
UNIVERSITAT
POLITÈCNICA DE

CATALUNYA

DEPARTAMENT DE
MATEMÀTICA APLICADA IV

UNIVERSITÉ DE
NICE - SOPHIA ANTIPOLIS

ÉCOLE DOCTORALE DES SCIENCES ET
TECHNOLOGIES DE L’INFORMATION

ET DE LA COMMUNICATION

P H D T H E S I S
to obtain the title of

Doctor by the UPC

Programa de doctorat en
Matemàtica Aplicada

PhD of Science

of Université de Nice - Sophia Antipolis
Speciality: Computer Science

Defended by

Ignasi SAU VALLS

Optimization in Graphs under Degree Constraints

Application to Telecommunication Networks

Grup de Grafs i Combinatòria
Advisor :

Xavier Muñoz López

Mascotte project, INRIA/CNRS-UNS
Advisors:

Jean-Claude Bermond, David Coudert

Defended on October 16, 2009

JURY:

Reviewers: Pavol Hell - Simon Fraser Univ. (Vancouver, Canada)
David Peleg - Weizmann Inst. of Science (Rehovot, Israel)
Stéphan Thomassé - Univ. de Montpellier (Montpellier, France)

President : Bruce B. Reed - McGill University (Montreal, Canada)

Examinators: Jean-Claude Bermond - CNRS (Sophia-Antipolis, France)
David Coudert - INRIA (Sophia-Antipolis, France)
Xavier Muñoz - UPC (Barcelona, Catalonia, Spain)

Miquel-Àngel Fiol - UPC (Barcelona, Catalonia, Spain)

Invited: Stéphane Pérennes - CNRS (Sophia-Antipolis, France)

Acknowledgements

Thanks a lot to all my coauthors and scientific colleagues; this thesis is also theirs. A
very special mention goes to my three advisors – Jean-Claude, David and Xavi – for their
trust in me, their wise guidance and their constant generosity. I would like to mention also
the members of Université de Nice-Sophia Antipolis, INRIA Sophia Antipolis, Universitat
Politècnica de Catalunya and, more specifically, Departament de Matemàtica Aplicada IV.

Un grand merci à toute l’équipe Mascotte pour l’ambience et les conditions de travail
(simplement exceptionelles), à mes camarades niçois, à l’ensemble de mes colocs (immense
mais fini quand même) et aux superbes joueurs de futsal du CSPF pour leur accueil.

Muchas gracias a todos los responsables de que vaya a guardar para siempre un inmejorable
recuerdo de mi etapa en Nice. Lo habéis intentado incansablemente d́ıa y noche durante
los últimos cuatro años, y no hace falta que os diga que lo habéis conseguido. Yo creo que
los collectifs y los packs de kro habrán tenido algo que ver... plas plas plas!

Muito obrigado também aos meus amigos brasileiros por os seus sinceros sorrisos.

Moltes gràcies als amics de (i/o per a) tota la vida: els del col·le, els de Ribes, els de
la uni, . . . prefereixo no posar-hi noms perquè segur que em deixaria algú i no m’ho
perdonaŕıeu mai. Per molt lluny que estigui sempre us sento al meu costat. Hem compartit
una infinitat de moments inesborrables, com els partits amb el Todefiet i l’ETShiTB, les
Festes Majors amb els clàssics banys a la piscina, les nits que acaben la nit següent, els
duros a l’Arcada, els partits de futbol ben amanits, “pozor!!”, saltar des d’un avió, “bailarr”,
les memorables naranjitades i pistoletades, les entranyables nits a la sala d’estudis de la
FME, la Jumpy, i tants d’altres que podŕıem anomenar junts.

I als meus avis i a tota la meva famı́lia. I al Barça per haver-me donat tantes alegries! Un
record més que especial per a la Mar, que ha patit aquesta tesi tant o més que jo, i amb
qui mica en mica – però amb pas ferm – anem descobrint päısos i sentiments.

Aquesta tesi va dedicada als meus pares, que estimo més que res en aquest món.

Barcelona
September 8, 2009

Optimization in Graphs under Degree Constraints.
Application to Telecommunication Networks

Résumé : La première partie de cette thèse s’intéresse au groupage de trafic dans les réseaux
de télécommunications. La notion de groupage de trafic correspond à l’agrégation de flux de faible
débit dans des conduits de plus gros débit. Cependant, à chaque insertion ou extraction de trafic
sur une longueur d’onde il faut placer dans le noeud du réseau un multiplexeur à insertion/ex-
traction (ADM). De plus il faut un ADM pour chaque longueur d’onde utilisée dans le noeud, ce
qui représente un coût d’équipements important. Les objectifs du groupage de trafic sont d’une
part le partage efficace de la bande passante et d’autre part la réduction du coût des équipements
de routage. Nous présentons des résultats d’inapproximabilité, des algorithmes d’approximation,
un nouveau modèle qui permet au réseau de pouvoir router n’importe quel graphe de requêtes de
degré borné, ainsi que des solutions optimales pour deux scénarios avec trafic all-to-all: l’anneau
bidirectionnel et l’anneau unidirectionnel avec un facteur de groupage qui change de manière dy-
namique.

La deuxième partie de la thèse s’intéresse aux problèmes consistant à trouver des sous-graphes avec
contraintes sur le degré. Cette classe de problèmes est plus générale que le groupage de trafic, qui
est un cas particulier. Il s’agit de trouver des sous-graphes d’un graphe donné avec contraintes
sur le degré, tout en optimisant un paramètre du graphe (très souvent, le nombre de sommets
ou d’arêtes). Nous présentons des algorithmes d’approximation, des résultats d’inapproximabilité,
des études sur la complexité paramétrique, des algorithmes exacts pour les graphes planaires, ainsi
qu’une méthodologie générale qui permet de résoudre efficacement cette classe de problèmes (et de
manière plus générale, la classe de problèmes tels qu’une solution peut être codé avec une partition
d’un sous-ensemble des sommets) pour les graphes plongés dans une surface.

Finalement, plusieurs annexes présentent des résultats sur des problèmes connexes.

Mots-clés : Théorie des graphes, groupage de trafic, réseaux optiques, décomposition de graphes,
optimisation, complexité, algorithmes d’approximation, complexité paramétrique, branchwidth,
programmation dynamique, graphes dans les surfaces.

Optimization in Graphs under Degree Constraints.
Application to Telecommunication Networks

Resum: La primera part d’aquesta tesi tracta del traffic grooming, un problema fonamental en
xarxes òptiques. Consisteix en agrupar senyals de baixa velocitat en fluxos més ràpids, de cara a
millorar la utilització de l’ample de banda i reduir el cost de la xarxa. L’objeciu és minimitzar el
número d’Add-Drop Multiplexers (ADMs), uns aparells que insereixen/extrauen tràfic a/de fluxos
d’alta velocitat. En termes de teoria de grafs, el problema es tradueix en trobar una partició
d’un graf de requests en subgrafs amb un número fitat d’arestes, minimitzant el número total de
vèrtexos de la partició. Al Caṕıtol 1 s’estudia el cas on la topologia de la xarxa és un anell o
un camı́. Presentem el primer resultat de no-aproximabilitat del traffic grooming per valors fix-
ats del grooming factor C, responent afirmativament una conjectura existent. També proposem
un algorisme d’aproximació en temps polinomial amb un ràtio d’aproximació independent de C.
Al Caṕıtol 2 introdüım un nou model de traffic grooming en anells unidireccionals per dissenyar
xarxes que puguin suportar qualsevol graf de requests amb grau màxim fitat. Fem palès que el
problema és essencialement equivalent a trobar el més petit enter M(C,∆) tal que les arestes de
qualsevol graf amb grau màxim com a molt ∆ es puguin particionar en subgrafs amb com a molt
C arestes i que cada vèrtex aparegui en com a molt M(C,∆) subgrafs, i trobem el valor de M(C,∆)
per gairebé tots els valors de C i ∆. El Caṕıtol 3 tracta de traffic grooming en anells bidireccionals
amb routing simètric i requests all-to-all. Presentem fites inferiors i famı́lies infinites de solucions
òptimes per C = 1, 2, 3 i C de la forma k(k + 1)/2. Al Caṕıtol 4 estudiem el traffic grooming per
xarxes òptiques de dos peŕıodes, una variant del traffic grooming en anells unidireccionals amb
dos grooming factors C i C′ que permet un grau de dinamisme en el tràfic. Fent servir eines
de particions de grafs, trobem el número mı́nim d’ADMs per C = 4 i C′ = 1, 2, 3. L’estudi del
traffic grooming condueix de manera natural a l’estudi d’una famı́lia de problemes en grafs amb
restriccions genèriques sobre el grau dels vèrtexos. Aquest es el tema principal de la segona part
de la tesi. Comencem estudiant al Caṕıtol 5 la complexitat computacional d’aquests problemes,
donant resultats de no-aproximabilitat i algorismes d’aproximació en temps polinomial. Al Caṕı-
tol 6 analitzem la complexitat paramètrica de trobar subgrafs amb restriccions sobre el grau, quan
el paràmetre és la mida del subgraf en qüestió. Demostrem resultats d’intractabilitat per grafs
generals i proposem algorismes fixed-parameter tractable per grafs excloent un graf fixat com a
menor. Al Caṕıtol 7 proposem algorismes subexponencials en grafs planars per diverses famı́lies
de problemes de subgrafs amb restriccions sobre el grau, fent servir teoria de bidimensionalitat i
noves tècniques de programació dinàmica. Per acabar, al Caṕıtol 8 presentem un framework per
dissenyar algorismes basats en programació dinàmica per grafs en superf́ıcies, amb una dependèn-
cia single exponential en el branchwidth. El nostre mètode està basat en un nou tipus de branch
decomposition, anomenada surface cut decomposition, que generalitza les sphere cut decompositions
per grafs planars. L’existència d’aquests algorismes és dedüıda fent servir diverses tècniques de
teoria topològica de grafs i de combinatòria anaĺıtica.

Paraules clau: Teoria de grafs, traffic grooming, xarxes òptiques, particions de grafs, complexi-
tat computacional, algorismes d’aproximació, complexitat paramètrica, branchwidth, programació
dinàmica, grafs en superf́ıcies.

Optimization in Graphs under Degree Constraints.
Application to Telecommunication Networks

Abstract: The first part of this thesis is devoted to traffic grooming, which is a central prob-
lem in optical networks. It refers to packing low-rate signals into higher-speed streams, in order
to improve bandwidth utilization and reduce the network cost. The objective is to minimize the
number of Add-Drop Multiplexers (ADMs), which are devices that insert/extract low-rate traf-
fic to/from a high-speed stream. In graph-theoretical terms, the problem can be translated into
finding a partition of the edges of a request graph into subgraphs with bounded number of edges,
the objective being to minimize the total number of vertices of the partition. We first focus in
Chapter 1 on a general request graph when the topology is a ring or a path. We provide the first
inapproximability result for traffic grooming for fixed values of the grooming factor C, answering
affirmatively to a conjecture in the literature. We also provide a polynomial-time approximation
algorithm for traffic grooming in rings and paths, with an approximation ratio independent of C.
We introduce in Chapter 2 a new model of traffic grooming in unidirectional rings, in order to
design networks being able to support any request graph with bounded maximum degree. We
show that the problem is essentially equivalent to finding the least integer M(C,∆) such that the
edges of any graph with maximum degree at most ∆ can be partitioned into subgraphs with at
most C edges and each vertex appears in at most M(C,∆) subgraphs, and we establish the value of
M(C,∆) for almost all values of C and ∆. In Chapter 3 we focus on traffic grooming in bidirectional
rings with symmetric shortest path routing and all-to-all unitary requests, providing general lower
bounds and infinite families of optimal solutions for C = 1, 2, 3 and C of the form k(k + 1)/2. In
Chapter 4 we study traffic grooming for two-period optical networks, a variation of the traffic
grooming problem for WDM unidirectional ring networks with two grooming factors C and C′ that
allows some dynamism on the traffic. Using tools of graph decompositions, we determine the mini-
mum number of ADMs for C = 4, and C′ = 1, 2, 3. The study of the traffic grooming problem leads
naturally to the study of a family of graph-theoretical problems dealing with general constraints on
the degree. This is the topic of the second part of this thesis. We begin in Chapter 5 by studying
the computational complexity of several families of degree-constrained problems, giving hardness
results and polynomial-time approximation algorithms. We then study in Chapter 6 the param-
eterized complexity of finding degree-constrained subgraphs, when the parameter is the size of
the subgraphs. We prove hardness results in general graphs and provide explicit fixed-parameter
tractable algorithms for minor-free graphs. We obtain in Chapter 7 subexponential parameter-
ized and exact algorithms for several families of degree-constrained subgraph problems on planar
graphs, using bidimensionality theory combined with novel dynamic programming techniques. Fi-
nally, we provide in Chapter 8 a framework for the design of dynamic programming algorithms for
surface-embedded graphs with single exponential dependence on branchwidth. Our approach is
based on a new type of branch decomposition called surface cut decomposition, which generalizes
sphere cut decompositions for planar graphs. The existence of such algorithms is proved using
diverse techniques from topological graph theory and analytic combinatorics.

