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Abstract

Philippe et al. (2011) proposed a data structure called Gk ar-
rays for indexing and querying large collections of high-throughput
sequencing data in main-memory. The data structure supports versa-
tile queries for counting, locating, and analysing the coverage profile of
k-mers in short-read data. The main drawback of the Gk arrays is its
space-consumption, which can easily reach tens of gigabytes of main-
memory even for moderate size inputs. We propose a compressed
variant of Gk arrays that supports the same set of queries, but in
both near-optimal time and space. In practice, the compressed Gk
arrays scale up to much larger inputs with highly competitive query
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times compared to its non-compressed predecessor. The main applica-
tions include variant calling, error correction, coverage profiling, and
sequence assembly.

1 Introduction

High Throughput Sequencing (HTS) gives access to the whole complement
of DNA or RNA sequences present in a biological sample. A single machine
yields hundreds of million of short sequencing reads in a short time for a price
that is steadily decreasing. Large sequencing centers produce daily tens of
terabytes of data, and for instance the Beijing Genome Institute has launched
in 2012 a project for sequencing 3 millions of genomes. Applications of HTS
go far beyond genome sequencing, and are now used in the medical context
for diagnostic and disease follow-up, or in ecology for monitoring biodiversity.
In the later context, HTS sequence all DNA/RNA coming from all species
present in an environmental sample (i.e., a soil, a sea, or a gut sample). In
such meta-genomics or -transcriptomics experiments, one aims at identifying
the species or the genes they expressed in this environment, which is achieved
by clustering and mining the reads based on sequence similarity.

HTS pushes life sciences in a Big Data era and fosters the development
of efficient and scalable algorithms for analyzing huge read sets. A variety
of computational questions need to be solved from genome assembly, to read
clustering by similarity, going through read mapping (i.e. alignment) on a
reference genome. Many tasks require indexing data structures that allow
querying the reads for an exact or approximate sequence pattern. Most
efficient programs for mapping reads onto a reference genome resort to a
FM-index of the genome [7], which is small enough to fit in memory (e.g.
[16, 20]). However, in many applications, a reference genome is missing and
the read set must be mined on its own (de novo genomics, transcriptomics, or
in meta-genomics), but the volume of reads is much larger than a reference
genome. Let us review shortly existing work on read indexing data structures.

Error correction and k-mer counting. Sequencing errors cause impor-
tant difficulties for read analysis or genome assembly. The correction or
elimination of erroneous reads is made possible by the redundancy due to
high sequencing coverage. The solution is to monitor the occurrence number
of all k-mers within the reads to see if they conform to the expected cover-
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age. For the task of k-mer counting, efficient hashing techniques have been
developped using parallel algorithms or Bloom filters [17, 18]. However, their
lack of scalability hinders indexing all 27-mers of typical Human sequencing
data set [22]. A recent paper achieves scalability by partitioning the index
between memory and disk [22]. Some assemblers use a parallel k-mer count-
ing index to discard erroneous reads during the deBruijn graph construction
[4]. Various error correction methods implement the same strategy using a
hash table. For example, Coral [23] identifies sequencing errors by indexing
k-mers into a hash table and then computing multiple alignments over reads
that share a common k-mer. The hash table requires Θ(n log n) bits [23],
which can make the approach infeasible for HTS data.

Read indexing in mapping. Following the idea of error correction, it
has been proposed to compute the local coverage of any k-mer in a read,
that is the number of reads in which in appears. Inspecting the local cov-
erage profile of k-mers along the read enables the tool CRAC to distinguish
erroneous positions from point mutations directly during the mapping [20]
(http://crac.gforge.inria.fr). For this, CRAC resorts to a data struc-
ture called Gk arrays which indexes all k-mers occurring within each read
of the collection1 using a modified suffix array and complementary tables
[21]. It takes advantage from the fact that reads are often compared against
themselves and that queried k-mers are taken from a read and can be given
by a starting position rather than in extenso. Gk arrays offers seven types of
locate and counting queries: either for getting the read identifiers in which
a k-mer occurs (Q1/Q2), occurs at most once (Q5/Q6), and the occurrence
positions with (Q7) or without this restriction (Q3/Q4). Table 1 gives an
overview of the queries and theoretical properties of the data structure. Gk
arrays uses a space proportional to the length of the read collection. Hence,
indexing for instance a metagenomics dataset will exhaust the main memory
of most computers. Gk arrays are also limited to queries on a single k value.

