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1 Introduction: the interest of proof nets for categorial gram-
mar

There are both linguistic and mathematical reasons for studying proof nets the perspective
of categorial grammar. It is now well known that the Lambek calculus corresponds to intu-
itionnistic non-commutative multiplicative linear logic — with no empty antecedent, to be
absolutely precise. As natural deduction underlines the constructive contents of intuitionis-
tic logic (Curry-Howard isomorphism), and the sequent calculus stresses the symmetries of
classical logic, the syntax of proof nets [13,14] throws light on the symmetries and computa-
tional contents of linear logic. Thus it is a mathematically natural question to look for proof
nets for the Lambek calculus, but which is also relevant in a more linguistic perspective.

The first expected mathematical outcome is a better understanding of the Lambek cal-
culus. For example, cut-elimination [14] and interpolation [4] are particulary clear in this
setting. The second mathematical outcome could be conclusive results on the complexity
of the Lambek calculus. As conjectured by Chomsky in 1963 [6], and proved by Pentus
in 1992 [23], the generative power of the Lambek calculus is exactly that of Contex-Free
Grammars, which may be recognized in polynomial time, for example using the Cocke-
Kasami-Younger algorithm [16]. On the other hand, the decision problems for the linear
logic systems that are most closely related to the Lambek calculus are all NP-complete,
when they are known, but next to nothing is known about the non-commutative variants. So
the Lambek calculus has been conjectured by some to be polynomial, and by others to be
NP-complete, but there is no answer yet.

From the linguistic angle, proof nets make the relation between various systems clearer.
As it is known that the expressive power of the Lambek calculus is not sufficient for linguis-
tic purposes, people look at extensions of the Lambek calculus. Linear logic offers several
possibilities and suggestions in the search for a neat logical calculus, bringing along the
ease of describing proofs through the proof net setting. Last comes a theoretical motivation,
which is according to us the most important. In linguistics the structure which represents the
analysis is highly important: see for example how Chomsky moved from Strings to Deriva-
tional Trees and back to Strings during the evolution of the theory [28,8]. We think that a
proof net is in itself a linguistically relevant structure, and some existing work confirms our
belief:

� M. E. Johnson [17] shows that syntactic analysis by the means of proof nets can catch



a difficult linguistic notion: the instantaneous complexity in understanding a sentence
with nested relatives. This measure consists in two integers easily computed from the
proof net. It fits the statistical data, and it has been shown that although numerous
parsers have been defined for Context-Free Grammars, none is able to exhibit the
understanding of this form of complexity.� De Groote and Retoré [10] show that proof nets are extremely convenient for comput-
ing the semantics of a sentence out of the semantics of the words and of the syntactical
analysis. The reason why is that both lambda terms and proofs in the Lambek cal-
culus can be formulated as proof nets. The transition from syntax to semantics is
smoothened by the existence of a common logical framework. In fact the added ex-
pressiveness of proof nets leads one to believe that they may replace lambda terms,
allowing for more subtle semantic recipes.� Bechet and de Groote [4] show how proof nets can be used to construct the different
possible phonological bracketings. The key technique is a Craig-like interpolation
theorem, whose formulation is wholly dependent on proof nets.� Abrusci, Fouqueré and Vauzeilles [1] show how Tree Adjoining Grammars may be
represented in the Lambek calculus: without proof nets, it would have been much
harder to find this representation, which is very perspicuous in the proof net syntax
— because of the tree-like structure of proof nets.

For all these reasons proof nets are interesting for categorial grammar, and it is now
time to explain what they are, and the various system they can be applied to.

2 The systems considered and their relations

Let
� ��� � � � � 	 	 	 


be a set of propositional variables.

2.1 The Lambek calculus (short reminder)

The language � for the Lambek calculus L is defined from the set of propositional variables�
using three binary connectives: � �  � � .

� � � � ��� � � � � �  � � � � �
The axioms of the calculus are � � �

Ax-lr

for every atomic variable
�

, and as usual there are two introduction rules for every connec-
tive, a left and a right one:� � � � � � � � � � �

-l� � � � � � � � � �
� � ��� � � � � �

-r� � � � � � � � �
� � � � � � -r� � � � �

� � ��� � � � � � � � � � -l� � � � � � � � � � � � �� � ��� � 
-r� � �  �

� � � � � � � � ��� � � 
-l� � � �  � � � � � � � �



In addition, there is the restriction that every sequent used in a derivation must have a
nonempty list of formulas at the left of the turnstile; the calculus where this restriction is
absent will be called L � . Sometimes there are reasons for extending the set of axioms to��� �

for any formula
�

, but this can be derived very easily in the system.
As opposed to other well known logical systems, this calculus is:

linear i.e. there is neither the weakening nor the contraction rule: each hypothesis is used
exactly once,

multiplicative i.e. the context of a conclusion sequent is always the disjoint union of the
contexts appearing in the premiss sequents (modulo the symbol introduced),

intuitionistic i.e. exactly one formula appears on the right hand side of a sequent,

non-commutative i.e. there is no exchange rule, which prohibits the law
� �  !  �� �

empty-sequence-free as explicitly stated in the rules — this is not very natural from a log-
ical point of view, but it is clearly well motivated linguistically, and is easily handled
in the logical system.