Keywords: Graph theory, traffic grooming, optical networks, graph partitioning, computational
complexity, approximation algorithms, parameterized complexity, branchwidth, dynamic program-
ming, graphs on surfaces.

Contents

Overview of this Thesis 13

I Preliminaries 19
I.1 Graphs . 21

I.1.1 Tree-like decompositions of graphs 21
I.1.2 Graph minors . 22

I.2 Computational Complexity . 23
I.2.1 Approximation algorithms . 23
I.2.2 Hardness of approximation . 23
I.2.3 Parameterized complexity . 24
I.2.4 Some classical problems . 25

II Traffic Grooming 27
II.1 Motivation . 29
II.2 Problem Definition and Examples . 31
II.3 State-of-the-art and our Contribution . 34

II.3.1 Hardness and approximation . 34
II.3.2 The all-to-all case . 36
II.3.3 Pseudo-dynamic scenarios . 37

1 Hardness and Approximation 39
1.1 Introduction . 39
1.2 Apx-completeness of MECT-B . 42
1.3 Apx-completeness of Traffic Grooming 44
1.4 Approximating Traffic Grooming . 49
1.5 Conclusions . 52

2 Bounded-degree Request Graph 55
2.1 Introduction . 55
2.2 The Parameter M(C,∆) . 58
2.3 Case ∆ ≥ 2 Even . 60
2.4 Case ∆ ≥ 3 Odd . 60

2.4.1 General upper bound . 60
2.4.2 Improved lower bound . 61
2.4.3 Relation of M(C,∆) with the linear C-arboricity 63
2.4.4 Case ∆ = 3, C = 4 . 64
2.4.5 Optimal construction for graphs with a perfect matching 66
2.4.6 Towards a proof for the remaining cases 68

2.5 Conclusions . 71

9

3 Bidirectional WDM Rings 73
3.1 Introduction . 73

3.1.1 Statement of the problem . 74
3.2 Lower Bounds . 77

3.2.1 Equations of the problem . 77
3.2.2 The parameter γ(C, p) . 78
3.2.3 General lower bounds . 80

3.3 Case C = 1 . 82
3.4 Case C = 2 . 83

3.4.1 Improved lower bounds . 83
3.4.2 Upper bounds . 84

3.5 Case C = 3 . 86
3.5.1 Improved lower bounds . 86
3.5.2 Constructions . 88

3.6 Case C > 3 . 92
3.6.1 C not of the form k(k + 1)/2 . 93
3.6.2 C of the form k(k + 1)/2 . 94

3.7 Unidirectional or Bidirectional Rings? . 95
3.8 Conclusions . 97

4 Two-period Grooming 99
4.1 Introduction . 99
4.2 Preliminaries . 101
4.3 Case C′ = 1 . 104

4.3.1 ON (n, v; 4, 1) . 104
4.3.2 MON (n, v; 4, 1) . 105

4.4 Case C′ = 2 . 105
4.4.1 ON (n, v; 4, 2) . 105
4.4.2 MON (n, v; 4, 2) . 108

4.5 Case C′ = 3 . 110
4.5.1 ON (n, v; 4, 3) . 110
4.5.2 MON (n, v; 4, 3) . 111

4.6 Some Small Constructions . 117
4.6.1 Used in the proof of Theorem 4.2 . 117
4.6.2 Used in the proof of Theorem 4.3 . 117
4.6.3 Used in the proof of Theorem 4.6 . 118
4.6.4 Used in the proof of Theorem 4.11 118

4.7 Conclusions . 119

III Degree-constrained Subgraphs 121
III.1 Motivation . 123
III.2 State-of-the-art and our Contribution . 125

III.2.1 The role of connectivity . 125
III.2.2 Parameterizing the input . 126
III.2.3 Topologically restricting the input 126

5 Hardness and Approximation 129
5.1 Introduction . 130
5.2 Hardness of Approximating MDBCSd . 132
5.3 Approximating MDBCSd . 138

5.3.1 General graphs . 138
5.3.2 Graphs with low-degree spanning trees 141

5.4 Hardness of Approximating MSMDd . 142
5.4.1 MSMDd does not admit a PTAS for any d ≥ 3 142
5.4.2 MSMDd is not in Apx for any d ≥ 3 145

5.5 Approximating MSMDd . 147
5.5.1 MSMDd is in P for graphs with small treewidth 147
5.5.2 Approximation algorithm for M-minor-free graphs 148

5.6 Approximating DDDkS . 148
5.7 Conclusions . 151

6 Parameterized Complexity of Finding Degree-constrained Subgraphs 153
6.1 Introduction . 153

6.1.1 Finding a small regular subgraph . 154
6.1.2 Finding a small subgraph with given minimum degree 155
6.1.3 Presentation of the results . 156

6.2 Fixed-Parameter In-tractability Results . 157
6.2.1 W[1]-hardness for the cubic case . 158
6.2.2 W[1]-hardness for higher degrees . 161

6.3 FPT Algorithms for Graphs with Bounded Local Treewidth and Graphs
with Excluded Minors . 162
6.3.1 Graphs with bounded local treewidth 163
6.3.2 M-minor-free graphs . 165

6.4 Conclusions . 170

7 Subexponential Parameterized Algorithms on Planar Graphs 171
7.1 Introduction . 171
7.2 Background . 172
7.3 Bounds for Branchwidth . 173
7.4 The Algorithms . 174
7.5 Speed-up for Planar Graphs using Catalan Structures 176
7.6 Extensions . 179

7.6.1 Maximizing the number of vertices 179
7.6.2 Looking for an induced subgraph . 180
7.6.3 More general constraints on the degree 180
7.6.4 Exact algorithms . 181

7.7 Conclusions . 181

8 Dynamic Programming for Graphs on Surfaces 183
8.1 Introduction . 183
8.2 Background and Notation . 186

8.2.1 Topological surfaces . 186
8.2.2 Graphs embedded in surfaces . 187
8.2.3 Carving decompositions and clique sums 188
8.2.4 The symbolic method and analytic combinatorics 188

8.3 Examples of Dynamic Programming Algorithms 189
8.4 Polyhedral Decompositions . 191
8.5 Some Topological Lemmata . 193
8.6 Surface Cut Decompositions . 194
8.7 Non-crossing Partitions in Surfaces with Boundary 201

8.7.1 2-zone decompositions and non-crossing partitions 201
8.7.2 Tree-like structures, enumeration, and asymptotic counting 203
8.7.3 Additional constructions . 205

8.8 Enumeration of Non-crossing Partitions of the Disk and Related Constructions206
8.9 Combinatorial Decomposition and Enumeration 207
8.10 Bounding C(Σ) in Terms of Cubic Maps . 210
8.11 Reducibility vs Irreducibility . 212
8.12 Dealing with a Set of Apices . 213
8.13 Bell Structures: from Partitions to Packings 215
8.14 Conclusions . 216

IV Conclusions and Further Research 217
IV.1 Final conclusions . 219
IV.2 Further Research . 220

A Permutation Routing and (`, k)-routing on Plane Grids 221
A.1 Permutation Routing on Triangular Grids 222
A.2 (`, k)-routing on Plane Grids . 222

B Label Space Minimization in GMPLS Networks 223
B.1 GMPLS Label Stacking on the Path . 224
B.2 Designing Hypergraphs Layouts to GMPLS Routing Strategies 224

C Tolerance Graphs 225
C.1 A New Intersection Model and Improved Algorithms 226
C.2 The Recognition of Tolerance and Bounded Tolerance Graphs is NP-complete226

D Miscellaneous 227
D.1 Edge-simple Circuits Through 10 Ordered Vertices in Square Grids 227
D.2 Self-duality of Branchwidth in Graphs of Bounded Genus 228
D.3 7-[3]coloring Algorithm for Triangle-free Hexagonal Graphs 228

List of Figures 229

Index 233

Bibliography 235

Overview of this Thesis

This thesis contains the results obtained during the last three years in both MASCOTTE
project of INRIA/CNRS-UNS in Sophia-Antipolis (France) and Departament de
Matemàtica Aplicada 4 of Universitat Politècnica de Catalunya in Barcelona
(Catalonia, Spain). It is also the result of numerous research visits, like the ones per-
formed at Deparment of Theoretical Computer Science of IMFM (Ljubljana,
Slovenia), the Computer Science Department of Technion (Haifa, Israel), Depar-
tamento de Computaçao of UFC (Fortaleza, Brazil), the Deparment of Mathe-
matics of NKU (Athens, Greece), and Algorithms Research Group of University
of Bergen (Bergen, Norway). These results would not have been obtained without the
invaluable collaboration of my coauthors, to whom I am deeply indebted.

This thesis is organized as follows. We first provide in Part I some basic preliminaries and
fix the notation to be used throughout the thesis. The concepts that are used only locally
are defined in the corresponding chapters. There are two main parts (namely, Parts II
and III, containing four chapters each, numbered from 1 to 8), each of them beginning with
an introduction to the topic, an overview of the results in the literature, and a summary
of our contributions. Part IV concludes the thesis and suggests some lines for further
research. Finally, four appendices briefly summarize some further contributions that have
not been included in the thesis.

The main topic of the thesis consists of graph optimization problems with constraints on
the degree. Generally, these problems take as input a (weighted or unweighted) graph G
and ask for a subgraph (or a set of subgraphs) of G satisfying certain degree constraints,
while optimizing some parameter, usually the number of vertices or edges of the subgraphs.
Most problems considered here are NP-hard, i.e., they are unlikely to be solvable by
efficient exact algorithms. Therefore, it is important to design fast algorithms providing
a solution which is provably close to the optimal solution. Nevertheless, sometimes it is
possible to prove hardness results showing that certain algorithms cannot exist. Finally, it
is also interesting to provide optimal solutions for some restricted classes of input graphs,
and also to design fast (of course, not expected to run in polynomial time) exact or
parameterized algorithms for a general input. The first part is devoted to traffic grooming.

Traffic grooming. Traffic grooming is a central problem in optical networks. Loosely
speaking, it refers to packing low-rate signals into higher-speed streams, in order to improve
bandwidth utilization and reduce network cost. The objective is to minimize the number
of Add-Drop Multiplexers (ADMs), which are devices that insert/extract low-rate traffic

13

14 Overview of this Thesis

to/from a high-speed stream. In graph-theoretical terms, the problem can be translated
into finding a partition of the edges of a request graph into subgraphs with bounded number
of edges, the objective being to minimize the total number of vertices of the partition. The
most used topology in real networks, like SONET WDM optical networks (see page 29),
is the unidirectional or bidirectional ring.

We first focus in Chapter 1 on polynomial-time approximation algorithms and hardness
results for a general request graph in the ring and path topologies. On the one hand, we
provide the first inapproximability result for Ring and Path Traffic Grooming for
fixed values of the grooming factor C (see page 29 for the definition), answering affirma-
tively to a conjecture in the literature. On the other hand, we provide a polynomial-time
approximation algorithm for Ring and Path Traffic Grooming, based on a greedy
cover algorithm, with an approximation ratio independent of C. This is the first approx-
imation algorithm with this property, which is useful in practical applications since in
backbone networks the grooming factor can be greater than the network size.

We introduce in Chapter 2 a new model of traffic grooming in unidirectional rings, in order
to design networks being able to support any request graph with a fixed bounded degree.
The existing theoretical models in the literature are much more rigid, and do not allow
such adaptability. We show that the problem is essentially equivalent to finding the least
integer M(C,∆) such that the edges of any graph with maximum degree at most ∆ can
be partitioned into subgraphs with at most C edges and each vertex appears in at most
M(C,∆) subgraphs. We establish the value of M(C,∆) for almost all values of C and ∆.

