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ABSTRACT. With the growing popularity of the World Wide Web (Web), large volumes of data
are gathered automatically by Web servers and collected in access log files. Analysis of server
access data can provide significant and useful information. In this paper, we address the prob-
lem of Web usage mining, i.e. mining user patterns from one or more Web servers for finding
relationships between data stored [COO 97], and pay particular attention to the handling of
time constraints [SRI 96]. We adapt a very efficient algorithm for mining sequential patterns in
the “market-basket” approach [MAS 98], to this particular context.

Avec la du World Wide Web (Web), de grandes d’information
sont automatiquement par des serveurs Web et stoc dans des fichiers access log.
L’analyse de ces fichiers peut fournir des informations pertinentes et utiles [COO 97]. Dans
ce papier nous abordons le pr de l’analyse du comportement des utilisateurs avec une
attention e la prise en compte de contraintes de temps [SRI 96]. Nous adaptons un
algorithme efficace de recherche de motifs [MAS 98] pour des
tions dans les issues de serveurs Web.

KEYWORDS: sequential pattern, Web usage mining, data mining.

MO : motifs analyse du comportement des utilisateurs, fouille de

Networking and Information Systems Journal. Volume X - n X/2000, pages 1 X



2 Networking and Information Systems Journal. Volume X - n X/2000

1. Introduction

With the growing popularity of the World Wide Web, large volumes of data such
as addresses of users or URLs requested are gathered automatically by Web servers
and collected in access log files. Analysis of server access data can provide significant
and useful information for performance enhancement, restructuring a Web site for
increased effectiveness, and customer targeting in electronic commerce. Discovering
relationships and global patterns that exist in large files or databases, but are hidden
among the vast amounts of data is usually called data mining.

Motivated by decision support problems, data mining, also known as knowledge
discovery in databases, has been extensively addressed in the few past years (e.g.
[AGR 93, AGR 94, BRI 97, FAY 96, SAV 95, TOI 96]). Among the issues tackled, the
problem of mining association rules, initially introduced in [AGR 93], has recently re-
ceived a great deal of attention [AGR 93, AGR 94, BRI 97, FAY 96, SAV 95, TOI 96].
Association rules could be seen as relationships between facts, embedded in the
database. The considered facts are merely characteristics of individuals or observa-
tions of individual behaviours. Two facts are considered as related if they occur for
the very same individual. Of course such a relationship is not relevant if it is observed
for very few individuals but, if it is frequent, it could be an interesting knowledge for
decision makers who attempt to draw general lessons from particular cases. The prob-
lem of mining association rules is often referred to as the “market-basket” problem,
because purchase transaction data collected by retail stores offers a typical application
groundwork for discovering knowledge. In such a context, an association rule could
be, for instance, “ of customers who purchase items A and B also purchase C”.
In [AGR 95], the problem of mining association rules has been refined considering a
database storing behavioural facts which occur over time to individuals of the studied
population. Thus facts are provided with a time stamp. The concept of sequential
pattern is introduced to capture typical behaviours over time, i.e. behaviours suffi-
ciently repeated by individuals to be relevant for the decision maker [AGR 95]. The
approach proposed in [SRI 96] extends previous proposal by handling time constraints
and taxonomies (is-a hierarchies).

Applying data mining techniques to the Web is called Web mining and can be bro-
ken in two main categories: Web content mining and Web usage mining [COO 97].
The former concern is discovering and organizing Web-based information. For in-
stance Agent approaches are used to autonomously discover and organize information
extracted from the Web [LIE 95, KNO 98, MOR 98, PAZ 96] and database approach-
es focus on techniques for integrating, organizing and querying the heterogeneous and
semi-structured data on the Web [ABI 97, MCH 97, CHA 94, FER 98]. Web usage
mining addresses the problem of exhibiting behavioural patterns from one or more
Web servers collecting data about their users. Web analysis tools [HYP 98] offer var-
ious facilities: reporting user activity such as number of accesses to individual files,
list of top requested URLs, hits per domain report, or address of users. However rela-
tionships among accessed resources or users accesses are not provided by such tools
which are still limited in their performance [ZAI 98].
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The groundwork of the approach presented in this paper is Web usage min-
ing. Our proposal pays particular attention to time constraint handling. To the
best of our knowledge, current Web mining systems do not support such capabili-
ties. In particular, we propose to adapt a very efficient algorithm for the “market-
basket” context [MAS 98], with the problem of Web mining. In our context, by
analyzing informations from Web servers, we are interesting in relationships such
as: 60 % of clients who visited
and in the same transac-
tion, also accessed within
30 days or 34 % of clients visited within the
20th September and the 30th October.

The rest of this paper is organized as follows. In section 2, the problem is stated
and illustrated. Our proposal is detailed in section 3 along with a brief review of a very
efficient algorithm, GSP [SRI 96], for finding sequential patterns in “market-basket”-
like problems. We also present some empirical results. Related work, presented in
section 4, is mainly concerned with mining of useful information from Web servers.
Section 5 concludes the paper and presents a brief overview of the implementation of
the WebTool System as well as future work.

2. Problem statement

This section, devoted to the problem statement, widely resumes the formal descrip-
tion of the Web usage mining proposed by [MOB 96] and enhances the problem with
useful information for handling time constraints proposed by [SRI 96]. A concrete
example is also provided.

2.1. Sequences in the Web mining context

An input in the file log generally respects the Common Log Format specified by
the CERN and the NCSA [CON 98], an entry is described as follows [NEU 96]:

The entry parameters are listed in Table 1.

Nevertheless, without loss of generality, we assume in the following that a log en-
try is merely reduced to the IP address which originates the request, the URL requested
and a time stamp.

