UM. Autumn 2019. Homework 6 to the course «Information theory». [should be returned by Dec 10 to be counted in contrôle continu]

Problem 1. The random erasure code has the two letters alphabet $\{0,1\}$ on the input and the three letter alphabet $\{0,1, ?\}$ on the output, with the following conditional probabilities :

$$
\begin{aligned}
& \operatorname{Prob}[\text { output }=0 \mid \text { input }=0]=1-\epsilon, \\
& \operatorname{Prob}[\text { output }=1 \mid \text { input }=1]=1-\epsilon, \\
& \operatorname{Prob}[\text { output }=? \mid \text { input }=0]=\epsilon, \\
& \operatorname{Prob}[\text { output }=? \mid \text { input }=1]=\epsilon .
\end{aligned}
$$

Compute Shannon's capacity of this channel.
Problem 2. The asymmetric random binary code has the two letters alphabet $\{0,1\}$ on the input and the three letter alphabet $\{0,1\}$ on the output, with the following conditional probabilities :

$$
\begin{aligned}
& \operatorname{Prob}[\text { output }=0 \mid \text { input }=0]=1, \\
& \operatorname{Prob}[\text { output }=1 \mid \text { input }=1]=1-\epsilon, \\
& \operatorname{Prob}[\text { output }=0 \mid \text { input }=1]=\epsilon .
\end{aligned}
$$

Compute Shannon's capacity of this channel for $\epsilon=1 / 2$.
Problem 3 (optional). Compute Shannon's capacity of the channel from Exercise 2 for an arbitrary ϵ.

Problem 4. Let us choose at random 10 binary strings of length 1000,

$$
\left.\begin{array}{rl}
\bar{x}_{1} & = \\
\bar{x}_{2} & =\left(\begin{array}{llll}
x_{1,1} & x_{1,2} & \ldots & x_{1,1000}
\end{array}\right) \\
& \vdots \\
x_{2,1} & x_{2,2} \\
\ldots & x_{2,1000}
\end{array}\right)
$$

(each bit $x_{i, j}$ is chosen be equal to 0 or 1 with probabilities $1 / 2$). Prove that with a positive probability (and even with a probability >0.5) the obtained set of words $\left\{\bar{x}_{1}, \ldots \bar{x}_{10}\right\}$ is an error correcting code that corrects at least 50 errors, i.e., the Hamming distance between every two words \bar{x}_{i} and \bar{x}_{j} is greater than $50+50=100$.

