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Abstract. Assume a tuple of words x̄ = 〈x1, . . . , xn〉 has negligible mu-
tual information with another word y. Does this mean that properties of
Kolmogorov complexity for x̄ do not change significantly if we relativize
them conditional to y ? This question becomes very nontrivial when we
try to formalize it. We investigate this question for a very particular kind
of properties : we show that a random (conditional to x̄) oracle y cannot
help extract the mutual information from xi’s.

1 Introduction

Kolmogorov complexity K(x) of a word x is the length of a minimal description of
this word for an optimal algorithmic description method (see [1, 4]). Respectively,
conditional Kolmogorov complexity K(x|y) is the length of a minimal description
of x when y is known. In other words, K(x|y) is Kolmogorov complexity of x
with the oracle y.

The difference between plain and conditional complexities

I(x : y) = K(y)−K(y|x)

is called information in x on y. The basic result of the algorithmic information
theory is the fact that I(x : y) is symmetric up to a small additive term:

Theorem 1 (Kolmogorov–Levin, [1]).

I(x : y) = I(y : x) + O(log K(x, y)) = K(x) + K(y)−K(x, y) + O(log N)

If the value I(x : y) is negligible (logarithmic in K(x, y)), the words x and y are
often called independent.

Intuitively it seems that if x and y are ‘independent’ then ‘reasonable’ algo-
rithmic properties of x (expressible in terms of Kolmogorov complexity) should
not change significantly when we relativize them conditional to y.

Let us find a formal statement corresponding to this intuition. Let us take a
tuple x̄ = 〈x1, x2, . . . , xn〉 instead of a single word3 x. Suppose that the mutual
3 More formally, we fix a computable bijection between the set of binary words and

the set of all finite tuples of binary words. Now every tuple has a code. When we talk



information between x̄ and some y is negligible. Then it is easy to see that the
basic properties of Kolmogorov complexity for x̄ do not really change when we
relativize them conditional to y:

K(xi) ≈ K(xi|y), K(xi, xj) ≈ K(xi, xj |y), . . . ,

for all i, j, etc. (the approximative equations hold up to I(y : x̄) + O(log K(x̄)),
which is negligible by the assumption).

Further we deal with less trivial properties of Kolmogorov complexity. Proba-
bly the simplest appropriate example is the property of extractability of common
information. Let x̄ = 〈x1, x2〉 be a pair of binary words. We say that α bits of the
common information can be extracted from this pair for a precision threshold k
if

∃z such that for i = 1, 2 K(z|xi) < k and K(z) ≥ α

Straightforward arguments imply that for such a word z

K(z) ≤ I(x1 : x2) + O(k + log K(x1, x2))

This is a very natural fact: it means that for a small threshold k we cannot
extract from x1, x2 much more than I(x1 : x2) bits of information.

The question on extracting common information cannot be reduced to the
values of complexities K(x1), K(x2), K(x1, x2). For example, given that K(x1) =
K(x2) = 2n and K(x1, x2) = 3n we cannot say anything nontrivial about ex-
tracting common information. On one hand, there exist pairs 〈x1, x2〉 with the
given complexities, such that n bits of common information can be extracted
from these words for a very small threshold k = O(1). On the other hand, there
exist pairs with the same complexities such that only negligible amount of in-
formation can be extracted for pretty large k. See detailed discussions on this
topic in [2, 3, 6, 11]. A similar property of extracting common information can be
investigated not only for pairs but also for all finite tuples 〈x1, . . . , xn〉. For the
sake of simplicity in the sequel we restrict ourselves to the case n = 2 (though
our technique is suitable for all n).

Once again, our intuition says that negligible mutual information between
〈x1, . . . , xn〉 and y actually means that the relativization conditional to y should
not change properties of x1, . . . , xn. Let us formalize this intuitive idea for the
problem of extracting common information:

Assume the mutual information between x̄ = 〈x1, x2〉 and y is negligible. Then α
bits of common information between x1 and x2 can be extracted for a precision
threshold k iff the same is true given y as an oracle (for possibly a little different
precision threshold).