Unlike the “market-basket” problem, where transaction is defined as a set of items
bought by a customer in a single purchase, each log entry in the Web mining is a sep-
arate transaction. As in [MOB 96], we propose to cluster together entries, sufficiently
close over time by using a maximum time gap ( ) specified by user.
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Variable Meaning
The name or IP address of the visitor.
Any information returned by identd for this visitor (default value: “-”).
The visitor identifier if available (default value: “-”).
Date (where date has the form Day/Month/Year).
Time (in the form hh:mm:ss).
The first line of the HTTP request made by the visitor
(e.g. PUT or GET followed by the name of the requested URL).
The code yielded by the server in response to this request (default value: “-”).
The total number of sent bytes (without counting HTTP header)
(default value: “-”).

Table 1. Entry parameters

Definition 1 Let be a set of server access log entries. Let be a set of all
temporal transactions. A temporal transaction , , is a triple

where for , is defined by ,
such that for , , , must be unique in ,

, .

From temporal transactions, data sequences are defined as follows:

Definition 2 A - is a list of UTs ordered according to transaction times.
In other words, given a set of transactions, a -

for is: , where , for . A
- - , or k-sequence for brevity, is a sequence of URLs (or of length ).

A UT-sequence, , for a visitor is called a data-sequence and is defined by:
where, for , , and stands for the set

of all temporal transactions involving , i.e. . The database,
, consists of a number of such data-sequences.

As a comparison with “market-basket” problem, UT-sequences are made up of
itemsets where each item is an URL accessed by a client in a transaction.

Definition 3 A UT-sequence is a sub-sequence of an-
other UT-sequence , noted , if there exist integers

such that , , ..., .

Example 1 Let us consider the following URLs accessed by a visitor :
, the UT-sequence of is A) (B C) (D) (E) . This
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means that apart from and which were accessed together, i.e. during a common
transaction, URLs in the sequence were visited separately. The UT-sequence =
(B) (E) is a sub-sequence of because (B) (B C) and (E) (E). However
(B) (C) is not a sub-sequence of since URLs were not accessed during the same
transaction.

In order to aid efficiently decision making, the aim is to discard non typical be-
haviours according to end user’s viewpoint. Performing such a task requires providing
data sub-sequence in the DB with a support value ( ) giving its number of ac-
tual occurrences in the DB1. In order to decide whether a UT-sequence is frequent or
not, a minimum support value ( ) is specified by user, and the UT-sequence

is said frequent if the condition holds.

The three following properties are inspired from association rule mining algorithm
[MUE 95] and are relevant in our context.

Property 1 (Support for Sub-Sequences)
If for sequences , , then because all transactions
in that support necessarily support also.

Property 2 (Extension of Infrequent Sets are Infrequent)
If a sequence is not frequent, i.e. , then any sequence ,
extending , is not frequent because according
to Property 1.

Property 3 (Sub-Sequences of Frequent Sequences are Frequent)
If a sequence is frequent in , i.e. , any sub-sequence
of is also frequent in because according to
Property 1. Note that the converse does not hold.

From the problem statement presented so far, discovering sequential patterns re-
sembles closely mining association rules. However, elements of handled sequences
are set of URLs (itemsets) and not URLs (items), and a main difference is introduced
with time concerns.

2.2. Handling time constraints

When verifying if a sequence is included in another one, transaction cutting en-
forces a strong constraint since only couples of itemsets are compared. The notion of
sized sliding window makes it possible to relax that constraint. More precisely, the

. A sequence in a data-sequence is taken into account only once to compute the support of a
frequent sequence even if several occurrences are discovered.
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user can decide that it does not matter if items were accessed separately as long as
their occurrences enfold within a given time window. Thus, when browsing the DB in
order to compare a sequence , supposed to be a pattern, with all data-sequences in

, itemsets in could be grouped together with respect to the sliding window. Thus
transaction cutting in could be resized when verifying if matches with .

Moreover when exhibiting from the data-sequence , sub-sequences possibly
matching with the supposed pattern, non adjacent itemsets in could be picked up
successively. Minimum and maximum time gaps, specified by user, are introduced to
constrain such a construction. In fact, for being successively picked up, two itemsets
must be occurred neither too close over time nor too far. More precisely, the difference
between their time stamps must fit in the range - - . One of the main
difficulties when verifying these time constraints is to take into account the possible
grouping of original items which satisfy the sliding window condition. In such a case,
the “composite” itemset which results from the union of different original itemsets is
provided with multiple time stamps. Thus verifying time constraints means referring
to a couple of time stamps: times of the earlier and latter transactions in the composite
itemset.

Definition 4 Given a user-specified minimum time gap (minGap), maximum time
gap (maxGap) and a time windowSize (windowSize), a data-sequence

is said to a sequence if there exist
integers such that:
1. is contained in , ;
2. - , ;
3. - - , ;
4. - - , .
The of , , is the fraction of all sub-sequences in supporting
. When holds, being given a value

, the sequence is called frequent.

Example 2 As an illustration for the time constraints, let us consider the following
data-sequence describing the URLs accessed by a client:

Time Url accessed

01/01/1999
02/02/1999
03/02/1999
04/02/1999
05/02/1999

In other words, the data-sequence is the following:
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maxGap

minGap

Figure 1. Illustration of the time constraints

windowSize windowSize

maxGapmaxGap

minGapminGap

Figure 2. Illustration of the time constraints

where each itemset is stamped by its access day. For instance, means that the
URLs E and F were accessed the 4/02/1999.

Let us consider a candidate sequence c= (A B C D) (E F G) and time con-
straints specified such as =3, =0 and =5. The candi-
date sequence is included in the data-sequence for the two following reasons:

1. the windowSize parameter makes it possible to gather on one hand the itemsets
and , and on the other hand the itemsets and in order to

obtain the itemsets and ,

2. the constraint minGap between the itemsets and holds.

Considering the integers in the Definition 4, we have
and the data sequence is handled as illustrated in the figure 1.

In a similar way, the candidate sequence c= (A B C) (D) (E F G) with
=1, =0 and =2, i.e.

and (C.f. figure 2) is included in the data-sequence .

