If predicates are at most binary:
atom nodes can be replaced by labels and directed edges
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GRAPH HOMOMORPHISMS (1)

* LetG,=(V,E,)to G,=(V,,E,) be classical graphs.

Homomorphism h from G, to G,: mapping fromV, to V, s. t.
for every edge (u,v) in E;, (h(u),h(v)) isin E,

M.-L. Mugnier — UNILOG School — 2018
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GRAPH HOMOMORPHISMS (2)

* LetG,=(V,E,)to G,=(V,,E,) be classical graphs.

Homomorphism h from G, to G,: mapping fromV, to V, s. t.
for every edge (u,v) in E;, (h(u),h(v)) isin E,

e If there are labels: they have to be “kept” as well

/ actor actor actor \

b c
2 2/ \' o
< _Qf \« -
m1 | | m2
movie Qwie movie movie /
q F
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GRAPH HOMOMORPHISMS (3)

* LetG,=(V,E,)to G,=(V,,E,) be classical graphs.

Homomorphism h from G, to G,: mapping fromV, to V, s. t.
for every edge (u,v) in E;, (h(u),h(v)) isin E,

e If there are labels: they have to be “kept” as well

1 1 1
d C

, b
1] 1 1 .
@ play play @éD
2 2 2 2
m1l m2
1

1 1 1
q
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GRAPH VIEW OF EXISTENTIAL RULES

VX VY ( Body [X,Y] > 3 Z Head [X,Z] )

graph graph

Vx Yy ( siblingOf(x,y) 2> I z (parentOf(z,x) A parentOf(z,y)) )

X 2 X
I @ p
S
S V4
1
2 ° y P
y 2

The rule head has 2 kinds of variables:
- frontier: shared with the body
- existential (new "blank’ nodes)

M.-L. Mugnier — UNILOG School — 2018
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GENERATION OF FRESH (UNKNOWN) INDIVIDUALS

R = Vx Vy (siblingOf(x,y) = I z (parentOf(z,x) A parentOf(z,y)))

F = siblingOf(a,b) F R
a |*=
R is applicable to F if there is a homomorphism h D
from body(R) to F S a S S
y2>b
b |&= P

Applying R to F w.r.t. h produces F U h(head(R))
where a new variable is created for each existential variable in R

F’=1320 ( siblingOf(a,b) A parentOf(z0,a) A parentOf(z0,b) ) a

b P
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EXISTENTIAL RULE FRAMEWORK (LOGICAL / GRAPHICAL)

Conjunctive Queries q(x) =3y (movie(y) A play(x, y))

« Pure » existential

Vx (‘actor(x) 2 3 z (movie(z) A play(x,z)) )

rules
Equality rules Vx Yy Vz ( movie(y) a director(x,y) A director(z,y)
2> X=2)
N s ey YX (movie(x) A person(x) > L)
movie(m1)
play(a,m1)
play(c, x)
M.-L. Mugnier — UNILOG School — 2018

49



MULTIPLE THEORETICAL FOUNDATIONS

Conceptual logical
Graphs translation
[Sowa 1984]
[Chein Mugnier . .
- , B 2
1992, 2009] V 3 -rules, existential Rules [Baget+ IJCAI 2009]
Datalog+/- [Cali+ PODS 2009]
+/«va/ue A . .
Datalog (70-80s) invention » p «unrestricted cycles » on variables

+ unbounded arity

Lightweight Description Logics,
e.g. OWL 2 tractable profiles
More generally, Horn DLs

 Same logical form as « Tuple-Generating Dependencies » (TGDs)
long studied in relational databases
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EXISTENTIAL RULES ARE MORE EXPRESSIVE THAN HORN-DLS

¢ The FOL translation of Horn DLs yields existential rules

¢ Existential rules are strictly more expressive:

siblingOf(x,y) = Jz ( parentOf(z,x) A parentOf(z,y) ) p
S z
cannot be expressed in most DLs because of the « cycle on
variables » D
y

(needs role composition: sCpop)

More complex interactions between variables cannot be expressed at all in DLs

¢ The unbounded predicate arity allows for more flexibility:
—> direct translation of database relations

- adding contextual information is easy (provenance, trust, etc.)

