Course «Information theory». Very brief lecture notes.
08.09.2020. Lecture 1.

1. The game guess a number : one players chooses an integer number bet-
ween 0 and n — 1, another player should find this number by asking questions
with answers yes or no. There is a simple strategy that allows to find the chosen
number in [logn] questions! (bisection). Moreover, there exists even a non-
adaptive strategy with the same number of questions (the second player asks
bits of the binary expansion of the chosen number).

These strategies are optimal : no strategy helps to reveal the chosen number
in less than [logn] questions (in the worst case). The lower bound can be
explained in terms of the missing information : every valid strategy for this
game can be represented as a binary that contain at least n leaves (one leaf for
every possible answer). Therefore, the height of this tree must be at least log of
the number of possible answers.

2. Sorting algorithms. We are given n objects (“stones”) and balance scales ;
in one operation we can compare weights of two stones.
Claim. To sort n stones by their weights, we have to do in the worst case
log(n!) pairwise comparisons (no algorithm can guarantee the right answer with
less than log(n!) weighings). This is because every strategy (algorithm) can be
represented by a binary tree with final answers written in the leaves, and there
are n! possible answers (different orderings of n elements). Thus, the depth of
this tree cannot be less than log(n!).

There exist sorting algorithms that do the job with O(nlogn) comparisons.
Thus,

log(n!) < [the optimal number of weighings] < O(nlogn).

We observed that the difference between the lower bound log(n!) and the upper
bound O(nlogn) is only a constant factor (see also the homework).

3. Fake coins problems. (i) A light fake coin. We are given n = 25 coins.
One of them is fake, which is lighter than all other (identical) coins. We can
use balance scales to compare weights of any two groups of coins. How many
operations do we need to find the fake coin ?

In this case, every weighing strategy can be represented by a ternary rooted
tree, and the maximal number of operations is the height of this tree. We proved
that for n = 25 coins an optimal strategy requires 3 weighings. In general, to
find a light fake coin in a heap of n coins we need [log; n| weighings.

(i) A fake coin with unknown weight. We are given n = 12 coins. One of
them is fake, and can be lighter or heavier than all other (identical) coins. Again,
we can use balance scales to compare weights of any two groups of coins. We are
not obliged to find out the relative weight of the fake coin (we ignore whether
it is lighter or heavier than a genuine one). How many operations do we need
to find the fake coin ?

1. In these notes, logn stands for the binary logfraithm logq n.



We proved that an optimal strategy requires 3 weighings. For the same ques-
tion with n = 15 we proved that 3 weighings are not enough.

4. Combinatorial definition of the information quantity. Following Ralph
Hartley, we say that the quantity of information in a finite set X is defined as

Inf(X) :=log | X]|

(roughly speaking, Inf(X) is the number of binary digits needed to give a unique
name to each element in X). For every finite set X, the value Inf(X) is a non-
negative real number.

1. For a set X C Z? we can define the “quantity of information” in X as well
as in its projections on the first and the second coordinates (denoted 71 [X] and
m2[X] respectively). We have the following simple property :

Inf(X) < Inf(m [X]) + Inf (e[ X]),

the quantity of information in X is not greater than the sum of the information
quantities in two its components. This statement is equivalent to the obvious
inequality X C m[X] x m2[X], and, therefore,

| X] < | [X]] - |2 [X]].

2. Similarly, for a finite set X C Z> we have
Inf(X) < Inf(m[X]) + Inf(m2[X]) + Inf(m3[X]),
which corresponds to the trivial fact that for a 3-dimensional set X

X C m[X] x m[X] x m3[X].

3. Omne more (much less trivial!) property is known to be true for Hartley’s
information : for a finite set X C Z? we have

2. Inf(X) S Inf(mg[X]) + Inf(’]TQg[X]) + Inf(mg[X]),

where ;; denotes the projection on the coordinates (,j). For example, for a
point x = (a, b, ¢) we have m3(z) = (a,c). We will prove this inequality later.



15.09.2020. Lecture 2.

1. Discussion of the homework : We discussed an algorithm for sorting an
array of n elements and proved by induction that it runs time O(nlogn) in the
worst case. We found optimal sorting algorithms for n = 2, 3,4 elements. We
proved a fake coin in heap of 14 coins can be found in at most 4 weighings (we
do not known in advance whether the fake coin is lighter or heavier that the
other ones).