The ‘if’ part of the equivalence above is trivial (if some information can be
extracted without any oracle, the same can be done also given an oracle). The

about Kolmogorov complexity of pairs, triples, etc., we mean Kolmogorov complexity
of codes of these tuples.There is no natural canonical encoding of all tuples. However
the choice of a particular code is not essential. Changing this encoding we change
Kolmogorov complexity of tuples by only O(1) additive term.



interesting part is the ‘only if’ statement. Let us formulate it in the most natural
way, with logarithmic thresholds:

Conjecture 1. For every integer C1 > 0 there exists an integer C2 > 0 such that
for all x̄ = 〈x1, x2〉 and y, if I(y : x̄) ≤ C1 log N and

∃w : K(w|y) ≥ α, K(w|xi, y) ≤ C1 log N (i = 1, 2),

where N = K(x̄, y), (i.e., α bits of information can be extracted from x1, x2 for
the precision threshold C1 log N , assuming y is given as an oracle) then

∃z : K(z) ≥ α, K(z|xi) ≤ C2 log N (i = 1, 2),

i.e., the same α bits of common information can be extracted without oracles
(for another threshold C2 log N).

This natural statement is surprisingly hard to prove. In [7] this conjecture was
proven for α = I(x1 : x2). The general case is still an open problem.

In this paper we prove a version of this conjecture for o(N) thresholds instead
of logarithmic ones.

Theorem 2. For every function f(N), f(N) = o(N) there exists a function
g(N) (also g(N) = o(N)) such that for every x̄ = 〈x1, x2〉 and y if I(y : x̄) ≤
f(N) and

∃w : K(w|y) ≥ α, K(w|xi, y) ≤ f(N) (i = 1, 2),

where N = K(x̄, y), (i.e., α bits of information can be extracted from x1, x2 for
the precision threshold f(N), assuming y is given as an oracle) then

∃z : K(z) ≥ α, K(z|xi) ≤ g(N) (i = 1, 2),

i.e., the same α bits of common information can be extracted without oracles
(for another threshold g(N)).

It is rather uncommon for algorithmic information theory that a natural
statement is proven with o(·)-precision but not up to logarithmic terms. Thus,
the challenge is to prove Theorem 2 for g(N) = O(f(N)), or at least to show
that Conjecture 1 is true.

In the rest of the paper we prove Theorem 2, and in Conclusion discuss some
variant of Conjecture 1 that is known to be true.

2 Preliminaries and technical tools

The main proof of this article is based on two technical tools: typization of words
with a given profile, and extracting the common information from bunches of
words.



2.1 Complexity profiles

For an n-tuple of words x̄ = 〈x1, . . . , xn〉 and a set of indexes V = {i1, . . . , ik} ⊆
{1, . . . , n} (i1 < i2 < . . . < ik) we denote by x̄V the tuple of words xj for j ∈ V :

x̄V = 〈xi1 , . . . , xik〉.

Thus, K(x̄V ) := K(xi1 , . . . , xik). We let K(x̄∅) := K(λ) (where λ is the empty
word). We use similar notations for conditional complexities: if V = {i1, . . . , ik} ⊆
{1, . . . , n} and W = {j1, . . . , jl} ⊆{ 1, . . . , n} we denote

K(x̄V |x̄W ) := K(xi1 , . . . , xik |xj1 , . . . , xjl).

We also let K(x̄V |x̄∅) := K(x̄V |λ) (which is equal to K(x̄) up to an additive
constant).

Definition 1. We call by complexity profile K of an n-tuple x1, . . . , xn the
vector of integers that consists of all complexity quantities K(x̄V |x̄W ), where
V,W ⊆ {1, . . . , n}, V ∩W = ∅ and V ,= ∅. Note that complexity profile implicitly
contains unconditional complexity quantities: if W = ∅ we have K(x̄V |x̄∅) =
K(x̄V )+O(1). We need to fix somehow the order of components in the complexity
profile. Let us suppose that all pairs (V,W ) are arranged in the lexicographical
order, i.e.,

K(x1, . . . , xn) = (K(x1), K(x1|x2), . . . ,K(x2|x1), K(x2|x3), . . .).