Unsurprisingly, this added expressivity has a cost
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EXISTENTIAL RULE FRAMEWORK

Conjunctive Queries o Fundamental decision problem

Input: A= (F, R) knowledge base

« Pure » existential g Boolean conjunctive query

rules Question: is q entailed by A ?

Equality rules

o This problem is not decidable
f.i. [Beeri Vardi ICALP 1981] on TGDs

Negative Constraints : :
even with a single rule [Baget & al. KR 2010]

> find « decidable » classes of rules
with good expressivity/tractability tradeoff
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(PARTIAL) MAP OF DECIDABLE CLASSES

Since 2008 VStickyJon

sticky-join
w-sticky v

jointly-fg

weakly
frontier-guarded

/N

weakly- frontier-
guarded  guarded

AV

guarded frontier-1

wa-GRD 7 jointly-
acyclic

__

weakly- acyclic \
acyclic Graph of Rule Dependencies |

2003 2004 '

atomic

\ \ \ ? -
SUINES
datalog % g
1970s DL-Lite, 2%

M.-L. Mugnier — UNILOG School — 2018 53



FUNDAMENTAL NOTIONS FOR REASONING IN FOL(3,A)

o Back to the positive conjunctive existential fragment of FOL: FOL( 3 ,A)
o Allows to express facts and (Boolean) conjunctive queries

o Such formulas can be seen as sets of atoms, labelled graphs, relational
structures, ...

o Homomorphism is a fundamental notion in this fragment:

* Aninterpretation J is a model of a sentence fiff thereisahomomorphism
from fto J

* One can define homomorphisms between interpretations. Then:
If I, maps to I, then, for any f, I, model of f = I, model of f

* To aformula f, we assign its isomorphic model M(f) (aka canonical model)
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MODEL ISOMORPHIC TO A FOL( 3,A) FORMULA

To a formula fin FOL(3,A), we assign its isomorphic model M(f)
also called canonical model

f=3x3y3Az(p(xy) A ply,z) A r(x,z,a))
4 I
M(f): D = {dx, dy, dz, a}

pM® = { (dx,dy), (dy,dz) }

M(f) = { (dx, dz, d
_ r { (dx, dz, da) } )

The canonical model M(f) is universal: for all M’ model of f, M(f) maps to M’

forany fand gin FOL(3,A), g Ff iff M(g)is a model of fiff f mapsto g
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ADDING RANGE-RESTRICTED (= DATALOG) RULES TO FACTS

XK = (F, R) where

‘R is a set of range-restricted rules (i.e., var(head) Svar(body))

F is a factbase (rules with an empty body): ground atoms

By applying rules from R starting from F, a unique result is obtained:

the saturation of F (denoted by F*)
F*is finite since no new variable is created

F*is a core (no redundancies)

The nice properties of FOL(3,A) are kept:

F* is a universal model of K

Hence: forany CQgq, K = q iff g maps to F*
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KNOWLEDGE BASES WITH EXISTENTIAL RULES

X = (F, R) where
‘R is a set of existential rules

F is a factbase (rules with an empty body): existential conjunctions of atoms

Main change: F* can be infinite

-

~

R = person(x) = 3y hasParent(x,y) A person(y)

F = person(a)

A person(y0) A hasParent(a, y0)

A person(yl) A hasParent(yO, y1) Etc.