The two following sequences = (A B C D) (G) and = (A B C) (F G)
, with =1, =3 and =4 are not included in the data-

sequence . Concerning the former, the windowSize is not large enough to gather
the itemsets and . For the latter, the only possibility for yielding
both and is using for achieving the following grouped itemsets

then . Nevertheless, in such a case constraint is no
longer respected between the two itemsets because they are spaced of only two days
( and ) whereas minGap is set to three days.

Given a database of data-sequences, user-specified minGap and maxGap time
constraints, and a user-specified sliding windowSize, the problem of mining Web us-
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age is to find all sequences whose support is greater than a specified threshold (min-
imum support). Each of which represents a sequential pattern, also called a frequent
sequence.

2.3. Example

Let us consider the part of the access log file given in figure 3. Accesses are stored
for merely four visitors. Let us assume that the minimum support value is , thus
to be considered as frequent a sequence must be observed for at least two visitors. The
only frequent sequences, embedded in the access log are the following:

( api/java.io.BufferedWriter.html) (/java-tutorial/ui/animLoop.html)

( relnotes/deprecatedlist.html)

and

( java-tutorial/ui/animLoop.htm)

(/ tml4.0/struct/global.html /postgres/html-manual/query.html) ,

the former because it could be detected for both and
, and the latter because it occurred for and

.

By introducing a sliding window with a size of two days, we relax the
original transaction cutting and could consider that all URLs accessed during
a range of two days are grouped together. In such a context a new fre-
quent sequence (/api/java.io.BufferedWriter.html /java-tutorial/ui/animLoop.html)
(/relnotes/deprecatedlist.html) is discovered because it matches with the first trans-
action of while being detected for , within
a couple of transactions respecting the window size.

Let us imagine now that from the end user’s viewpoint two sets of URLs extracted
successively are no longer meaningful when separated by a time gap of 15 days or
more. That constraint results in discarding:

( java-tutorial/ui/animLoop.html)

( html4.0/struct/global.html /postgres/html-manual/query.html)

from the set of frequent sequences because, for , 17 days
are spent between the two underlying transactions. Thus the data-sequence of

does not satisfy the max-gap condition, and the sequence itself
no longer verifies the minimum support constraint.

Let us now examine the frequence exhibited by relaxing transaction cutting, i.e.

(/api/java.io.BufferedWriter.html /java-tutorial/ui/animLoop.html)

(/relnotes/deprecatedlist.html) .
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Ip address Time URL accessed

Figure 3. An access-log file example

Its first element (/api/java.io.BufferedWriter.html /java-tutorial/ui/animLoop.html) is
composed of two original sets of URLs, occurred during a range of 2 days. However,
the time stamp of second set of URLs (/relnotes/deprecatedlist.html) shows a gap of
14 days with the latter item (/java-tutorial/ui/animLoop.html) of the first set of URLs
but when considering the earlier item (/api/java.io.BufferedWriter.html), the observed
time gap is 16 days thus the max-gap condition no longer holds. The examined se-
quence is thus discarded.

3. Proposal

Typically web log analysis tools filter out requests referring to page encompass-
ing graphics or sounds (for example, files suffixed with “.gif”) as well as log entries
generated by Web agents, indexers or link checkers. Like in [ZAI 98], we believe that
most of the data is relevant. In fact, such data provides useful information about the
motivations of a user or the performance of the traffic.
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Assuming that a large amount of data is gathered by Web servers and collected
in access log files (without discarding elements), a very efficient algorithm for
mining sequential patterns is strongly required. The interested reader could refer to
[AGR 95, MAN 97, SRI 96, ZAK 98] addressing the issue of exhibiting sequences
for the “market-basket” problem. Since it is the basis of our approach, particular
emphasis is placed on the GSP approach.

The GSP Algorithm: an outline

In [AGR 95], the problem of mining association rules has been refined considering
a database storing behavioural facts which occur over time to individuals of the stud-
ied population. Thus facts are provided with a time stamp. The concept of sequential
pattern is introduced to capture typical behaviours over time, i.e. behaviours suffi-
ciently repeated by individuals to be relevant for the decision maker [AGR 95]. The
GSP algorithm, proposed in [SRI 96], is intended for mining Generalized Sequential
Patterns. It extends previous proposal by handling time constraints and taxonomies
(is-a hierarchies). In this context, a sequence is defined as follows:

Definition 5 Let be a set of literals called . An is
a non-empty set of items. A sequence is a set of itemsets ordered according to their
time stamp. It is denoted by where is an itemset. A - is a
sequence of -items (or of length ).
A sequence is a sub-sequence of another sequence if
there exist integers such that .

Basically, exhibiting frequent sequences requires firstly retrieving all data-
sequences satisfying the specified time constraints (C.f. Definition 4). These se-
quences are considered as candidates for being patterns. The support of candidate
sequences is then computed by browsing the DB. Sequences for which the minimum
support condition does not hold are discarded. The result is the set of frequent se-
quences.

For building up candidate and frequent sequences, the GSP algorithm performs
several iterative steps such that the step handles sets of -sequences which could
be candidate (the set is noted ) or frequent (in ). The latter set, called seed set,
is used by the following step which, in turn, results in a new seed set encompassing
longer sequences, and so on. The first step aims at computing the support of each item
in the database, when completed, frequent items (i.e. satisfying the minimum support)
are discovered. They are considered as frequent 1-sequences (sequences having a
single itemset, itself being a singleton). This initial seed set is the starting point of
the second step. The set of candidate 2-sequences is built according to the following
assumption: candidate 2-sequences could be any couple of frequent items, embedded
in the same transaction or not. From this point, any step is given a seed set of
frequent ( -1)-sequences and it operates by performing the two following sub-steps:
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– The first sub-step (join phase) addresses candidate generation. The main idea is
to retrieve, among sequences in , couples of sequences ( , ) such that discarding
the first element of the former and the last element of the latter results in two sequences
fully matching. When such a condition holds for a couple ( , ), a new candidate
sequence is built by appending the last item of to . In this candidate sequence,
added to , transaction cutting is respected.