Similarly we define the conditional complexity profile of x1, . . . , xn conditional
to some y. It is the vector of all complexity quantities K(x̄V |x̄W , y):

K(x1, . . . , xn|y) = (K(x1|y), K(x1|x2, y), . . . ,K(x2|x1, y), K(x2|x3, y), . . .).

We say that a profile ᾱ is not greater than another profile β̄ (notation: ᾱ ≤ β̄)
if every component of the first vector is not greater than the corresponding
component of the second vector.

Denote by ρ(α, β) the l∞-norm of the difference between the vectors α and
β.

2.2 Typization

The method if typization was proposed in [8, 10, 9].

Definition 2. Let x̄ = 〈x1, . . . , xn〉 and ȳ = 〈y1, . . . , ym〉 be tuples of words.
The typization of x̄ conditional to ȳ is the following set of n-tuples:

T (x̄|ȳ) := {x̄′ = 〈x′1, . . . , x′n〉 | K(x̄′, ȳ) ≤ K(x̄, ȳ)}.

Further, the k-strong typization of x̄ conditional to ȳ is the following set:

STk(x̄|ȳ) := T (x̄|ȳ) ∩ {x̄′ = 〈x′1, . . . , x′n〉 | ρ(K(x̄′, ȳ),K(x̄, ȳ)) ≤ k}.



Obviously there exists an algorithm that enumerates the list of all elements of
T (x̄|ȳ) given as an input the tuple ȳ and the profile K(x̄, ȳ).

The following Lemmas are proven in [8, 9]:

Lemma 1. For every x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , ym)

log |T (x̄|ȳ)| = K(x̄|ȳ) + O(log N),

where N = K(x̄, ȳ). The constant in O(·)-notation depends on n and m.

Lemma 2. There exists a computable function C = C(n, m) such that for every
n-tuple x̄ = 〈x1, . . . , xn〉 and for every m-tuple ȳ = 〈y1, . . . , ym〉 it holds

|STC(n,m) log N (x̄|ȳ)| >
1
2
|T (x̄|ȳ)|,

where N = K(x̄, ȳ).

For brevity we denote by ST (x̄|ȳ) the set STC log N (x̄|ȳ), where C is the value
from Lemma 2.

2.3 Bunches

The following definition of a bunch was given in [12]:

Definition 3. A set X ⊂ {0, 1}∗ is called an (α, β, γ)-bunch if

1. |X| = 2α,
2. K(x1|x2) < β for every x1, x2 ∈ X,
3. K(x) < γ for all x ∈ X.

The usage of this definition is based on the following combinatorial lemma:

Lemma 3 ([12]). There exists an algorithm that takes (α, β, γ) as an input and
prints a list of standard (α, β, γ)-branches U0, . . . , Uq such that:

– for every (α, β, γ)-bunch U there exists a number i ≤ q such that |U ∩Ui| ≥
2β−ε, ε = 2(β − α) + O(1),

– q < 2β+γ−2α+O(1).

Here is a typical usage of Lemma 3: Assume we are given 2n words ai of com-
plexity 2n, and for every pair ai, aj it holds K(ai|aj) ≤ n. Then the given family
of words is an (n, n, 2n)-bunch. From the lemma it follows that some Us from
the list of ‘standard bunches’ (here s < 2n) contains at least Ω(2n) of the words
ai. It is not hard to show that for all given ai

K(ai|s) ≤ n + O(log n) and K(s|ai) = O(log n).

Thus, the ordinal number s of a standard bunch Us is an n-bit ‘kernel’ of the
given family of ai’s; it is a materialization of the mutual information of all these
words. See a more detailed discussion and corollaries of these arguments in [12].

We need to modify the definition of a bunch:



Definition 4. A set X ⊂ {0, 1}∗ is called an (α, β, γ)-semi-bunch if

1. |X| = 2α,
2. for every x1 ∈ X, for the majority of all words x2 ∈ X it holds K(x1|x2) < β
3. K(x) < γ for all x ∈ X.

The following statement generalizes Lemma 3:

Lemma 4. There exists an algorithm that takes (α, β, γ) as an input and prints
a list of (α, β, γ)-semi-bunches U0, . . . , Uq such that:

– for every (α, β, γ)-semi-bunch U there exists a number i ≤ q such that |U ∩
Ui| ≥ 2β−ε, where ε = 2(β − α) + O(1),

– q < 2β+γ−2α+O(1).

