Program of the course HAI709I

Fondements cryptographiques de la sécurité

Université de Montpellier, autumn 2023

I. Algebraic tools.

I. 1 Modular arithmetic. The fundamental theorem of arithmetic. Arithmetic operations modulo a prime number : if p is a prime number, then for every integer number $a \neq 0 \bmod p$ there exists its inverse b such that $a \cdot b=1 \bmod p$. If p is a prime number, then every polynomial of degree n has at most n roots in the arithmetic $(\mathbb{Z} / p \mathbb{Z})$.
I. 2 Finite groups. The definition of a group. The order of an element in a group. In a finite group, the order of each element divides the size of this group.
I. 3 Euler's function $\varphi(n)$. The sizes groupes $\left((\mathbb{Z} / n \mathbb{Z})^{\times}, \cdot\right)$ for a prime n and for $n=p q$ (the product of two prime numbers). The formula $x^{\varphi(n)}=1 \bmod n$ for x co-prime with n.
I. 4 Generating element in a group. Existence of a generating element in $\left((\mathbb{Z} / p \mathbb{Z})^{\times}, \cdot\right)$ for a prime p.

I. 5 Fast exponentiation algorithm.

II. Information-theoretic cryptography.

II. 1 Encryption with a symmetric key. The definition of a secure encryption scheme. Security of Vernam's scheme (one-time pad). A lower bound on the size of the key in a secure encryption scheme.
II. 2 Secret sharing. The definition of a perfect secret sharing scheme. Shamir's secret sharing scheme for a threshold access structure.
II. 3 Shannon's entropy. Optimal length of a code for a message of length N over an m-letters alphabet with know frequencies of letters.
II. 4 Basic properties of Shannon's entropy. for a random variable X distributed in a set of cardinality n it holds $0 \leq H(X) \leq \log _{2} n$; for all jointly distributed (X, Y) we have $H(X, Y) \leq H(X)+H(Y)$ and $H(X, Y)=H(X \mid Y)+H(Y)$.
II. 5 Entropic bound for the size of a secret key : in a secure encryption scheme, the Shannon entropy of the secret key cannot be less than the Shannon entropy of the random clear message.

III. Computational complexity in cryptography.

III. 1 Computationally secure encryption scheme with a symmetric key : the formal definition.
III. 2 Pseudo-random generators. A construction of a computationally secure encryption scheme using a pseudo-random generator.
III. 3 Semantic security of a computationally secure encryption scheme.
III. 4 Non-invertible functions : weak and strong one way functions. A one-way function with a hard-core predicate. A strong one-way function from a weak one-way function. The construction of Goldreich-Levin of a hard-core predicate. A pseudo-random generator from a one-way function.
III. 5 Hardness of integer factorisation : the functions $[p, q] \mapsto p \cdot q$ and $[x, n] \mapsto\left[x^{2} \bmod n, n\right]$ as possible weak one-way function. Fast algorithm for square root modulo n gives an algorithm of fast factorisation of the integer number n (the case when n is a product of two prime numbers) and, respectively, hardness of factorisation implies hardness of square root.
III. 6 Quadratic residues modulo n. The pseudo-random generator of Blum-Blum-Shub.
III. 7 Bit commitment : two cryptographic protocols for the game heads and tails.
III. 8 The Diffie-Hellman key exchange protocol. The hypothesis of hardness of the problem of descrete logarithm.
III. 9 Asymmetric encryption scheme RSA. The scheme of electronic signature based on RSA.
III. 10 Cryptographic hash functions. The definition of collision resistant hash functions. Hashing and electronic signature.
III. 11 Zero-knowledge proof for 3-coloring of a graph.

Références

[1] J. Katz, Y. Lindell. Introduction to modern cryptography CRC Press, 2021.
[2] B. Martin. Codage, cryptologie et applications. PPUR, 2004.
[3] V. V. Yaschenko, Cryptography : An Introduction, AMS, 2002.
[4] Th. M. Cover and J. A. Thomas. Elements of Information Theory. Cover, Thomas M. Elements of information theory. John Wiley \& Sons. 1999.
[5] Th. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001.

