Course «Information theory». Solution of an exercise from the homework.
Exercise 5.1. Let (α, β, γ) be a triple of jointly distributed random variables. For every value c_{k} of γ we have a conditional distribution of probabilities of the values (α, β) (conditional on $\gamma=c_{k}$), $p_{i j}=\operatorname{Prob}\left[\alpha=a_{i} \& \beta=b_{j} \mid \gamma=c_{k}\right]$. For this conditional distribution we introduce the quantity that is called the mutual information between α and β; we denote this quantity $I\left(\alpha: \beta \mid \gamma=c_{k}\right)$.
Let us define the conditional mutual information between α and β given γ as

$$
I(\alpha: \beta \mid \gamma):=\sum_{k} \operatorname{Prob}\left[\gamma=c_{k}\right] \cdot I\left(\alpha: \beta \mid \gamma=c_{k}\right)
$$

Prove that

$$
\begin{aligned}
I(\alpha: \beta \mid \gamma) & \stackrel{(1)}{=} H(\beta \mid \gamma)-H(\beta \mid \alpha, \gamma) \\
& \stackrel{(2)}{=} H(\alpha \mid \gamma)-H(\alpha \mid \beta, \gamma) \\
& \stackrel{(3)}{=} H(\alpha \mid \gamma)+H(\beta \mid \gamma)-H(\alpha, \beta \mid \gamma) \\
& \stackrel{(4)}{=} H(\alpha, \gamma)+H(\beta, \gamma)-H(\alpha, \beta, \gamma)-H(\gamma)
\end{aligned}
$$

Solution.

Eq. (3) We know that for every distribution (X, Y)
$I(X: Y)=H(X)+H(Y)-H(X, Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)$.
In particular, we can apply these equations for the joint distribution of α and β, conditional on each value of γ.

$$
\begin{aligned}
I(\alpha: \beta \mid \gamma) & :=\sum_{k} \operatorname{Prob}\left[\gamma=c_{k}\right] \cdot I\left(\alpha: \beta \mid \gamma=c_{k}\right) \\
& =\sum_{k} \operatorname{Prob}\left[\gamma=c_{k}\right] \cdot\left(H\left(\alpha \mid \gamma=c_{k}\right)+H\left(\beta \mid \gamma=c_{k}\right)-H\left(\alpha, \beta \mid \gamma=c_{k}\right)\right) \\
& =\sum_{k} \operatorname{Prob}\left[\gamma=c_{k}\right] \cdot H\left(\alpha \mid \gamma=c_{k}\right)+\sum_{k} \operatorname{Prob}\left[\gamma=c_{k}\right] \cdot H\left(\beta \mid \gamma=c_{k}\right) \\
& -\sum_{k} \operatorname{Prob}\left[\gamma=c_{k}\right] \cdot H\left(\alpha, \beta \mid \gamma=c_{k}\right) \\
& =H(\alpha \mid \gamma)+H(\beta \mid \gamma)-H(\alpha, \beta \mid \gamma)
\end{aligned}
$$

Eq. (4) We know that $H(\alpha \mid \gamma)=H(\alpha, \gamma)-H(\gamma), H(\beta \mid \gamma)=H(\beta, \gamma)-H(\gamma)$, and $H(\alpha, \beta \mid \gamma)=H(\alpha, \beta, \gamma)-H(\gamma)$. Combining these equations with Eq. (3) we obtain

$$
\begin{aligned}
I(\alpha: \beta \mid \gamma) & =H(\alpha \mid \gamma)+H(\beta \mid \gamma)-H(\alpha, \beta \mid \gamma) \\
& =H(\alpha, \gamma)-H(\gamma)+H(\beta, \gamma)-H(\gamma)-H(\alpha, \beta, \gamma)+H(\gamma) \\
& =H(\alpha, \gamma)+H(\beta, \gamma)-H(\alpha, \beta, \gamma)-H(\gamma)
\end{aligned}
$$

Eq. (1) is very similar to Eq. (3) : at first we notice that

$$
\begin{align*}
I(\alpha: \beta \mid \gamma) & :=\sum_{k} \operatorname{Prob}\left[\gamma=c_{k}\right] \cdot I\left(\alpha: \beta \mid \gamma=c_{k}\right) \\
& =\sum_{k} \operatorname{Prob}\left[\gamma=c_{k}\right] \cdot\left(H\left(\beta \mid \gamma=c_{k}\right)+H\left(\beta \mid \alpha, \gamma=c_{k}\right)\right) \tag{*}
\end{align*}
$$

By definition of conditional entropy,

$$
H(Y \mid X):=\sum_{i} \operatorname{Prob}\left[X=a_{i}\right] \cdot H\left(Y \mid X=a_{i}\right)
$$

In particular, for the distribution of (α, β) conditional on $\gamma=c_{k}$ we have the following formula of the conditional entropy :

$$
H\left(\beta \mid \alpha, \gamma=c_{k}\right):=\sum_{i} \operatorname{Prob}\left[\alpha=a_{i} \mid \gamma=c_{k}\right] \cdot H\left(\beta \mid \alpha=a_{i}, \gamma=c_{k}\right)
$$

Therefore, $\left(^{*}\right)$ can be rewritten as

$$
\begin{aligned}
& \sum_{k} \operatorname{Prob}\left[\gamma=c_{k}\right] \cdot H\left(\beta \mid \gamma=c_{k}\right)+\sum_{i, k} \operatorname{Prob}\left[\gamma=c_{k}\right] \cdot \operatorname{Prob}\left[\alpha=a_{i} \mid \gamma=c_{k}\right] \cdot H\left(\beta \mid \alpha=a_{i}, \gamma=c_{k}\right) \\
= & \sum_{k} \operatorname{Prob}\left[\gamma=c_{k}\right] \cdot H\left(\beta \mid \gamma=c_{k}\right)+\sum_{i, k} \operatorname{Prob}\left[\alpha=a_{i}, \gamma=c_{k}\right] \cdot H\left(\beta \mid \alpha=a_{i}, \gamma=c_{k}\right)
\end{aligned}
$$

The last line can be rewritten (again, just by definition of the conditional entropy) as $H(\beta \mid \gamma)+H(\beta \mid \alpha, \gamma)$.
Eq. (2) is analogous to Eq. (1).