\_ /

but it remains a universal model

hence K = q iff g mapsto F*
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APPROACH 1 TO RULES : FORWARD CHAINING / MATERIALISATION

5 « bottom-up »
@ K=(F ®) « chase » (TGDs)

[@ K = q Iff g maps by homomorphism to F*

Pros: materialisation offline, then online query answering is fast

Cons: volume of the materialisation
needs writing access rights to the data
not feasible if data is distributed among several databases
not adapted if data change frequently
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EXAMPLE (MATERIALIZATION)

Vx (movieActor(x) =2 d z (movie(z) A play(x,z)))

movie(m1) movie(z0) q(x) =3y (movie(y) a play(x, y))
movie(m2
movieExO)) play(b.z0) « find those who play in a movie »

movieActor(a)
movieActor(b)

play(a,m1)

play(a,m2) X =g y=m1

play(c,x0) Saturation v =7 y =m2
x=b y=2z0
x=c y=x0
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APPROACH 2 TO RULES : BACKWARD CHAINING / QUERY REWRITING

_ « top-down »
@ — R K= (F ) decomposition into
2 steps [DL-Lite]

U o W Rewriting into a set of CQs, seen as a
oo et eee et ee e et e et meeee e eegeeeteeemeeeee union of conjunctive queries (UCQ)

\@’/@ and more generally into a

« first-order » query (core SQL query)

Query rewriting is independant from any factbase. For any F,
F,REqiff F=Q (ie.,if QisaUCQ: thereis g, € Qwith F=q,)

Pros: independent from the data
Cons: rewriting done at query time, easily leads to huge and unusual queries
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EXAMPLE

Vx (movieActor(x) =2 3 z (movie(z) A play(x,z)))

movie(m1) q(x) = 3y (movie(y) A play(x, y))
movie(m?2)
movie(x0) « find those who play in a movie »

movieActor(a)
movieActor(b)
play(a,m1)

play(a,m2) [ e e m e —— - == ———————————
play(c,x0)

X =a y =m1 X =2
XxX=a y=m2 x =b
X=C y = x0
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BACKWARD CHAINING SCHEME

Basic step:

Unification by a unifier u (of g’ and h’)

!

Query rewriting

___Body
New query X

Direct rewriting of gwith Randu=  u(q \q)) U u(body(R))
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BASIC PROPERTIES (1)

Let F, be obtained from F, by the application of Rule R
Let a query Q, that maps to F, by a homomorphism that uses at least one atom
brought by R

Then there is Q,, a direct rewriting of Q; with R, such that Q, maps to F;

direct rewriting with R
Qz <

I
‘ application of R
>

and

lh1 h, uses F2\F1

The reciprocal property holds
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BASIC PROPERTIES (2)

Let Q, be a direct rewriting of Q; with Rule R
Let F, be a factbase such that Q, maps to F,

Then there is an application of R to F1 that produces F2 such that Q, maps to F,

direct rewriting with R
®- @
i

I
‘ application of R
> F,
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EQUIVALENCE DERIVATION / REWRITING SEQUENCES

Q
< For any conjunctive query g, for any factbase F,

for any set of rules:

I |n
. there is a homomorphism from g to F’, where F’is obtained
from F by a rule application sequence of length < n

S.t. hyuses F,\ F;
® 0
LA

—> F,

iff

there is a homomorphism from g’ to F, where g’ is obtained
from g by a rewriting sequence of length <n
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TAKING INTO ACCOUNT EXISTENTIAL VARIABLES IN RULE HEADS (1)

o We want a complete set of sound rewritings (set of CQs):
g;s.t. foranyF,if Fi=q;then F,X=q

R = person(x) = 3y hasParent(x,y)
q = hasParent(v,w), dentist(w)

u={x~v,y>w}

.

rew(g,R,u) = g; = person(v), dentist(w)

N

/

\_

g; is unsound:
F = person(Maria), dentist(Giorgos)

F = q; however (F,{R}) does not entail g

~

)

(1) If win g is unified with an existential variable of R, then all atoms in
which w occur must be part of the unification

M.-L. Mugnier — UNILOG School — 2018

66



TAKING INTO ACCOUNT EXISTENTIAL VARIABLES IN RULE HEADS (2)