– The second sub-step is called the prune phase. Its objective is yielding the set
of frequent -sequences . is achieved by discarding from , sequences not
satisfying the minimum support. For yielding such a result, it is necessary to count
the number of actual occurrences matching with any possible candidate sequence.

Candidate sequences are organized within a hash-tree data-structure which can
be accessed efficiently. These sequences are stored in the leaves of the tree while
intermediary nodes contain hashtables. Each data-sequence is hashed to find the
candidates contained in . When browsing a data-sequence, time constraints must be
managed. This is performed by navigating through the tree in a downward or upward
way, and results in a set of possible candidates. For each candidate, GSP checks
whether it is contained in the data-sequence. In fact, because of the sliding window,
minimum and maximum time gaps, it is necessary to handle two itemsets (a candidate
and a data-sequence) at a time, and to switch during examination between forward and
backward phases. Forward phases are performed for dealing progressively with items.
Let us notice that during this operation the minGap condition applies in order to skip
itemsets too close from their precedent. And while selecting items, sliding window
is used for resizing transaction cutting. Backward phases are required as soon as the
maxGap condition no longer holds. In such a case, it is necessary to discard all the
items for which the maxGap constraint is violated and to start again browsing the
sequence from the earlier item satisfying the maxGap condition.

3.1. The PSP approach

We split the problem of mining sequential patterns from a Web server log file into
the following phases:

1. Sort phase: The access log file is sorted with ip address as a major key and
transaction time as the minor key. Furthermore, we group together entries that are suf-
ficiently close according to the user-specified in order to provide temporal transac-
tions. Such a transaction is therefore the set of all URL names and their access times
for the same client where successive log entries are within . A unique time stamp
is associated with each such transaction and each URL is mapped into integer in order
to efficiently manipulate the structure. This step converts the original access log file
into a database of data-sequences.

2. Sequence phase: The GENERAL algorithm is used to find the frequent se-
quences in the database.
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Our approach fully resumes the fundamental principles of GSP. Its originality is to
use a different hierarchical structure than in GSP for organizing candidate sequences,
in order to improve efficiency of retrievals.

The general algorithm is similar to the one in GSP. At each step , the DB
is browsed for counting the support of current candidates (procedure CANDIDATE-
VERIFICATION). Then the frequent sequence set can be built. From this set,
new candidates are exhibited for being dealt at the next step (procedure CANDIDATE-
GENERATION). The algorithm stops when the longest frequent sequences, embedded
in the DB are discovered thus the candidate generation procedure yields an empty set
of new candidates. Support is a function giving for each candidate its counting value
stored in the tree structure.

GENERAL ALGORITHM

input: mingap, maxgap, windowSize, a minimum support ( ) and a database
.

output: the set of maximal frequent sequence with respect to windowSize, maxGap,
minGap and the minimum support ( ).

;

; /* all 1-frequent sequences */

;

while ( ) do

for each do _ ;

;

;

_ ;

if ( _ ) then ;

else ;

return ;

The prefix tree structure

The tree structure, managed by the algorithms, is a prefix-tree close to the
structure used in [MUE 95]. At the step, the tree has a depth of . It captures all
the candidate -sequences in the following way. Any branch, from the root to a leaf
stands for a candidate sequence, and considering a single branch, each node at depth

( ) captures the item of the sequence. Furthermore, along with an item, a
terminal node provides the support of the sequence from the root to the considered leaf
(included). Transaction cutting is captured by using labelled edges. More precisely,
let us consider two nodes, one being the child of the other. If the items emboddied in
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Ip address Time URL accessed
IP 01/01/1999
IP 02/02/1999
IP 11/01/1999
IP 12/01/1999
IP 23/01/1999
IP 01/01/1999
IP 12/01/1999
IP 15/01/1999

Figure 4. A database example

the nodes originally occurred during different transactions, the edge linking the nodes
is labelled with a ’-’ otherwise it is labelled with a ’+’ (dashed link in figure 5).

We report the following properties from [MUE 95], which are respectively a re-
formulation of Property 1 and Property 3 and are adapted to our structure. They guar-
antee that the structure suggested offers a behavior in adequacy with the definition of
the problem.

Property 4 The counts of nodes along a path are non-increasing. More formally,
, , .

Property 5 If a sequence is frequent and therefore present in the tree, then all its
sub-sequences have to be in their proper place in the tree also.

Example 3 Let us consider the database example, represented by figure 4, where
URLs entries are mapped into integers according to the Sort Phase. Let us assume that
the minimum support value is 50% and that we are given the following set of frequent
2-sequences : .
It is organized according to our tree structure as depicted in figure 5. Each terminal n-
ode contains an item and a counting value. If we consider the node having the item 20,
its associated value 2 means that two occurrences of the sequence
have been detected so far. The tree represented by the figure 6 illustrates how the

-candidates and the frequent -sequences (with - ) are simultaneously
managed by the structure. It is obtained after the generation of the candidates of
length 3 from the tree represented by figure 5. It is noticed that the frequent sequences
obtained starting from this example are , and

.
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20

10 20 30

root

Figure 5. Tree data structure

20

30

30

20

10

20

30

20

30

20

30

root

Figure 6. The 3-candidate sequences obtained with the database example

Finding All Frequent Sets

Let us now detail how candidates and data-sequences are compared through the
CANDIDATE-VERIFICATION algorithm. The data-sequence is progressively browsed
starting with its first item. Its time stamp is preserved in the variable . Then suc-
cessive items in are examined and the variable is used for giving the time stamp
of the current item. Of course if - = 0, the couple of underlying items (and all
possible items between them) appears in a single transaction. When becomes dif-
ferent from , this means that the new selected item belongs to a different transaction.
However, we cannot consider that performed so far the algorithm has detected the first
itemset of because of the sliding window. Thus the examination must be continued
until the selected item is too far from the very first item of . The condition -

does no longer hold. At this point, we are provided with a set of items ( ).
For each frequent item in (it matches with a node at depth 1) the function FINDSE-
QUENCE is executed in order to retrieve all candidates supported by the first extracted
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Ip address Time URL accessed
IP 01/01/1999
IP 02/01/1999
IP 03/01/1999
IP 04/01/1999
IP 01/01/1999
IP 02/01/1999
IP 03/01/1999
IP 08/01/1999

Figure 7. A database example

itemset. The process described is then performed for exhibiting the second possible
itemset. is set to the time stamp of the first itemset encountered and once again
is progressively incremented all along the examination. The process is repeated until
the last itemset of the sequence has been dealt.