In Chapter 3 we focus on traffic grooming in bidirectional rings considering symmetric
shortest path routing and all-to-all unitary requests, which had not been studied before.
We formally state the problem, provide general lower bounds, and construct infinite fam-
ilies of optimal solutions for C ∈ {1, 2, 3} and C of the form k(k + 1)/2.

In Chapter 4 we study traffic grooming for two-period optical networks, a variation of
the traffic grooming problem for WDM unidirectional ring networks that allows some
dynamism on the traffic. In the two-period grooming problem, during the first period of
time, there is an all-to-all uniform traffic among n nodes, each request using 1/C of the
bandwidth; and during the second period, there is all-to-all uniform traffic only among
a subset V of v nodes, each request now being allowed to use 1/C′ of the bandwidth,
where C′ < C. Using tools of graph decompositions, we determine the minimum number
of ADMs for any n, v and C = 4 and C′ ∈ {1, 2, 3}.

As discussed above, the traffic grooming problem consists essentially in partitioning the
edges of a graph into subgraphs with bounded number of edges, while minimizing the
total number of vertices of the partition. In other words, the objective is to partition the
edges of a graph into subgraphs maximizing the average density (defined as the edges-
to-vertices ratio), or equivalently the average degree. The study of the traffic grooming
problem leads naturally to the study of a family of graph-theoretic problems dealing with
general constraints on the degree, such as the minimum degree or the maximum degree of
the subgraphs. This is the topic of the second part of this thesis.

Degree-constrained subgraphs. For a typical degree-constrained subgraph problem,
the objective is to find an optimal subgraph (usually, a subgraph with the maximum or

15

minimum number of vertices or edges) satisfying certain degree constraints, like bounded
maximum or minimum degree.

We begin in Chapter 5 by studying the (classical) complexity of several families of degree-
constrained problems, giving a variety of hardness results and polynomial-time approxi-
mation algorithms. Among others, we use the error amplification technique, probabilistic
algorithms, and structural results of graph minors.

We then study in Chapter 6 the parameterized complexity of finding small degree-
constrained subgraphs, when the parameter is the size of the subgraphs. We prove W[1]-
hardness results in general graphs and provide explicit FPT algorithms (see page 24 for
the definition of these terms) for H-minor-free graphs, using structural results and dynamic
programming techniques.

Devising subexponential parameterized algorithms for degree-constrained subgraph prob-
lems on planar graphs is the topic of Chapter 7, which uses bidimensionality theory com-
bined with novel dynamic programming techniques. As a result, we obtain subexponential
parameterized and exact algorithms for several families of problems on planar graphs.

Finally, we provide in Chapter 8 a framework for the design of 2O(k) · n step dynamic
programming algorithms for surface-embedded graphs on n vertices of branchwidth at
most k. That way, we considerably extend the class of problems that can be solved by
algorithms whose running times have a single exponential dependence on branchwidth, and
improve the running time of several existing algorithms. Our approach is based on a new
type of branch decomposition called surface cut decomposition, which generalizes sphere
cut decompositions for planar graphs, and where dynamic programming should be applied
for each particular problem. The existence of such algorithms is proved by a detailed
analysis of how non-crossing partitions are arranged on surfaces with boundary and uses
diverse techniques from topological graph theory and analytic combinatorics.

Further Contributions. The appendices of this thesis summarize several articles whose
motivation mostly originated from the problems discussed so far. Each of these appendices
contains just a succinct introduction to the topic and a brief description of the obtained
results. The full proofs and all the details can be found in the corresponding articles.

Appendix A deals with permutation routing and (`, k)-routing on plane grids. The packet
routing problem plays an essential role in communication networks. It involves how to
transfer data from some origins to some destinations within a reasonable amount of time.
In the (`, k)-routing problem, each node can send at most ` packets and receive at most k
packets. In other words, the request graph can be represented by a bipartite graph where
the two independent sets have degree bounded by ` and k, respectively. Permutation
routing is the particular case ` = k = 1. In Appendix A.1 we provide an optimal distributed
permutation routing algorithm on full-duplex triangular grids, and in Appendix A.2 we
provide tight permutation routing and (k, k)-routing algorithms on plane grids, as well as
approximation algorithms for the general (`, k)-routing problem.

Appendix B is concerned with the problem of routing a set of requests in AOLS net-
works with the aim of minimizing the number of labels required to ensure the forwarding.

16 Overview of this Thesis

This problem is in a sense similar to traffic grooming. In Appendix B.1 we study par-
ticularly this network design problem when the network is a path, providing an exact
polynomial-time algorithm for the case in which all the requests have a common source
and some approximation algorithms and heuristics for an arbitrary number of sources. In
Appendix B.2 we formalize the considered problem by associating to each routing strategy
a logical hypergraph whose hyperedges are dipaths of the physical graph, that correspond
to tunnels in GMPLS terminology. Such a hypergraph is called a hypergraph layout, to
which we assign a cost function given by its physical length plus the total number of
hops traveled by the traffic. Minimizing the cost of the design of an AOLS network can
then be expressed as finding a minimum cost hypergraph layout. We prove the first hard-
ness results in this area and propose approximation algorithms for the problem, inspiring
ourselves from techniques that had been previously applied to VPL problems for ATM
networks.

Tolerance graphs are the topic of Appendix C. Tolerance graphs model interval relations in
such a way that intervals can tolerate a certain degree of overlap without being in conflict.
This subclass of perfect graphs has been extensively studied, due to both its interesting
structure and its numerous applications. In Appendix C.1 we propose the first non-trivial
intersection model for general tolerance graphs, given by three-dimensional parallelepipeds,
which extends the widely known intersection model of parallelograms in the plane that
characterizes the class of bounded tolerance graphs. This new representation also enables
us to improve the time complexity of algorithms for computing a minimum coloring, a
maximum clique, and a maximum weight independent set. The recognition of tolerance
graphs – namely, the problem of deciding whether a given graph is a tolerance graph –
as well as the recognition of their main subclass of bounded tolerance graphs, have been
the most fundamental open problems on this class of graphs since their introduction in
1982. In Appendix C.2 we prove that both recognition problems are NP-complete, even in
the case where the input graph is a trapezoid graph. The presented results are surprising
because, on the one hand, most subclasses of perfect graphs admit polynomial recognition
algorithms and, on the other hand, bounded tolerance graphs were believed to be efficiently
recognizable as they are a natural special case of trapezoid graphs, which can be recognized
in polynomial time.

The existence of a circuit through a prescribed set of vertices is an important graph-
theoretical question. In Appendix D.1 we study the following problem: which is the
largest integer k such that, given any subset of k ordered vertices of an infinite square grid,
there exists a circuit visiting the k vertices in the prescribed order using each edge at most
once? We prove that k = 10. To this end, we first provide a counterexample implying that
k < 11. To show that k ≥ 10, we introduce a methodology, based on the notion of core
graph, to reduce drastically the number of possible vertex configurations, and then we test
each one of the resulting configurations with an ILP solver.

A graph parameter is self-dual in some class of graphs embeddable in some surface if its
value does not change in the dual graph more than a constant factor. Self-duality has been
examined for several width-parameters, such as branchwidth, pathwidth, and treewidth
(see page 21). In Appendix D.2 we give a direct proof of the self-duality of branchwidth
in graphs embedded in some surface.

17

Finally, Appendix D.3 deals with a coloring problem in triangular grids. Namely, we are
given an induced subgraph G of a triangular grid together with a integer demand function
on its vertices. The objective is to assign to each vertex as many colors as its demand, in
such a way that adjacent vertices get disjoint sets of colors, while minimizing the total
number of used colors. This minimum is called the multichromatic number of G. Finding
the multichromatic number of induced subgraphs of the triangular grid has important
applications in cellular networks, and has been widely studied during the last years. We
provide a simple algorithm to color any triangle-free induced subgraph of the triangular
grid with at most seven colors when each vertex has demand three. Our result simplifies
and improves some existing results in the literature.

The bibliography distinguishes between the personal publications of the author and other
articles (tagged as “General Bibliography”). The personal bibliography is classified into
“International Journals” (refs. [J1-J5]), “Book Chapters” (refs. [B6-B7]), “International
Conferences” (refs. [C8-C21]), “National Conferences” (ref. [N22]), and “Submitted for
Publication” (refs. [S23-S29]). Table 1 summarizes the coauthors associated to each chap-
ter and appendix of this thesis, as well as the corresponding publications.

Chapter/Appendix Result of joint work with Publications

Chapter 1 O. Amini and S. Pérennes [J1,C9,N22,B6]
Chapter 2 X. Muñoz and Z. Li [C18,C15,S26]
Chapter 3 J.-C. Bermond and X. Muñoz [C13,S25]
Chapter 4 J.-C. Bermond, C. J. Colbourn, [J2]

L. Gionfriddo, and G. Quattrocchi
Chapter 5 O. Amini, D. Peleg, [C8,S23]

S. Pérennes, and S. Saurabh
Chapter 6 O. Amini and S. Saurabh [C10,S24]
Chapter 7 D. M. Thilikos [C20,S28]
Chapter 8 J. Rué and D. M. Thilikos [S27]

Appendix A.1 J. Žerovnik [J5,C21]
Appendix A.2 O. Amini, F. Huc, and J. Žerovnik [J3,B7]
Appendix B.1 J.-C. Bermond, D. Coudert, J. Moulierac, [C11]

S. Pérennes, H. Rivano, and F. Solano
Appendix B.2 J.-C. Bermond, D. Coudert, [C12]

J. Moulierac, S. Pérennes, and F. Solano
Appendix C.1 G. B. Mertzios and S. Zaks [C16,J4]
Appendix C.2 G. B. Mertzios and S. Zaks [C17]
Appendix D.1 D. Coudert and F. Giroire [C14]
Appendix D.2 D. M. Thilikos [C19]
Appendix D.3 P. Šparl and J. Žerovnik [S29]

Table 1: Coauthors and publications associated to each part of this thesis.

Part I

Preliminaries

19

21

We provide here some basic preliminaries and fix the notation to be used throughout this
thesis. This part is intended to be looked up when necessary, rather than to be read
sequentially.

I.1 Graphs

We use standard graph-theoretical terminology, and we assume that the reader is familiar
with the basic concepts of graph theory. For more details, see for instance the classical
monograph of Berge [43] or the more recent book of Diestel [97].

Given a simple undirected graph G = (V, E), and edge between the vertices u and v is
denoted {u, v}, and then u and v are said to be adjacent . An edge is incident to its two
endpoints. The degree of a vertex v in G is the number of vertices incident to v in G.
Namely, d(v) = |{u ∈ V(G) : {u, v} ∈ E(G)}|. The maximum degree (resp. minimum degree)
of a graph G is the maximum (resp. minimum) degree over all its vertices, and it is denoted
∆(G) (resp. δ(G)).

For a graph G = (V, E) and a subset V ′ ⊆ V, we denote the induced subgraph on V ′ by
G[V ′] = (V ′, E′), where E′ = {{u, v} ∈ E : u, v ∈ V ′}. For v ∈ V, we denote by NG(v) the
neighborhood of v, namely NG(v) = {u ∈ V : {u, v} ∈ E}. The closed neighborhood NG[v] of
v is NG(v) ∪ {v}. In the same way we define NG[S] for S ⊆ V as NG[S] = ∪v∈S NG[v], and
N(S) = N[S] \ S . We may omit the subscript G if the graph is clear from the context.

A graph on n vertices is called complete if it contains an edge between each pair of vertices,
and is denoted Kn. The complete graph on three vertices is known as the triangle. The
path on n vertices v0, . . . , vn−1 with the n− 1 edges {v0, v1}, {v1, v2}, . . . , {vn−2, vn−1} is denoted
Pn. The cycle on n vertices obtained from Pn by adding the edge {vn−1, v0} is denoted
Cn. A graph G is k-partite if V(G) can be partitioned into k classes V0, . . . ,Vk−1 such that
there are only edges between classes Vi and V j with i , j. The 2-partite (resp. 3-partite)
graphs are known as bipartite (resp. tripartite). The density ρ of a graph G = (V, E) is
its edges-to-vertices ratio, that is ρ(G) =

|E(G)|
|V(G)| . More generally, for any subset S ⊆ V, we

denote its density by ρG(S) or simply ρ(S), and define it to be the density of the induced
graph on S , i.e., ρ(S) = ρ(G[S]).

