
Course «Information theory». Very brief lecture notes.

03.12.2019. Lecture 11.

1. Probabilistic model of a noisy channel. A discrete memoryless chan-
nel is formally defined by two alphabets (the alphabet of input signals A and
the alphabet of output signals B) and by the matrix of signals transformation
probabilities (qij) (for i = 1, . . . , |A| and j = 1 . . . , |B|), where

qij = Prob[ the outcome of the channel is bj | input of the channel is ai ]. (∗)

We assume that every unite of time (e.g., every millisecond) the channel gets a
symbol ai on the input and returns a random output bj (that is obtained of the
input ai with the conditional probabilities qij). In this setting, the sender is free
to choose arbitrarily the symbols on the channel’s input. The output symbols bj
delivered to the receiver are typically interpreted as a “noisy” version of the sent
symbols ai. By controlling the sequence of symbols (ai1ai2ai3 . . .) given to the
input of the channel, the sender suppose to influence the sequence of symbols
(bi1bi2bi3 . . .) obtained on the output. The correlation between the input and
output symbols permits to transfer via the channel some “useful” information.

This class of channels is called memoryless because for each unit of time,
the distribution on the possible outputs bj depends only on the inputs symbol
ai sent at this very moment, with no contribution of symbols transmitted by
the channel earlier or later.

Standard examples of random noisy channels :
(1) Binary symmetric channel : the input and the output alphabets both

consist of 0 and 1 ; the output bit is different of the corresponding in-
put bit with probability ε (i.e., the channel flips the bit with some fixed
probability ε). More formally, A = B = {0, 1}, and

q00 = 1− ε
q01 = ε
q11 = 1− ε
q10 = ε

(2) Binary non symmetric channel : the input and the output alphabets both
consist of 0 and 1 ; zeros are always transmitted without errors, and every
one is converted in a zero with some fixed probability ε. More formally,
A = B = {0, 1}, and

q00 = 1
q01 = 0
q11 = 1− ε
q10 = ε

(3) Binary erasure channel : the input alphabet is {0, 1}, the output alphabet
is {0, 1, ?} ; zero and one are transmitted without error with a probability



1−ε, and with the complement probability ε they are “lost”, i.e., converted
to the symbol “ ? ”. More formally,

q00 = 1− ε
q01 = 0
q0? = ε
q11 = 1− ε
q10 = 0
q1? = ε

2. Capacity of a noisy channel. By definition, a discrete memoryless channel
provides the conditional probabilities (*). However, the channel itself does not
fix the distribution on inputs and outputs. If we choose any distribution on the
input,

p1 = Prob[ input = a1 ], . . . , pm = Prob[ input = am ],

the conditional probabilities (qij) give us a joint distribution of probabilities on
the input and the output of the channel :

Prob[ input = ai and output = bj ] = pi · qij .

We will denote this distribution (α, β) (α stands for an input signal and β
stands for the output). We focus on the maximal possible value of the mutual
information between α and β.
Definition. The capacity of a discrete memoryless channel with transition pro-
babilities (qij) is defined as

R := max
(p1...pm)

I(α : β)

(the maximum is taken over all distributions on the channel’s inputs).
In the class we computed the capacity for the binary symmetric channel :

if the bits are flipped by the channel with a probability ε, then the capacity is
R = 1− h(ε), where

h(ε) := ε log
1

ε
+ (1− ε) log

1

1− ε
.

3. The operational meaning of the channel capacity. The definition of
the channel capacity is justified by the following theorem. It shows how much
“useful” information we can transmit via a probabilistic noisy channel.

Theorem [Shannon]. Let R be the capacity of a discrete memoryless channel
(with an input alphabet A, an output alphabet B, and with transition proba-
bilities (qij)).
(а) For every L < R and for every δ > 0 and for all large enough k there exist
functions of encoding and decoding

codek : {0, 1}k → Abk/Lc and decodek : Bbk/Lc → {0, 1}k
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such that for every m̄ ∈ {0, 1}k the probability of get an error at the end of the
chain of transformations

m̄ = (m1 . . .mk)
codek−−−−→ (ai1 . . . ain)

noisy channel−−−−−−−−→ (bi1 . . . bin)
decodek−−−−−−→ m̄′ = m′1 . . .m

′
k 6= m̄

is less than δ.
(b) If L > R then for all δ > 0 and for all large enough k, for all functions of
encoding and decoding

codek : {0, 1}k → Abk/Lc and decodek : Bbk/Lc → {0, 1}k

for most messages m̄ ∈ {0, 1}k the probability of get an error at the end of the
chain of transformations

m̄ = (m1 . . .mk)
codek−−−−→ (ai1 . . . ain)

noisy channel−−−−−−−−→ (bi1 . . . bin)
decodek−−−−−−→ m̄′ = m′1 . . .m

′
k 6= m̄

is greater than 1− δ.

