UM. Autumn 2019. Homework 5 to the course «Information theory». [not counted in *contrôle continu*]

Problem 1. Let (α, β, γ) be a triple of jointly distributed random variables. For every value c_k of γ we have a conditional distribution of probabilities of the values (α, β) (conditional on $\gamma = c_k$), $p_{ij} = \operatorname{Prob}[\alpha = a_i \& \beta = b_j | \gamma = c_k]$. For this conditional distribution we can compute the mutual information between α and β ; we denote this quantity $I(\alpha : \beta | \gamma = c_k)$.

The conditional mutual information between α and β given γ is defined as

$$I(\alpha:\beta | \gamma) := \sum_{k} \operatorname{Prob}[\gamma = c_{k}] \cdot I(\alpha:\beta | \gamma = c_{k})$$

Prove that

$$I(\alpha : \beta | \gamma) = H(\beta | \gamma) - H(\beta | \alpha, \gamma)$$

= $H(\alpha | \gamma) - H(\alpha | \beta, \gamma)$
= $H(\alpha | \gamma) + H(\beta | \gamma) - H(\alpha, \beta | \gamma)$
= $H(\alpha, \gamma) + H(\beta, \gamma) - H(\alpha, \beta, \gamma) - H(\gamma).$

Problem 2. (a) Prove that $H(\alpha | \beta) = 0$ if and only if α is a deterministic function of β (every value of β is compatible with only one value of α).

(b) Prove that $I(\alpha : \beta) = H(\alpha)$ if and only if α is a deterministic function of β .

Problem 3. Prove that for all jointly distributed α, β, γ

$$I(\alpha : \langle \beta, \gamma \rangle) = I(\alpha : \beta) + I(\alpha : \gamma \mid \beta).$$

Problem 4. (a) Find an example of jointly distributed random variables α, β, γ such that $I(\alpha : \beta) < I(\alpha : \beta | \gamma)$.

(b) Find an example of jointly distributed α, β, γ such that

$$I(\alpha:\beta) > I(\alpha:\beta \mid \gamma).$$

Problem 5. (a) Prove that for all jointly distributed α, β, γ

$$I(\alpha : \beta) \le I(\alpha : \beta | \gamma) + H(\gamma).$$

(b) Prove that for all jointly distributed α, β, γ

$$I(\alpha : \beta \mid \gamma) \le I(\alpha : \beta) + H(\gamma).$$

Problem 6. Two random variables α and β are distributed on the set $\{1, \ldots, n\}$. Denote $\epsilon := \operatorname{Prob}[\alpha \neq \beta]$. Prove that

$$H(\beta \mid \alpha) \le 1 + \epsilon \cdot \log(n-1).$$

Problem 7. The sequence of random variables $\alpha \to \beta \to \gamma$ is a *Markov chain*, i.e., α and γ are independent conditional on β . Prove that

$$I(\alpha : \gamma) \le I(\alpha : \beta)$$

and

$$I(\alpha : \gamma) \le I(\beta : \gamma).$$

Problem 8. Let t, n be positive integer numbers (t < n), and (S_0, S_1, \ldots, S_n) be a distribution such that

(i)
$$H(S_0 | S_{i_1}, \dots, S_{i_t}) = 0$$

and for all $1 < i_1 < \ldots < i_t < n$, and

(ii)
$$H(S_0 | S_{j_1}, \dots, S_{j_{t-1}}) = H(S_0)$$

for all j_1, \ldots, j_{t-1} (a secret sharing scheme with the threshold t). Prove that $H(S_i) \ge H(S_0)$ for every $i = 1, \ldots, n$.

Remark: the proof should work for *all* secret sharing schemes with the threshold *t*, not only for Shamir's scheme discussed in the class.

Problem 9. Let $\epsilon \in (0, 1)$. It is known that some binary random variables α , β satisfy the conditions

$$\begin{aligned} &\operatorname{Prob}[\beta = 0 \mid \alpha = 0] &= 1 - \epsilon, \\ &\operatorname{Prob}[\beta = 1 \mid \alpha = 1] &= 1 - \epsilon, \\ &\operatorname{Prob}[\beta = 0 \mid \alpha = 1] &= \epsilon, \\ &\operatorname{Prob}[\beta = 1 \mid \alpha = 0] &= \epsilon. \end{aligned}$$

In other words, α is a bit with some (unknown) distribution, and β is obtained from α by flipping it with probability ϵ . Find the maximal possible value of $I(\alpha : \beta)$.

Problem 10. We toss a "fair" coin $N = 10^6$ times; each throwing gives "heads" or "tails" with equal probabilities, and all N iterations are independent. Prove that

 $\operatorname{Prob}\left[0.49 < [\text{fraction of "tails" among } N \text{ obtained results}\right] < 0.51\right] > 0.99.$

Problem 11. (a) Prove that

$$1 + \sqrt{2} + \ldots + \sqrt{n} = an\sqrt{n} + b\sqrt{n} + O(1)$$

for some constants a, b.

- (b) Find the values of a and b in this formula.
- (c) Prove a similar formula for the sum $1 + \sqrt[3]{2} + \ldots + \sqrt[3]{n}$.