Example 4 In order to illustrate how the windowSize constraint is managed by our
structure, let us consider the clients IP and IP in the database represented by the
figure 7 with a windowSize value of 4 days. For , PSP is then led to test
combinations of sequences checking windowSize illustrated by the figure 8. For in-
stance, considering the client IP and while varying from the first to the last itemset,
the algorithm will traverse the tree in order to reach all the possible leaves with the
following sequences:

(1) (2) (3) (4) (1) (2) (4) (1) (3) (4)
(1) (4) (1) (2) (3 4) (1) (3 4)
(1) (2 3) (4)
(1) (2 3 4)
(1 2) (3) (4) (1 2) (4) (1 2) (3 4)
(1 2 3) (4) (1 2 3 4) (2) (3) (4)
(2) (4) (2) (3 4) (2 3) (4)
(2 3 4) (3) (4) (3 4)
(4)

CANDIDATE VERIFICATION ALGORITHM

input: the tree containing all candidate and frequent sequences, a data-sequence
and its sequence identifier . The step of the General Algorithm, mingap,

maxgap and windowSize ( ),
output: the set of all candidate sequences contained in with respect to window-
Size, maxgap and mingap.

= ;
while ( ) do
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sequences tested for IP
= = = = = = = =

(1) (2) (3) (4)
= = = = = =

(1) (3) (4)
= = = = = =

(1) (2) (4)
= = = =

(1) (4)
= = = = = =

(1) (2) (3 4)
= = = =

(1) (3 4)
= = = = = =

(1) (2 3) (4)
= = = =

(1) (4)
= = = =

(1) (2 3 4)
= = = = = =
(1 2) (3) (4)

= = = =
(1 2) (4)

= = = =
(1 2) (3 4)

= = = =
(1 2 3) (4)
= =

(1 2 3 4)

Figure 8. Differents combinations of windowSize

;

while ( ) do

;

for each do

if ( ) then

;

;
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;

;

The function FINDSEQUENCE is successively called by the previous algorithm
for retrieving candidate sequences firstly beginning with a sub-set of the first item of

, then with the second, and so on. From the item given in parameter, the function
browses the sequence and navigates through the tree until a candidate sequence is
fully detected. This is merely done by applying recursively FINDSEQUENCE and thus
by comparing successively following items in with the children of the current node.
When a leaf is reached, the examined sub-sequence supports the candidate and its
counting value must be incremented. Of course, when browsing , time constraints
must be verified, this is why the function is provided with the two variables and

standing for the time bounds of the current itemset in the current sub-sequence
being extracted. Two additional variables and are introduced for playing the
same role as and but they are the time bounds of the next itemset to be dealt.
is initialized by getting the time stamp of the item following in and is used to
scan possibilities of grouping items according to windowSize.

FIND SEQUENCE ALGORITHM

input: Two integers , standing for the itemset size, , a node of a tree con-
taining all candidate sequences, the item in the data-sequence , the data-sequence ,
the identifier of ( ) and the depth of the go down on the tree ( ). minGap,
maxGap, windowSize ( ).
output: updated with respect to windowSize, maxGap and minGap, i.e. the leaves
of all candidate sequences included in are incremented.
/* is N a leaf of T ? */
if ( ) then

if ( ) then

; ;

else

/* same transaction */

;

for each do

if ( ) then

;

/* other transaction */

; /*mingap constraint*/

while ( ) do ;
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while ( ) do

;

while ( ) do

;

for each do

if ( ) then

;

;

;

When all the candidates to be examined are dealt, the tree is pruned in order to
minimize required memory space. All leaves not satisfying the minimum support are
removed. This is merely done by comparing the counter of the concerned nodes with
the minimum support. When such deletions are complete, the tree no longer captures
candidate sequences but instead frequent sequences.

Example 5 The figure 9 shows the tree of the 3-candidate sequences for the database
example depicted in figure 4. Thus let us consider the third pass on the database,
with the data-sequence of the client IP as input for VERIFYCANDIATE. PSP can then
reach two leaves and increment their support.

Candidate generation

The algorithm of candidate generation builds, step by step, the tree structure. At
the beginning of step 2, the tree has a depth of 1. All nodes at depth 1 (frequent items)
are provided with children supposed to capture all frequent items. This means that for
each node, the created children are a copy of its brothers.

Example 6 Let us assume the following set of frequent 1-sequence:

.

The figure 10 describes the candidate of length 2 obtained from this set. We only
indicate the extension of the item 10 and the principle is the same for the other nodes
of the tree.

When the step of the general algorithm is performed, the candidate generation
operates on the tree of depth and yields the tree of depth +1. For each leaf in
the tree, we must compute all its possible continuations of a single item. Exactly as
in step 2, only frequent items can be valid continuations. Thus only items captured
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Figure 9. Inclusion of candidates in a data-sequence

10 20 20 30 30

10 20 30

root

Figure 10. Candidate sequences of length 2

by nodes at depth 1 are considered. Moreover we refine this set of possible itemsets
by discarding those which are not captured by a brother of the dealt leaf. The basic
idea under such a selection is the following. Let us consider a frequent -sequence
and assume that extended with a frequent item is still frequent. In such a case,
= must necessarily be exhibited during the candidate verification
phase. Thus is a frequent -sequence and its only difference with is its terminal
items. Associated leaves, by construction of the tree, are brothers.
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Figure 11. An infrequent candidate detected in advance

Example 7 The figure 11 represents a tree before (tree ) and after (tree ) the gen-
eration of the candidates of length 3. The leaf representing the item 2 (in bold in the
tree ) is extended (in the tree ) only with items 3 and 4. Indeed, even if the item
5 is a child of the node 2 (itself child of the root), it is not a brother of the node 2
(in bold in the tree ), which means that (1)(5) is not a frequent sequence. Thus,
according to the Property 2, (1)(2)(5) cannot become frequent and it is useless to
generate this candidate.