For similarity searching for assembly and clustering. When many
transcribed RNAs are sequenced in proportion of their abudance, it is useful
to reduce the data by clustering reads or ESTs that originate from the same
molecule. EST clustering was already critical before the advent of HTS [3].

1In a collection, each read sequence can occur many times, but differ by their identifier,
sequence quality, or mate partner. It is a multi-set rather than a set.
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Table 1: Theoretical time and space complexities. Here n is the input size,
f is the query k-mer, σ is the alphabet size, and Hh ≤ H0 ≤ log σ denotes
the h-th order entropy. The output size of each query is denoted by |Q7| =
|Q5| ≤ |Q1| ≤ |Q3|, where |Q3| is the total number of occurrences and, thus,
can be significantly larger than the others. Philippe et al. [21] reported a
linear time construction, but omitted their worst-case time of radix-sorting
over dlog ne-bit integers.

Compressed
Data structure Gk arrays Gk arrays

Construction time O(n log n) O(n log n)
space (bits) O(n(H0 + 1)) Θ(n log n)

Final index size (bits) nHh log logσ n+O(n) Θ(n log n)
Query time for a k-mer O(k log σ + polylog(n)) O(k log n)

a position O(log log n) O(1)

Additional query time to answer:
Q1 In which reads does f occur? O(|Q1| log log n) O(|Q3|)
Q2 In how many reads does f occur? O(1) O(|Q3|)
Q3 What are the occurrence positions of f? O(|Q3| log log n) O(|Q3|)
Q4 What is the number of occurrences of f? O(1) O(1)
Q5 In which reads does f occur only once? O(|Q5| log log n) O(|Q3|)
Q6 In how many reads does f occur only once? O(1) O(|Q3|)
Q7 What are the occurrence positions of f O(|Q7| log log n) O(|Q3|)

in the reads where it occurs only once?

The effiency and scalabilty of clustering algorithms rely on their indexing
strategy. Kaboom implements a modified suffix array for this task [10], but
cannot scale up to nowadays huge read sets (as shown in [21]). The detection
of similarity between reads is also used to discover overlaps and then build
the overlap graph for genome assembly. The sparse representation of the
relations between substrings and reads is major issue for scalable assembly
programs, as exemplified by [6].
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T B A N A N A $1 A N A N A S $2

SA 7 14 6 4 2 8 10 12 1 5 3 9 11 13

SA−1 8 5 11 4 10 3 1 6 12 7 13 8 14 2

LCP 0 0 0 1 3 5 3 1 0 0 2 4 2 0

Blcp 1 1 1 1 0 0 0 1 1 1 1 0 1 1

Blast 0 0 0 1 0 0 1 0 1 0 1 1 1 0

Bonce 0 0 1 1 1 1

T [SA[i] . . n] $1 $2 A A A A A A B N N N N S

$1 N N N N S A A A A A $2

A A A A $2 N $1 N N S

$1 N N S A A A $2

A A $2 N $1 S

$1 S A $2

$2 $1

Figure 1: An example of the (inverse) suffix array and LCP array for the
input string T = BANANA$1ANANAS$2 and resulting bit-vectors Blcp, Blast and
Bonce for k = 3. Notice that the size of Bonce is equal to rank1(Blast, n) and it
is queried via the 1-bits in Blast.

2 Compressed Gk arrays

We aim at supporting the same set of queries as the original Gk arrays [21].
See Table 1 for the definition of each query Q1–Q7. Notice that Q3 and Q4
are the typical queries found in full-text indexes such as suffix trees and suffix
arrays, and in their compressed variants (see [19] for a survey). Q1 and Q2
are also known as the document listing problem in the field of information
retrieval [13].