Among the intermediate systems related to the Lambek calculus, one deserves special
interest: classical multiplicative linear logic MLL. This is because of its simplicity, espe-
cially with respect with the associated proof nets. MLL can be seen as the removal of the
last three restrictions above from L, and the addition of an involutive negation operator,
which makes it a “classical” system, as opposed to an “intuitionistic” one like L. The ad-
ditional symmetry is what allows great simplifications in the presentation of proofs and
related objects. Among the logical systems we will consider here, it is the most powerful
one and should be seen as a universal system, in which the other ones, including L, will
be conservatively embedded as subsystems. Thus, according to which of these three re-
strictions are added to MLL, we get eight possible systems, that can be arranged in a cube:
below, prefixing with the letter " means adding the intuitionistic restriction, prefixing with #
means adding non-commutativity (the reason for using this letter will be seen below), and
the subscript $ % & ' � means adding the no-empty-sequence-at-the-left rule. . . it is the inverse
of the operation that makes L � out of L.
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2.2 From the Lambek calculus with permutations to MLL. . .

The calculus LP, defined over the same language , as L and is obtained from it by adding
the (intuitionistic) exchange rule: -

. /
-
0 1 1 1 /
-
2 3 4-

5 6 . 7 /
-
5 6 0 7 / 1 1 1 /
-
5 6 2 7 3 4

where 8 is any permutation of the set 9 : / ; / 1 1 1 / < = . As above, it comes in two versions, LP
and LP > , where in the latter case sequents are allowed to have an empty premiss. Now it
is well known that any permutation can be obtained by composing transpositions, and that
a circular permutation will generate enough transpositions from a single one to obtain all
permutations. Thus the two following rules together are equivalent to the general exchange
rule given above. -

. /
-
0 / ? 3 4

Exch-1-2
-
0 /
-
. / ? 3 4

-
. /
-
0 / ? 3 4

Cycl
-
0 / ? /
-
. 3 4 1

In this calculus the equivalence

-
@ 4�A�4 @

-
trivially holds, and the distinction between

the two implications of the Lambek calculus disappears. In other words we always have
that

- B
4 is provably equivalent to 4 C

-
; this is very easy to show.

What would a “classical” version of LP be? By this we mean a calculus that would have
an involutive negation D E F G : D

-
G F G A

-
1

Such a calculus requires the sequents to have more than one formula at the right, since
introducing a negation on a formula on the left side makes it migrate to the right:-

/ ? 3 H
Neg-l-r? 3

-
G / H

Obviously we want the Exchange rule to the right of the turnstile as well as to the left. The
involutivity of negation makes the symmetrical introduction rule very natural:

? 3
-
/ H

Neg-r-l
-
G / ? 3 H 1

The conjunction in this calculus will be denoted I ; if we forget that there is now an arbitrary
number of formulas at the right, it has the same introduction rules as the old @ , unary to the
left and binary to the right:

? /
-
/ 4 / ? J 3 H I -l? /
-
I 4 / ? J 3 H

? 3 H /
-
? J 3 4 / H J I -r? / ? J 3 H /
-
I 4 / H J

but there is a new operator K , a disjunction, which has the same relationship with the com-
mas at the right of the turnstile as I has with the commas at the left (in particular giving
meaning to the right-hand comma as a logical operator)

? 3 H /
-
/ 4 / H J K -r? 3 H /
-
K 4 / H J

? /
-
3 HL4 / ? J 3 H J K -l? /
-
K 4 / ? J 3 H / H J

Thus the two de Morgan laws are easily provable (exercise):



M N O P Q RTS UTP R V N RM N V P Q RTS UTP R O N R W
Notice that we could have stated, say, the first law as

M N O P Q R X N R V P R
. Since here we

have the exchange rule these two ways of presenting the first de Morgan law are perfectly
valid, but the reason we favored the version that reverses the order is that it can be proved
without the exchange rule; thus it is simpler. Since we want to go non-commutative later
we want as much as possible of what we present to stay valid in that context.

Just as in ordinary Boolean logic, we can consider implication as a defined symbol; for
the same reason as just stated we keep the two symbols, even if only one is necessary with
the Exchange rule: N Y P�Z[N R V P \]N ^ P�Z_N V P R W
They have pretty much the same introduction rules as before (things can’t be exactly the
same because of the right-hand sides are different in the intuitionistic and classical systems),
but now these rules are derived in our system, e.g. :N \ ` S P

Neg-l-r` S N R \ P Y
-r` S N Y P

` S N \ a
Neg-r-l` \ N R S abP \ ` c S a c V

-l` \ N Y P \ ` c S a \ a c
All this is very nice but we are far from having made full use of the symmetries we

have encountered. For instance, there is some amount of redundancy in the introduction
rules, since the system is invariant under the automorphism that simultaneously exchangesOedfV

along with left
d

right. Notice that, as in Boolean logic, every formula has a
normal form equivalent to it, where the negation operator is only applied to variables: to
find this normal form just apply de Morgan repeatedly, pushing the negations inwards until
they reach the variables. This leads to the following formalization of MLL. First, to our set g
of propositional variables/atomic formulas we add an isomorphic set g R Zih j R \ k R \ W W W l
whose elements are the negated versions of the variables in g .