The proof of Lemma 4 is almost the same as the proof of Lemma 3 in [12]. We
prove this lemma in Appendix. Let us call the semi-bunches U0, . . . , Uq from
Lemma 4 standard semi-bunches (i.e., for each triple of parameters α, β, γ we fix
a canonical list of standard semi-bunches).

3 Proof of Theorem 2

Let us define some notations and make several assumptions. W.l.o.g. we may
suppose that f(N) > log N , and f(N) does not decrease (f(N + 1) ≥ f(N) for
all N).

We chose g(N) and δ(N) that are not ‘too large’ and not ‘too small’, so that
the construction of the proof works. Let δ(N) = N/

√
log N

f(N) and

g(N) = C(3D
q

log N
f(N) · f(N) + δ(N))

(we will fix the constants C and D later). For brevity we will write just δ if the
value of N is clear from the context.

The main construction.

Informal idea:
The main trick of the proof is typization of y and w conditional to x̄. We

take the set of all ‘clones’ of the pair 〈y, w〉, which have approximately the same
complexity profile (conditional to x̄). The two cases are possible:

The good case: Assume this set of ‘clones’ is well consolidated in the sense that
most clones have large enough mutual information. Then we apply Lemma 4 and
extract from the class of clones some common kernel z. This word z contains
about α bits of information, and it is rather simple conditional to each of xi.
Thus we extract from the words xi about α bits of common information without
any oracle, and we are done.

The bad case: Assume the set of ‘clones’ is not well consolidated. Then there
exist pairs of different clones that have rather small mutual information. At this



stage we cannot extract from xi’s their common information. Instead we change
the word y to some y1 such that conditional to y1 at least α1 bits of common
information (where α1 is greater than α) can be extracted from the words x1, x2.
Thus, we come back to the assumption of the theorem, but with a greater value
α1 instead of α and a new oracle y1 instead of y. The price for this modification
is some loss of precision: instead of the term f(N) we get some greater threshold
f1(N).

The technical question is how to get such a word y1. The answer is based on
the fact that the set of ‘clones’ is not well consolidated. If we take two of them
at random (denote them 〈y′, w′〉 and 〈y′′, w′′〉) then the pair 〈y′, y′′〉 can play
the role of y1. Indeed, with the new oracle we can extract from xi’s both w′ and
w′′, which make up α1 bits of common information (α1 > α; technically, we will
get α1 ≥ α + δ/2).

Then we iterate the trick above again and again, until at some stage we get
a well consolidated set of clones...

The formal arguments:
We are given a w such that K(w|xi, y) ≤ f(N) (for i = 1, 2). W.l.o.g. we

assume that α = K(w|y) (if K(w|y) > α, we increase the value of α; this makes
the statement only stronger). Denote m = K(y). The aim is to construct z such
that K(z|xi) ≤ g(n) and K(z) ≥ α− g(N).

We take the strong typization of 〈y, w〉 conditional to x: A = ST (y, w|x̄).
From Lemma 1 it follows |A| = 2K(y,w|x̄)−O(f(N)). We have

K(y, w|x̄) = K(y|x̄) + K(w|y, x̄) + O(log N),

K(y|x̄) ≥ K(y)− f(N) (the mutual information between y and x̄ is negligible)
and K(w|y, x̄) ≤ f(N) (w can be easily extracted from any xi given y as an
oracle). Hence, |A| = 2m−O(f(N)). Note that for every 〈y′, w′〉 ∈ A it holds

K(y′, w′) = K(y′) + K(w′|y) + O(log N) = m + α + O(f(N)).

Two cases are possible:
Case 10: For every 〈y′, w′〉 ∈ A for the majority of 〈y′′, w′′〉 ∈ A

I(y′w′ : y′′w′′) ≥ α− δ.

This inequality implies that

K(y′w′|y′′w′′) = K(y′, w′)− I(y′w′ : y′′w′′) ≤ m + δ + O(f(N)).