At the core of our data structure is a compressed suffix array (CSA) [9]
built on top of all the input reads. More precisely, the collection of reads
is given as a (multi-)set3 of strings R = {r1, r2, . . . , rd}. We assume that
the strings are from ordered alphabet Σ of size |Σ| = σ = O(polylog(n)).
We represent R as one long concatenated string, say T = r1$1r2$2 · · · kd$d,
where each $i denotes a special separator-symbol having the lexicographical
order $i−1 < $i < c ∈ Σ for all i ∈ [1, d]. Let n denote the total length
of T . Substrings of T are denoted by T [i . . j] = T [i]T [i + 1] · · ·T [j] for any
1 ≤ i ≤ j ≤ n. The suffix array SA[1, n] of string T stores all suffixes
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of T in lexicographical order. The lexicographically i-th suffix is given by
T [SA[i] . . n]. The inverse suffix array is SA−1[j] = i iff SA[i] = j. The Longest
Common Prefix (lcp) table, denoted LCP[1, n], stores in LCP[i] the length of
the lcp of suffixes T [SA[i − 1] . . n] and T [SA[i] . . n] for any 1 < i ≤ n, and
LCP[1] = 0. Fig. 1 gives an example of the SA, SA−1, and LCP values. The
compressed suffix array [9] requires nHh log logσ n + O(n) bits2 and allows
tSA = O(log logσ n+ log σ) = O(log log n) time access to SA and SA−1.

We aim to support two query-types, that is, queries for both a given k-
mer and for a given position p in the set of indexed reads. Let f denote the
given k-mer or the k-mer at the given position p, say f = T [p . . p + k − 1]
for any p ∈ [1, n − k + 1]. Our first problem is to identify the suffix array
range [s, e], which covers all the suffixes of T that have f as a prefix. If the
query-type is a k-mer, we can simply utilize the search functionality built
into the CSA to identify the range [s, e] in O(k log σ + polylog(n)) time [9].
In order to support queries for given read positions, we propose the following
data structure:

Lemma 2.1 Given the CSA of the string T [1 . . n], a fixed constant k and a
query position p ∈ [1, n− k + 1], we can identify the suffix array range [s, e],
which covers all the suffixes of T that have f = T [p . . p + k − 1] as a prefix,
using n+ o(n) additional bits and O(log log n) time.

Proof. We introduce a bit-vector Blcp[1, n], which is set to Blcp[i] = 1 if
and only if LCP[i] < k. Fig. 1 gives an example of the arrays SA, SA−1 and
LCP and the resulting Blcp. See the following subsection on details about
constructing Blcp. Recall that the CSA can simulate the inverse suffix array
in O(log log n) time. We compute j = SA−1[p], which gives us a position
j in the suffix array. It follows that s ≤ j and e ≥ j, because f is a
prefix of suffix T [SA[j] . . n] = T [SA[SA−1[p]] . . n] = T [p . . n]. Now we need
to identify the suffixes surrounding j that also have f as a prefix. If such
suffixes exists, they are identified by taking the smallest s ∈ [1, j] and largest
e ∈ [j, n] such that LCP[i] ≥ k holds for all i ∈ [s + 1, e]. Notice that the
bit-vector Blcp encodes this information, and it is accessible in constant time
using rank and select queries: The rankb(B, i) query over a bit-vector B[1 . . n]
returns, for any i ∈ [1, n], the number of times the bit b ∈ {0, 1} occurs in

2We denote the empirical entropy of a string T with H0(T ) (or simply H0 if T is clear
from the context). The h-th order entropy is denoted by Hh(T ) (or simply Hh). Notice
that 0 ≤ Hh+1(T ) ≤ Hh(T ) ≤ log σ for all h ≥ 0.
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B[1 . . i]. The inverse query, selectb(B, j), returns the position of the j-th
bit b in B (moreover, if j > rankb(B, n), we agree that selectb(B, j) returns
n+1). We first compute r = rank1(Blcp, j), which leads us to the final answer
[s, e] = [select1(Blcp, r), select1(Blcp, r + 1) − 1]. The rank and select queries
over Blcp can be computed in constant time using n+ o(n) bits [14]. Q.E.D.