The set of formulas m of MLL is now defined as:

mon n Z g p g R q m V m q m O m W
Thus negation in MLL is a defined operator, that obeys:M j Q RoZ_j R \ M j R Q RoZ_j \M N O P Q RTZ_P R V N R \rM N V P Q RoZ_P R O N R \
(notice again the reversal of the orders. . . we have ulterior motives) and the equivalence
of
M N R Q R

and
N

is now a syntactical identity. One outcome of this is that MLL has an
extremely simple sequent calculus, where the sequents are one-sided (we think it is Tait
[29] who first noticed that the two remarks in the paragraph above led to simplified calculi
that used one-sided sequents. Naturally he did this in the context of classical logic). The
axioms are of the form S j R \ j

Ax-r
\

the only structural rule is Exchange, and there are only two introduction rules:
O

-r and
V

-r.
Then it is trivial to show by induction that one can only prove sequents whose left parts are
empty.



The two-sided rules that we first presented are now derived rules: a sequent s t u is
translated in MLL as t s v w u (where, given a list s xiy z w y { w | | | w y } of formulas, s v
is the list y v} w | | | w y v{ w y vz , the reversal of order being in accordance with our convention
on de Morgan duality. . . after all, comma is ~ . Remember also that a formula like y v
is not the addition of a single symbol to y ) For example, the following are all different
representations for the same sequent of MLL.� v w � w y tr� w y t � y t � v w � t y v w � v w � |
2.3 . . . and back

We want to show that LP � can be thought of as a subsystem of MLL, via the standard trans-
lation. To every formula y of � we will associate a formula y � in � by (unsurprisingly):

� � x ��� �i� � � � x � � � � �� ��� � � � x � � � � v ~ � � � � � � � � x � � ~ � � � � v |
Remember again that here the negation operator is not a primitive symbol of our system,
but defined using induction and de Morgan’s law.

Let us characterize the image in � of that translation: let first ��� denote the set of all
formulas of the form y � , and ��� the set of all formulas of the form � y � � v . We say that
a formula ��� �i� has polarity Output (and when this is the case we write � � ), while
an ��� �i� has polarity Input (which we express by � � ). There are formulas of � that
cannot have a polarity, for instance � ~ � . It is easy to see that ��� and �i� can be given
the following recursive definition:

����� � x���� ��� � �i� � �i� ~ ��� � ��� ~ �i�� � � � x_� v � � � ~ � � � � � � � � � � � � � � w
and since no clause appears above more than once, that � � � � � is empty. In other words
polarity is a partial funtion �[�f� � w � � . It is also quite obvious that negation reverses
polarity. Moreover, the translation is injective:

Proposition 2.1 If � is a formula of ��� then there is a unique � � in � such that � � � � � x� .

The proof is by induction. If � is a variable, we take � � x � . If � x � �   , then both� w   have polarity Output, and we take � � x � � �   � . If � x � ~   , then � and   have
opposite polarity. If � � then �   v � � and we take � � x � � � �   v � � . Similarly if � � we take� � x � � v � � �   � .

It is only natural, given a sequent y z w | | | w y } t � in LP, to translate it ast � y �} � v w | | | w � y � z � v w � � . Notice that if we replace every comma by a ~ , turning a sequent
into a formula, in whatever order we want, sequents that have exactly one formula of polarity
Output are exactly those that become formulas of polarity Output.

Thus we can define Intuitionistic Multiplicative Linear Logic (IMLL) z as the fragment
of MLL whose sequents are of the form t � z w | | | w � } w � , where � � and the � �¡ . The
introduction rules are those of MLL, but the restriction that premiss and conclusion sequents
have to respect the polarity rules make it so that the introduction rules cannot be applied as¢

To the best of our knowledge the use of polarities to characterize the image of inutitionisitic linear logic
into the classical system was inaugurated by van de Wiele in some unpublished work. The first published use
of polarities seems to be in Roorda [27] and Bellin and Scott [5].



freely as before. In LP or LP £ the formula at the right is distinguished by its position, while
in IMLL it will be distinguished by its polarity: because of the exchange rule it can appear at
the beginning or the middle of the sequent, but is nonetheless distinguished from the other
formulas. The other formulas form the “left part” of the intuitionistic sequent.

Proposition 2.2 A sequent ¤ ¥ ¦ is provable in LP £ iff ¥ § ¤ ¨ © ª « ¦ ¨ is provable in IMLL.

The proof is simply the construction of a bijective correspondence between the sets of intro-
duction rules in the two calculi. A left (resp. right) introduction rule in LP will be associated
to the introduction of an Input (resp. Output) connective in IMLL. All the unary rules in LP
translate as ¬ -introduction, the different connectives being distinguished solely by the po-
larities of the two subformulas of the formula introduced. In the same manner all the binary
rules translate as  -introductions. For example the ® -l rule we have given translates as (here
all the formulas should be decorated with ¯ )

¥ ¤ ª° « ¦ ª « ¤ ª± « ² ³
Cycl¥ ¤ ª± « ² « ¤ ª° « ¦ ª
¥ ¤ ª « ´ ³

Cycl¥ ´ « ¤ ª  -r¥ ¤ ª± « ² « ¤ ª° « ¦ ª  ´ « ¤ ª
Cycl¥ ¤ ª° « ¦ ª  ´ « ¤ ª « ¤ ª± « ²

the conclusion being exactly the translation of ¤ ± « ¤ « ´ ® ¦ « ¤ ° ¥ ² . Notice that we have
used the cyclic exchange rule, but only that one. Conversely, given an instance of the  -r
rule in a deduction of IMLL, by looking at the polarity of the two premiss subformulas one
can tell if it is the translation of a ® -l or a ® -r rule and recover the intuitionistic two-sided
sequents.