In this case the set A is a semi-bunch with the parameters

(m−O(f(N)), m + δ + O(f(N)), m + α + O(f(N)).

We apply Lemma 4: it follows that there exists a standard semi-bunch Uj (with
the same parameters) such that

|A ∩ Uj | ≥ 2m−δ+O(f(N)),



and j is an integer less than 2α+δ+O(f(N)). So Kolmogorov complexity of j is
not greater than α + δ + O(f(N)).

Further, the words xi (i = 1, 2) have two properties:

– for every pairs v̄ ∈ A ∩ Uj it holds K(xi|v̄) ≤ K(xi|y, w) (by the definition
of A = ST (y, w|x̄));

– for every pair v̄ ∈ A ∩ Uj it holds K(v̄|j) ≤ log |Uj | + O(log N) ≤ m (given
the number j, the elements of a standard semi-bunch Uj can be enumerated
algorithmically).

This means that xi belong to the set

X(i) = {x̂ | there exists at least 2m−δ+O(f(N)) words v̄
s.t. K(x̂|v̄) ≤ K(xi|y, w) ≤ K(xi)− α + f(N) and K(v̄|j) ≤ m}.

The set X(i) is enumerable given j and additional O(log N) bits of information
(we need these additional bits to specify the parameters of the semi-bunch).
Also we can bound the size of X(i). Indeed, for each fixed j there exist at most
2m+1 different tuple v̄ such that K(v̄|j) ≤ m; for every v̄ there exist at most
2K(xi)−α+f(N) different x̂ such that K(x̂|v̄) ≤ K(xi)−α+ f(N). Since for every
x̂ ∈ X(i) there is at least 2m−δ+O(f(N)) different v̄, we get

log |X(i)| ≤ log
2m · 2K(xi)−α+f(N)

2m−δ+O(f(N))
≤ K(xi)− α + δ + O(f(N)).

It follows that K(xi|j) ≤ K(xi) − α + δ + O(f(N)) (in a word, the mutual
information between j and xi is at least α − δ − O(f(N))). From symmetry of
the mutual information we have

K(j|xi) = K(xi|j) + K(j)−K(xi) + O(log N) ≤ 2δ + O(f(N)).

We set z = j. Since K(z) ≥ I(z : xi) ≥ α − δ − O(f(N)), we get K(z) ≥
α− g(N).

Thus for the function g(n) defined above it holds K(z) ≥ α − g(N) and
K(z|xi) ≤ g(N), and we are done.

Case 20. For some pair 〈y′, w′〉 ∈ A and for the majority of 〈y′′, w′′〉 ∈ A it
holds

I(y′w′ : y′′w′′) < α− δ.

This means that

K(y′y′′w′w′′) ≥ 2m + α + δ −O(log N) (1)

Since this inequality holds for the majority of pairs 〈y′′, w′′〉 ∈ A, we can choose
one of them such that 〈y′, w′〉 and 〈y′′, w′′〉 are independent conditional to x̄.
In particular, the words y′ and y′′ are also independent conditional to x̄ (i.e.,
I(y′ : y′′|x̄) = O(log N)). Further, for all x̄, y′, y′′ the following inequality holds:

I(y′y′′ : x̄) ≤ I(y′ : x̄) + I(y′′ : x̄) + I(y′ : y′′|x̄) + O(log N)



(in fact this inequality is equivalent to the sum of two trivial ones:

K(y′y′′) ≤ K(y′) + K(y′′) + O(log N),
K(y′|x) + K(y′′|x) = K(y′y′′|x) + I(y′ : y′′|x) + O(log N),

which follow immediately from the Kolmogorov–Levin theorem [1]). For the given
words, the quantities I(y′ : x̄) and I(y′′ : x̄) are bounded by f(N) (x̄ and y are
independent), and I(y′ : y′′|x̄) = O(log N) . f(N). Thus, we have

I(y′y′′ : x̄) ≤ 3f(N) (2)

Also we have K(y′y′′) ≤ 2K(y) + 3f(N) ≤ 3N (a very rough bound).
From (1) and (2) it follows that for y1 = 〈y′, y′′〉 and w1 = 〈w′, w′′〉 it holds

K(w1|y1) ≥ α + δ − 3f(N)−O(log N) ≥ α + δ/2.