Notice that the range [s, e] immediately reveals the total number of occur-
rences f has in the reads, which is e − s + 1. The occurrence positions can
be enumerated by outputting SA[j] for each j ∈ [s, e]. That said, the above
lemma allows us to reveal the correct range [s, e] and answer queries Q3 and
Q4 in additional O(|Q3| log log n) and O(1) time, respectively. We introduce
another data structure to answer Q1 and Q2:

Lemma 2.2 Given the CSA of the string T [1 . . n], a fixed constant k and
a suffix array range [s, e] covering all the suffixes that have f as a prefix,
we can answer the query Q1 (resp. Q2) using n + o(n) additional bits and
O(|Q1| log log n) time (resp. O(1) time), where |Q1| is the number of reads
having an occurrence of f .

Proof. Let Blast[1, n] denote a bit-vector, which is initialized as follows:
we set Blast[j] = 1 if and only if the k-mer f = T [SA[j]..SA[j] + k − 1]
starting from text position p = SA[j] is the last occurrence of f within the
corresponding read. That is, we mark the ”unique” k-mers for each read and,
as an important detail, this marking is stored in the suffix array order. See
the following subsection on details about constructing Blast. Furthermore, k-
mers that span over a separator-symbol are never marked. We can use Blast to
directly count and enumerate the reads that contain at least one occurrence
of f . Recall that [s, e] covers all the suffixes that have f as a prefix. Now
Q2 can be answered in constant time simply by computing rank1(Blast, e) −
rank1(Blast, s − 1). For Q1, we first compute r = rank1(Blast, s − 1) + 1, and
then output the values SA[i] for all i = select1(Blast, r

′) such that r′ ≥ r and
i ≤ e. This requires in total O(|Q1| log log n) time, where |Q1| is the number
of reads having one or more occurrences of f . Finally, n + o(n) bits are
required to compute rank and select over Blast in constant time [14]. Q.E.D.

To answer the queries Q5–Q7, we employ yet another data structure:

Lemma 2.3 Given the CSA of the string T [1 . . n], a fixed constant k and
a suffix array range [s, e] covering all the suffixes that have f as a prefix,
we can answer the queries Q5 and Q7 (resp. Q6) using n + o(n) additional
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bits and O(|Q5| log log n) time (resp. O(1) time), where |Q5| = |Q7| is the
number of reads having exactly one occurrence of f .

Proof. Let Bonce denote a bit-vector of length rank1(Blast, n). We set
Bonce[i] = 1 if and only if the k-mer starting from text position p = SA[select1(Blast, i)]
occurs only once within the corresponding read. The following subsection
describes how to construct the bit-vector Bonce. Now, similar to previous
lemma, the query Q6 can be answered in constant time by first computing
s′ = rank1(Blast, s − 1) + 1 and e′ = rank1(Blast, e). Then the result for Q6
is given by rank1(Bonce, e

′) − rank1(Bonce, s
′ − 1). For Q5 and Q7, we out-

put the values SA[select1(Blast, i
′)] for all i′ ∈ [s′, e′] such that Bonce[i

′] = 1.
Such positions can be found using one select1 operation (over Bonce) per out-
putted element. Thus, the query is solved in O(|Q5| log log n) time using
rank1(Blast, n)(1 + o(1)) ≤ n+ o(n) bits. Q.E.D.

Theorem 2.4 Given a set of reads R = {r1, r2, . . . , rd} of total length n, and
a fixed constant k, there exists a data structure that requires nHh log logσ n+
O(n) bits of space and supports the queries Q1–Q7 with the time complexities
given in Table 1. If the query is a k-mer (resp. a position in R), the queries
require additional O(k log σ + polylog(n)) time (resp. O(log log n) time).

Proof. See the above lemmas about supporting each query Q1–Q7. The
combined space complexity of the required bit-vectors and their rank and
select data structures is 3n + o(n) bits. The space complexity is dominated
by the compressed suffix array, which requires nHh log logσ n + O(n) bits of
space [9]. Q.E.D.