Speaking informally, this theorem claims that we can use the channel of
capacity R to transmit ≈ R “useful” bits per one symbol sent through the
channel. The probability of the decoding error can be made arbitrarily small,
if we encode the data in large enough blocks. It is instructive to compare this
theorem with Shannon’s theorem on block coding for a channel without noise.

Shannon’s theorem characterizes the optimal performance of a noisy channel
but it does not give a practical recipe how to achieve this performance.

Exercise 11.1. The random erasure code has the two letters alphabet {0, 1}
on the input and the three letter alphabet {0, 1, ?} on the output, with the
following conditional probabilities :

Prob[ output = 0 | input = 0 ] = 1− ε,
Prob[ output = 1 | input = 1 ] = 1− ε,
Prob[ output = ? | input = 0 ] = ε,
Prob[ output = ? | input = 1 ] = ε.

Compute Shannon’s capacity of this channel.

Exercise 11.2. The asymmetric random binary code has the two letters alpha-
bet {0, 1} on the input and the three letter alphabet {0, 1} on the output, with
the following conditional probabilities :

Prob[ output = 0 | input = 0 ] = 1,
Prob[ output = 1 | input = 1 ] = 1− ε,
Prob[ output = 0 | input = 1 ] = ε.

Compute Shannon’s capacity of this channel for ε = 1/2.

Exercise 11.3 (optional). Compute Shannon’s capacity of the channel from
Exercise 2 for an arbitrary ε.
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Exercise 11.4. Let us choose at random 10 binary strings of length 1000,

x̄1 = (x1,1 x1,2 . . . x1,1000)
x̄2 = (x2,1 x2,2 . . . x2,1000)

...
x̄10 = (x10,1 x10,2 . . . x10,1000)

(each bit xi,j is chosen be equal to 0 or 1 with probabilities 1/2). Prove that
with a positive probability (and even with a probability > 0.5) the obtained set
of words {x̄1, . . . x̄10} is an error correcting code that corrects at least 50 errors,
i.e., the Hamming distance between every two words x̄i and x̄j is greater than
50 + 50 = 100.
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10.12.2019. Lecture 12. Kolmogorov complexity

Definition. Let L : {0, 1}∗ → {0, 1}∗ be a (possibly partial) computable func-
tion. We define CL(x) = min{|p| : L(p) = x}. (With the convention that
minimum of the empty set is infinity.) The function L is often called decompres-
sor, and CL(x) is the complexity of x with respect to this decompressor.
Definition. Let L1, L2 be two computable functions. We say that L1 is better
than L2 as a decompressor, if there exists a number Const such that for all
strings x ∈ {0, 1}∗

CL1
(x) ≤ CL2

(x) + Const.

In the class we proved the following statement :
Theorem. There exists a decompressor (a partial computable function) Lopt

that is better than any other decompressor, i.e., for all computable L and for
all binary strings x

CLopt
(x) ≤ CL(x) +O(1).

Such a decompressor Lopt is called optimal.
Remark. There exist infinitely many optimal decompressors. However, they are
equivalent to each other in the following sense. If Lopt and L′opt are tow opti-
mal decompressors, that there exists a constant Const such that for all binary
strings x

|CLopt(x)− CL′
opt

(x)| ≤ Const.

We fix some optimal decompressor Lopt and denote in what follows

C(x) := CLopt
(x).

The value of C(x) is called Kolmogorov complexity of x.
In the class we proved several properties of Kolmogorov complexity :
— there exists a constant c1 such that for all binary strings x

C(x) ≤ |x|+ c1;

— there exists a constant c2 such that for all binary strings x

C(xx) ≤ |x|+ c2;

— there exists a constant c3 such that for all binary strings x

C(xx) ≤ C(x) + c3;

— there exists a constant c4 such that for all binary strings x

C(xx . . . x︸ ︷︷ ︸
n

) ≤ |x|+ 2 log n+ c4;
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— for every computable function f there exists a constant c5 such that

C(f(x)) ≤ C(x) + c5;

— for every n there exists a binary string x of length n such that C(x) ≥ n ;
— there exists a constant c6, such that for every n for at least 99% fo all

binary strings of length n

n− c6 ≤ C(x) ≤ n+ c6.