Therefore, we have the right to identify the calculus LP £ with IMLL, and in the same
manner, corresponding to the calculus LP there is a one-sided equivalent IMLL µ ¶ , which is
just IMLL with the added rule that every sequent must have more than one formula.

Note Since we take MLL to be the fundamental system, we tend to translate weaker
logics into it, and we end up specializing tensor and par. But there is another notational
approach, due to Roorda [27], that allows one to give a one-sided-sequent presentation of
intuitionistic systems like L and LP without having direct recourse to the classical system.
The idea is to use two versions each for the connectors · « ® « ¸ , i.e. an Output or Positive
version, and an Input or Negative version. This has some advantages if one wants to restrict
oneself to purely intuionistic systems, but hides some of the symmetries that are present
there.

2.4 Non-commutativity

What notion of non-commutativity may also apply to a classical system? notice that non-
commutatity may not be defined by saying that the conjunction is non-commutative. This
is a consequence of the rules, which may be derived or not.

We now want to discuss the potential "classical" extensions of the Lambek calculus, i.e.
possibilities of systems with no or weak versions of the exchange rule, but some kind of
negation operator(s) which would provide added symmetries like de Morgan laws. This is
done by allowing several formulas in the right hand side, and looking for the possible rules
of negation. It is easier to think of it on the double sided sequent calculus, since in this case



negation appears as a connective, defined by rules, which moves a formula from one side to
another.

In the same manner as before, a classical extension of the Lambek calculus will intro-
duce a disjunction, which we will also write ¹ , corresponding to the comma on the right
hand side, and a negation º than makes, say, » definable as ¼ ½ ¹ ¾ . As it is well known that¼ » ¾ » ¿ is À ¾ Á ¼ Â » ¿ , one has À ¼ Á ¾ Â ½ Ã ¾ ½ ¹ ¼ ½ , i.e. negation necessarily reverses
the order of its consituents.

Comma on the left hand side is Á , while comma on the left hand side is ¹ . Let¼ Ä Å Æ Æ Æ Å ¼ Ç È ¾ Ä Å Æ Æ Æ Å ¾ É be a sequent. If negation were allowed to take any formula and
put it anywhere, then we would be able to derive an exchange rule. But there are only
four places that can be defined independently from the sequent itself: left_first, left_last,
right_first, right_last. Thus a negation can only act on these places. Firstly, let us see that
it can not move something from the left_first place to the right_last place. The sequent¼ Å ¾ Å Ê È Ë is equivalent to the sequent ¼�Á ¾ Å Ê È Ë . If a negation takes the left_first
formula and move it to the right_last place, the first sequent would lead to Ì È Ë Å ¾ ½ Å ¼ ½
which should be the same as Ì È Ë Å ¼ ½ ¹ ¾ ½ and the second one to Ì È Ë Å À ¼ Í ¾ Â ½ , which
should be, as explained above, the same as Ì È Ë Å ¾ ½ ¹ ¼ ½ . Thus this would lead to the
commutativity of Á and ¹ , which forces the exchange rule. Via a similar argument, it is pro-
hibited too that a negation rule move a formula from left_last to right_first, from right_last
to left_first form right_first to left_last. So negation only moves a formula from a left_first
place to a right_first place (and conversely), and from a left_last place to a right_last place.
Let us assume these four rules are done by four different negations, and see which ones have
to be identified.

This yields the following rules:

¼ Å Ê È Ë
neg-1Ê È ¼ Ä Å Ë

Ê Å ¼�È Ë
neg-2Ê È Ë Å ¼ Î

Ê È ¼ Å Ë
neg-3¼ Ï Å Ê Å È Ë

Ê È Ë Å ¼
neg-4Ê Å ¼ Ð È Ë

We have as usual that a round trip from one place to the other and back changes nothing,
i.e.: ¼ Ä Ï Ñ ¼ Ï Ä Ñ ¼ (negations Ò and Ó are the inverse of each other) ¼ Î Ð Ñ ¼ Ð Î Ñ ¼
(negations Ô and Õ are the inverse of each other)

These rules allow the following two proofs we call Ö Ð Ä and Ö Ï Î , valid for every formula¼ : ¼ È ¼
neg-4¼ Å ¼ Ð È

neg-1¼ Ð È ¼ Ä
¼ È ¼

neg-3¼ Ï Å ¼ È
neg-2¼ Ï È ¼ Î

Applying Ö Ð Ä to ¼ Ã ¾ Ï , yields ¾ Ï Ð È ¾ Ï Ä , thus for any formula ¾ : ¾ Ï Ð È ¾ .
Applying Ö Ð Ä to ¼ Ã ¾ Î , yields ¾ Î Ð È ¾ Î Ä , thus for any formula ¾ : ¾ È ¾ Î Ä .
Applying Ö Ï Î to ¼ Ã ¾ Ä , yields ¾ Ä Ï È ¾ Ä Î , thus for any formula ¾ : ¾ È ¾ Ä Î .
Applying Ö Ï Î to ¼ Ã ¾ Ð , yields ¾ Ð Ï È ¾ Ð Î , thus for any formula ¾ : ¾ Ð Ï È ¾ .
Therefore, by transitivity of È , we have ¾ Ï Ð È ¾ Î Ä . From this we obtain:

¾ Ð Ï È ¾ Ä Î
neg-4¾ Ð Ï Å ¾ Ä Î Ð È

¾ Ä Î Ð È ¾ Ð Ï Ä
i.e.¾ Ä È ¾ Ð

¾ Ï Ð È ¾ Î Ä
neg-3¾ Î Ä Ï Å ¾ Ï Ð È

¾ Î Ä Ï È ¾ Ï Ð Î
i.e.¾ Î È ¾ Ï



Thus negations × and Ø should be identified, as well as negations Ù and Ú .
Is it possible to identify them further, i.e. to have a single negation written Û Ü , which

would be its own inverse? Yes, but in this forces the cyclic exchange rule Cycl on right
handed sequents: Ý Þ ß à

Þ á Ý à
neg-*

Ý à ß Þ Ü Ü
i.e.