CANDIDATE GENERATION ALGORITHM

input: the tree with candidate and frequent sequences. The step of the General
Algorithm.
output: The tree expanded at .

if ( ) then

for each do

for each do

if ( ) then

;

else ; ;

_ _ ;

else

; /* all leaf nodes at depth */

for each do

for each do
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if ( and ) then

;

for each do ;

The following lemma 1 guarantees that the sets of candidate sequences generated
by GSP and our approach are equivalent.

Lemma 1 Given a database D, for each sequence length k, the structures used in
GSP and in our approach capture the very same set of candidate sequences.

Proof

Let be the tree generated by GSP and the tree generated by CANDIDATE-
GENERATION. To show that whatever , the length of the candidates, we
use two proofs by induction (for and ), i.e. we want to show that

and , by induction on . =1 and =2 is special case for which
equivalence is forced by construction.

=3: Let us consider . is obtained since
and such that . But if and

then and (C.f. =2) and by construction will be
wide with obtaining .

: To show that we use the assump-
tion of following induction: . Let

we must have: and
.

If then we have: and
. . . We can thus go up until:

.
However according to the assumption of induction

and . Thus, by construction of B, we have:
.

=3: Let us consider , is obtained since
and such that . But, if
and then and (C.f. ) and (as described in
[AGR 95]) is a contiguous sub-sequence of and and we thus have

.
k 3: To show that we use the assumption of
following induction: . Let us consider

we must have:
and . And according to the assumption of induction

. . .
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D Number of customers (size of Database)
C Average number of transactions per Customer
T Average number of items per Transaction
S Average length of maximal potentially large Sequences
I Average size of Itemsets in maximal potentially large sequences

Number of maximal potentially large Sequences
Number of maximal potentially large Itemsets
Number of items

Table 2. Parameters

Moreover we know that (because ) and thus we have:

...(By the process reverses)

thus:

For complementing the presentation of the approach, we give a brief outline of
performed experiments.

3.2. Experiments

We implemented the GSP and PSP algorithms using GNU C++. The experiments
were performed on an Enterprise 2 (Ultra Sparc) Station with a CPU clock rate of
200MHz CPU, 256M Bytes of main memory, UNIX System V Release 4 and a non-
local 9G Bytes disk drive (Ultra Wide SCSI 3.5’).

In order to assess the relative performance of the PSP algorithm and study its scale-
up properties, we used two kinds of datasets: synthetic data, simulating market-basket
data and access log files.

Synthetic data The synthetic datasets were generated using the program described
in [SRI 95]2 and parameters taken by the program are shown in Table 2. These datasets
mimic real world transactions, where people buy a sequence of sets of items: some
customers may buy only some items from the sequences, or they may buy items from
multiple sequences.

. The synthetic data generation program is available at the following URL
(http://www.almaden.ibm.com/cs/quest)
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Dataset C T S D N Size(MB)
D100-N10-S10 10 2.5 4 100K 10K 90M
D100-N1-S10 10 2.5 4 100K 1K 70M
D100-N1-S15 15 2.5 4 100K 1K 111M
D10-N0.6-S10 10 2.5 4 10K 600 10M
D10-N0.7-S10 10 2.5 4 10K 700 10M

Table 3. Synthetic datasets

Like [SRI 96], we set = 5000, = 25000 and = 1.25. The dataset parameter
settings are summarized in Table 3.

Access log dataset The first log file was taken from the “IUT d’Aix en Provence”
Web site. The site hosts a variety of information including for instance the home pages
of ten departments, course information or job opportunities. During experiments, the
access log file covered a period of six months and there were 10, 384 requests in total.
Its size is about 85 Mbytes (before pre-processing). There were 1500 distinct URLs
referenced in the transactions and 2000 clients. The second log file was obtained from
the Lirmm Home Page. The log contains about 400 K entries corresponding to the
requests made during march and april of 1999. Its size is about 500 Mbytes.

Comparison of PSP with GSP

Figure 12 and Figure 13 report experiments conducted on the different datasets
using different minsupport ranges to get meaningful response times. Note the min-
support thresholds are adjusted to be as low as possible while retaining reasonable
excution times. Furthermore, for each algorithm, the times shown do not include the
pre-processing cost (e.g Sort phase for PSP). We can observe that PSP always signifi-
cantly outperforms GSP on synthetic and real data.

The reason is that during the candidate verification phase in GSP, a navigation is
performed through the tree until reaching a leaf storing several candidates. Then the
algorithm operates a costly backtracking for examining each sequence stored in the
leaf. In our approach, retrieving candidates means a mere navigation through the tree.
Once a leaf is reached, the single operation to be performed is incrementing the sup-
port value. In the tree structure of GSP, sequences grouped in terminal nodes share a
common in initial sub-sequence. Nevertheless, this feature is not used for optimizing
retrievals. In fact, during the candidate verification phase, the GSP algorithm exam-
ines each sequence stored in the leaf from its first item to the last. In our approach,
we take advantage of the proposed structure: all terminal nodes (at depth ) which are
brothers stand for continuations of a common ( -1)-sequence. Thus it is costly and
not necessary to examine this common sequence for all -sequences extending it.