Thus, we have constructed a word y1 such that I(y1 : x̄) ≤ 3f(N) and

∃w1 : K(w1|y1) ≥ α + δ/2, K(w1|xi, y
1) ≤ 3f(N) (i = 1, 2).

We have got a new pair 〈y1, w1〉 instead of the original one 〈y, w〉. By the
construction, the word y1 is independent from x̄ (though the precision of ‘inde-
pendence’ becomes three times worse: I(y1 : x̄) ≤ 3f(N)). Given y1 as an oracle,
the word w1 is simple conditional to each xi (the precision of ‘simplicity’ also
becomes 3f(N)). Complexity of w1 conditional to y1 is not less than α + δ/2.
Thus, α+δ/2 bits of common information can be extracted from the words x1, x2

with the precision threshold 3f(N) given y1 as an oracle. Note that complexities
of the words w1, y1 are not greater than 3N .

Further we iterate the arguments above. We repeat the same procedure with
the pair w1, y1. Denote α1 = α + δ/2, m1 = K(y1), and f1(N) = 3f(N). We
take the strong typization of the pair 〈y1, w1〉 conditional to x̄:

A1 = ST (y1, w1|x̄).

Once again, we consider two cases.
Case 11. For every 〈y′, w′〉 ∈ A1 for the majority 〈y′′, w′′〉 ∈ A1

I(y′w′ : y′′w′′) ≥ α1 − δ.

In this case A1 is a semi-bunch with the following parameters:

(m1 −O(f1(N)), m1 + δ + O(f1(N)), m1 + α1 + O(f1(N)).

From Lemma 4 we get a number j such that for i = 1, 2

K(j|xi) ≤ 2δ + O(f1(N)), I(j : xi) ≥ α1 − δ + O(f1(N)).

Similarly to Case 10, we define z := j, and we are done.
Case 21. Assume that for some 〈y′, w′〉 ∈ A1 and for the majority of 〈y′′, w′〉 ∈

A1 it holds I(y′w′ : y′′w′′) < α1 − δ. Then there exists a pair 〈y2, w2〉 such that



1. K(y2) = m2 < 3m1,
2. I(y2 : x̄) ≤ f2(N) := 3f1(N),
3. K(w2|y2, xi) ≤ f2(N),
4. K(w2|y2) = α2 ≥ α1 + δ/2.

Iterating these arguments again and again, at stage s we get some words
ws, ys such that

1. K(ys) = ms = 3ms−1,
2. I(ys : x̄) ≤ fs(N) := 3fs−1(N) = 3sf(N),
3. K(ws|ys, xi) ≤ fs(N),
4. K(ws|ys) = αs > αs−1 + δ/2 = α + sδ/2.

We are iterating the same construction for the ‘bad’ cases 21, 22, 23 . . . , 2j , . . .
until at some step smax we come to the ‘good’ case 1jmax .

This iteration process cannot be too long. Indeed, after s = D
√

log N
f(N) steps

of the iteration (for large enough D) we get a contradiction with the inequality

K(ws|ys) ≤ K(ws|x1, y
s) + K(ws|x2, y

s) + I(x1 : x2|ys) + O(log N)

(it is easy to check that this inequality holds for all words, see e.g., the proof of
inequality (6) in [8]): the value on the left-hand side of the inequality is at least
DN/2, and the right-hand side is only

2fs(N) + I(x1 : x2|ys) + O(log N) . N.

Remark: In all the arguments above we ignore additive terms of the or-
der O(log K(ys, ws)) because log K(ys, ws) . f(N). This bound is valid since
K(ys), K(ws) < N2 for s . log N .

Thus, after several iterations of Case 2s, for some smax < D
√

log N
f(N) we

get Case 1smax . We obtain some word z such that

K(z) ≥ α + smaxδ/2−O(fsmax(N)) > α− g(N)

and

K(z|xi) ≤ 2δ + fsmax < 2δ + 3D
q

log N
f(N) f(N) < g(N) (i = 1, 2).

