UM. Autumn 2019. Homework 2 to the course «Information theory». [should be returned by Sep 24 to be counted in contrôle continu]

Problem 1. We are given a heap of n stones, and we can use balance scales to compare weights of any two stones. We want to find in the heap two stones : the one with the maximal weight and the one with the minimal weight. How many weighing do we need (in the worst case)? Propose a search algorithm and prove that it is optimal.

Problem 2. Prove that for every non-negative real number h there exists a random variable (distribution) α such that the Shannon entropy of α is equal to h.

Problem 3. Let α and β be two jointly distributed random variables. Prove that

$$
H(\alpha, \beta)=H(\alpha)+H(\beta)
$$

if and only if α and β are independent.
Problem 4. Let us have a rooted binary tree with n leaves. Let l_{i} denote the distances from the root to the i-th leave, $i=1, \ldots, n$. Prove that

$$
\sum_{i=1}^{n} 2^{-l_{i}} \leq 1
$$

