
01.12.2020. Lecture 13.

1. Conditional entropy.
We started the lecture with a reminder :
Definition 1. Let (α, β) be jointly distributed random variables, with

pij = Prob[α = 1i & β = bj ].

For each value bj we have a conditional distribution on the values of α with
probabilities

p′i = Prob[α = αi |β = bj ] =
Prob[α = 1i & β = bj ]

Prob[β = bj ]
.

This conditional distribution has Shannon’s entropy ; we denote itH(α |β = bj).

Definition 2. We define the entropy of α conditional on β as the following
average value :

H(α |β) :=
∑
j

Prob[β = bj ] ·H(α |β = bj).

We proved several properties of conditional entropy :
— H(α |β) ≥ 0

— H(α |β) = 0 if and only if α is a deterministic function of β
— H(α, β) = H(α |β) +H(β)

— H(α |β) ≤ H(α)

— H(α |β) = H(α) if and only if α and β are independent

Interpretation of the conditional entropy. In the class we discussed an interpre-
tation of the quantity H(α|β) as the optimal compression rate for the following
encoding scheme with a helper. Let (αi, βi), i = 1, . . . , n be a sequence of in-
dependent and identically distributed pairs. We assume that both Sender and
Receiver know the values of βi, while only Sender knows αi. In this setting, Sen-
der should send to Receiver a message that allows to the latter to compute the
values of αi. The question is how long should be the message so that Receiver
gets the values of (α1, . . . , αn) with a high (close to 1) probability. Note that a
message of length n ·H(α) + o(n) bits is enough even without the “helper” βi.
It turns out that with the helping information the length of the message can be
reduced to H(αi|βi) · n+ o(n) bits.

2. Mutual information.
Definition 3. We define the information in α on β as

I(α : β) := H(β)−H(α |β).

In the class we proved several properties of the mutual information :



— I(α : β) ≥ 0

— I(α : β) = 0 if and only if α and β are independent
— I(α : β) = I(β : α) = H(α) +H(β)−H(α, β)

— I(α : β) ≤ H(α)

— I(α : β) ≤ H(β)

Definition 4. We define the information in α on β conditional on γ as

I(α : β | γ) := H(β | γ)−H(α |β, γ).

3. The fundamental relations between different entropic quantities.
For a pair of jointly distributed random variables (α, β) we have the following

entropic quantities : H(α), H(β), H(α, β), H(α|β), H(β|α), I(α : β) = I(β : α).
These values are not totally independent. Indeed, given H(α), H(β), H(α, β)
we can compute the conditional entropies and the mutual information :

H(α|β) = H(α, β)−H(β)
H(β|α) = H(α, β)−H(α)
I(α : β) = H(α) +H(β)−H(α, β).

Similarly, given the quantities H(α|β), H(β|α), and I(α : β) we can compute
the values of unconditional entropies :

H(α) = H(α, β) +H(β|α)
H(β) = H(α, β) +H(α|β)

H(α, β) = I(α : β) +H(α|β) +H(β|α).

Notice that in both cases we need to know three parameters to determine all
other entropic quantities for a (α, β).

For a triple of jointly distributed random variables (α, β, γ) we have much
more different non-trivial entropic quantities :

H(α), H(β), H(γ),
H(α, β), H(α, γ), H(β, γ), H(α, β, γ),
H(α|β), H(β|α), H(α|γ), H(γ|α), H(β|γ), H(γ|β),
H(α|β, γ), H(β|α, γ), H(γ|α, β),
H(α, β|γ), H(β|α, γ), H(γ|α, β),
I(α : β), I(α : γ), I(β : γ),
I(α, β : γ), I(α, γ : β), I(α : β, γ), I(α : β|γ), I(α : γ|β), I(β : γ|α).

Sometimes it is useful to introduce one more quantity, “the mutual information
of the triple,”

I(α : β : γ) := H(α)+H(β)+H(γ)−H(α, β)−H(α, γ)−H(β, γ)+H(α, β, γ).
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Again, these entropic quantites are not totally independent : it is enough to know
seven “basic” quantities H(α), H(β), H(γ), H(α, β), H(α, γ), H(β, γ), H(α, β, γ)
to compute all other values of conditional entropies and mutual informations.
In the class we discussed that, alternatively, all these entropic quantities can be
computed given the other seven parameters,

H(α|β, γ), H(β|α, γ), H(γ|α, β), I(α, β : γ), I(α, γ : β), I(α : β, γ), I(α : β : γ).

We used a Venn-like diagram to visualize the relations between all entropic
quantities for α, β, γ.

08.12.2020. Lecture 14.

1. Discussion of the homework.We discussed the exercise of the homework :

— Let (α, β) be a pair of jointly distributed random variables. Then I(α :
β) = H(α) if and only if α is a deterministic function of β.