Ý à ß Þ

Ý à ß Þ
Þ Ü
Ý à

neg-*
Ý Þ Ü Ü ß à

i.e.
Ý Þ ß à

So we have here a justification for the two non-commutative classical multiplicative
calculi that have been studied in depth:

â The calculus of M. Abrusci [2,3], which does not have any form of exchange rule, i.e.
which is closer to the Lambek calculus. In this calculus Û ã ä Û å is denoted Û á , andÛ æ ä Û ç is written

á Û . Thus
á è Û á é ê�è á Û é á ê Û .

â The calculus of Yetter [31], obtained from the one of M. Abrusci by identifyling the
two negations, which can be presented by a one-sided-sequent calculus that has the
rule Cycl.

The calculus of Yetter being, regarding proof nets, simpler, we shall concentrate on it.
However, one should read the paper by M. Abrusci in this volume, for more details.

The considerations above allow us to define CMLL as the calculus which is identical to
MLL except for the one fact that the exchange rule is restricted to cyclic exchange. Notice
that we introduced the cyclic exchange rule on the left side of ordinary intuitionistic (and
therefore two-sided) sequents, but that so far we’ve only used it (and only want to use it) on
one-sided sequents; the use of this rule must be restricted to one-sided sequents if we want
it to be a weakening of the full exchange rule, and anyway it loses its reason for being in a
two-sided classical calculus, since it can be derived there.

2.5 Combining restrictions

Notice that the change from MLL to IMLL = LP ë was obtained by restricting the formulas
under considerations, while CMLL is obtained from MLL by restricting the structural rule
of Exchange. Naturally we can combine these two restrictions and get a new calculus,
CIMLL, which turns out to be equivalent to L ë :
Proposition 2.3 Let Û ã ß ì ì ì ß Û í

Ý î
be a sequent of Lë . Then

1. it is provable in L ë iff
Ý è Û ïí é á ß ì ì ì ß è Û ï ã é á ß î ï is probable in CIMLL.

2. it is provable in L iff

Ý è Û ïí é á ß ì ì ì ß è Û ï ã é á ß î ï has a proof in CIMLL where every
sequent involved contains formulas of polarity Input.

The proof is obtained by reading the proof of 2.2 again, noticing that full rule of Ex-
change was never used, only Cycl.

Therefore from now on we identify CIMLLwith L ë , and CIMLL ð ë with L.



3 The core: proof nets for MLL

Proof nets are a very natural way of representing proofs in MLL, and have the same rela-
tionship to it as the simply typed lambda calculus has to the logic whose only connector
is implication. But first let us recall some well-known elementary stuff [30]. Let ñ be a
formula of ò . To ñ is associated a tree structure, whose leaves are the atomic subformulas
(the convention in linear logic is to draw trees with the leaves at the top and the root at the
bottom), and whose other nodes are decorated with the two connectors ó ô õ . For example
the formula ö ÷ ó�ø ø ù õ ù ÷ ú õ�ø ö ó û ÷ ú ú is seen as

α γβ

&

&

βα

Every node corresponds to a subformula, easily read by looking at everything above it
(and vice versa). When we do not bother with expanding a tree in full, we will decorate a
leaf node with a subformula.

The same goes if ü ý þ ô ÿ ÿ ÿ ô ý � is a one-sided sequent, except that now we get a forest
with � roots instead of a single tree.

A proof structure over a sequent ü � is the addition to its forest of a bijective matching
that associates to every leaf labeled ù a unique leaf labeled ù ÷ (same variable, but negated
version), and vice versa: every ù ÷ must be matched by a unique ù . Such a pair ù ô ù ÷ is
called an axiom link, and is represented by adding the necessary edge to the forest graph ofü � . Obviously not every sequent can be turned into a proof structure, if the variable count
is not right. Here is an example of a proof structure over a one-formula sequent.

Example 3.1
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To every proof in the sequent calculus one associates a proof structure, which is called a
proof net. The point of the distinction between nets and structures, naturally, is that there are
proof structures that cannot be obtained that way. Proof nets are constructed by induction:

1. The proof net associated to an axiom ü ù ÷ ô ù is



a a

2. if � is a proof for the sequent � � � � � � � � � 	 � � � � 
 (we will also call its associated
proof net � ), and � is extended by if a � -introduction to give � � � � � � � � � 	 � � � � 
 ,
one gets the proof net associated to the extended proof by simply adding a � -node to
� :

nAA AA

&
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3. If a � -introduction is done on � (a proof of � � � � � � � � � 	 � � ) and � 
 (a proof of
�  �  � � � � �  � ), to yield the sequent � � � � � � � � 	 � � �  �  � � � � � �  � , one obtains
a new proof net by putting the two nets together and adding a � -node under � �  :

A An B1 BA Bp1

P P ’

There is no need to interpret the Exchange rule, since its ultimate meaning is that there
is no order structure whatsoever on the conclusions of a sequent. . . therefore there is no
need for additional structure on the set of roots of the syntactical forest.