2.1 Construction

We propose a construction algorithm that can build the above data structures
in O(n log n) time and O(n(H0 + 1)) bits of space, assuming that the largest
read-length in the collection is limited, that is, ` = max{|ri| : ri ∈ R} =
O(n/ log n). The theoretical complexities can be achieved by (1) building the
CSA, (2) building the LCP array, (3) scanning through the LCP array once
to construct Blcp, and finally (4) scanning through the (implicit) suffix array
once to construct Blast and Bonce. In practice, Blcp is constructed directly
(see Sect. 3).

More precisely, the compressed suffix array can be constructed O(n log n)
time using O(n(H0 + 1)) bits [11]. The final index requires nHh log logσ n+
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O(n) bits and supports random access to the SA[i] and SA−1[j] values in
tSA = O(log log n) time for polylog-sized alphabets [9]. The LCP array can
then be constructed in O(n · tSA) time and in 4n+ o(n) bits of space on top
of the CSA [12]. The resulting LCP array admits access to values LCP[i]
in O(tSA) time, thus, we can also construct Blcp in O(n · tSA) time. The
bit-vectors Blast and Bonce can be attained as follows:

Lemma 2.5 Given the CSA of the string T [1 . . n], a fixed constant k and the
bit-vector Blcp, we can construct the bit-vectors Blast and Bonce in O(n log log n)
time and 2n + o(n) + O(` log n) additional bits. If the largest read-length is
` = O(n/ log n), the additional space is O(` log n) = O(n) bits.

Proof. Let Blast[1, n] and B′once[1, n] denote two bit-vectors. We initialize
Blast to all zeros, and B′once to all ones. We traverse over the suffixes of T in
backwards order, say T [n− 1 . . n], T [n− 2 . . n], . . . , T [1 . . n]. At each step i
of the traversal, we first compute j = SA−1[i] (in practice, we replace SA−1

with LF-mapping; see Sect. 3). Then we compute r = rank1(Blcp, j) and
check if the key r exists in a y-fast trie [25]. If it does not yet exists, we set
Blast[j] = 1, and insert the key-value pair 〈r, j〉 into the y-fast trie. Moreover,
if the key r already exists in the y-fast trie with value j′, we set B′once[j

′] = 0.
Finally, if T [i] is a separator-symbol, we remove all elements in the current
y-fast trie, thus, the maximum number of elements in the trie is bounded by
O(`). Since we traverse T in backwards order, we can easily keep track of the
position of the nearest separator-symbol, and avoid marking Blast for k-mers
that overlap a separator-symbol. All this requires O(tSA + log log n) time per
each step (with the exception of the removal of all trie elements, which can
be amortized to O(n log log n) time over all steps). The trie size is at most
O(` log n) bits at any step of the construction. After traversing the whole
text, we can construct the final bit-vector Bonce of length rank1(Blast, n). We
set Bonce[rank1(Blast, j)] = B′once[j] for each j such that Blast[j] = 1. Q.E.D.

Corollary 2.6 Given a set of reads R = {r1, r2, . . . , rd} of total length n,
and a fixed constant k, the data structure in Theorem 2.4 can be constructed
in O(n log n) time and O(n(H0 + 1)) bits of space.

2.2 Query extensions

Read coverage profile. The coverage profile of a read r gives, for each
position i ∈ [1, |r| − k + 1] in the read r, the number of reads that share

N. Välimäki & E. Rivals 9



LIRMM Research report 2013

the k-mer r[i . . i+ k − 1]. The coverage profile can be utilized, for example,
to discriminate between sequencing errors and SNVs/SNPs [20]. The read
coverage profile can be efficiently computed for any r ∈ R by resorting to
|r|−k+1 calls to Q2, which requires in total O(|r| log log n) time. (In practice,
we use LF-mapping and backward search, and answer Q2 at each step via
constant time query over Blcp and Blast. The resulting time complexity is
O(|r| · tLF).)