-

qa = r(v,w), s(w,w)
u={xrv,zl~w,z2 »w}

rew(q,R,u) = g; = p(v)

\

R=p(x) 2> Az13z2r(x,z1), r(x,22), s(z1,22)

/

s 2
g; is unsound:
F=p(a)
F = q; however (F,{R}) does not entail g
\ Y

(2) An existential variable of R cannot be unified with another term in head(R)
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PIECE-UNIFIER (FOR BOOLEAN CQS)

A piece-unifier u of ¢”< g and h’ € head(R)

is a substitution of var(q’ + h’) by terms(q’+ h’)  [if x is unchanged, we write u(x) = x]
such that :

o u(q’)=u(h’)
o existential variables of h” are unified only with variables of g’ that do not occur in (g \ q’)

(i.e., if x is existential and u(x) = u(t), then t is a variable of g’ and not of (q \ q’))

Query q Rule R

qi
@ variables shared by m
q’and (g \ q’)
<l

hi
To extend the notion to general CQs:
universal variables cannot be unified with answer variables
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EXAMPLE

R =twin(x,y) 2 3z motherOf(z,x) A motherOf(z,y)

g = motherOf(v,w) A motherOf(v,t) A Female(w) A Male(t) ?

R = twin(x,y) 2 3z motherOf(z,x) A motherOf(z,y)

g = motherOf(v,w) A motherOf(v,t) A Female(w) A Male(t) ?

piece-unifieru,={z = v, x> w,y t}

rewrite(qg,R,u,) = twin(w,t) A Female(w) A Male(t)

R =twin(x,y) 2 Iz motherOf(z,x) A motherOf(z,y) If we rewrite again
this query we could

g = motherOf(v,w) A motherOf(v,t) A Female(w) A Male(t) ? .
remove the first atom

piece-unifieru; ={z~ v, x> W,y = w}

rewrite(g,R,u;) = motherOf(v,t) A Female(w) A Male(w) A twin(w,w)
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WHAT IF WE SKOLEMIZED RULES?

é N

R = person(x) = Iy hasParent(x,y) g;is unsound: )

g = hasParent(v,w), dentist(w) F = person(Maria), dentist(Giorgos)
u={xrv,yrw}
rew(q,R,u) = g, = person(v), dentist(w)

. /

Skolem(R) = person(x) = hasParent(x,f(x))

F = q; however (F,{R}) does not entail g

N J

Classical most general unifier of hasParent(x,f(x)) and hasParent(v,w): v~ x and w - f(x)

rew(qg,R,u) = dentist(f(x)) A person (x) which cannot be unified with a rule head
(would not be kept in the ouput since it contains a skolem function

We could skolemize the rules and rely on usual m.g.u.
then keep only rewritings without skolem function
but this would create useless intermediate rewritings
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WHY « PIECES »?

A piece is a unit of knowledge brought by a rule:

o Frontier variables (and constants) act as cutpoints to decompose rule heads
into pieces (« minimal non-empty subsets glued by existential variables »)

R=Db(x)=> Iy Iz p(xy) A p(y,z) A p(z,x) A q(x,X)

o Arule with k pieces can be decomposed into k rules, one for each piece, while
keeping the same body

b(x)=> Jy3Iz p(xy) A ply,z) A p(z,x)
b(x)=>q(x,X)

o It cannot be further decomposed (except by introducing new predicates)
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DECOMPOSITION OF RULES INTO ATOMIC HEAD RULES (1)

R: b(x)=> Iy Iz p(x,y) A ply,z) A p(z,x) rule with single-piece head

Decomposition into rules with atomic head
by introducing a fresh predicate

Ryt b(x) 2 Iy3Iz pg(x,y,2) We lose the structure of the head

Ry: pa%y,2) > px,y) * much less efficient query rewriting

. * may even lead to lose the property
Ryt Prixy2) = ply,z) of having a finite universal model
(if the set of rules has this property)