Thus the basic slogan is that the essence of a proof is contained in the axioms that
were used in it. . . in addition to the sequent that’s been proved itself! Different proofs in
the sequent calculus can give rise to the same proof net. This should be ascribed to the
well-known tendency of the sequent calculus towards overdeterminacy: one often finds that
different sequent proofs should be considered as “the same”, and there is a whole tradition
of searching for normal forms by the rearranging the order of introduction rules. Proof nets
give an alternative approach to the search for normal forms: a proof net is its own normal
form. It naturally factors out from the sequent calculus what should be. This had already
been noticed by category theorists [18] in the late sixties, as they were trying to construct
what is known as free Symmetric Monoidal closed categories (here a morphism in such a
category being seen as an equivalence class of proofs, the crucial thing being that two proofs
should be identified exactly when they define the same proof structure/net.

What was not known at the time is that there are geometric conditions that allow one
to tell if a given proof structure is a proof net or not. The first such correctness criterion
was given by Girard [13], and uses a set of paths on the proof structure, such that every
subformula/node is visited by these paths twice. A simpler version of that criterion was
later given by Danos-Regnier [9] and it goes as follows:



Definition 3.1 Given a proof structure on sequent � � , a switching is a map � from its set
of � -nodes of to the set � left � right � .
Theorem 1 A proof structure is a proof net iff for every possible switching � the graph
obtained by removing, for every � -link, the branch above it determined by � , is acyclic and
connected.

For example, the proof structure below is not a proof net, and this for two reasons:
Every switching that removes the right branch above the upper left � -node will give rise
to a cycle, shown highlighted. Moreover, any switching that in addition removes the right
branch above the rightmost � -node will make the graph disconnected.

&

&

&

a a aa a a

As an easy exercise, the reader should try to turn this proof structure into a proof net
simply by changing some pars to tensors and vice versa. Another example of a proof struc-
ture which is not a net is the one given in Example 3.1. The following structure is a proof
net, as the reader can check. Another easy exercise is to give a sequent derivation for that
net.

&

&

&

gab gba

How does one go about proving the theorem above? Obviously, a sensible strategy,
given a proof structure that satisfies the Danos-Regnier correctness criterion (henceforth we
will call such proof structures correct), would be to try to decompose it into smaller and
smaller correct structures, in such a way that to every such decomposition step one could
associate an application of one of the introduction rules, thus reconstructing a proof tree in
the sequent calculus from the bottom (root) up. When we get a proof structure which is just



an axiom link and nothing else, we have obviously reached an axiom (a leaf) of the proof
tree and we are done.

One such decomposition steps is trivial: if a correct proof structure is associated to a
sequent � � � � � � then it is immediate that the removal of the � -node under � � � will
yield a correct structure, and the proof under construction will simply be incremented by a
� -introduction. Thus if one does this systematically, removing all outermost pars, one is left
with a correct structure whose syntactic forest has only tensors and (neg)atomic variables
as roots. If there are no tensors, we have only (neg)atomic variables and there can only be
two of them forming an axiom (otherwise the structure would not be connected). So in that
case we are done. Otherwise, in order to go ahead, we need the non-trivial part of the proof:

Lemma 3.1 (Splitting tensor lemma) Given a correct structure not an axiom link, all whose
roots in the syntactic forest are tensors or variables, then there exists one tensor root whose
removal will create two disjoint proof structures (it is easy to show that they will also be
correct).

Thus the proof being constructed by induction can be extended by a � -introduction.
This lemma is where the geometric properties of absence from cycles is used.

Let us conclude this section by saying that many other correctness criteria have been
given, some being variations on this one. The Danos-Regnier criterion seems to take expo-
nential time to verify, which one may think is too much: after all, we are simply checking
whether a syntactical object is well-formed or not. But there are many other criteria e.g.
[26] (and variations of Danos-Regnier) that are polynomial in time.

There are also alternative methods of proving the sequentialization theorem, where the
search for a splitting tensor node is replaced by the search for something else to split the net
in two.

4 An intrinsically Non-Commutative characterization

We show here how ordinary correctness criteria can be applied to non-commutative proof
structures (and in our case this means CMLL), and also give a criterion, due to A. Fleury
([11], Chapitre 5), that only works in the non-commutative world. Although it applies to
various non-commutative systems, we consider it for cyclic linear logic, and then for the
Lambek calculus. There are other criteria specialized to CMLL, we mention in particular
[22].

4.1 Proof nets for cyclic linear logic

Due to the added constraint on the Exchange rule, the theory of proof nets for CMLL takes
an even more geometric character.

Let � � � � � � � � � � be a sequent of CMLL. It is endowed with a total order, but this is
order is far from canonical, because of cyclic exchange. We want to think of the formulas
arranged in a circle instead of a line, and this can be done by thinking of the sequent as a
set  � � � � � � � � � ! endowed with a cyclic order: a ternary relation "$#&% ' (the meaning
of " ( ) � * � + , being “when going counterclockwise, ) � * � + are met in that order”) such that
forall - . %/" 0 ( ) � * , 1&" ( - � ) � * , is a strict (antireflexive) total order and " ( ) � * � + , 2
" ( * � + � ) , .



