UM. Autumn 2020. Homework to the course «Information theory». should be returned by Dec 8 to be counted in *contrôle continu*

Problem 1. Let (α, β) be a pair of jointly distributed random variables. Prove that $I(\alpha : \beta) = H(\alpha)$ if and only if α is a deterministic function of β .

Problem 2. Let (α, β, γ) be a triple of jointly distributed random variables. The conditional mutual information is defined as $I(\alpha:\beta|\gamma) = H(\beta|\gamma) - H(\beta|\alpha,\gamma)$. Prove that

- (a) $I(\alpha:\beta|\gamma) = H(\alpha|\gamma) + H(\beta|\gamma) H(\alpha,\beta|\gamma),$
- $\begin{array}{lll} (b) & I(\alpha:\beta|\gamma) & = & H(\alpha,\gamma) + H(\beta,\gamma) H(\alpha,\beta,\gamma) H(\gamma), \\ (c) & I(\alpha:\beta|\gamma) & = & I(\beta:\alpha|\gamma). \end{array}$

Problem 3. Construct a joint distribution (α, β, γ) such that

$$H(\alpha) = H(\beta) = H(\gamma) = 1,$$

 $H(\alpha, \beta) = H(\beta, \gamma) = H(\alpha, \gamma) = 2,$
 $H(\alpha, \beta, \gamma) = 2.$

Draw a diagram representing the entropy values of this distribution. Find the values $I(\alpha : \beta)$ and $I(\alpha : \beta | \gamma)$.