X
w

. pR(lerZ) % p(ZIX)
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DECOMPOSITION OF RULES INTO ATOMIC HEAD RULES (2)

F:p(ab) R:p(xy)> Izplyz), plzy) F?=F'  (Ffmapsto F')
Foi ' hence F*= F’
a—abT——> 7z, =12, .. -
“‘ Finite universal model
F? | 22 |

After decomposition into atomic head rules:

Ro:ploy) > Jzpily2)  p . F2 % !
— T—
Rl . pR(yrZ) 9 p(ylz) d —> b —> ZO <__> Zl L. .
€ No finite universal
R2 . pR(y;Z) - p(zly) llT model
Zy
F? | J
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OVERVIEW OF THE LECTURE

Part 1: Basics

Part 2: KR formalisms and algorithmic approaches

Part 3: Decidability issues in the existential rule framework

Undecidability of the fundamental problem

Generic properties that ensure decidability

Main « concrete » decidable classes of existential rules
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SATURATION MAY NOT HALT

R = person(x) = hasParent(x,y) A person(y)

F = person(a)
A person(y0) A hasParent(a, y0)

A person(yl) A hasParent(yO, y1)

No redundancies are added
The KB has no finite universal model

However, here: query rewriting with R is finite for any g
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QUERY REWRITING MAY NOT HALT

R = friend(u,v) A friend(v,w) = friend(u,w)

q = friend(Giorgos,Maria)

q, = friend(Giorgos, vO) A friend (vO,Maria)

d, = friend(Giorgos, v1) A friend(v1, vO) A friend (vO,Maria)
d, and g,

are equivalent
g, = friend(Giorgos, v0) A friend(v0, v1) A friend (v1,Maria) d

d3 = friend(Giorgos, v2) A friend(v2, v1) A friend(v1, vO) A friend (v1,Maria) Etc.
There is an infinite number of non-redundant rewritings
However, here: saturation with Ris finite for any F

There are cases where both processes do not halt
(even if the factbase is known)
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UNDECIDABILITY OF THE FUNDAMENTAL PROBLEM

Fundamental decision problem
Input: K= (F, /&) knowledge base, g Boolean conjunctive query
Question: is g entailed by K ?

This problem is undecidable (only semi-decidable)

E.g. proof by reduction from the word problem in a semi-Thue system

Input: a set G of rules of the form w; 2> w;, 2 words w, and w

Question: is it possible to derive (exactly) w; from w, using the rules in G?

There is a one-step derivation from a word w to w’ if
there is arule w; 2 w;in G, and w = w,ww,, W' = w,w,w,

w’ is derived from w if
there is a (finite) sequence of one-step derivations from w to w’
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REDUCTION FROM THE WORD PROBLEM

From G, w, and w; we build a KB (F, /&) and a Boolean CQ q

Vocabulary constants: the letters occuring in G, w, and w;
+ two special constants B and E
binary predicates: succ and val

To a word w = a,...a, we assign the following graph T(w,x,y)

where the z, are existential variables and x,y are free
( ) succ succ
val
a

Factbase F =T(w,, B,E)  Query q=T(wj, B, E)

sSucc

Set of rules Cis obtained by translating each rule w, > w; into the existential rule
Vx Vy (T(w;,x,y)> T(w;,x,y))

Key: any word w derivable from w, with G corresponds to a path T(w, B, E)

in the saturation of F by R, and reciprocally _
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(PARTIAL) MAP OF DECIDABLE CASES

w-sticky-j

fmlte UCQfewrltmg bounded treewidth
sticky-join

saturation

_—— e -

jointly-fg X
\ weakly |
\ frontier-guarded \
"\‘Neakly- frontier- |
dquarded  guarded

\
\
\
\

\ guarded

I
frontier-1/
_/\/ SN e /,’
atomic s P
/ body (Ilngar)

R .
\ N
\
Y
1
\
1
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| -
~ DLLj je«
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GENERIC PROPERTIES THAT ENSURE DECIDABILITY