Moreover, the advantage of our tree-structure is increased by applying the follow-
ing ideas. Let us imagine that a frequent -sequence is extended to capture several
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Figure 12. Execution times for synthetic datasets

( +1)-candidates. Once the latter are proved to be unfrequent, they are of course
pruned from the tree and the -sequence is provided with a mark. This mark avoids
to attempt building possible continuations of the considered sequence during further
steps. The mark is also used in order to avoid testing -sequences ( ).

Furthermore, at each step when a candidate -sequence is proved to be frequent,
its possible sub-sequences of length ( ) ending with the -1 item of are
examined. For each of which matching with a candidate -sequence, the considered
-sequence is pruned from the tree. In fact, such sub-sequences are no longer rele-

vant since longer sequences continuing them are discovered. Applying this principle
reduces the number of stored candidates.

Finally, to investigate the effects of the number of items on the performance, an
experiment was conducted in such a way that the number of items was low. The figure
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Figure 13. Execution times for two Access logs (IUT - Lirmm)

14 shows the execution times with 600 and 700 items (D10-N0.6-S10 and D10-N0.7-
S10). When the minsupport is lower than 1.6% the GSP algorithm provides the worst
performance. The Table 3.2 shows the relative times of PSP with GSP: for instance
when the number of items is set to 500 the execution times was 81.64 seconds for PSP
and 3508.53 seconds for GSP.

Scale up We finally examined how PSP behave as the number of customers is
increased. Figure 15 shows PSP scales up as the number of customers is increased
ten-fold, from 0.1 million to 1 million. All the experiments were performed on the
D100-N10-S10 dataset with three levels of minimum support ( , and ).
The execution times are normalized with respect to the time for the 0.1 million dataset.
It can be observed that PSP scales quite linearly.

Number of items 1000 900 800 700 600 500
relative time 1.27 4.2 6.2 12.19 23.22 42.97

Table 4. Relative time of PSP vs. GSP when varying the number of items

From the Lirmm access log file, we deleted customers in order to examine the
behaviour of PSP according to the number of customer. As expected, PSP scales quite
linearly.
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Figure 14. Execution times with 600 and 700 items

4. Related work

Using user access logs in discovery of useful access patterns has been studied in
some interesting works.

An approach to discovering useful information from Server access logs was pre-
sented in [MOB 96, COO 97]. A flexible architecture for Web mining, called WEB-
MINER, and several data mining functions (clustering, association, etc) are proposed.
For instance, even if time constraints are not handled in the system (only the mini-
mum support is provided), an approach to mining sequential patterns is addressed. In
this case, the access log file is rewriten in order to define temporal transactions, i.e.
a set of URL names and their access times for all visitors where successives log en-
tries are within a user specified time gap ( ), and an association rule-like algorithm
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Figure 15. Scale-up: number of customers

[AGR 94], where the joining operation for candidate generation has been refined, is
used. Various constraints can be specified using an SQL-like language with regular
expression in order to provide more control over the discovery process. By example,
the user may specify that he is interested only in clients from the domain .edu and
wants to consider data latter than Jan, 1 1996.

The WUM system proposed in [SPI 98] is based on an “aggregated materialized
view of the web log”. Such a view contains aggregated data on sequences of pages
requested by visitor. The query processor is incorporated to the miner in order to in-
dentify navigation patterns satisfying properties (existence of cycles, repeated access,
etc) specified by the expert. Incorporating the query language early in the mining
process allows to construct only patterns having the desired characteristics while ir-
relevant patterns are removed.

In [MAN 97], an efficient algorithm for mining event sequences, MINEPI, is
used to extract rules from the access log file of the University of Helsinki. Each
reached page is regarded as an event and a time window similar to the parameter
of [COO 97] makes it possible to gather sufficiently close entries.

On-line analytical processing (OLAP) and multi-dimensional Web log data cube
are proposed by [ZAI 98]. In the WebLogMiner project, the data is split up into the
following phase. In the first phase, the data is filtered to remove irrelevant information
and it is transformed into a relational database in order to facilitate the following
operation. In the second phase, a multi-dimensional array structure, called a data
cube is built, each dimension representing a field with all possible values described
by attributes. OLAP is used in the third phase to drill-down, roll-up, slice and dice in
the Web log data cube in order to provide further insight of any target data set from
different perspectives and at different conceptual levels. In the last phase, data mining
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techniques such as data characterization, class comparison, association, prediction,
classification or time-series analysis can be used on the Web log data cube and Web
log database.

In [CHE 97], the authors find discovery of areas of interest from the user access
logs using an agent-based approach. Each user request generates a log record, which
consists of the users ID, the URL requested, the time of the request, and the document
retrieved. Information kept in the log is used by the Learning Agent to reconstruct the
access patterns of the users. Nevertheless, in this context the problem is quite different
since the agent processes each textual document as recorded in the user access log and
produces a term vector of (keyword, weight) pairs. In a second phase, the learning ag-
ent has to determine the relevancy of every document using some heuristics. Finally,
the topics of interest are produced from adjusted term vectors using a clustering tech-
niques. Time-related access patterns are managed by a Monitor Agent which learns
the user profiles created by the Learning Agent.

In [CHE 98], an approach to capture the browsing movement between Web pages
in a directed graph called transversal path graph is addressed. The frequently traversed
paths, called frequent traversal paths, may be discovered by using an association rule
mining-like algorithm in transactional databases.

The use of access patterns for automatically classifying users on a Web site is
discussed in [YAN 96]. In this work, the authors identify clusters of users that access
similar pages using user access logs entry. This lead to an improved organization of
the hypertext documents. In this case, the organization can be customised on the fly
with dynamically link hypertext pages for individual users.

5. Conclusion

We have presented a framework for discovering Web usage mining. We described
an efficient algorithm for finding all frequent user access patterns from one or more
Web servers. The algorithm was based on a new Prefix tree structure which is very
adequate to this mining problem. The implementation shows that the method is effi-
cient.