2. The game guess a number. We discussed another version of the game
“guess a number,” where the first player choses at random an integer number
between 1 and k with (known in advance) probabilities py, ..., pk, and the se-
cond player should reveal this number by asking questions with answers yes
or no, with the minimal on average number of questions. We discussed several
specific examples and suggested a general scheme of “modified dichotomy.” In
this strategy, on each step the second player divides all numbers (that have not
been excluded earlier) into two groups with balanced measures, i.e., the sums of
probabilities in both groups must be as close to each other as possible. We dis-
covered a plausible approximation : the average number of steps in this strategy

is close to
k
1
Zp’b log P
i=1 pi

though we did not prove it formally.

3. Shannon’s entropy. For a random variable o with n possible values a1, ..., a,
such that Probla = a;] = p;, we define its Shannon’s entropy as

- 1
H(a):= pilog —
i=1 pi

(with the usual convention 0 - log% = 0). We proved several properties of Shan-
non’s entropy.

Proposition 1. For every random variable o distributed on a set of n values
0 < H(a) <logn.

Moreover, H(«) = 0 if and only if the distribution is concentrated at one point
(one probability p; is equal to 1, and the other p; for j # i are equal to 0), and
H(a) = logn if and only if the distribution is uniform (py = ... =p, = %)
Sketch of proof : We use the concavity of the function logz and Jensen’s in-
equality for the concave functions.

Proposition 2. For every random wvariable o and for every (deterministic)
function F, Shannon’s entropy of the random variable 8 = F(«) is not greater
than Shannon’s entropy of «.

Sketch of proof : First of all, we observed that H(«) = H(8), if F is a bijection.
Then, we proved that the entropy of a distribution decreases, when we merge



together two points in this distribution; in other words, H(«) > H(F(«a)), if
F merges together two points from the range of o and leaves distinct the other
values of a.. By iterating the basic “merging” operations, we prove the inequality
H(wa) > H(F(«)) for an arbitrary function F'.

Given a pair of jointly distributed random variables (a, ) we can apply the
definition of Shannon’s entropy three times, with three protentially different
distributions : we have Shannon’s entropy of the entire distribution (denoted
H(a, 8)) and the entropies of two marginals, H(«) and H(j).

Proposition 3. For every pair of jointly distributed random variables o and (3

H(a,B) < H(a) + H(B).

Sketch of proof : We used again the concavity of the function of logarithm and
Jensen’s inequality.

Proposition 4. In the game “guess a number,” where the first player choses at
random an integer number between 1 and k with (known in advance) probabilities
P1,- .-, Pk, the average number of questions cannot be less than

i 1
D pilog -
i=1 pi

Sketch of proof : Let have a strategy that permits to guess a number by asking
questions with answers yes and no. We represent this strategy by a binary tree.
Denote [; the length of the branch from the root of this tree to the leaf marked ¢
(i.e., the number of questions that we ask before we get the answer 7). Observe
that

12 4 412 =1

(this is true for every binary tree). We need to prove that

k n 1
sz'li > Zpi log —.
i=1 i=1 pi

This is inequality rewrites to the form

u 2
> pilog (
=1

—1;
4

p

)<

And the last one easily follows for Jensen’s inequality :

9l b
= log 277 ] =logl=0.

l;

k 9 k
Zpi log () <log (sz .
i=1 Pi i=1




22.09.2020. Lecture 3.

1. Discussion of the homework : We used Shannon’s entropy to prove that
we cannot find a fake coin among n = 14 coins (the fake coin can be heavier or
lighter than the other ones) in less than 4 weighings.

2. Discussion of the homework : We proved that
H(o, p) = H(or) + H(B)

if and only if @ and 3 are independent.

3. Discussion of the homework : The upper bound for the average
number of questions in the game ‘“guess a number”. We use Shannon’s
entropy to estimate the average number of questions needed in the randomized
version of the game “guess a number” (with a probability distribution on the set
of possible integers).

Lemma 3.1. For integer numbers [1,...,[; such that

"1
ZQli < 1
i=1

there exists a binary tree with k leaves such that the length of the path from
the root to the i-th leaf is equal to [;.

Theorem 3.2. In the game “guess a number” (with yes or no questions) where
the number ¢ = 1,...,k is chosen with probabilities p1,...,px, there exists a

k
strategy that uses on average less than ( > pilog pi) + 1 questions.
i=1 ‘

Sketch of proof : We define I; := [log %}, notice that Y 27% < 1, and use
Lemma 3.1 to construct a strategy where each i-th leaf is on the distance [;
form the root.