I.1.1 Tree-like decompositions of graphs

We define some well-known decompositions of graphs that, loosely speaking, quantify the
resemblance of a graph to a tree.

Tree decompositions. A tree decomposition of a graph G = (V, E) is a pair (T,X),
where T = (I, F) is a tree, and X = {Xi}, i ∈ I is a family of subsets of V(G), called bags and
indexed by the nodes of T , such that

1. each vertex v ∈ V appears in at least one bag, i.e.,
⋃

i∈I Xi = V ;

2. for each v ∈ V the set of nodes indexed by {i | i ∈ I, v ∈ Xi} forms a subtree of T ;

22 Preliminaries

3. For each edge e = {x, y} ∈ E, there is an i ∈ I such that x, y ∈ Xi.

The width of a tree decomposition, denoted by w((T,X)), is defined as maxi∈I{|Xi| − 1}. The
treewidth of G, denoted by tw(G), is the minimum width of a tree decomposition of G. We
refer to the survey of Bodlaender [59] for an introductory overview on treewidth and its
use in algorithmic graph theory.

Path decompositions. A tree decomposition (T,X) in which T is a path is called a
path decomposition. The width of a path decomposition (T,X) is the width of (T,X) as a
tree decomposition. The pathwidth is defined exactly as above by restricting to the path
decompositions, and it is denoted pw. A path decomposition (T,X), with T a path of
length n, is usually denoted by (X0, X1, . . . , Xn).

Branch decompositions. Let G be a graph on n vertices. A branch decomposition (T, µ)
of a graph G consists of an unrooted ternary tree T (i.e., all internal vertices are of degree
three) and a bijection µ : L → E(G) from the set L of leaves of T to the edge set of G.
We define for every edge e of T the middle set mid(e) ⊆ V(G) as follows. Let T1 and T2
be the two connected components of T \ {e}. Then let Gi be the graph induced by the
edge set {µ(f) : f ∈ L∩ V(Ti)} for i ∈ {1, 2}. The middle set is the intersection of the vertex
sets of G1 and G2, i.e., mid(e) := V(G1)∩ V(G2). The width of (T, µ) is the maximum order
of the middle sets over all edges of T , i.e., w(T, µ) := max{|mid(e)| : e ∈ T }. An optimal
branch decomposition of G is defined by a tree T and a bijection µ which give the minimum
width, the branchwidth, denoted by bw(G).

Robertson and Seymour [183] proved that the branchwidth and the treewidth of a graph
G, with |E(G)| ≥ 3, satisfy bw(G) ≤ tw(G) + 1 ≤ 3

2 bw(G). Therefore, a family of graphs has
bounded branchwidth if and only if it has bounded treewidth.

I.1.2 Graph minors

Let G = (V, E) be a simple undirected graph and let e = {x, y} ∈ E. We define EG(v) =

{{v, u} | u ∈ NG(v)}. We denote by G\e the graph G′ where G′ = (V, E − {e}) and we say that
G′ occurs from G after an edge removal. We also denote by G/e the graph G′ where

G′ = (V − {x, y} ∪ {vx,y}, E − EG(x) − EG(y) ∪ {{vxy, z} | z ∈ NG(x, y)}),

where vxy < V is a new vertex, not in G. In this case we say that G′ occurs from G after
an edge contraction. If H occurs from G after a sequence of edge removals or contractions,
we say that H is a minor of G, and that G is a major of H.

Given a graph H, a family of graphs G is H-minor-free is no graph in G contains H
as a minor. For instance, planar graphs are K5-minor-free and K3,3-minor-free due to
Kuratowski Theorem [43,97].

Graph minors have been the topic of the so-called graph minor theory. This deep theory,
mainly developed by Robertson and Seymour in a long series of papers, describes the struc-
ture of graphs with excluded minors. It culminates in the Graph Minors Theorem [188],

23

which states that every class of graphs closed under taking minors can be characterized
by a finite set of excluded minors. Equivalently, it says that graphs are well-quasi ordered
(WQO) by the minor relation, which means that in every infinite sequence or graphs there
are two of them such that one is a minor of the other. The theory also has significant
algorithmic consequences. Robertson and Seymour [186] proved that every class of graphs
that is closed under taking minors (this means that if a graph G is inside the class, so is
every minor of G) can be recognized in cubic time.

I.2 Computational Complexity

We provide in this section some basic definitions concerning basic classes, approximation
algorithms and hardness of approximation to be freely used throughout this thesis. We
assume that the reader is familiar with the classes P and NP, as well as with the asymptotic
notation (like O, o, Ω, or Θ). For additional background material, the reader is referred
to the books of Garey and Johnson [134] and Varizani [202].

I.2.1 Approximation algorithms

Given an NP-hard minimization (resp. maximization) problem Π and a polynomial time
algorithm A, let OPTΠ(I) be the optimal value of the problem Π for the instance I, and
let ALG(I) be the value given by algorithm A for the instance I. We say that A is an
α-approximation algorithm for Π if for any instance I of Π, OPTΠ(I)/ALG(I) ≥ α (resp.
OPTΠ(I)/ALG(I) ≤ α).

The class Apx consists of all NP-hard optimization problems that can be approximated
within a constant factor. The subclass PTAS (Polynomial Time Approximation Scheme)
contains the problems that can be approximated in polynomial time within a ratio 1 + ε

for any constant ε > 0. Assuming P , NP, there is a strict inclusion of PTAS in Apx
(for instance, Vertex Cover is in Apx \ PTAS), hence an Apx-hardness result for a
problem implies the non-existence of a PTAS.

I.2.2 Hardness of approximation

For the inapproximability results presented in this thesis, we make use of the following
reductions (c.f. for instance [202]).

For two minimization problems Π1 and Π2, a gap-preserving reduction from Π1 to Π2,
parameterized by (f1,α) and (f2,β), where α, β : N+ → N+ and f1, f2 : {0, 1}∗ → R+, is a
procedure that given an instance x of Π1, computes in polynomial time an instance y of
Π2 such that:

• if OPT (x) ≤ f1(x), then OPT (y) ≤ f2(x).

• if OPT (x) > α(|x|) f1(x), then OPT (y) > β(|x|) f2(x).

24 Preliminaries

The usefulness of gap-preserving reductions stems from the fact that if there is a gap-
preserving reduction from Π1 to Π2 and it is NP-hard to approximate Π1 within a factor
strictly less than α, then it is also NP-hard to approximate Π2 within a factor strictly less
than β.

In general, inapproximability results are harder to proof than just NP-hardness. In par-
ticular, the existence of a PTAS is a difficult question to answer in general. For instance,
in the case of the dense k-subgraph problem, whose best approximation ratio is O(nδ)
for some δ < 1/3 [114], the non-existence of a PTAS has been proved recently involving
very technical details [159].

I.2.3 Parameterized complexity

Parameterized complexity is a recent approach to deal with intractable computational
problems having some parameters that can be relatively small with respect to the input
size. This area has been developed extensively during the last decade. The monograph of
Downey and Fellows [103] provides a good introduction, and for recent developments see
the books by Flum and Grohe [123] and by Niedermeier [174].

A parameter P is any function mapping graphs to non-negative integers. Examples of
parameters are the size of a minimum vertex cover or the size of a maximum clique.
The parameterized problem associated with parameter P asks, for some fixed k, whether
P(G) ≥ k for a given graph G.

For decision problems with input size n and parameter k, the goal is to design an algo-
rithm with running time f (k) · nO(1), where f depends only on k. Problems having such
an algorithm are said to be fixed-parameter tractable (FPT). There is also a theory of
parameterized intractability to identify parameterized problems that are unlikely to admit
fixed-parameter tractable algorithms. There is a hierarchy of intractable parameterized
problem classes above FPT, the most important ones being:

FPT ⊆ M[1] ⊆ W[1] ⊆ M[2] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP

The principal analogue of the classical intractability class NP is W[1], which is a strong
analogue, because a fundamental problem complete for W[1] is the k-Step Halting
Problem for Nondeterministic Turing Machines (with unlimited nondetermin-
ism and alphabet size); this completeness result provides an analogue of Cook’s Theorem
in classical complexity. A convenient source of W[1]-hardness reductions is provided by
the result stating that k-Clique is complete for W[1]. The principal “working algorithmic”
way of showing that a parameterized problem is unlikely to be fixed-parameter tractable,
is to prove its W[1]-hardness using a parameterized reduction, which is defined as follows.

Let Π,Π′ be two parameterized problems, with instances (x, k) and (x′, k′), respectively.
We say that Π is (uniformly many:1) reducible to Π′ if there is a function Φ, called a
parameterized reduction, which transforms (x, k) into (x′, g(k)) in time f (k) · |x|α, where
f , g : N→ N are arbitrary functions and α is a constant independent of k, so that (x, k) ∈ Π

if and only if (x′, g(k)) ∈ Π′.

25

The notions of kernel and kernelization play a fundamental role in parameterized complex-
ity. It captures data reduction taken from a fixed-parameter complexity point of view. Let
L be a parameterized problem consisting of input (I, k), where I is the problem instance
and k is the parameter. The term reduction to a problem kernel or kernelization means
replacing instance (I, k) by a “reduced” instance (I′, k′) (called problem kernel) such that

1. k′ ≤ k and |I′| ≤ g(k) for some function g only depending on k;

2. (I, k) ∈ L if and only if (I′, k′) ∈ L; and

3. the reduction from (I, k) to (I′, k′) is computable in polynomial time in both |I| and
k.

The importance of kernels comes from the fact that a parameterized problem is fixed-
parameter tractable if and only if it has a kernelization [103,123,174].

Minor closed parameters. We say that a parameter P is minor closed if whenever H is
a minor of G, P(H) ≤ P(G). Examples of minor closed parameters are the size of a longest
path or the size of a minimum feedback vertex set. A powerful algorithmic consequence
of the Graph Minors Theorem [188] is that every minor closed parameterized problem is
in FPT, i.e., it admits an algorithm running in O(f (k) · nO(1)) time. As we will discuss in
more detail in Chapters 6-8, the drawback of this result is that the function f (k) and the
constants hidden in the big-Oh notation can be huge, and therefore these general FPT
algorithms can be of limited practical value.

I.2.4 Some classical problems

For the sake of completeness, we provide here the definition of some classical problems (all
NP-hard except Maximum Matching that is in P) that are mentioned in this thesis. For
a complete list of classical NP-hard optimization problems, we refer the reader to [87,134].

Maximum Matching
Input: A graph G = (V, E).
Output: A subset E′ ⊆ E of the maximum size such that no two edges in E′ share a

common endpoint.

Maximum Clique
Input: A graph G = (V, E).
Output: A subset S ⊆ V of the maximum size such that there is an edge in E between

any two vertices in S .

Maximum Independent Set
Input: A graph G = (V, E).
Output: A subset S ⊆ V of the maximum size such that there is no edge in E between

any two vertices in S .

26 Preliminaries

Minimum Vertex Coloring
Input: A graph G = (V, E).
Output: A function f : V → {1, 2, . . . , c} such that f (u) , f (v) for each edge {u, v} ∈ E

and such that c is minimized.

Minimum Edge Coloring
Input: A graph G = (V, E).
Output: A function f : E → {1, 2, . . . , c} such that f (e) , f (e′) whenever e and e′ share

an endpoint and such that c is minimized.

Minimum Vertex Cover
Input: A graph G = (V, E).
Output: A subset S ⊆ V of the minimum size such that for every edge e = {u, v} ∈ E,

either u ∈ S or v ∈ S .

Minimum Feedback Vertex Set
Input: A graph G = (V, E).
Output: A subset S ⊆ V of the minimum size such that G[V \ S] has no cycles.

Minimum Dominating Set
Input: A graph G = (V, E).
Output: A subset S ⊆ V of the minimum size such that for every vertex u ∈ V \ S

there is a v ∈ S such that {u, v} ∈ E.

Longest Path
Input: A graph G = (V, E).
Output: A path in G with the maximum number of edges.

Longest Cycle
Input: A graph G = (V, E).
Output: A cycle in G with the maximum number of edges.

Dense k-Subgraph (DkS)
Input: A graph G = (V, E) and a positive integer k.
Output: A subset S ⊆ V, with |S | = k, such that ρ(S) is maximized.

Minimum Set Cover
Input: A collection C of subsets of a finite set U.
Output: A subset C′ ⊆ C of the minimum size such that every element in U belongs

to at least one member of C′.

