Course «Information theory». Solution of an exercise from the homework.

Exercise 5.1. Let (α, β, γ) be a triple of jointly distributed random variables. For every value c_k of γ we have a conditional distribution of probabilities of the values (α, β) (conditional on $\gamma = c_k$), $p_{ij} = \operatorname{Prob}[\alpha = a_i \& \beta = b_j | \gamma = c_k]$. For this conditional distribution we introduce the quantity that is called the mutual information between α and β ; we denote this quantity $I(\alpha : \beta | \gamma = c_k)$.

Let us define the *conditional mutual information* between α and β given γ as

$$I(\alpha:\beta | \gamma) := \sum_{k} \operatorname{Prob}[\gamma = c_{k}] \cdot I(\alpha:\beta | \gamma = c_{k})$$

Prove that

$$\begin{split} I(\alpha:\beta \mid \gamma) & \stackrel{(1)}{=} & H(\beta \mid \gamma) - H(\beta \mid \alpha, \gamma) \\ & \stackrel{(2)}{=} & H(\alpha \mid \gamma) - H(\alpha \mid \beta, \gamma) \\ & \stackrel{(3)}{=} & H(\alpha \mid \gamma) + H(\beta \mid \gamma) - H(\alpha, \beta \mid \gamma) \\ & \stackrel{(4)}{=} & H(\alpha, \gamma) + H(\beta, \gamma) - H(\alpha, \beta, \gamma) - H(\gamma). \end{split}$$

Solution.

Eq. (3) We know that for every distribution (X, Y)

$$I(X:Y) = H(X) + H(Y) - H(X,Y) = H(X) - H(X | Y) = H(Y) - H(Y | X).$$

In particular, we can apply these equations for the joint distribution of α and β , conditional on each value of γ .

$$\begin{split} I(\alpha:\beta \mid \gamma) &:= \sum_{k} \operatorname{Prob}[\gamma = c_{k}] \cdot I(\alpha:\beta \mid \gamma = c_{k}) \\ &= \sum_{k} \operatorname{Prob}[\gamma = c_{k}] \cdot \left(H(\alpha \mid \gamma = c_{k}) + H(\beta \mid \gamma = c_{k}) - H(\alpha,\beta \mid \gamma = c_{k}) \right) \\ &= \sum_{k} \operatorname{Prob}[\gamma = c_{k}] \cdot H(\alpha \mid \gamma = c_{k}) + \sum_{k} \operatorname{Prob}[\gamma = c_{k}] \cdot H(\beta \mid \gamma = c_{k}) \\ &- \sum_{k} \operatorname{Prob}[\gamma = c_{k}] \cdot H(\alpha,\beta \mid \gamma = c_{k}) \\ &= H(\alpha \mid \gamma) + H(\beta \mid \gamma) - H(\alpha,\beta \mid \gamma). \end{split}$$

Eq. (4) We know that $H(\alpha | \gamma) = H(\alpha, \gamma) - H(\gamma)$, $H(\beta | \gamma) = H(\beta, \gamma) - H(\gamma)$, and $H(\alpha, \beta | \gamma) = H(\alpha, \beta, \gamma) - H(\gamma)$. Combining these equations with Eq. (3) we obtain

$$I(\alpha : \beta | \gamma) = H(\alpha | \gamma) + H(\beta | \gamma) - H(\alpha, \beta | \gamma)$$

= $H(\alpha, \gamma) - H(\gamma) + H(\beta, \gamma) - H(\gamma) - H(\alpha, \beta, \gamma) + H(\gamma)$
= $H(\alpha, \gamma) + H(\beta, \gamma) - H(\alpha, \beta, \gamma) - H(\gamma)$

Eq. (1) is very similar to Eq. (3): at first we notice that

$$I(\alpha:\beta | \gamma) := \sum_{k} \operatorname{Prob}[\gamma = c_{k}] \cdot I(\alpha:\beta | \gamma = c_{k})$$

=
$$\sum_{k} \operatorname{Prob}[\gamma = c_{k}] \cdot \left(H(\beta | \gamma = c_{k}) + H(\beta | \alpha, \gamma = c_{k})\right) \quad (*)$$

By definition of conditional entropy,

$$H(Y \mid X) := \sum_{i} \operatorname{Prob}[X = a_i] \cdot H(Y \mid X = a_i).$$

In particular, for the distribution of (α, β) conditional on $\gamma = c_k$ we have the following formula of the conditional entropy :

$$H(\beta \mid \alpha, \gamma = c_k) := \sum_i \operatorname{Prob}[\alpha = a_i \mid \gamma = c_k] \cdot H(\beta \mid \alpha = a_i, \gamma = c_k).$$

Therefore, (*) can be rewritten as

$$\sum_{k} \operatorname{Prob}[\gamma = c_{k}] \cdot H(\beta \mid \gamma = c_{k}) + \sum_{i,k} \operatorname{Prob}[\gamma = c_{k}] \cdot \operatorname{Prob}[\alpha = a_{i} \mid \gamma = c_{k}] \cdot H(\beta \mid \alpha = a_{i}, \gamma = c_{k})$$
$$= \sum_{k} \operatorname{Prob}[\gamma = c_{k}] \cdot H(\beta \mid \gamma = c_{k}) + \sum_{i,k} \operatorname{Prob}[\alpha = a_{i}, \gamma = c_{k}] \cdot H(\beta \mid \alpha = a_{i}, \gamma = c_{k})$$

The last line can be rewritten (again, just by definition of the conditional entropy) as $H(\beta | \gamma) + H(\beta | \alpha, \gamma)$.

Eq. (2) is analogous to Eq. (1).