3. Kraft’s inequality. A prefiz code is a set of strings {ci,...,cr} where no
codeword ¢; is a prefix of any other code word ¢; in this set. A uniquely decodable
code is a set of strings {c1,...,cr} such that for every string = there exists at
most one representation

T =0¢,0C,0...0¢,

(where o denotes concatenation). Every prefix code is uniquely decodable, but
not vice-versa. We discussed the correspondence between strategies for the game
guess a number and prefix codes.

In what follows we assume that all codes contain only binary codewords (words
in the alphabet of two letters).

Lemma 3.3. [known as Kraft’s inequality] For every uniquely decodable code
{c1,...,cx} we have

k
D orlel <,
i=1



Lemma 3.4. [known as Kraft’s inequality| For every list of integers l1,..., I

such that i
>t <
i=1
there exists a prefix code {cy, ..., ¢} such that |¢;| = I; for each i.
Theorem 3.5. For every uniquely decodable code {ci,...,c;} there exists a

prefix code {dy,...,dy} with the same lengths of the codewords, i.e., |d;| = |¢|
for each 1.

29.09.2020. Lecture 4.

1. Huffman’s coding. Let us have an alphabet X = {z1,...,zx} with a
probability distribution (p1,...,pr). We are looking for a uniquely decodable
code {ec1,..., ¢}, that minimizes the average length of the codeword

pilei| + ... pilek| — min

In the class we discussed the recursive algorithm of Huffman that allows to
construct for any given distribution of probabilities an optimal prefix code. The
base of this recursive construction is trivial : if k& = 2, then the two codewords
are ¢c; = 0 and ¢y = 1. The inductive step uses the idea that we can “merge” to
minimal probabilities in the distribution and reduce the problem on a k-element
distribution (p1,...,px) to a similar problem on a (k — 1)-element distribution
(P1s- -y Pr—2,9 = Pr+1 + D)

The proof of optimality of Huffman’s code was based on the following lemmas :
Lemma 1. If p; > ... > pg, then in every optimal code for this distribution
|Cl| S S |Ck|.

Lemma 2. In every optimal code there is no codeword that is strictly longer
than all other codewords. In particular, if |c1] < ... < ¢y, then |cx| = |crp—1].
Lemma 3. If p; > ... > py, then in some optimal code for this distribution the
codewords ¢ and ¢, differ in only the last letter (these codewords correspond to
a pair of “brothers” vertices in the binary tree). If a code satisfies this property,
we call it reqular.

Lemma 4. Let p; > ... > pi and let ¢y, ..., ¢ be a regular code for this distri-
bution. Denote by d the common prefix of ¢ and c;x_1 (in a regular code these
codewords differ only in the last position). Then the code ¢y, ¢, ..., ck—1,ck is
optimal for the distribution (p1,...,pk) if and only if the code ¢y, ..., cp_2,d is
optimal for the reduced distribution of probabilities (p1, . .., Prk—2,q¢ = Pr—1+Dk)-

2. Stirling’s formula. It is known

e

N!'=+27N (N>N ~(1+0(1))

as N — oo. This formula is called Stirling’s approximation. In the class we
proved a weaker version of this theorem. We showed that for some constants



c1,c9 > 0 and for all natural NV

VN (JZ>N < N!< VN <ZZ>N

It follows, in particular, that log(N!) = N -log(N/e) + O(logn).

The idea of the proof : we estimated the difference between the discrete sum

N
In(N!)=Inl1+In2+...+InN and the integral [ Inzdz.
1

3. Block coding : we discussed Exercise 1 from the previous homework.

4. Block coding for typical sequences. Let (p1,...,pr) be a probability
distribution (each p; is non negative and the sum of all p; is equal to 1). We say
that a word = € {x1,...,2x}" is typical is the frequencies of letters xy, ..., g
in this word are exactly the numbers p1, ..., p;x respectively.

Theorem. For every h > Y p; log% and for all large enough n there is an
injective mapping F;, that assigns to each typical n-letter word = € {x1,...,zx}"
a string of bits in {0, 1}/,

Sketch of the proof : We count the number of all typical words of length n. It is
equal to

n!
(pn)! - ...+ (pxn)!
To encode all these words, we need
log n <Z 1g1> + O(logn)
0 = pilog— | -n ogn
(pan)!- ...+ (pan)! pi

binary digits (the computation uses Stirling’s approximation for the factorials).
It remains to notice that (Z p; log pi) ‘n+O(logn) < h-n for all large enough

integer numbers n.