Queries over multiple k. We can support queries over multiple k1, k2, . . . , kz
by building separate bit-vectors for each ki. Now, the final index consists of
one CSA built for the input reads, and z sets of bitvectors requiring in total
3nz+o(nz) bits of space. For any z = O(log σ), the total index size becomes
O(n log σ) bits, which is still less than the original Gk arrays require for one
fixed k. For large z, another time–space tradeoff is to replace all the LCP
bit-vectors with the full LCP array, which requires just 4n + o(n) bits [12],
and resort to Previous Smaller Value and Next Smaller Value queries over
the LCP table similar to [8]. PSV and NSV can solved in sublogarithmic
time with o(n) extra bits of space.

3 Experiments

We implement the compressed Gk arrays (CGkA) using the FM-index con-
cept [7] and Huffman-shaped wavelet trees [19]. We use Heng Li’s imple-
mentation of the BCR algorithm [15, 1] to construct the Burrows–Wheeler
Transform (BWT) for the input reads. The resulting FM-index requires
nH0(T ) + o(n log σ) bits of space and supports LF-mapping in average tLF =
O(H0(T )) = O(log σ) time. We build the Blcp bit-vector directly from the
wavelet tree in O(nσ) time by adapting the algorithm of [2]. For Lemma
2.5, we use LF-mapping instead of explicitly computing j = SA−1[i] for each
step. It allows us to construct bit-vectors Blast and Bonce simultaneously
with the (inverse) suffix array samples, using one pass over the text. We
store (inverse) suffix array samples for every s text positions, which allows
an tSA = O(s · tLF) time access to SA (SA−1). We test the sampling rates
s ∈ {2, 4, 8, 16, 32}.

We compare the compressed Gk arrays against a performant hash table
Jellyfish 1.1.6 [17], a Run-Length Compressed Suffix Array (RLCSA3 Jan.

3http://www.cs.helsinki.fi/group/suds/rlcsa/ The latest RLCSA package in-
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2013 version) [24], and the original Gk arrays (GkA4 version 1.0.1) [21]. GkA
offer a native support for queries Q1–Q7, the RLCSA supports only queries
Q3–Q4, and Jellyfish the counting query Q4. We run the RLCSA using
sampling rates s ∈ {3, 4, 8, 16} (the construction ran out of memory for s = 2)
and nibble encoded bit-vectors, which are faster and, in our experiments,
require only around 2% more space. We use block size 16 for the internal
bit-vectors.

Remark 3.1 Claude et al. [5] proposed a compressed k-mer index for index-
ing highly-repetitive biological sequences. However, their experimental results
show that RLCSA is faster and uses less space for any k ≥ 6 [5]. Also, the
construction space of Claude et al. is about twice larger than RLCSA. We
omit the compressed k-mer index of Claude et al. from our experiments for
these reasons.

The input reads are taken from a set of 151bp Illumina reads sequenced
from an E. Coli strain MG16555. We truncate the low-quality tails, using a
Phred threshold of 10, and include only the full-length reads in the final set.
This filtering leaves a total of 8.5 million reads. All experiments are ran using
a single core of an Intel Xeon E5540 2.53GHz processor equipped with 32GB
of main memory, Linux 3.2.0 (Ubuntu x86 64) and gcc 4.6.3. We report the
final index size, average query times for Q1–Q4, and the construction time
and space for each data structure.

The final index size of CGkA represents 10% to 60% of the size of the
original Gk arrays depending on the sampling rate. CGkA require 5.6 GB
for s = 2 and 1.3 GB for s = 32, while the non-compressed GkA require
between 9.0–9.2 GB depending on k. Jellyfish and RLCSA have the smallest
index sizes at the cost of supporting only Q4 and Q3–Q4, respectively.

Remark 3.2 The RLCSA implementation could be extended to support Q1–
Q7 by adding the bit-vectors Blcp, Blast and Bonce over the RLCSA. It would
then give yet another time–space trade-off for the compressed Gk arrays: a
smaller index size, but slightly slower query times as the results in Fig. 2
suggest.

cludes an unpublished data structure to solve Q1, however, its construction time and
space do not yet scale up gracefully (J. Sirén, Personal communication, 2013).