Three generic kinds of properties ensuring decidability:

- Saturation by Forward Chaining halts for any factbase
(« finite expansion set », fes)

- Query rewriting halts for any conjunctive query
(« finite unification set », fus, or UCQ-rewritability)

- Saturation by Forward Chaining may not halt but for any factbase
the generated facts have a tree-like structure (« bounded treewidth set », bts)

None of these properties is recognizable [Baget+ KR 10]

but these properties provide generic algorithmic schemes
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Main Classes with Finite Saturation (fes)

| ' ' GRD with fes
Acyclic existential strongly
dependency graph connected
[Krétzsch+ % components

IJCAI’ 11]

[Baget KR’ 04]

Acyclic position
dependency graph

[Deutsch+ ICDT’ 03]
[Fagin+ ICDT 03]

Acyclic Graph of
Rule Dependencies

[Baget KR™ 04]

No existential variables

Position dependency graph: nodes are positions in predicates
edges show how existential variables are propagated

Graph of rule dependencies: nodes are rules

edges express that a rule may lead to trigger a rule
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WEAK-ACYCLICITY

Position dependency graph
nodes: positions (p,i) in predicates
edges: for each frontier variable x in position (p,i) in a rule body
- an edge from (p,i) to each position (q,j) of x in the rule head
- a special edge from (p,i) to each position of an existential in the rule head

R is weakly-acyclic if its position graph contains no circuit with a special edge (*)

R p(x) = Ay r(x,y) Aaly) Ri:p(x) > IyIzr(x,y) Arly,z) Ar(z,x)
R,: r(x,y) = p(x) R,: r(x,y) A r(y,x) > p(x)

@'@ not weakly acyclic

special edge (p,1) = (r,1) due to R,

@ ' @ edge (r,1) = (p,1) due to R,

weakly acyclic
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ACYCLIC GRAPH OF RULE DEPENDENCY

Graph of Rule Dependencies
nodes: the rules
edges: an edge from R; to R; if an application of R; may lead to trigger a new
application of R; (« R;depends on R; »)

Dependency can be effectively computed by checking if there is a piece-unifier of
body(R;) and head(R))

Ri:p(x) > Ty r(xy) Aqly) Ri:p(x) > IyIzr(xy) Ar(y,z) Ar(z,x)
R,: r(x,y) = p(x) R,: r(x,y) Ar(y,x) = p(x)

Cyclic GRD since R, and R, @ @
depend on each other

These examples show that weak-acyclicity and acyclic GRD are incomparable criteria
Common generalizations of these two notions have been defined
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Main Classes with Finite Query Rewriting (fus)

[Cali+ RR’ 10]

Restricts multiple Each head atom contains
occurrences all or none of

of body variables the body variables
that do not occur [Baget+ LJCAI’ 09]

in all head atoms
[Cali+ Domain-
PVLDB 2010] restricted

Each head atom contains all the

E.g. inclusion dependencies, bodyvarlables .................. E

necessary properties of E.g. concept product
concepts / relations Elephant(x) A Mouse(y) = bigger-than(x,y)

Body restricted
to a single atom

[Baget+ IJCAI’ 09]

= linear Datalog+
[Cali+ PODS 2009]

E.g. Human(x) = parentOf(y,x) A Human(y)

is atomic-body, sticky and domain-restricted
M.-L. Mugnier — UNILOG School — 2018 84



Decomposition Tree / Treewidth

p(a,b) q(b,z0) r(a,b,t0) p(b,t0) g(t0,z1) r(b,t0,t1) p(a,b)

p(t0,t1)
z0 - z1 -
q q

node

edge
Decomposition tree q(t0,z1) r(b,t0,t1)
1) each node (term) appears in a bag p(t0,t1)

2) each hyperedge (atom) has all its nodes in a bag
3) for each node x, the subgraph induced by the bags containing x is connected