Part II

Traffic Grooming

27

29

II.1 Motivation

Optical Wavelength Division Multiplexing (WDM) is today the most promising technology
to accommodate the explosive growth of Internet and telecommunication traffic in wide-
area, metro-area, and local-area networks. Using WDM, the potential bandwidth of 50
THz of a fiber can be divided into multiple non-overlapping wavelengths or frequency
channels. Since currently the commercially available optical fibers can support over a
hundred frequency channels, such a channel has over one gigabit-per-second transmission
speed. However, the network is usually required to support traffic connections at rates
that are lower than the full wavelength capacity. In order to save equipment cost and
improve network performance, it turns out to be very important to aggregate the multiple
low-speed traffic connections, namely requests, into higher-speed streams. Traffic grooming
is the generic term used to carry out this aggregation, in order to improve the usage of
the bandwidth and of the components, and therefore to reduce the network cost.

When establishing a connection in an optical network, one has to install some equipments
at both extremities of the connection, typically an optical transmitter (laser) at its source
and an optical receiver at its destination. Due to the cost of building, installing, and main-
taining devices, it is usually more interesting to use a single kind of device that may handle
both transmission and reception, instead of two distinct devices. Such devices are called
Light Termination Equipment, or LTE for short. Therefore, every connection is involved
in two distinct LTEs, and two distinct connections may share the same LTE, provided that
one ends at a node while the other originates at the same node. In this context, the traffic
grooming problem refers to minimizing the number of LTEs that are needed in the network
to serve all connection requests. The problem of minimizing the number of LTEs in the
network being NP-hard [107,164], research effort has concentrated on the development of
efficient approximation algorithms for both static and on-line traffic [88,110,121,122,192].

At another level of the network, traffic grooming refers in a more general sense to techniques
used to combine low-speed traffic streams onto high-speed wavelengths in order to minimize
the network-wide cost in terms of electronic switching. In this part of the thesis we
focus on this version of traffic grooming. Nodes of the network insert and/or extract the
data streams on a wavelength by means of Add-Drop Multiplexers (ADMs for short). A
WDM optical network can handle many wavelengths, each with large bandwidth available
(nowadays, in the order of 40 Gbps). On the other hand, a single user seldom usually does
not need such large bandwidth. Therefore, by using multiplexed access such as Time-
Division Multiple Access (TDMA) or Code-Division Multiple Access (CDMA), different
users can share the same wavelength, thereby optimizing the bandwidth usage of the
network. By using traffic grooming, not only the bandwidth usage is optimized, but
also (and more importantly) the cost of the network can be cut by reducing the total
number of ADMs. Such techniques become increasingly important for emerging network
technologies, including SONET/WDM rings and MPLS/MPλS backbones [196], for which
traffic grooming is essential.

In this context, one ADM is needed in a node each time we want to add or drop traffic
from a wavelength at this node. Therefore, one has to place one ADM in a node for each
wavelength in which traffic is added or dropped, as it is illustrated in Figure II.1. Here,

30 Traffic Grooming

ADM ADM ADM

OADM

Node 1

OADM

Node 2

OADM

Node 3

w 3

w 2

w 1

w 3

w 2

w 1

Figure II.1: Placement of ADMs in the network: one ADM for each wavelength used in a
node.

the bandwidth requirement of a traffic stream is expressed as a fraction of the bandwidth
offered by a single wavelength, which is called the grooming factor and henceforth denoted
by C. Hence, an ADM is able to drop (resp. add) up to C unitary traffic streams from
(resp. to) a given wavelength. Thus, the traffic grooming problem consists in minimizing
the total number of ADMs to be installed in the network in order to accommodate all
traffic streams.

The general traffic grooming problem with respect to the traffic requirement being NP-
hard [71], recent works focus on specific issues. Most of the existing algorithms aim at
grooming traffic in such a way that all the traffic between any given pair of nodes is carried
on a minimum number of wavelengths. However, a large part of the network cost depends
on the capacity of the multiplexing equipment required at each node. Hence, in order to
minimize the overall network cost, algorithms have to take into account a trade-off between
the number of wavelengths used and the number of required ADMs. Indeed, minimizing
the number of ADMs may be incompatible with minimizing the number of wavelengths:
the number of wavelengths and the number of ADMs cannot always be simultaneously
minimized (see [51, 71, 135] for examples with unitary traffic). Both minimization prob-
lems have been considered by many authors. See for example the surveys [41, 105] for
minimization of the number of wavelengths, [49, 135, 136, 151, 203, 208] for minimization
of ADMs, and [150, 161] for on-line approaches. Numerical results, heuristics, and tables
might be found in [51,204]. It makes also sense to aim at minimizing the number of Optical
Add-Drop Multiplexers (OADMs for short, see Figure II.1), which are devices that are able
to insert/extract entire wavelengths to/from an optical fiber [119]. The reader may also
consult the following surveys [76, 106, 170, 209] and books [104, 194, 211] for other aspects
of traffic grooming that are not considered here.

The sequel of this introduction to traffic grooming is structured as follows. We start in
Section II.2 with a general definition of the traffic grooming problem and some examples.
In Section II.3 we give an overview of the variants of traffic grooming that have been
considered in this thesis, as well as our main contributions to each of these variants.

31

II.2 Problem Definition and Examples

We first give a precise description of LTE and ADM, and then we formalize the traffic
grooming problem.

A Light Termination Equipment (LTE) is a device that realizes the interface between the
optical and electronic domains. It is constituted of one optical receiver and one optical
transmitter, so every connection involves two disctinct LTEs, one at each endpoint. We
assume that the receiver and the transmitter of a LTE are tuned on the same wavelength
(we would like to stress that other assumptions are technologically possible). Also, two
distinct connections may share a LTE, provided that one ends at a node while the other
originates at the same node, and that both connections are assigned the same wavelength.

An Add-Drop Multiplexer (ADM) is a device used in synchronous transmission networks
(like SDH or SONET, see [104]) to add (insert) or drop (remove) lower-rate traffic channels
from a higher-rate aggregated channel. In optical networks, each ADM contains a LTE to
realize the interface between the optical domain (high-speed channel) and the electronic
domain (lower-speed channels). Thus an ADM operates on a single high-speed data stream
and therefore on a single wavelength, as can be seen in Figure II.1. The cost of an ADM is
given by its capacity, that is, the maximum number of low-speed channels (provided that
each of them have unitary bandwidth requirement) that can be added or dropped from
the wavelength. The capacity of an ADM is called the grooming factor or grooming ratio
C. Finally, remark that a LTE is a special case of an ADM for C = 1.

In optical networks with grooming capabilities, the traffic demands are expressed in terms
of low-speed data channels. Thus, one has to assign to each connection request a path
and a wavelength while respecting that at most C connection requests can be assigned the
same wavelength on the same link of the network.

The precise statement of the traffic grooming problem depends on the particular assump-
tions, like the considered topology (for instance, a path or a ring) or the traffic pattern (for
instance, an all-to-all setting or a bounded-degree request graph). This is the reason why
we shall state the precise definition of each considered model in the corresponding chapter.
For the sake of intuition, we provide here a general statement that does not capture the
particularities of each setting.

A general instance of the Traffic Grooming problem is a triple (G,R,C), where G =

(V, E) is a digraph modeling the network topology, R is a set of connection requests and
C is a positive integer, namely the grooming factor. Given a connection request r ∈ R
identified by a couple of nodes aiming to communicate, let Pr be the set of the directed
paths in G connecting the two endpoints relative to r. There are two main issues to be
addressed:

• the determination of a path system (or path assignment) of (G,R), that is a function
p : R 7→

⋃
r∈R Pr;

• the determination of a proper wavelength assignment of (G,R), that is a function
w : R 7→ N+ such that for any arc e ∈ E at most C paths using e are assigned the
same wavelength.

32 Traffic Grooming

Every request r ∈ R needs an ADM at each of its endpoint nodes. The key point is that
the same ADM can be shared by the paths having a common endpoint which are assigned
the same wavelength. The traffic grooming problem is the optimization problem of finding
functions p,w for (G,R,C) minimizing the total number of used ADMs.

As we shall see in Chapters 1-4, the results presented in this thesis deal mainly with the
second issue, that is, the assignment w of wavelengths to the requests. To fix ideas we
provide now two examples, for unidirectional and bidirectional rings, respectively.

Unidirectional ring. Suppose we have a unidirectional ring with 4 nodes {1, 2, 3, 4} and
an all-to-all symmetric unitary traffic (i.e., one request between each couple of nodes).
When the traffic requirement is symmetric, it can be easily shown (by exchanging wave-
lengths) that there always exists an optimal solution in which the same wavelength is
given to each pair of symmetric requests. Thus without loss of generality we assign to
each pair of symmetric requests, called a circle, the same wavelength. Then each circle
uses 1

C of the bandwidth of the whole ring. If the two end-nodes of a circle are i and j, we
need one ADM at node i and one at node j. The main point is that if two requests have
a common end-node, they can share an ADM if they are assigned the same wavelength.
In our example, there are therefore such 6 circles (i, j) for 1 ≤ i < j ≤ 4. If there is no
grooming (i.e., C = 1) we need 6 wavelengths (one per circle) and a total of 12 ADMs. If
we have a grooming factor C = 2, we can put on the same wavelength two circles, using
3 or 4 ADMs according to whether they share an end-node or not. For example, we can
put together (1, 2) and (2, 3) on one wavelength; (1, 3) and (3, 4) on a second wavelength,
and (1, 4) and (2, 4) on a third one, for a total of 9 ADMs, and this is optimal. Now, if we
allow a grooming factor C = 3, we can use only 2 wavelengths. Indeed, if we put together
on one wavelength (1, 2), (2, 3), and (3, 4) and on the other one (1, 3), (2, 4), and (1, 4) we
need 8 ADMs (first solution in Figure II.2); but we can do better by putting on the first
wavelength (1, 2), (2, 3), and (1, 3) and on the second one (1, 4), (2, 4), and (3, 4), therefore
using 7 ADMs (second solution in Figure II.2).

More formally, in the above example with 4 vertices and C = 3, the first solution consists
in a partition of the edges of K4 (each edge of K4 corresponds to a circle) into two paths
with four vertices each: [1, 2, 3, 4] and [1, 4, 2, 3], while the second solution corresponds to
a decomposition into a triangle (1, 2, 3) and a star with edges (1, 4), (2, 4), and (3, 4) (see
Figure II.2).

Bidirectional ring. Consider now a bidirectional ring on five nodes {0, 1, 2, 3, 4} with all-
to-all unitary traffic modeled by the complete symmetric digraph K∗5. In this setting, it is
better (in terms of the number of used ADMs) to route requests (i, j) and (j, i) on different
wavelengths using shortest path routing. For example, with grooming factor C = 3, we
can put on one wavelength the requests {(i, i + 1 mod 5), (i, i + 2 mod 5) : i = 0, . . . , 4} routed
clockwise, and on another wavelength the requests {(i, i − 1 mod 5), (i, i − 2 mod 5) : i =

0, . . . , 4} routed counterclockwise. We need 5 ADMs on each wavelength, so overall 10
ADMs. But if requests (i, j) and (j, i) are routed on a same wavelength, then we can put
at most 3 circles (pairs of symmetric requests) per wavelength, using at least 3 ADMs.
Since K∗5 contains 10 circles, we need at least 4 wavelengths: 3 of them with 3 circles each

33

4 ADM

1

4 2

3

4 ADM

3

4

1

2

3 ADM

24

1

3

4 ADM

1

4

3

2

34

1 2

34

1 2

34

1 2
34

1 2

3

1 2

Figure II.2: Traffic grooming for a unidirectional ring with 4 nodes, grooming factor C = 3,
and all-to-all unitary traffic. The above solution uses 4 + 4 = 8 ADMs, whereas the second
one uses 3 + 4 = 7 ADMs. Below, the corresponding partitions of K4 are illustrated.

34 Traffic Grooming

(and therefore at least 3 ADMs each) and one of them with at least 1 circle and 2 ADMs,
so overall at least 11 ADMs.