4http://crac.gforge.inria.fr/gkarrays/
5http://www.illumina.com/systems/miseq/scientific_data.ilmn
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Figure 2: Average query times and the index size when the query is given as
a k-mer. RLCSA supports queries Q3 and Q4, and Jellyfish only a counting
query (Q4).
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Figure 3: Average query times and the index size when the query is given as
a read position. RLCSA and Jellyfish do not support these types of queries.
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Fig. 2 gives an overview of the average query times for Q1–Q4, when querying
a set of 1–100 million randomly chosen k-mers (depending on size of the k-
mer). Jellyfish is the most space-efficient and also the fastest, since its hash
table is tailored for simple counting queries (Q4). The compressed data
structures are still competitive regarding both query time and space, while
providing a more versatile set of queries. The differences for Q2 are more
significant with k = 11 due to the O(|Q3|) worst-case time of GkA. Regarding
the locate queries (Q1 and Q3), the sampling rates s ≤ 8 are competitive
against the non-compressed GkA for k = 22. This is mostly due to small
numbers of occurrences (i.e. large k) and faster backward search. For smaller
k, the numbers of occurrences are significantly higher, and the time to locate
the suffix array interval has a smaller impact on the average query times. Fig.
3 gives the query times for Q1–Q3, when the query is given as a randomly
chosen position from the indexed read set. The query times are averaged
over 1–100 million randomly chosen positions (depending on query). The
compressed representation is slower for all queries but Q2, mostly because the
(inverse) suffix array values must be computed via the sampled array. CGkA
have O(tSA) = O(s · tLF) time access to inverse SA, which is notably slower
than the constant time access within GkA. However, for Q2 the compressed
representation can be faster due to the worst-case O(|Q3|) query time of
GkA. RLCSA and Jellyfish do not support these types of queries.
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Table 2: Construction time and space for 8.5 million 151bp Illumina reads.
k Time (s) Memory usage (MB)

Gk arrays [21] 11 611 9,452
Gk arrays 22 605 9,251
RLCSA [24] (s = 16) n/a 1,095 16,446
Coral [23] (GNU C++ hash map) 11–22 861 16,016
Jellyfish [17] (counting only, M = 224) 11 88 2,911
Jellyfish [17] (counting only, M = 224) 22 405 2,965

Compressed Gk arrays (s = 16) 11 957 2,881
Compressed Gk arrays (s = 16) 22 1,086 2,881

CGkA construction steps:
ropebwt+BCR [15, 1] n/a 288 506
Wavelet tree (Huffman) n/a 44 1,471
Blcp 11 10 1,471
Blcp 22 139 1,471
Blast, Bonce, sampling SA, SA−1 n/a 615 2,881

Construction time and space. We also measure the construction time
and space for all data structures. For RLCSA, we use the fastest construction
method in the Jan. 2013 package [24]. As a second hash table approach, we
include Coral version 1.4 [23], which use the GNU C++ hash map for storing
a list of occurrence positions for each k-mer. Table 2 reports the construction
times and maximum memory usages for the 8.5 million 151bp Illumina reads,
including the figures for each construction step of the compressed Gk arrays.

Here, CGkA take roughly the same construction time as RLCSA, but
use less memory. CGkA require only twice the construction time of non-
compressed data structures, and achieves the most space-efficient construc-
tion (Jellyfish could use less memory by balancing between the hash table
size and merge cost). Hence, the CGkA achieve a much better scalability
in term of memory requirements than its uncompressed version, while still
offering competitive query times.
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4 Discussion

We presented a space-efficient data structure for indexing all k-mers in HTS
data. The data structure supports a comprehensive set of locate and count
queries with competitive query times. It is also more scalable than its non-
compressed predecessor, the Gk arrays [21], due to the time–space trade-off
we achieve: for a fixed amount of main memory, the compressed representa-
tion can index up to seven times more data (regarding the final index size).
Both the construction and query algorithms are completely different from
those of Gk arrays. It also allows queries over multiple k1, k2, . . . , kz with
an overhead of 3.19 bits per input character per ki. A parallized, secondary
memory [1] construction, as well as enhancements to allow navigation in a
de Bruijn graph belong to future work.
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