Notice that a cyclic order on conclusions induces a cyclic order on the (occurrences of)
atoms involved in the 3 4 . One natural way to look at things (see pictures) is to think of a
“crown”, each one of whose “spikes” is a syntactic tree for a formula, the end of the spikes
forming an outer circle, given by the cyclic order on conclusions, where the bases of the
spikes are the collection of atomics/negatomics, which thus form an inner circle (with the
induced cyclic order mentioned above). Thus a proof structure is simply the addition of
axiom links, and these can be thought of lying inside the inner circle.

We now get the following inductive definition of a proof net:
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An easy rearrangement giving the following crown:
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It is easy to see that a proof net thus constructed will obey a fundamental property: it
can be drawn on the plane in such a way that no two edges of the proof structure will cross.
Obviously the edges associated to syntactical trees cannot cross, and axiom links cannot
cross syntactical edges since they are inside the inner circle; finally the fact that no two
axiom links ever cross (if drawn with the least amount of care) is easy to see by induction.
In other words the theory of cyclic proof nets can be expressed in terms of planar graphs.
But the machinery of planar graph theory is rather formidable and leads to a lot of hair
splitting, if one wants to be formal. Our aim is to stay as intuitive and informal as possible,
and we will use only one easy-to-visualize notion:

Definition 4.1 Let 5 be a proof structure, drawn as above. It splits the plane in different
connected components (puzzle pieces). A face is one such connected component.

Since a planar graph is bounded, there is exactly one face which is infinite. The other
faces will be called internal. For example, the proof structure below has two internal faces
in addition to the infinite one (the circular order has been made linear for ease of drawing).

Given a sequent, it completely determines the “crown” part of the graph, and it is natu-
ral to restrict the definition of a proof structure for the cyclic calculus by requiring that the
axiom links can be drawn inside the inner circle without crossing. This fact can actually
expressed in a fashion less “topological,” less dependent on how the links are drawn. No-
tice that if the circular order is opened anywhere and made into a line (as in the diagram
below) then the axiom links form a correct bracketing, in the usual sense. And there is a
notion of correct bracketing for circular orders, independent of what endpoints are chosen:
let 6 7 8 9 9 9 8 6 : ; be the sequence of the atoms of the sequent; as said in the definition of
ordinary proof structure, we can represent the axiom links as a bijective mapping < from= 6 7 8 9 9 9 8 6 : ; > to itself satisfying ? 6 @ < A < A 6 @ B B CD6 @ E < A 6 @ B FCD6 @ . G is said to be a
correct bracketing whenever it respects the cyclic order on 6 7 8 9 9 9 8 6 : ; , i.e.

? 6 8 H I A 6 8 H 8 < A 6 B B J$I A 6 8 < A H B 8 < A 6 B B 9
Hence, given a sequent of CMLL we define a cyclic proof structure on it to be a set of

axiom links which is correctly bracketed as above.

Proposition 4.1 A cyclic proof structure which obeys the Danos-Regnier criterion (or any
correctness criterion for MLL) is a proof net in CMLL.



The proof is as before: conclusion pars are removed as usual, and the main additional
observation to be made is that when using the tensor splitting lemma, the correct bracketing
will guarantee that the two subnets obtained will split the big net in the right fashion, in
other words that a sequent like K L M N O L P M N P will not be split into K L M L P and N M N P .

Thus the standard theory of proof nets specializes to CMLL. But there exist criteria that
are specialized to this particular case, and that make use of the geometrical considerations
we mentioned above, i.e. the notion of face.

It is easily observed, by induction, that each face of a cyclic proof net contains a uniqueQ
-link. Unfortunately, this is not enough to characterise the correct proof nets.

Given a
Q

-link
Q R

let us define its Inner face S R , its Left face T R , its Right face U R as
follows:

k

k
L R

I

k

&

Notice that T R and U R can sometimes be identical for proof nets (and also S R for proof
structures). We define the relation V W X V Y on faces by:

V W X V Y iff Z [ \ V W ] T R ^ V W ] U R _ ` V Y ] S R
By induction we observe that X is an acyclic relation.
In fact this characterises the cyclic proof nets:

Theorem 2 A cyclic proof structure when drawn in the plane as above is a proof net for
CMLL if and only if:

1. each internal face is the internal face S R of a unique
Q

-link
Q R

2. the relation X is acyclic — its transitive closure is a strict order.

It should be observed that the first point is not enough to guarantee the correctness of a
proof net. The following example does not fullfil the Danos-Regnier criterion: cutting the
left branch of the rightmost par gives rise to both a cycle and a disconnected structure. But
the face shaded face V satifies V/X V , which refutes the second point.



a a a a a a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a a

b b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b b b b b b b b b

&

gab

&

gba

Remark 4.1 c A cyclic proof structure is checked to be a cyclic proof net in linear time.

c This criterion implies the Danos-Regnier criterion, for cyclic proof structures.

c Actually 1 may be replaced by the weaker 1’: the number of internal faces is equal to
the number of d -links.

c In presence of 1 or 1’, 2 is equivalent to: each internal face e f may be reached from
the infinite face by g .