Width of a tree decomposition = max number of nodes in a bag (minus 1)
Treewidth of a graph = min width over all decomposition trees of this graph
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Bounded Treewidth of the Derived Facts (bts)

Essentially [Cali Gottlob Kifer KR’08]

Ris bts if the forward chaining with /& generates facts with bounded treewidth:

i.e., for any factbase F, there is an integer b s.t.
any factbase & -derived from F has treewidth bounded by b

______

- =~

________

- =~

~~~~~~
______

- -

~< -

~
S<o -

fes (finite saturation) is included in bts
(bound given by the number of terms in the finite saturation)

The decidability proof does not provide a halting algorithm
(relies on the bounded treewidth model property [Courcelle 90])
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Some Recognizable bts (and not fes) Classes of Rules

Frontier: variables shared weakly Guard only affected variables
by the body and the head frontier from the frontier

guarded [Baget+ KR 10]
Guard only the frontier

[Baget+ KR 10] Guard only affected
variables
r(x,y) A r(y,z) = frontier (i.e.possibly mapped

r(y,u) A r(z,u) guarded gvrjea?'o(l:eyd to new existentials)

The frontier
has size 1

[Cali+ KR 08]

[Baget+ JCAI’ 09] ~ datalog

An atom in the body
guarded guards all the body
variables [Cali+ KR’ 08]

frontier

1

r(x,y) A r(y,z) A r(x,z) 2 Jur(z,u) r(x,y)Ar(yz)as(xyz)=> Jur(y,u) A r(z,u)

These classes are moreover « greedy bts » => a halting algorithm [Baget+ IJCAI’ 11]
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Greedy bts

R1 = p(X,y) 9 1z p(y,Z)
R, = p(Xy) A a(x,z) =2 Ftr(x,y,t) A p(y.t) p(a,b)

F = p(a,b)

p(t0,t1)

Greedy construction of a decomposition tree of derived facts

with bounded width
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The « Greedy bts » Property [Baget+ 1JCAI' 11]

For any factbase, for each rule application,
frontier variables not being mapped to initial terms are jointly mapped to
variables occurring in atoms added by a single previous rule application

Derived facts Decomposition tree

T, = terms(F) + {constants}
All bags contain TO

h(H)
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Main Ideas of the Algorithm for gbts (1)

Build a finite decomposition tree that encodes a potentially infinite fact

1. Bag pattern = { homomorphisms from part of a rule body to « current fact »
that use some terms of the bag }

 Aruleis applicable to the current factbase iff a bag pattern contains its body
* FCcan be performed on the decorated tree

2. Equivalence relation on bags

Only one bag per equivalence class is developed
The other nodes are blocked

Bounded number of equivalence classes =2 finite « full blocked tree » T*
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Main Ideas of the Algorithm for gbts (2)

Query this finite decomposition tree

[Baget+ IJCAI 2011] g added as a rule « g = match »

q is entailed iff match occurs in a bag pattern
i.e., g maps by homomorphism to atoms(T*)

[Thomazo+ KR 2012] offline /online separation
(1) compilation: tree T* built independently from any query

(2) querying: any q is entailed iff it maps by *-homomorphism to T*
i.e. ¢ maps by homomorphism to a bounded « development » of T*
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Data Complexity of gbts Classes

weakly
frontier
guarded

llllllllllllllllllllllllll
L

frontier
LY
guarded guarded
ExpTime-c
ttananman h.{ ............................
N PTime-c

Datalog

fror;tier guarded (fes)

Previous algorithm is worst-case optimal on gbts
for data / combined complexity.
Can be specialized to be optimal on these gbts subclasses
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CONCLUSION

* Reasoning with ontologies is becoming central in many data-centric
applications

