UM. Autumn 2019. Homework 5 to the course «Information theory». [not counted in contrôle continu]

Problem 1. Let (α, β, γ) be a triple of jointly distributed random variables. For every value c_{k} of γ we have a conditional distribution of probabilities of the values (α, β) (conditional on $\gamma=c_{k}$), $p_{i j}=\operatorname{Prob}\left[\alpha=a_{i} \& \beta=b_{j} \mid \gamma=c_{k}\right]$. For this conditional distribution we can compute the mutual information between α and β; we denote this quantity $I\left(\alpha: \beta \mid \gamma=c_{k}\right)$.

The conditional mutual information between α and β given γ is defined as

$$
I(\alpha: \beta \mid \gamma):=\sum_{k} \operatorname{Prob}\left[\gamma=c_{k}\right] \cdot I\left(\alpha: \beta \mid \gamma=c_{k}\right)
$$

Prove that

$$
\begin{aligned}
I(\alpha: \beta \mid \gamma) & =H(\beta \mid \gamma)-H(\beta \mid \alpha, \gamma) \\
& =H(\alpha \mid \gamma)-H(\alpha \mid \beta, \gamma) \\
& =H(\alpha \mid \gamma)+H(\beta \mid \gamma)-H(\alpha, \beta \mid \gamma) \\
& =H(\alpha, \gamma)+H(\beta, \gamma)-H(\alpha, \beta, \gamma)-H(\gamma)
\end{aligned}
$$

Problem 2. (a) Prove that $H(\alpha \mid \beta)=0$ if and only if α is a deterministic function of β (every value of β is compatible with only one value of α).
(b) Prove that $I(\alpha: \beta)=H(\alpha)$ if and only if α is a deterministic function of β.

Problem 3. Prove that for all jointly distributed α, β, γ

$$
I(\alpha:\langle\beta, \gamma\rangle)=I(\alpha: \beta)+I(\alpha: \gamma \mid \beta)
$$

Problem 4. (a) Find an example of jointly distributed random variables α, β, γ such that $I(\alpha: \beta)<I(\alpha: \beta \mid \gamma)$.
(b) Find an example of jointly distributed α, β, γ such that

$$
I(\alpha: \beta)>I(\alpha: \beta \mid \gamma)
$$

Problem 5. (a) Prove that for all jointly distributed α, β, γ

$$
I(\alpha: \beta) \leq I(\alpha: \beta \mid \gamma)+H(\gamma)
$$

(b) Prove that for all jointly distributed α, β, γ

$$
I(\alpha: \beta \mid \gamma) \leq I(\alpha: \beta)+H(\gamma)
$$

Problem 6. Two random variables α and β are distributed on the set $\{1, \ldots, n\}$. Denote $\epsilon:=\operatorname{Prob}[\alpha \neq \beta]$. Prove that

$$
H(\beta \mid \alpha) \leq 1+\epsilon \cdot \log (n-1)
$$

Problem 7. The sequence of random variables $\alpha \rightarrow \beta \rightarrow \gamma$ is a Markov chain, i.e., α and γ are independent conditional on β. Prove that

$$
I(\alpha: \gamma) \leq I(\alpha: \beta)
$$

and

$$
I(\alpha: \gamma) \leq I(\beta: \gamma)
$$

Problem 8. Let t, n be positive integer numbers $(t<n)$, and $\left(S_{0}, S_{1}, \ldots, S_{n}\right)$ be a distribution such that

$$
\text { (i) } H\left(S_{0} \mid S_{i_{1}}, \ldots S_{i_{t}}\right)=0
$$

and for all $1<i_{1}<\ldots<i_{t}<n$, and

$$
\text { (ii) } H\left(S_{0} \mid S_{j_{1}}, \ldots S_{j_{t-1}}\right)=H\left(S_{0}\right)
$$

for all j_{1}, \ldots, j_{t-1} (a secret sharing scheme with the threshold t). Prove that $H\left(S_{i}\right) \geq H\left(S_{0}\right)$ for every $i=1, \ldots, n$.
Remark : the proof should work for all secret sharing schemes with the threshold t, not only for Shamir's scheme discussed in the class.

Problem 9. Let $\epsilon \in(0,1)$. It is known that some binary random variables α, β satisfy the conditions

$$
\begin{aligned}
\operatorname{Prob}[\beta=0 \mid \alpha=0] & =1-\epsilon, \\
\operatorname{Prob}[\beta=1 \mid \alpha=1] & =1-\epsilon, \\
\operatorname{Prob}[\beta=0 \mid \alpha=1] & =\epsilon, \\
\operatorname{Prob}[\beta=1 \mid \alpha=0] & =\epsilon
\end{aligned}
$$

In other words, α is a bit with some (unknown) distribution, and β is obtained from α by flipping it with probability ϵ. Find the maximal possible value of $I(\alpha: \beta)$.

Problem 10. We toss a "fair" coin $N=10^{6}$ times; each throwing gives "heads" or "tails" with equal probabilities, and all N iterations are independent. Prove that
$\operatorname{Prob}[0.49<[$ fraction of "tails" among N obtained results] $<0.51]>0.99$.
Problem 11. (a) Prove that

$$
1+\sqrt{2}+\ldots+\sqrt{n}=a n \sqrt{n}+b \sqrt{n}+O(1)
$$

for some constants a, b.
(b) Find the values of a and b in this formula.
(c) Prove a similar formula for the sum $1+\sqrt[3]{2}+\ldots+\sqrt[3]{n}$.