4.2 Proof nets for the extended Lambek calculus

Given the conservativity result of 2.3, one can take a proof of a sequent h i j in the ex-
tended Lambek calculus L k and construct from it a cyclic proof net for i h l m n j l , and vice
versa: a proof net for a sequent of CIMLL is simply a cyclic proof net as above, for a se-
quent that obeys the polarity rules, and it is the representation of a proof in L k . As usual,
the conclusion formula is distinguished by its polarity, and given this its associated intu-
itionistic sequent is uniquely defined. Then there are two possible natural total orderings
on the conclusions: putting the Output formula j at the beginning, or at the end. In our
translation of L k into CIMLL we have favored the second representation, but the first one is
just as good; what matters is that the induced total ordering on h l is invariant. For example
a proof net for i j o p n j oq n j rs n j ot can only be the translation of a proof of u q n u p n u t i u s ,
where j t v u lt and j f v u l mf , w xv y .

5 An intrinsically Intuitionistic characterisation

Obviously the set of proof structures for IMLL is a subset of the one for MLL, since the
distinction between the two logics is strictly about the set of formulas and sequents, and not
about the connectors and their introduction rules. Therefore, given the conservativity result
Proposition 2.2, a proof net for IMLL is simply a proof net for MLL whose sequent happens
to lie in IMLL. But there are correctness criteria for IMLL that use the intuitionistic character



of IMLL in an essential way, and therefore that cannot be extended to MLL. We will present
such a criterion [19,20,27].

Given a sequent z { in IMLL, its syntactic forest will look just as before, except that
now its nodes/subformulas should be decorated with their polarity. We use shading to do
this, gray being | and white } . Therefore the permissible polarities for connectors will look
like this (here the forbidden combinations are shaded, the permitted ones not).
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Notice that the polarity information is sufficient to recover the connectives: inspection
of that table shows that the combination of the polarity of a connective and that of its two
sons determines if it’s a tensor of a par. Notice also that there is always a son of the same
polarity as the father. In particular from any node there is always a monochromatic branch
all the way to the top.

Let z � �� � � � � � � �� � � � be a sequent of IMLL. A proof structure for it is defined just as
for MLL: it is the addition of a pairing of atomic and negatomic formulas to the syntactical
forest. Given such a proof structure, a path for it is a sequence of nodes that obeys the
following rules:

– A path always starts at the root of � � .
– If a path ends at a node � and there is � � immediately above it, then the path can be

extended by � .
– If a path ends with a variable, say � � , it is matched by an axiom link to an � � � , and

the path can be extended by this negatomic.

– If a path ends with a node � � whose father � � has the same polarity, then it can be
extended by � .

Thus the basic slogan is: start at the root of the output, always go up in polarity Output
until you reach a leaf, then cross the axiom link and go down in polarity Input. You can
always start going up again when there is something of polarity Output immediately above
you. The rules can be summarized by:

aa
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In particular the only nodes where there is a choice of which direction to go are the three
tensors, where paths bifurcate. The only paths that cannot be extended are those that end at
the root of a conclusion � �  or at the premiss of polarity ¡ of a ¢ £ .
Theorem 3 A proof structure is a proof net iff

1. Every node can be reached by a path.

2. Every path is finite, i.e. there are no loops.

3. Given a configuration ¤ � ¢ ¥ £ then every path that ends in ¤ goes through ¥ .
For example the following is not correct, the reason being that the third condition is not

met: the higlighted path ends above a par node that it has not visited.
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This criterion can also be used for the extended Lambek calculus L ¦ , since all one has
to do is cyclically order the conclusions and add the correct bracketing condition for the
axiom links.



6 Excluding the empty sequence

This section describes the proof nets that come from the calculi where the empty antecedents
are not allowed. As the technique applies to the various systems covered by this paper,
namely MLL, IMLL, CMLL, and L § , we treat them all together, although this restriction
is, up to now, only useful for L § , which thus yields the Lambek calculus L. Let us recall
that this restriction is necessary for linguistic reasons — as already observed by Lambek
in his seminal paper [21]. Assume that a word (or phrase) requires on its right (or left) a
word (or phrase) whose type is a tautology of L. Then one could provide, instead of it, the
empty word, thus leading to an incorrect phrase or sentence: for instance one could prove
a:̈ © ª © very: « © ª © ¬ ª « © ª © ¬ paper: ©®¯¨ © , where the word good: « © ª © ¬ has
been omitted.

In the sequent calculus, one avoids the empty sequence by simply stating it. How do
we express such a property in syntax of proof nets? First every sequent that appears in an
ordinary proof is a “sub sequent” of the conclusion sequent (the meaning of this can be
formalized easily). Given a proof structure, there is also a notion of “sub proof structure”,
which is simply a subforest of the syntactic forest (an up-closed subset of nodes), such that
axiom links stay inside the substructure: an axiom link that has one end in the subforest will
also have the other end in it. It is easy to see, using one’s favorite correctness criterion, that
if a proof structure is a proof net, then every sub structure will also be a net.

Therefore, given a proof in the sequent calculus, it gives rise not only to a proof net, but
to a set of subnets, whose (reverse) ordering exactly mimics the tree ordering of the proof.

Thus, trivially, one could say that:

(*) a proof net ° for sequent  ± in the system ² is a proof net of the system ² ³ § if there
exists a sequent proof of  ± such that every associated subnet has two conclusions.

Notice that, for intuitionistic systems, the correctness of such a sub proof net makes sure
that exactly one of these conclusions is an output, and thus the list of hypotheses in the
sequent is not empty.

However, this is not very much in the spirit of proof nets, since it explicitely refers to
the underlying sequent calculus.

However, as proved in [25], (*) is equivalent to saying that any sub-proof net (or even
sub proof structure), admits at least two conclusions, which is definitely a sensible statement
within proof net theory.
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