With grooming factor C = 2, we can put on one wavelength requests {(i, i + 1 mod 5) : i =

0, . . . , 4} and on another wavelength requests {(i, i + 2 mod 5) : i = 0, . . . , 4}. Symmetric
requests are routed similarly in the opposite direction. We obtain the first partition of
Figure II.3, using overall 2 · 10 = 20 ADMs. But we can do better by putting on a first
wavelength requests {(i, i + 1 mod 5) : i = 0, . . . , 4}, request (0, 2), and request (2, 4) using
5 ADMs, and on a second wavelength requests (1, 3), (3, 5), and (4, 1) using 4 ADMs. We
obtain the second partition of Figure II.3, using 2 · (5 + 4) = 18 ADMs overall.

2

1

0 4

3 1

0 4

3

2

1

2

3

40

1

2

3

40 0

1 3

4

Figure II.3: On the left, a K∗5. In the middle and on the right, two valid partitions
of K∗5 when C = 2 using 10 and 9 ADMs, respectively. Symmetric requests are routed
counterclockwise and partitioned similarly, hence using 20 and 18 ADMs, respectively.

II.3 State-of-the-art and our Contribution

The topic of traffic grooming is so large that it would be too ambitious to pretend to
provide here a complete state-of-the-art. Most of the literature about traffic grooming
originates from an engineering context (cf. for instance the books and surveys [B6, 76,
104, 106, 170, 194, 209, 211]), hence the vast majority of articles about traffic grooming
propose heuristics that are then contrasted by the corresponding simulations. In this
thesis we are only concerned with the theoretical aspects of traffic grooming, such as
complexity results, approximation algorithms with a provable approximation ratio, or the
construction of optimal solutions for restricted instances and topologies. It is far from the
intention of the author to suggest that purely theoretical results are more important or
more significant than applied ones; the fact that this thesis does not cover the literature
originating from the engineering community is just a matter of scientific knowledge and
interests.

We survey the existing results and contextualize our contributions concerning hardness
and approximation, the all-to-all set of requests, and pseudo-dynamic scenarios in Sec-
tions II.3.1, II.3.2, and II.3.3, respectively.

II.3.1 Hardness and approximation

Most approximation algorithms and hardness results deal with the case where the topology
is a ring or a path. This is because, on the one hand, these topologies are widely used in
practical applications (like SONET WDM rings). On the other hand, whereas the traffic
grooming problem can be clearly stated in paths and rings (see Chapter 1), the notion of

35

traffic grooming in topologies with vertices of degree at least three is somehow ambiguous,
as it heavily depends on the technological devices used in each network. Approximation
algorithms and NP-hardness results for a simplified model of traffic grooming in stars and
trees can be found in [118]. Another model of traffic grooming in stars and trees is studied
in [152]. From now on we focus on the case when the physical topology is a ring or a path.

Hardness results. The notion of traffic grooming with C > 1 was introduced in [136]
for the ring topology. The problem has been proved to be NP-hard for ring networks and
general C [71] using a reduction from the Bin Packing problem. Another proof was also
mentioned in [203]. On the other hand, there was no result on the inapproximability of the
problem for fixed C ≥ 1. In [74] Chow and Lin conjectured that Ring Traffic Grooming
is Max SNP-hard (or equivalently, Apx-hard, modulo PTAS-reductions) for any fixed
value of the grooming factor. We answer affirmatively to this question in Theorem 1.3 of
Chapter 1, providing the first hardness result for the Ring Traffic Grooming problem
for fixed values of the grooming factor C.

Considering C as part of the input, in [152] it was proved that Path Traffic Grooming
does not admit a constant-factor approximation unless P = NP. For fixed values of C,
Path Traffic Grooming was proved to be in P for C = 1 [44], but the complexity
for fixed C ≥ 2 has been an open question for a while. Recently, it has been proved
in [191] that Path Traffic Grooming for fixed C > 1 is NP-hard for bounded number
of wavelengths. Our approach permits us to improve this result by proving the Apx-
hardness of Path Traffic Grooming for any fixed C > 1 and unbounded number of
wavelengths (see Theorem 1.5 in page 48). That is, we rule out the existence of a PTAS
for fixed values of C, unless P=NP. In particular, this extends the NP-hardness result
of [191] to the case where the number of wavelengths is not bounded.

The main ingredient of our approach is the proof of the Apx-completeness (given in Sec-
tion 1.2 of Chapter 1) of the problem of finding the maximum number of edge-disjoint
triangles in a tripartite graph with bounded degree B: Maximum B-Bounded Edge
Covering by Triangles (MECT-B for short). The proof is obtained by L-reduction
from Maximum Bounded Covering by 3-Sets, which was proved to be MAX SNP-
complete in [155]. A simple modification of this technique permits us to prove the Apx-
completeness of finding the maximum number of edge-disjoint odd cycles of given length
in a graph. This later claim is then used to extend our results to arbitrary values of C,
see Sections 1.2 and 1.3 of Chapter 1.

Approximation algorithms. Since Ring Traffic Grooming and Path Traffic
Grooming are NP-hard, it is natural to devise polynomial-time approximation algo-
rithms. We first focus on the ring topology.

As we discuss in Section 1.3 (page 44), it is trivial to obtain a O(
√

C)-approximation with
running time polynomial in both C and n (this fact was first proved in [138]), where n is the
number of nodes of the network. For C = 1 (that is, for the minimization of LTEs, which is
also known to be NP-hard [107,164]) the best algorithm in rings achieves an approximation
ratio of 10/7 [110]. For this specific case of C = 1 we refer the reader to [44, 52, 110, 192].

36 Traffic Grooming

For general C, the best approximation algorithm [120] achieves an approximation factor
of O(log C) by using a classical Set Cover approach, but the problem is that the running
time is exponential in C (that is, nO(C)). Since in practical applications SONET WDM
rings are widely used as backbone optical networks [106,170], the grooming factor is usually
greater than the size of the network, i.e., C ≥ n. For those networks, the running time
of the algorithm of [120] becomes exponential in n. Thus, it turns out to be important
to find good approximation algorithms with running time polynomial in both n and C.
In Section 1.4 of Chapter 1 we provide such an approximation algorithm, considering C
as part of the input. Our algorithm finds a solution of Ring Traffic Grooming that
approximates the optimal value within a factor O(n1/3 log2 n) for any C ≥ 1. To the best
of our knowledge, this is the first polynomial-time approximation algorithm for the Ring
Traffic Grooming problem with an approximation ratio which does not depend on C.
Although the performance of this algorithm seems not to be very good at first sight, in
fact we conjecture that for the general instance of the problem it is not possible to get rid
of a factor nδ, for some constant δ > 0 (see Conjecture 1.1 in page 53). We also show that
the general scheme of the algorithm yields a O(log2 n)-approximation if the request graph
excludes a fixed graph as minor, for example if it is planar or of bounded genus. The main
theoretical contribution of this algorithm is to relate the Traffic Grooming problem to
the widely studied Dense k-Subgraph problem [114].

Concerning the case of the path, both the algorithm of [120] (with approximation ratio
O(log C) fox fixed values of C) and the algorithm we present in Chapter 1 (with approx-
imation ratio O(n1/3 log2 n) irrespective of C) also apply to the path topology with slight
modifications.

II.3.2 The all-to-all case

An important special case is given by a unidirectional SONET ring with n nodes, grooming
ratio C, and all-to-all uniform unitary traffic. This problem has been modeled as a graph
partitioning problem in both [48] and [138]. In the all-to-all case the set of requests is
modeled by the complete graph Kn. To a wavelength λ is associated a subgraph Bλ in
which each edge corresponds to a pair of symmetric requests (that is, a circle in the
terminology used in Section II.2) and each node to an ADM. The grooming constraint,
i.e., the fact that a wavelength can carry at most C requests, corresponds to the fact that
the number of edges |E(Bλ)| of each subgraph Bλ is at most C. The cost corresponds to the
total number of vertices used in the subgraphs, and the objective is therefore to minimize
this number.

Traffic Grooming in the Unidirectional Ring with All-to-all Requests
Input: Two integers n and C.
Output: Partition E(Kn) into subgraphs Bλ, 1 ≤ λ ≤ Λ, s.t. |E(Bλ)| ≤ C for all λ.
Objective: Minimize

∑Λ
λ=1 |V(Bλ)|.

With this setting, optimal constructions have been obtained (using tools of graph and
design theory [77]) for the cases C = 3 [45], C = 4 [48, 151], C = 5 [47], C = 6 [46],

37

C = 7 [78], and C ≥ n(n − 1)/6 [51]. Recently, good approximated solutions for any value
of C have been presented in [50]. The all-to-all traffic case has been also studied on the
path in [44]. See [49] for a survey of most of these results.

Nevertheless, the case when the physical network is a bidirectional ring has been much
less studied in the literature from this graph partitioning perspective, mostly because the
above simplified model cannot be applied anymore. A MILP formulation of the problem
can be found in [151]. In [84] tools from design theory were applied to the bidirectional
ring for the special case C = 8, without providing lower bounds to compare the proposed
solutions to the optimal ones. Finally, a lower bound (independent of the routing of the
requests) was given in [74].

In a bidirectional ring, requests are routed either clockwise or counterclockwise. We study
in Chapter 3 the bidirectional ring with symmetric shortest path routing and all-to-all
traffic. This is the first attempt to deal with traffic grooming in bidirectional rings using an
approach similar to [49]. Using graph partitioning techniques and combinatorial designs,
we formally state the problem, provide general lower bounds, and construct infinite families
of optimal solutions for C ∈ {1, 2, 3} and C of the form k(k + 1)/2, as well as asymptotically
optimal solutions. See Chapter 3 for the details.

II.3.3 Pseudo-dynamic scenarios

In this section we discuss two variants of the traffic grooming in order to allow more
dynamic settings than the ones discussed so far. Chapters 2 and 4 are concerned with
a changeable request graph and a changeable grooming factor, respectively. We observe
that these scenarios are not completely dynamic, in the sense of considering any request
graph and any grooming factor, but they incorporate a flexibility that did not exist in the
theoretical models considered so far.

Variable grooming factor. Most of the papers on grooming deal with a single (static)
traffic matrix. Some articles consider variable (dynamic) traffic, such as finding a solution
which works for the maximum traffic demand [56,210], but all keep a fixed grooming factor.
Recently, an interesting variation of the traffic grooming problem, called grooming for
two-period optical networks, has been introduced by Colbourn, Quattrocchi, and Syrotiuk
in [80, 81] in order to capture some dynamic nature of the traffic. Informally, in the two-
period grooming problem each time period supports different traffic requirements. During
the first period of time there is all-to-all uniform traffic among n nodes, each request using
1/C of the bandwidth; but during the second period there is all-to-all traffic only among
a subset V of v nodes, each request now being allowed to use a larger fraction of the
bandwidth, namely 1/C′ where C′ < C.

In [80,81] the authors completely solved the cases when C = 2 and C = 3 (C′ = 1 or 2). In
Chapter 4 we determine the minimum drop cost for all n ≥ v ≥ 0, C = 4, and C′ ∈ {1, 2, 3}.
If we further restrict the solution to use the minimum number of wavelengths, it turns out
that the optimal drop cost under this constraint may differ from the absolute optimum
(see the last paragraph before Section 4.5 of Chapter 4). We also determine the optimal

38 Traffic Grooming

drop cost that uses the minimum number of wavelengths for all n ≥ v ≥ 0, C = 4, and
C′ ∈ {1, 2, 3}. The precise cost formulas can be found in Section 4.1 of Chapter 4.

Variable request graph. As mentioned above, most of previous work on traffic groom-
ing has focused on the case where the requests are given as input [J1,48,49,106,118,120,
138, 170]. We consider in Chapter 2 the case where only the network topology is given,
together with a bound ∆ on the degree of the request graph. We would like to place, for
each value of the grooming factor C, a minimum number of ADMs at each node in such
a way that they could support any traffic pattern where each node is the end-node of
at most ∆ requests. This model is interesting because the network can support dynamic
traffic without replacement of the ADMs. In other words, instead of placing the ADMs a
posteriori for a given traffic demand, we would like to place them a priori.

From a practical point of view, it is interesting to design a network being able to support
any request graph with maximum degree not exceeding a given constant. This situation is
usual in real optical networks, since due to technology constraints the number of allowed
communications for each node is usually bounded. This flexibility can also be thought
from another point of view: if we have a limited number of available ADMs to place at
the nodes of the network, then it is interesting to know which is the maximum degree of
a request graph that our network is able to support, depending on the grooming factor.
Equivalently, given a maximum degree and a number of available ADMs, it is useful to
know which values of the grooming factor the network is able to support.