* Solid theoretical foundations with a range of ontological formalisms
that offer various tradeoff expressivity/complexity

* Ongoing research

Go beyond (unions of) conjunctive queries, e.g. combine them with

navigational queries like regular path queries

New query rewriting techniques that target more powerful
langages, e.g. Datalog

New query answering techniques that combine materialisation and
guery rewriting

Study the interaction of the ontology with mappings, which is key
to efficient query answering over heterogeneous data
Representing and reasoning with temporal and spatial data

Dealing with data inconsistencies
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APPENDIX: FURTHER DETAILS

o Fundamental definitions and properties for the FOL(3,A) fragment

o Piece-unifiers
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INTERPRETATIONS / MODELS (1)

o

o

o

o

Vocabulary V= (P, ), where

P = finite set of predicates

C = set of constants
Interpretation I = (Dy, ) of 'V, where

D;#0

(domain)

forallcinC, c’in Dy
for all p in P with arity k, p! QDIk

Furthermore, unique name assumption: for allcand din C, ¢ # d!

Simplifying assumption (in line with the unigue name assumption):

C € D;andforallcin C,cf=c

\_

4 V=({pg 13} {a, b})

I:

D;={a, b, d;}

p’ = {(b, a), (b, dy), (dy, b)
r’={(dy, dy,a)}

~

}

)

Jis a model of f (built on V) if fis true in T
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INTERPRETATIONS / MODELS (2)

o Letfin FOL(3,A). Jis a model of fiff
there is a mapping v from terms(f) to D? such that

forall p(ey, ..., &) inf, (v(e,), ..., v(e,)) in p’

I: D;={a,b,d}  p’={(b,a), (b, dy), (dy, b)}
r’ ={(d,, dy, a)}
f=3x3yAz(px,y)Apy,z)ArX z a))

Vv x—d, y»b zed Y,

O Interpretations can be seen as sets of atoms
(with elements from D \ Cseen as variables)

| p(b.2). PlbX,). P(X,D), T(xy, X8) |

o 7 isamodel of fiff there is a homomorphism from fto J
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HoOMOM

o Oneca

ORPHISMS AGAIN AND AGAIN

n define homomorphisms between interpretations

o We have:

o Toafo

If I; maps J, then, for any f, I, model of f = I, model of f

rmula fin FOL(3,A), we assign its isomorphic model M(f)
(also called canonical model)

\_

/f= Ax3dy3z(p(xy) A ply,z) Ar(xza)) \

M(f): D = {dx, dy, dz, a}

pM = { (dx,dy), (dy,dz) }
rM(f) = { (dx, dz, da) }
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NICE SEMANTIC PROPERTIES OF FOL( 3 ,A)

o The canonical model M(f) is universal, i.e., for all M” model of f, M(f)
maps to M’

Proof: Let M” model of f. Then, f maps to M’. Since M(f) isomorphic to f, M(f)
maps to M’

o gkEf (i.e., every model of g is a model of f) iff
f maps by homomorphism to M(g) iff

f maps by homomorphismto g

Proof:
= Assume g E f. In particular M(g) is a model of f, hence f maps to M(g)

< Assume f maps to M(g). Since M(g) is universal: for any M’ model of g,
fmaps to M’, i.e., M"is a model of f, henceg E f
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WHY « PIECES » ? (CONT’'D) — PIECE-UNIFIERS

o Unification must « map » parts of g according to « pieces » that can be
provided by a rule application

(otherwise it is unsound or useless)
oy )

specialization of the frontier l

The terms of g unified with the frontier ®
(or with constants) cut g into « pieces » ‘.
=> entire « pieces » of g must be mapped homomorphism I

to the pieces of the rule
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PIECE-UNIFIER: ALTERNATIVE DEFINITION

Let u,: frontier(R) = frontier (R) U constants
(uq is a specialization of the frontier of R) .’

Let u, be a homomorphism from g’ < g to uq(head(R)) U, l

Cutpoints: terms of g” mapped to u,(frontier(R))
or to constants

The cutpoints cut g into « pieces »

uq,+u, is a piece-unifier if g’ is composed of pieces
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