The PSP algorithm is integrated in the WebTool System3. The User Interface Mod-
ule, in figure 16, is implemented using JAVA (JDK1.1.6 and swing-1.1) which gives
several benefits both in terms of added functionality and in terms of easy implementa-
tion. This module also concerns the first phase of the process, i.e. the mapping from
an access log file to a database of data-sequences according to the user-specified time
window ( ).

Once the frequent sequences are known, they can be used to obtain rules that de-
scribe the relationship between different URLs involved in a sequence [ZAK 98]. For
example, let us consider the sequence ( api/java.io.BufferedWriter.html java-tutorial/ui

. The architecture of the system is described in [MAS 99a]
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Figure 16. A snapshot of the graphical interface of the Web mining tool

animLoop.html) occurring in four data transactions, while ( api/java.io.Buffered
riter.html java-tutorial/ui/animLoop.html relnotes/deprecatedlist.html) occurs in

three transactions. The following rule api/java.io.BufferedWriter.html java-
tutorial/ui/animLoop. tml relnotes/deprecatedlist.html has a confidence.
In other words if api/java.io. ufferedWriter.html java-tutorial/ui/animLoop.html have
been accessed together then there is a chance that relnotes/deprecatedlist.html
has also been accessed. Given a user-specified minimum confidence (minconf), the
algorithm GENERATE-RULE generates all rules that meet the condition.

GENERATE-RULE ALGORITHM

input: the set of maximal frequent sequence with respect to windowSize, maxGap,
minGap and the minimum support ( ), and a minimum confidence minconf.
output: the set of generated rules according to minconf.

;

for each do

for each do

;

if ( ) then - ;

Additionaly, in order to provide more control over the discovered rules, several
operations are proposed to the user such as ordering rules, pruning irrelevant rules
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according to user parameters (domain name, date, etc).

Experiments have been performed to find rules from the access log file of the Iut
Home Page using the previous algorithm. Rules, such as following, are obtained:

( iut /iut/imgs/veille3.jpg) ( iut/pages/sommaire.html) ( iut/pages/format.html)
(confidence: 0.86, support:0.50)

( iut/pages/prog.html) ( iut/pages/info.html) ( iut/mq/pages/biblio.html)
(confidence: 0.88, support:0.583)

In the same way, we report some rules obtained with the Lirmm Home page.

( index.html) ( lirmm/plaquette/intro-f.html /w3arc/) ( lirmm/plaquette/intro-f.html
/w3dif/) ( lirmm/plaquette/intro-f.html /w3mic/) ( lirmm/plaquette/intro-f.html /w3rob/)
(confidence: 0.86, support: 0.67, ws: 2, mingap: 1, maxgap: 2, t: 2 )

( index.html) ( lirmm/plaquette/intro-f.html) ( mtp/ /mtp/centre.html) ( mtp/
http://www.ville-montpellier.fr/) /mtp/ http://www.mlrt.fr)
(confidence: 0.80, support: 0.64, ws: 1, mingap: 1, maxgap: 1, t: 1 )

( index.html) ( lirmm/plaquette/intro-f.html /lirmm/bili/) ( lirmm/bili/bili99.11.html)
( lirmm/bili/ /lirmm/bili/rev-fr.html) (/ irmm/bili/bili99.11.html /ftp/LIRMM/papers/)

(confidence: 0.78, support: 0.55, ws: 2, mingap: 1, maxgap: 1, t: 2 )

( index.html) ( lirmm-infos.html /situ.html) ( lirmm-infos.html /lirmm/images/acces-
ouest.gif) ( lirmm-infos.html /ftp/acces-lirmm/)
(confidence: 0.53, support: 0.38, ws: 2, mingap: 1, maxgap: 1, t: 2 )

( index.html) ( lirmm-infos.html /situ.html) ( lirmm-infos.html /lirmm/images/acces-
est.gif) ( lirmm-infos.html /ftp/acces-lirmm/)
(confidence: 0.5, support: 0.34, ws: 1, mingap: 0, maxgap: 0, t: 1)

( index.html) ( lirmm-infos.html /lirmm/acces.html) ( lirmm-infos.html
http://www.logassist.fr/dormir/mtpsleep.htm)
(confidence: 0.27, support: 0.34, ws: 0, mingap: 0, maxgap: 0, t: 0)

( index.html) (/lirmm/photos/ /lirmm/photos/couloir.gif) ( lirmm/photos/ /lir-
mm/photos/entree.gif) ( lirmm/photos/ /lirmm/photos/bat-1.gif) ( lirmm/photos/
/lirmm/photos/bat-2.gif) ( index.html)
(confidence: 0.19, support: 0.32, ws: 0, mingap: 0, maxgap: 0, t: 0)

( index.html) ( lirmm/recherche.html /w3rob/index-fr.html /w3rob/theme.html)
( w3rob/index-fr.html /lirmm/recherche.html)
(confidence: 0.18, support: 0.29, ws: 0, mingap: 0, maxgap: 0, t: 0 )

We are currently investigating a better preprocessing of access logs and how to
take into account server logs growing. The former is considerered as a non trivial task
if there are important accesses not recorded in the access log. For instance, a mecha-
nism such as local caches may cause several problems since a page may be listed only
once even if it has been visited by multiple users. Current methods to overcome this
problem include using site topology [PIT 97] or client-site log file collected by the
browser [ZAI 98] to infer missing references. In order to dynamically improve hyper-
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text structure, cookies encompassing the visitor navigation were used in [MAS 99b]
and we are currently investigating how such mechanisms may be useful to improve
the access log file entries.

The latter is very crucial in a Web mining usage concern since a Web server log
grows extensively over the time. In this context, recent work has shown that analysis of
such data may be done using a data warehouse and that OLAP techniques may be quite
applicable (e.g. [DYR 97, ZAI 98]). Moreover, it seems to be interesting to propose an
Incremental Web usage mining which makes use of the previous mining result to cut
down the cost of finding the new sequential patterns in an updated database[MAS 00].
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