UM. Autumn 2019. Homework 6 to the course «Information theory». [should be returned by Dec 10 to be counted in *contrôle continu*]

Problem 1. The *random erasure code* has the two letters alphabet $\{0, 1\}$ on the input and the three letter alphabet $\{0, 1, ?\}$ on the output, with the following conditional probabilities :

Prob[output = 0 | input = 0] = $1 - \epsilon$, Prob[output = 1 | input = 1] = $1 - \epsilon$, Prob[output = ? | input = 0] = ϵ , Prob[output = ? | input = 1] = ϵ .

Compute Shannon's capacity of this channel.

Problem 2. The asymmetric random binary code has the two letters alphabet $\{0, 1\}$ on the input and the three letter alphabet $\{0, 1\}$ on the output, with the following conditional probabilities :

Prob[output = 0 | input = 0] = 1, Prob[output = 1 | input = 1] = $1 - \epsilon$, Prob[output = 0 | input = 1] = ϵ .

Compute Shannon's capacity of this channel for $\epsilon = 1/2$.

Problem 3 (optional). Compute Shannon's capacity of the channel from Exercise 2 for an arbitrary ϵ .

Problem 4. Let us choose at random 10 binary strings of length 1000,

```
 \bar{x}_1 = (x_{1,1} \quad x_{1,2} \quad \dots \quad x_{1,1000}) 
\bar{x}_2 = (x_{2,1} \quad x_{2,2} \quad \dots \quad x_{2,1000}) 
\vdots \\ \bar{x}_{10} = (x_{10,1} \quad x_{10,2} \quad \dots \quad x_{10,1000})
```

(each bit $x_{i,j}$ is chosen be equal to 0 or 1 with probabilities 1/2). Prove that with a positive probability (and even with a probability > 0.5) the obtained set of words $\{\bar{x}_1, \ldots, \bar{x}_{10}\}$ is an error correcting code that corrects at least 50 errors, i.e., the Hamming distance between every two words \bar{x}_i and \bar{x}_j is greater than 50 + 50 = 100.