06.10.2020. Lecture 5.

1. Mathematical expectation and variance of random variables.
Let a be random variables distribute on R. In what follows we assume that the
distribution is concentrated on a finite set of real numbers. Let p; = Probja = z;]

k
fori=1,...,k,and > p;, =1

=1
Definition. Expectation of « is defined as

k
E(a) = Zplxz
i=1

Simple properties of the expectation :
— E(a+c¢) = E(a) + ¢ for every constant c;
— E(c-a) =c- E(«a) for every constant c¢;
— E(a+ ) = E(a) + E(B) for every pair of jointly distributed « and S
— E(a- ) =E(«a) - E(B) for all independent « and (5
Remark. The equality E(a-f) = E(a)-E(p) is false for some correlated «, 5. But,
of course, there are examples of dependent pairs («, §) such that the expectation
of the product is still equal to the product of the expectations. Here is a simple

example : the pairs («, ) is uniformly distributed on the set of pairs (1,1),
(1,-1), (-1,1), (-1,-1), (2,2), (2,—-2), (—2,2), (—2,—2). In other words,

Probla =a and =5 =1/8

for a = £1 & b = 41 and for a = +2 & b = 42. Obviously, these « and
B are not independent. However, it is easy to see that for this distribution
E(a-f)=0=E(a) - E(f).

Proposition 5.1. [Markov inequality] If the distribution of « is concentrated
on only non-negative real numbers, then for every real number T

Probla > T < M.
T

Definition. Variance of « is defined as var(a) := E ((a — E(«))?) .
Simple properties of the variance :

— var(a + ¢) = var(a) for every constant c¢;

— var(c- a) = ¢ - var(a) for every constant c;

— var(a) = B(a?) - (E(a))?;

— var(a + ) = var(a) + var(B) for every pair of independent « and S.

Proposition 5.2. [the Chebyshev inequality] For every real number T'

var(oz).

Prob[la — E(a)| > 4] < 52




Example 1. Let o be a random variable such that Probla = 1] = p and
Probla = 0] =1 —p. Then E(a) = p and var(a) = p(1 — p).
Example 2. Let oy, i = 1,...,n be a sequence of independent identically
distributed random variable such that Probla; = 1] = p and Probja; = 0] = 1—p
for every i. Then

E(lag+ ...+ ay) =pn,

E(i(a1+...+an)> =p

and
var(ag + ...+ ap) = p(l — p)n,

var (Tll(al +... —i—an)) = ZQ.

From the Chebyshev inequality we obtain

ap + ...+ a,
n

p(l —p)

Prob { 52

—p‘>5] <

2. Shannon’s coding theorem for block coding.

Theorem 5.1. Let ay,...,qa, be a sequence of independent identically distri-
buted random variables, and let h > H(«;). Denote A the range (the alphabet)
of all a; and k(n) := [hn]. Then there exists a sequence of functions (encoding
and decoding)

C, : A" — {0,1}F0),

D, : {0,1}k0) 5  An

such that probability of the decoding error
€n = PrOb(al...an) [Dn(cn(wl cee wn)) # wry .. w”]

tends to 0 as n — co. (Here the n-letter words wy . ..w, is a randomly value of
the sequence of random variables (a1, ..., ay). In other words, each letter w; is
chosen with the distribution «;, independently of other letters.)

3. Discussion of the homework We showed that for every triple of non-
negative real numbers h1, ha, hs there exists a pair of jointly distributed random
variables («, 8) such that

H(a) = hi+h
H(B) = hi+hs
H(o,) = hi+ha+hs



4. Conditional entropy.
Definition. Let («, 8) be jointly distributed random variables, with

Dij = PI‘Ob[Oé = LL' & ﬁ = b]]

For each value a; we have a conditional distribution on the values of § with
probabilities

_ Probla=a; & = bj]

/
P; rob[f = a; | = a;] Prob[a = a]

This conditional distribution has Shannon’s entropy » j p;. log i ; we denote it
J

H(B|a = a;).

Definition. We define the entropy of 5 conditional on « as the average

H(f|a) ::ZProb[a:ai]~H(6|a:ai).

There are simple properties of conditional entropy :
(a) H(a,8) = H(a|8)+ H()
(b) H(a|B) < H(a)
(¢) H(a|B) = H(a) if and only if « and S are independent

We proved (a) in the class; this property follows directly from the definition.
The property (b) rewrites to

and we already proved this inequality (see Proposition 3 in lecture 2.) Moreover,
we know that H(«, 8) — H(8) = H(«) if and only if o and 3 are independent ;
this implies (c).

To be continued (in December).
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