The aim of Chapter 2 is to provide a theoretical framework to design such networks with
dynamically changing traffic. More precisely, we study the case when the physical network
is given by a unidirectional ring. We show that the problem is essentially equivalent to
finding the least integer M(C,∆) such that the edges of any graph with maximum degree at
most ∆ can be partitioned into subgraphs with at most C edges and each vertex appears
in at most M(C,∆) subgraphs (see Section 2.1 for the details). We establish the value of
M(C,∆) for almost all values of C and ∆, leaving open only the case where ∆ ≥ 5 is odd, ∆

(mod 2C) is between 3 and C − 1, C ≥ 4, and the request graph does not contain a perfect
matching (see Table 2.1 in page 71 for a summary of the results). For these open cases,
we provide upper bounds that differ from the optimal value by at most one.

Chapter 1

Hardness and Approximation

In this chapter we focus on traffic grooming on ring and path topologies. On
the one hand, we provide an inapproximability result for Traffic Grooming for
fixed values of the grooming factor C, answering affirmatively to a conjecture of Chow
and Lin [74]. More precisely, we prove that Ring Traffic Grooming for fixed
C ≥ 1 and Path Traffic Grooming for fixed C ≥ 2 are Apx-complete, even if the
maximum degree of the request graph is bounded by a small constant. That is, they
do not admit a PTAS unless P = NP. Both results rely on the fact that finding the
maximum number of edge-disjoint triangles in a tripartite graph (and more generally
cycles of length 2C + 1 in a (2C + 1)-partite graph of girth 2C + 1) is Apx-complete.

On the other hand, we provide a polynomial-time approximation algorithm for
Ring and Path Traffic Grooming, based on a greedy cover algorithm, with
an approximation ratio independent of C. Namely, the approximation guarantee is
O(n1/3 log2 n) for any C ≥ 1, n being the size of the network. This is useful in practical
applications, since in backbone networks the grooming factor is usually greater than
the network size. Finally, we improve this approximation ratio under some extra as-
sumptions about the request graph.

Keywords: traffic grooming, optical networks, SONET ADM, approximation algo-
rithms, Apx-hardness, PTAS.

1.1 Introduction

As already mentioned in Section II.1 (page 29), the most accepted criterion to reduce the
equipment cost in WDM optical networks is to minimize the number of electronic termi-
nations, which is unanimously considered as the dominant cost, rather than the number of
wavelengths. SONET ring is the most widely used optical network infrastructure today.
In these networks, a communication between a pair of nodes is done via a lightpath, and
each lightpath uses an Add-Drop Multiplexer (ADM), i.e., an electronic termination, at

39

40 Traffic Grooming

each of its two endpoints. If each request uses 1/C of the capacity of a wavelength, C
is said to be the grooming factor. We recall that the problem is equivalent to assigning
a wavelength to each request in such a way that for any wavelength and any link of the
network, there can be at most C requests using this link on this wavelength. The aim is
to minimize the total number of ADMs.

Statement of the problem. In the graph-theoretical approach that we use, the set of
requests is modeled by a graph R, and each vertex in the subgraph of R corresponding
to a wavelength represents an ADM. The problem, in the case where the communication
network is a ring, can be formally stated as follows.

Ring Traffic Grooming
Input: A cycle Cn on n vertices (network), a graph R (set of requests) on vertices of

Cn, and a grooming factor C.
Output: Find for each edge r = {x, y} of R, a path P(r) in Cn between x and y, and a

partition of the edges of R into subgraphs Rλ, 1 ≤ λ ≤ Λ, such that for each
edge e in E(Cn) and for all λ, the number of paths P(r) using e, r being an
edge of Rλ, is at most C.

Objective: Minimize
∑Λ
λ=1 |V(Rλ)|.

The number of paths P(r) using an edge e ∈ E(Cn) in a given subgraph Rλ is known as the
load of e in Rλ. That is, the load of the edges in any subgraph of the partition of E(R) can
be at most C. The statement of Path Traffic Grooming is analogous, replacing cycle
Cn with path Pn. To fix ideas, consider a ring on five nodes and the complete graph of
Figure 1.1 as request graph, and let C = 2. We exhibit two valid solutions of the problem,
both using two subgraphs (i.e., two wavelengths). The lower solution is better because it
uses 9 vertices instead of 10.

10 ADMs

9 ADMs

Figure 1.1: Two valid partitions of K5 when C = 2, using different number of ADMs.

Our contribution. As discussed in Section II.3.1 (page 34), there was no result in the
literature on the inapproximability of Ring Traffic Grooming for fixed C ≥ 1. In [74]
Chow and Lin conjectured that Traffic Grooming is Max SNP-hard (or equivalently,
Apx-hard, modulo PTAS-reductions) for any fixed value of the grooming factor. We

Chapter 1: Hardness and Approximation 41

answer affirmatively to this question in Theorem 1.3, providing the first hardness result
for the Ring Traffic Grooming problem for fixed values of the grooming factor C.

Considering C as part of the input, in [152] it was proved that Path Traffic Grooming
does not admit a constant-factor approximation unless P = NP. For fixed values of C,
Path Traffic Grooming was proved to be in P for C = 1 [44], but the complexity for
fixed C ≥ 2 has been an open question for a while. Recently, it has been proved in [191] that
Path Traffic Grooming for fixed C > 1 is NP-hard for bounded number of wavelengths.
Our method permits us to improve this result in Section 1.3, by proving the Apx-hardness
of Path Traffic Grooming for any fixed C > 1 and unbounded number of wavelengths.
In particular, this extends the NP-hardness result of [191] to the case where the number
of wavelengths is not bounded.

The main ingredient of our approach is the proof of the Apx-completeness (given in Section
1.2) of the problem of finding the maximum number of edge-disjoint triangles in a tripartite
graph with bounded degree B: Maximum B-Bounded Edge Covering by Triangles
(MECT-B for short). The proof is obtained by L-reduction from Maximum Bounded
Covering by 3-Sets, which was proved to be MAX SNP-complete in [155]. A simple
modification of this technique permits us to prove the Apx-completeness of finding the
maximum number of edge-disjoint odd cycles of given length in a graph. This later claim
is then used to extend our results to arbitrary values of C, see Sections 1.2 and 1.3.

The design of approximation algorithms for Traffic Grooming is the topic of the second
part of this chapter. We present the results for the ring topology, but the same algorithm
works also for the path topology. As we show in Section 1.3, it is trivial to obtain a
O(
√

C)-approximation with running time polynomial in C and n. For C = 1, the best
algorithm in rings achieves an approximation ratio of 10/7 [110]. For general C, the
best approximation algorithm [120] achieves an approximation factor of O(log C), but the
problem is that the running time is exponential in C (that is, nO(C)). Since in practical
applications SONET WDM rings are widely used as backbone optical networks [106,170],
the grooming factor is usually greater than the size of the network, i.e., C ≥ n. For those
networks, the running time of this algorithm becomes exponential in n. Thus, it turns out
to be important to find good approximation algorithms with running time polynomial in
both n and C. In Section 1.4 we provide such an approximation algorithm, considering C
as part of the input. Our algorithm finds a solution of Ring Traffic Grooming that
approximates the optimal value within a factor O(n1/3 log2 n) for any C ≥ 1. To the best
of our knowledge, this is the first polynomial-time approximation algorithm for the Ring
Traffic Grooming problem with an approximation ratio which does not depend on C.
Although the performance of this algorithm seems not to be very good at first sight, in
fact we conjecture that for the general instance of the problem it is not possible to get rid
of a factor nδ, for some constant δ > 0. Finally, we show that the general scheme of the
algorithm yields a O(log2 n)-approximation if the request graph excludes a fixed graph as a
minor, for example if R is planar or of bounded genus. The main theoretical contribution of
the second part of this chapter is to relate the Traffic Grooming problem to the Dense
k-Subgraph problem [114]. We conclude by proposing some further research directions
to better understand the complexity of Traffic Grooming.

42 Traffic Grooming

1.2 Apx-completeness of MECT-B

The problem of finding the maximum number of node- or edge-disjoint cycles in an undi-
rected graph G has several applications, for instance in computational biology [40]. It is
often the case that both the maximum degree of G and the length of the cycles to be found
are bounded by a constant. In this section we are interested in the following problem:

Maximum B-Bounded Edge Covering by Triangles (MECT-B)
Input: An undirected graph G with maximum degree at most B.
Objective: Find the maximum number of edge-disjoint triangles in G.

MECT-B is long known to be NP-hard [149], and the Apx-hardness when requiring node-
disjoint triangles was proved in [155]. Following the ideas of [155], in [64] it was proved that
MECT-5 is Apx-hard for general graphs and NP-hard for planar graphs. Finally, in [167]
MECT-B was studied from a parameterized view, considering the number of edge-disjoint
triangles as the parameter. Namely, is was proved that MECT-B is FPT by achieving a
linear kernel (see [103]).

In this chapter we prove that MECT-B remains Apx-hard for tripartite graphs. For
convenience, we prove the Max SNP-hardness of MECT-B, which is known to be the
same as the Apx-hardness modulo PTAS-reductions [202]. MECT-B is trivially in Apx,
since a simple greedy algorithm provides a 3-approximation. The best approximation
guarantee for MECT-B is a (3/2 + ε)-approximation algorithm for any ε > 0 [153]. We
need to introduce two problems to be used in the proof of Theorem 1.1: Maximum
Bounded Covering by 3-Sets (Max 3SC-B for short): Given a collection of 3-subsets
of a given set, each element appearing in at most B subsets, find the maximum number of
disjoint subsets; and Maximum Bounded Independent Set (Indep. Set-B for short):
Given a graph of maximum degree ≤ B, find a maximum independent set.

Theorem 1.1 MECT-B, B ≥ 10, is Apx-complete for tripartite graphs.

Proof : L-reduction from Max 3SC-B and L-reduction to Indep. Set-B.
We define h : MECT-B → Indep. Set - (3/2(B-2)) as follows: given a graph G as
instance I of MECT-B, we define the following instance h(I) of Indep. Set - (3/2(B-2)):
the graph h(G) contains a node vT for every triangle T in G. There is an edge {vT0 , vT1} in
h(G) if and only if T0 and T1 share an edge in G. Given a solution A of h(I), we define a
solution S h(A) of I by taking the triangles corresponding to nodes in A. It is easily verified
that (h, S h) is an L-reduction.

We define f : Max 3SC-B → MECT-(3B+1) in the following way: suppose that we
are given as instance I, a collection S of 3-element subsets of a set X such that every
element of X belongs to at most B members of S. The problem for I consists in finding
the maximal number OPT (I) of disjoint subsets in S. We construct an instance f (I) of
MECT-(3B+1), i.e., we construct a graph G = (V, E) in which we ask for the maximum
number OPT (f (I)) of edge-disjoint triangles. Let S = {c1, . . . , cr}, with |ci| = 3. The local
replacement f substitutes for each element ci = {x, y, z} ∈ S, the graph Gi = (Vi, Ei) depicted
in Figure 1.2.

Chapter 1: Hardness and Approximation 43

1
2

3
4

5
6

7
8

9
10

11
12

13

x [0] x[1] y [0] y [1] z[0] z [1]

a [1]i
a [2]i

a [3]i
a [4]i

a [5]i
a [6]i a [7]i

i

a [8]i
a [9]i

Figure 1.2: Gadget Gi used in the reduction of the proof of Theorem 1.1.

To avoid confusion, note by t any element in ci, i.e., t ∈ {x, y, z}. Note that, for each
element t, the nodes t[0] and t[1], and the edge {t[0], t[1]} (corresponding to the thick edges
in Figure 1.2) appear only once in G, regardless of the number of occurrences of t. On the
other hand, we add 9 new vertices ai[j], 1 ≤ j ≤ 9 for each subset ci, 1 ≤ i ≤ |S|. More
precisely, G = (V, E) = ∪

|S|

i=1Gi, where V =
⋃

t∈X{t[i] : i = 0, 1} ∪
⋃|S|

i=1{ai[j] : 1 ≤ j ≤ 9} and
E =

⋃|S|
i=1 Ei.