— Let (α, β, γ) be a triple of jointly distributed random variables. The condi-
tional mutual information is defined as I(α : β|γ) = H(β|γ)−H(β|α, γ).
Then

(a) I(α : β|γ) = H(α|γ) +H(β|γ)−H(α, β|γ),
(b) I(α : β|γ) = H(α, γ) +H(β, γ)−H(α, β, γ)−H(γ),
(c) I(α : β|γ) = I(β : α|γ),
(d) I(α : β|γ) =

∑
k Prob[γ = ck] · I(α : β|γ = ck)

From the last property it is easy to obtain that I(α : β|γ) ≥ 0 for all
(α, β, γ).

— we constructed a distribution (α, β, γ) such that I(α : β : γ) < 0. More
specifically, we constructed a joint distribution (α, β, γ) such that

H(α) = H(β) = H(γ) = 1,
H(α, β) = H(β, γ) = H(α, γ) = 2,
H(α, β, γ) = 2.

For such a distribution we have I(α : β : γ) = −1.
We also proved the following fact :
— If α and β are distributed on {a, b, c, d, e} (a domain with five elements)

and Prob[α 6= β] < 1/2, then H(α|β) < 2.

2. Non-basic information inequality. We used the Venn-like diagram and
the basic information inequalities to prove that for all jointly distributed (α, β, γ)

2H(α, β, γ) ≤ H(α, β) +H(α, γ) +H(β, γ).

We observed that this inequality can be reduced to the sum of three “basic”
inequalities

I(α : β) ≥ 0,
I(α : γ|β) ≥ 0,
I(β : γ|α) ≥ 0.
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2. Information theoretical cryptography. We started discussing the Ver-
nam cipher and its optimality for a symmetric encoding/decoding scheme (to
be completed in the next lecture).

15.12.2020. Lecture 15.

1. One-time pad encryption technique.
We proved that the Vernam cipher is secure : the mutual information between
the secret message and the encoded message is equal to zero. Then we proved
that this scheme is essentially optimal (i.e., the length of the secret key can be
reduced without losing the security) :
Theorem [Shannon]. Let (k,m, e) be a triple of jointly distributed random
variables (in our context k is the secret key, m is the secret message, and e).
Assume that these random variables satisfy the following three conditions : H(e|k,m) = 0 (the cypher text can be obtained given the secret text and the secret key)

H(m|k, e) = 0 (the original text can be reconstructed given the cypher text and the secret key)
I(e : m) = 0 (the cypher text without the key gives no information on the original text).

Then H(k) ≥ m (the size of the secret key must be at least the same as the
entropy of the message).

In the class we proved this theorem. Moreover, we proved that the conclusion
H(k) ≥m remains true even if we omit the second condition.

2. Secret sharing.
We discussed in the class the notion of a perfect secret sharing, with simple
classical examples. In this setting, a secret is a random variable S0 (usually a
uniform distribution on some finite set), which is understood as a distribution
on possible values of a secret keys. We want to “distribute” this secret among k
participants of the project so that (i) every “authorized” group of participants
could reconstruct uniquely the value of S0, and (ii) every “non-authorized” group
of participants gets no information about the secret. Technically, this means that
we include the random variable S0 in a joint distribution (S0, S1, . . . , Sk) (where
S0 is the secret and S1 . . . Sk are shares assigned to each participant) so that
the conditions (i) and (ii) are satisfied.
Example 1. Let k = 3 and let us require that only all 3 participants know the
secret S0, and every group of less than 3 participants gets no information on S0.
In case when S0 is a uniform distribution on {0, 1}n, there is a simple scheme
satisfying the conditions (i) and (ii) : the “shares” of the secret S1, S2, S3 are
independent and uniform distribution on {0, 1}n, and S0 is the bitwise XOR of
them,

S0 = S1 ⊕ S2 ⊕ S3.

Then it is easy to verify that

(i) H(S0 |S1, S2, Sn) = 0
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and
(ii) H(S0 |Si, Sj) = H(S0).

Example 2. Let k = 3 and let us require that every two participants know the
secret but every single participant does not know the secret. In other words, we
require that

H(S0|S1, S2) = H(S0|S1, S3) = H(S0|S2, S3) = 0,
H(S0|S1) = H(S0|S2) = H(S0|S3) = H(S0).

In this example we assume that S0 is a uniform distribution on Z/pZ for a prime
number p.

In this setting the secret sharing can be implemented as follows : we fix
some (non-zero) elements x1, x2, x3 ∈ Z/pZ and define the joint distribution
(S0, S1, . . . , Sk) as follows : let a, b be independent uniformly chosen elements
in Z/pZ, and respectively

Q(x) = a+ bx

be a randomly chosen polynomial of degree less than 2 (again, over the field
Z/pZ). We let S0 = a and

Si := Q(xi) for i = 1, 2, 3.

Then it can be shown that S0 is uniquely determined by any two shares Si, Sj .
The same time, S0 has no mutual information with one single Si.
Example 3. Now we generalize the previous example for the setting with k > 3
participants. Let us choose a parameter (threshold) t between 1 and k and
require that (i) every group of at east t participants knows the secret, and
(ii) every group of less than t participants gets no information about the secret.
For simplicity, we assume that S0 is a uniform distribution on Z/pZ for a prime
number p (in what follows we assume that k < p).

