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I. Algebraic tools.

I.1 Modular arithmetic. The fundamental theorem of arithmetic. Arith-
metic operations modulo a prime number : if p is a prime number, then
for every integer number a 6= 0 mod p there exists its inverse b such
that a · b = 1 mod p. If p is a prime number, then every polynomial
of degree n has at most n roots in the arithmetic (Z/pZ).

I.2 Finite groups. The definition of a group. The order of an element in
a group. In a finite group, the order of each element divides the size of
this group.

I.3 Euler’s function ϕ(n). The sizes groupes ((Z/nZ)×, ·) for a prime
n and for n = pq (the product of two prime numbers). The formula
xϕ(n) = 1 mod n for x co-prime with n.

I.4 Generating element in a group. Existence of a generating element
in ((Z/pZ)×, ·) for a prime p.

I.5 Fast exponentiation algorithm.

II. Information-theoretic cryptography.

II.1 Encryption with a symmetric key. The definition of a secure en-
cryption scheme. Security of Vernam’s scheme (one-time pad). A lower
bound on the size of the key in a secure encryption scheme.

II.2 Secret sharing. The definition of a perfect secret sharing scheme.
Shamir’s secret sharing scheme for a threshold access structure.

II.3 Shannon’s entropy. Optimal length of a code for a message of length
N over an m-letters alphabet with know frequencies of letters.

II.4 Basic properties of Shannon’s entropy. for a random variable X
distributed in a set of cardinality n it holds 0 ≤ H(X) ≤ log2 n ; for
all jointly distributed (X,Y ) we have H(X,Y ) ≤ H(X) +H(Y ) and
H(X,Y ) = H(X | Y ) +H(Y ).
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II.5 Entropic bound for the size of a secret key : in a secure encryp-
tion scheme, the Shannon entropy of the secret key cannot be less than
the Shannon entropy of the random clear message.

III. Computational complexity in cryptography.

III.1 Computationally secure encryption scheme with a symmetric key :
the formal definition.

III.2 Pseudo-random generators. A construction of a computationally
secure encryption scheme using a pseudo-random generator.

III.3 Semantic security of a computationally secure encryption scheme.

III.4 Non-invertible functions : weak and strong one way functions. A
one-way function with a hard-core predicate. A strong one-way function
from a weak one-way function. The construction of Goldreich–Levin
of a hard-core predicate. A pseudo-random generator from a one-way
function.

III.5 Hardness of integer factorisation : the functions [p, q] 7→ p · q and
[x, n] 7→ [x2 mod n, n] as possible weak one-way function. Fast algo-
rithm for square root modulo n gives an algorithm of fast factorisation
of the integer number n (the case when n is a product of two prime
numbers) and, respectively, hardness of factorisation implies hardness
of square root.

III.6 Quadratic residues modulo n. The pseudo-random generator of
Blum–Blum–Shub.

III.7 Bit commitment : two cryptographic protocols for the game heads
and tails.

III.8 The Diffie–Hellman key exchange protocol. The hypothesis of
hardness of the problem of descrete logarithm.

III.9 Asymmetric encryption scheme RSA. The scheme of electronic
signature based on RSA.

III.10 Cryptographic hash functions. The definition of collision resistant
hash functions. Hashing and electronic signature.

III.11 Zero-knowledge proof for 3-coloring of a graph.
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