In other words, at least α bits of common information can be extracted from the
words xi for the precision threshold g(N).

4 Conclusion

We cannot prove Conjecture 1 in the general case. However we know that it is
true for stochastic pairs 〈x1, x2〉.



Definition 5. A tuple x̄ is called (α, β)-stochastic if there exists a finite set
A / x̄ such that (a) complexity of the list of all elements of A (in lexicographical
order) is at most α, and (b) K(x̄|[list of all elements of A]) ≥ log |A| − β (c.f.
the definition of (α, β)-stochastic sequences [4]).
In most applications of Kolmogorov complexity all tuples under consideration
are (α, β)-stochastic with logarithmic α, β. For stochastic tuples Conjecture 1 is
true:
Theorem 3. For every integer C1 > 0 there exists an integer C2 > 0 such that
for all y and all (C1 log N, C1 log N)-stochastic x̄ = 〈x1, x2〉 if I(y : x̄) ≤ C1 log N
and

∃w : K(w|y) ≥ α, K(w|xi, y) ≤ C1 log N (i = 1, 2), where N = K(x̄, y),

then ∃z : K(z) ≥ α, K(z|xi) ≤ C2 log N (i = 1, 2).
(We skip the proof due to the lack of space).

Thus, Conjecture 1 is still an open problem. Also there is another interesting
question: Does any counterpart of the results above hold for infinite oracles ?
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5 Appendix

Proof of Lemma 4: First of all, let us fix an algorithm that gets integers α, β, γ
as an input, and enumerates the list of all (α, β, γ)-semi-bunches. We call this
algorithm the complete enumerator. Though the number of semi-bunches (for
given parameters) is finite, the complete enumerator never stops. We cannot
decide effectively if it has already found all semi-bunches. We only guarantee
that each semi-bunch must be enumerated in the list, soon or late.

Now we describe another enumerator, which chooses some subsequence from
the complete enumeration of all semi-bunches as follows. The complete enumera-
tor prints semi-bunches one by one, and we need to select some of them. Assume
some semi-bunches U0, . . . , Us are already selected, and the complete enumer-
ator finds a new semi-bunch V . If |V ∩ Ui| < 2β−ε for all i = 0, . . . , s, where
ε = 2(β − α + 2), then we select this semi-bunch and let Us+1 = V . Otherwise
we skip V and wait for the next item from the complete enumeration.

Let U0, . . . , Uq be the list of all selected semi-bunches for given α, β, γ. From
the construction it is evident that for every semi-bunch V either V = Ui or at
least |V ∩ Ui| ≥ 2β−ε for some i ≤ q. Also it follows from the construction that
|Ui ∩Uj | < 2β−ε for every two different selected semi-bunches Ui, Uj . It remains
to prove that q is not too large.

In fact it is enough to prove that every x belongs to less than 2β−α+2 selected
semi-bunches. Indeed, there are less than 2γ words x such that K(x) < γ. If every
x belongs to at most 2β−α+2 selected semi-bunches, and every semi-bunch Ui

contains 2α words then the number of all selected semi-bunches is bounded by

2γ · 2β−α+2

2α
= 2β+γ−2α+2

Thus, it remains to bound the number of selected semi-bunches that contain one
fixed word x.

Assume that there exist N = 2β−α+2 different selected semi-bunches Ui that
contain the same word x. Denote

U ′
i = Ui ∩ {y | K(y|x) < β}

for all these semi-bunches Ui. From the definition of a semi-bunch it follows that
U ′

i contains at least 2α−1 elements.
On one hand, we have

‖
⋃

U ′
i‖ ≤ ‖{y | K(y|x) < β}‖ < 2β

On the other hand,

‖
⋃

U ′
i‖ ≥

∑

i

‖U ′
i‖ −

∑

i<j

‖U ′
i ∩ U ′

j‖

As ‖U ′
i‖ ≥ 2α−1 and ‖U ′

i ∩ U ′
j‖ ≤ ‖Ui ∩ Uj‖ ≤ 2β−ε, it follows that

‖
⋃

U ′
i‖ ≥ N · 2α−1 −N2 · 2β−ε = 2β

and we get a contradiction. The lemma is proven.