In this setting the secret sharing can be implemented in Shamir’s scheme :
we fix some elements x0, x1, . . . , xk ∈ Z/pZ and define the joint distribution
(S0, S1, . . . , Sk) as follows : let a0, . . . at−1 be independent uniformly chosen
elements in Z/pZ, and respectively

Q(x) = a0 + a1x+ a2x
2 + . . .+ at−1x

t−1

be a randomly chosen polynomial of degree less than t (again, over the field
Z/pZ), and

Si := Q(xi) for i = 0, 1, . . . , k.

Then it can be shown that

(i) H(S0 |Si1 , . . . , Sit) = 0

for all 1 ≤ i1 < . . . it ≤ k (given t different points (xi, Si) on the graph of
the polynomial Q(x), we can reconstruct the coefficients of Q(x) and therefore
compute S0 = Q(x0)) and

(ii) H(S0 |Si1 , . . . , Sit−1
) = log p = H(S0)
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(if we know only t − 1 points (xi, Q(xi)) on the graph of the polynomial, than
all values of Q(x0) are possible and equiprobable).

3. Kolmogorov complexity

Definition. Let L : {0, 1}∗ → {0, 1}∗ be a (possibly partial) computable func-
tion. We define CL(x) = min{|p| : L(p) = x}. (With the convention that
minimum of the empty set is infinity.) The function L is often called a descrip-
tion method or a decompressor, and CL(x) is the complexity of x with respect
to this decompressor.
Definition. Let L1, L2 be two computable functions. We say that L1 is better
than L2 as a decompressor, if there exists a number Const such that for all
strings x ∈ {0, 1}∗

CL1(x) ≤ CL2(x) + Const.

In the class we proved the following statement :
Theorem. There exists a decompressor (a partial computable function) Lopt

that is better than any other decompressor, i.e., for all computable L there exists
a constant d such that for all binary strings x

CLopt(x) ≤ CL(x) + d.

Such a decompressor Lopt is called optimal.
Remark. There exist infinitely many optimal decompressors. However, they are
equivalent to each other in the following sense. If Lopt and L′opt are tow opti-
mal decompressors, that there exists a constant Const such that for all binary
strings x

|CLopt
(x)− CL′opt

(x)| ≤ Const.

We fix some optimal decompressor Lopt and denote in what follows

C(x) := CLopt(x).

The value of C(x) is called Kolmogorov complexity of x.

In a similar way we define conditional Kolmogorov complexity :
Definition. Let L : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a (possibly partial) compu-
table function. We define CL(x | y) = min{|p| : L(p, y) = x}. (With the usual
convention that minimum of the empty set is infinity.) The function L is often
called decompressor with a condition, and CL(x | y) is the complexity of x given
y with respect to this decompressor.
Definition. Let L1, L2 be two computable functions of two arguments. We say
that L1 is better than L2 as a decompressor, if there exists a number Const such
that for all strings x, y ∈ {0, 1}∗

CL1
(x | y) ≤ CL2

(x | y) + Const.
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Theorem. There exists a decompressor (a partial computable function) Lc
opt

that is better than any other decompressor, i.e., for all computable L and for
all binary strings x

CLc
opt

(x | y) ≤ CL(x | y) +O(1).

Such a decompressor Lc
opt is called optimal.

We fix some optimal decompressor Lc
opt and denote in what follows

C(x | y) := CLc
opt

(x | y).

The value of C(x) is called conditional Kolmogorov complexity of x given y.

Basic properties of Kolmogorov complexity.
In the class we proved several properties of Kolmogorov complexity :

— there exists a constant d1 such that for all binary strings x

C(x) ≤ |x|+ d1;

— there exists a constant d2 such that for all binary strings x

C(xx) ≤ |x|+ d2;

— there exists a constant d3 such that for all binary strings x

C(xx) ≤ C(x) + d3;

— there exists a constant d4 such that for all binary strings x

C(xx . . . x︸ ︷︷ ︸
n

) ≤ |x|+ 2 log n+ d4;

— for every n there exists a binary string x of length n such that C(x) ≥ n ;
Proposition. There exist constants d1, d2 such that for all binary strings x of
length n with pn zeros and (1− p)n ones we have

C(x) ≤
(
p log

1

p
+ (1− p) log 1

1− p

)
n+ d1 log n+ d2.

Definition. Information in x on y is defined as I(x : y) := C(y)− C(y |x).
We discussed (without a proof) the following theorem :
Theorem [Kolmogorov–Levin]. (a) There exist integer numbers c1, c2 such that
for all binary strings x, y∣∣C(xy)− C(x)− C(y |x)∣∣ ≤ c1 logN + c2,

where N = C(x) + C(y) and xy denotes the concatenation of x and y.
(b) The mutual information is symmetric up to an additive logarithmic term :

|I(x : y)− I(y : x)| ≤ c1 logN + c2,

where N = C(x) + C(y).
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