Lemma. There is no algorithm that finds for every given integer n > 0 a binary
string xn such that C(xn) > n.
Proposition 1. The value of Kolmogorov complexity C(x) is not a computable
function of x.
Corollary. Every optimal decompressor is a partial (not total !) computable
function.
Notation. We fix a computable injective function

code : {0, 1}∗ × {0, 1}∗ → {0, 1}∗

and denote C(x, y) := C(code(x, y)). Similarly we define C(x, y, z) := C(code(code(x, y), z)),
and so on.
Proposition 2.
(a) C(x, y) ≤ |x|+ |y|+ 2 log |x|+O(1)

(b) C(x, y) ≤ C(x) + C(y) + 2 logC(x) +O(1)

(c) for every number c there exist binary strings x and y such that

C(x, y) > C(x) + C(y) + c

In other words, we cannot omit the logarithmic term in (b) :

C(x, y) 6≤ C(x) + C(y) +O(1).

Exercise 12.5. Prove that there exists an integer number Const such that for
every pair of binary strings x, y

C(x, y) ≤ |x|+|y|+log |x|+log log |x|+log log log |x|+2 log log log log |x|+Const.

Exercise 12.6. Let x be a binary string of length n with pn zeros and (1−p)n
ones. Prove that

C(x) ≤
(
p log

1

p
+ (1− p) log

1

1− p

)
n+O(log n).

Exercise 12.7. Most statements about Kolmogorov complexity are independent
of the choice of the optimal decompressor. In this exercise we ask about proper-
ties that do depend on the optimal decompressor.

(a) Does there exist an optimal decompressor Lopt such that for all x the
value of CLopt

(x) is even ?
(b) Does there exist an optimal decompressor Lopt such that for all x the

value of CLopt
(x) is a power of 2 ?
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10.12.2019. Lecture 13. Conditional Kolmogorov complexity and com-
munication complexity.

Definition. Let L : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a (possibly partial) compu-
table function. We define CL(x | y) = min{|p| : L(p, y) = x}. (With the usual
convention that minimum of the empty set is infinity.) The function L is often
called decompressor with a condition, and CL(x | y) is the complexity of x given
y with respect to this decompressor.
Definition. Let L1, L2 be two computable functions of two arguments. We say
that L1 is better than L2 as a decompressor, if there exists a number Const such
that for all strings x, y ∈ {0, 1}∗

CL1
(x | y) ≤ CL2

(x | y) + Const.

Theorem. There exists a decompressor (a partial computable function) Lopt

that is better than any other decompressor, i.e., for all computable L and for
all binary strings x

CLc
opt

(x | y) ≤ CL(x | y) +O(1).

Such a decompressor Lc
opt is called optimal.

We fix some optimal decompressor Lc
opt and denote in what follows

C(x | y) := CLopt(x | y).

The value of C(x) is called conditional Kolmogorov complexity of x given y.

In the class we proved several properties of Kolmogorov complexity :
— C(x | y) ≤ C(x) +O(1);

— C(x | ε) = C(x) +O(1);

— for every computable function f there exists an integer number constf
such that

C(f(x) |x) ≤ constf ;

— there exists a number const > 0 such that for every n for at least 99% fo
all binary strings x of length n and for all y (of any length)

n− const ≤ C(x | y) ≤ n+ const.

Definition. Information in x on y is defined as I(x : y) := C(y)− C(y |x).
Theorem [Kolmogorov–Levin]. There exist integer numbers c1, c2 such that for
all binary strings x, y∣∣C(x, y)− C(x)− C(y |x)

∣∣ ≤ c1 logN + c2,

where N = C(x) + C(y).
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Corollary. The mutual information is symmetric up to an additive logarithmic
term :

I(x : y) = I(x : y) +O(logN),

where N = C(x) + C(y).
In the class we proved the following remark : the additive logarithmic term in

the theorem of Kolmogorov–Levin cannot be omitted. This is not an artifact of
the proof ; the mutual information is indeed symmetric only with a logarithmic
“correction term.”

Applications : In the class we discussed two arguments based on Kolmogo-
rov complexity. In the first example we used Kolmogorov complexity to prove
the classical theorem : there are infinitely many prime numbers. In the second
example we proved that a Turing machine with one tape cannot duplicate the
given input word faster than in time Ω(n) (where n is the length of the input).

Communication complexity. In the class we introduced the notion of deter-
ministic communication protocol for two parties (Alice and Bob) and defined
communication complexity of a function

f : {0, 1}n × {0, 1}n → {0, 1}m.

We proved that for the predicate EQn : {0, 1}n × {0, 1}n → {0, 1}m defined as

EQn(x, y) =

{
1, if x = y
0, if x 6= y

the deterministic communication complexity is equal to n+ 1.
Then we introduced the model of randomized communication and construc-

ted for the predicate EQn a randomized communication protocol with commu-
nication complexity O(log n), which gives for each pair of inputs x, y the right
answer with a probability > 0.99.
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