Given a solution A of f (I) of size s2, we modify it in polynomial time to another equal or
better solution A′ in the following way: in each Gi, if the three triangles covering the edges
{x[0], x[1]}, {y[0], y[1]}, and {z[0], z[1]} (numbered 1, 7, 13 in Figure 1.2) belong to A, we
choose the seven odd triangles of Gi to belong to A′. If not, we take the six even triangles.
Let s′2 ≥ s2 be the size of A′. Then, we define a solution S f (A) of I by choosing the subset
ci to be in S f (A) if and only if A′ contains exactly 7 triangles in Gi. We claim that the pair
(f , S f) is an L-reduction: in each Gi there are 13 different triangles, numbered from 1 to
13 in Figure 1.2. The only way to choose 7 edge-disjoint triangles in Gi is by taking all the
odd triangles, and thus by covering the three edges {x[0], x[1]}, {y[0], y[1]}, and {z[0], z[1]}.
All other choices of triangles yield at most 6 edge-disjoint triangles. The key observation is
that we are able to choose 7 triangles exactly OPT (I) times. Indeed, each time we choose
7 triangles we cover the edges corresponding to 3 elements of ci, and since the number of
disjoint ci’s in S is OPT (I), this can be done exactly OPT (I) times. On the other hand,
one can easily see that OPT (I) ≥ |S|3B . Hence:

OPT (f (I)) = 7 · OPT (I) + 6(|S| − OPT (I)) ≤ OPT (I) + 18B · OPT (I)

= (18B + 1)OPT (I).

To conclude, note that if the solution S f (A) of I has size s1, we have OPT (I) − s1 ≤

OPT (f (I))− s2. To see this, we observe that OPT (f (I)) = 6r + OPT (I), and also s′2 = 6r + s1,
and so OPT (f (I)) − OPT (I) = s1 − s′2 ≤ s1 − s2.

Both (f , S f) and (h, S h) are L-reductions and MAX 3SC-B, B ≥ 3 and Indep. Set-B,
B ≥ 5 are Max SNP-complete [155]. Thus, MECT-B, B ≥ 10 is Max SNP-complete.
Finally, note that the graph G = (V, E) used in the proof is tripartite, where the vertex
sets V0,V1,V2 defining the tripartition are:

V0 =

|X|⋃
t∈X

t[0] ∪
|S|⋃
i=1

{ai[2], ai[5]}, V1 =

|S|⋃
i=1

{ai[j] : j = 1, 4, 7, 8, 9},

44 Traffic Grooming

1
2

3
4

4C+1

4C+2

4C+3

4C+4

4C+5 8C+1

8C+2

8C+3

x[0] x[1] y[0] y[1] z [0] z[1]

a [C]i
a [3C]i

a [2(2C)C+C]i
a [2(2C+1)C+C]i a [2(2C+2)C+C]i

a [4(2C)C+C]i a [4(2C)C+3C]i

i
a [2(2C)C]i

a [4(2C)C]i
a [4C]i a [2(2C+3)C]i

Figure 1.3: Adding C − 1 inner points (depicted as © in the figure) to prove the Apx-
completeness of finding edge-disjoint C2C+1’s.

V2 =

|X|⋃
i=1

t[1] ∪
|S|⋃
t∈X

{ai[3], ai[6]}.
2

The proof of the Apx-hardness of MECT-B of Theorem 1.1 can be extended to obtain the
Apx-completeness of the problem of finding the maximum number of edge-disjoint cycles
of length 2C + 1 for any fixed C ≥ 1, as stated in the following theorem.

Theorem 1.2 Let G be the class of (2C + 1)-partite graphs G of girth 2C + 1, consisting of
(2C + 1) parts A0, . . . , A2C such that the only edges are between Ai and Ai+1 (mod 2C + 1),
i = 0, . . . , 2C, and such that all the graphs induced by V(G) \ Ai in G, for all i = 0, . . . , 2C,
form a forest. Then the problem of finding the maximum number of edge disjoint C2C+1’s
is Apx-complete in G.

Proof : First, note that a greedy algorithm provides a constant factor approximation
with factor 2C + 1, so the problem is in Apx. Consider the gadget of the proof of Theorem
1.1 (see Figure 1.2). We modify this gadget in such a way that the same proof holds for
C2C+1’s instead of C3’s (triangles), and such that all the conditions of the theorem are
verified. Given C > 1, we add a chain of 4C + 1 triangles between any two pair of triangles
corresponding to thick edges (that is, between the edges corresponding to elements of X).
Then we add C − 1 inner points to all the edges going from up to down in the triangles.
An example if shown in Figure 1.3.

It is easily seen that the graph built in this way is (2C + 1)-partite. Indeed, it admits
a partition into (2C + 1) parts, which consist of enumerating the vertices cyclically. Let
A0, . . . , A2C be the different parts. In such a (2C + 1)-partition, for any element t ∈ X, the
vertex t[0] belongs to A0, and the vertex t[1] belongs to A2C. We need this property to
ensure the consistency of our gadget when an element appears in more that one subset.
Note that the graphs induced by V(G) \ Ai in G, for all i = 0, . . . , 2C, form a forest. At this
point, one can rewrite the proof of Theorem 1.1 to obtain the result, just by changing the
multiplicative constants. 2

1.3 Apx-completeness of Traffic Grooming

In this section we prove the hardness results for Ring Traffic Grooming and Path
Traffic Grooming. First we prove that Ring Traffic Grooming belongs to Apx

Chapter 1: Hardness and Approximation 45

when C is fixed (i.e., not part of the input). The same result holds for Path Traffic
Grooming.

Lemma 1.1 Ring Traffic Grooming belongs to Apx for any fixed C ≥ 1.

Proof : To see that Ring Traffic Grooming is in Apx for any fixed C ≥ 1, we have
to find a constant-factor approximation algorithm. We use the fact that the best possible
density ρ∗ of any subgraph involved in the partition of the request graph in the ring is
O(
√

C), given by a complete graph inducing load C in the edges of the ring (it is clear that
no graph has greater density than the complete graph). We prove that the cost A of any
solution R1, . . . ,RΛ is in the interval [|E(R)|

ρ∗ , 2|E(R)|]. This clearly implies that any solution

has cost at most 2ρ∗ = O(
√

C) times the optimal cost. To see this, note that each edge of
R contributes at most twice to the cost, so A ≤ 2|E(R)|. On the other hand, we have

A =

Λ∑
λ=1

|V(Rλ)| =
Λ∑
λ=1

|E(Rλ)|
ρ(Rλ)

≥

Λ∑
λ=1

|E(Rλ)|
ρ∗

=
|E(R)|
ρ∗

.

Thus, a O(
√

C)-approximation is obtained just by taking any partition of the request
graph. 2

Since we will deal with tripartite graphs in the proof of Theorem 1.3, we need first a techni-
cal lemma concerning the structure of the optimal solutions of Ring Traffic Grooming
in tripartite request graphs.

Lemma 1.2 Let R be a tripartite instance graph of Ring Traffic Grooming for C = 1
such that the vertices belonging to the same class of the tripartition are placed consecutively
in the ring, and let t∗ be the maximum number of edge-disjoint triangles in R. If there exists
a partition of E(R) into triangles and P4’s which uses exactly t∗ triangles, then this partition
is optimal. The same property holds for Path Traffic Grooming and C = 2.

Proof : We focus first on Ring Traffic Grooming. Let t∗ the maximum number of
edge-disjoint triangles of a partition of E(R). When R is tripartite and C = 1, it is clear
that the only possible subgraphs that can be involved in a partition of E(R) are K3, P2,
P3, and P4 (see Figure 1.4(a)). Since these three paths have density at most 3/4 (attained
by the P4), the cost At of any solution using t triangles satisfies

At ≥ t + 4 ·
|E(R)| − 3t

3
=

4
3
|E(R)| − 3t ≥

4
3
|E(R)| − 3t∗. (1.1)

Note that the above bound does not depend on t, and therefore holds for any solution.
A partition as stated in the conditions of the lemma attains this lower bound, hence it is
optimal. The same argument applies to the path and C = 2 (see Figure 1.4(b)), since the
same subgraphs are involved in any partition. 2

We are ready to state the main result of this section.

Theorem 1.3 Ring Traffic Grooming is Apx-complete for fixed C = 1, even if the
request graph has degree bounded by a constant B ≥ 10. Thus, it does not admit a PTAS
unless P = NP.

46 Traffic Grooming

(b)(a)

Figure 1.4: Tripartite request graphs used in Lemma 1.2: (a) in the ring for c = 1; (b) in
the path for C = 2.

Proof : The problem is in Apx by Lemma 1.1. To prove the Apx-hardness, we consider
the family of request graphs R defined as follows.

Mimic the proof of Theorem 1.1 replacing the gadget of Figure 1.2 with the gadget of
Figure 1.5(a). With slight abuse of notation, the edge corresponding to an element x is
also denoted x. It is easy to check that the same proof carries over to these new gadgets,
and therefore the problem of finding the maximum number of edge-disjoint triangles in
this class R of graphs is Apx-hard. Note that all the graphs built in this way are also
tripartite, as shown in Figure 1.5(a).

H̊astad proved [145] that Maximum Bounded Covering by 3-Sets is Apx-hard even
restricted to instances for which we know that there exists a collection of mutually disjoint
3-subsets covering all the elements in the set. Therefore, we can assume without loss
of generality that any optimal solution of MECT-B in a graph R ∈ R corresponds to a
collection of mutually disjoint 3-subsets covering all the elements in the set. Hence, such
an optimal solution of MECT-B restricted to each gadget Gi corresponding to the set
ci = {x, y, z} satisfies:

(i) either it contains the three edges x, y, z corresponding to the elements in the set
ci = {x, y, z}; or

(ii) it contains none of the edges x, y, z.

Thinking of the graphs R ∈ R as instances of Ring Traffic Grooming, the key obser-
vation is that:

• in case (i), the gadget Gi can be partitioned into 9 K3’s and 4 P4’s (see Figure 1.5(b));

• in case (ii), the gadget Gi − {x, y, z} can be partitioned into 8 K3’s and 4 P4’s (see
Figure 1.5(c)).

It is easy to see that such a partition uses the maximum number of edge-disjoint triangles in
the tripartite graph R, and only K3’s and P4’s are involved. By Lemma 1.2, this partition
is an optimal solution of Ring Traffic Grooming for C = 1 in R. Let OPT be the
number of vertices of such an optimal solution in R, and let t∗ be the number of triangles

Chapter 1: Hardness and Approximation 47

x y z
i

1 20 1

1

11

11

0 0

00

0

0

2

2 2

2

2

2 0

0

x y z
i

1 20 1

1

11

11

0 0

00

0

0

2

2 2

2

2

2 0

0

i

1 20 1

1

11

11

0 0

00

0

0

2

2 2

2

2

2 0

0

(a)

(b)

(c)

Figure 1.5: Request graphs used in the proof of Theorem 1.3: (a) gadget Gi corresponding
to the set ci = {x, y, z}. The labels of the vertices indicate the tripartition; (b) partition
into 9 K3’s and 4 P4’s with the edges x, y, z ; (c) partition into 8 K3’s and 4 P4’s without
the edges x, y, z.

in an optimal solution in R. (We simply write OPT and t∗ instead of OPT (R) and t∗(R),
respectively.) It is clear that

|E(R)| ≤ OPT ≤ 2|E(R)|. (1.2)

We have seen in the proof of Lemma 1.2 that the cost At of any solution using t triangles
satisfies At ≥

4
3 |E(R)| − 3t. We can also write

OPT =
4
3
|E(R)| − 3t∗. (1.3)

Since MECT-B is Apx-hard in R, there exists a constant ε0 > 0 such that, unless P = NP,
one cannot find in polynomial time more than (1 − ε0)t∗ triangles in an arbitrary graph
R ∈ R. Therefore, the cost A of any solution of Ring Traffic Grooming that can be
found in polynomial time satisfies

A ≥
4
3
|E(R)| − 3(1 − ε0)t∗ = OPT + 3ε0t∗, (1.4)

where we have used Equation (1.3). On the other hand, from Equation (1.3) and using
Equation (1.2) twice we get

t∗ =
4
9
|E(R)| −

OPT
3
≥

4
9
|E(R)| −

|E(R)|
3

=
|E(R)|

9
≥

OPT
18

. (1.5)

Combining Equations (1.4) and (1.5) yields that the cost A of any solution satisfies

A ≥ OPT + 3ε0
OPT

18
=

(
1 +

ε0

6

)
OPT = (1 + ε1)OPT,

48 Traffic Grooming

with ε1 = ε0/6 > 0. Therefore, unless P = NP, Ring Traffic Grooming does not admit
a PTAS for fixed C = 1. 2

As expected, the result can be generalized to any C ≥ 1.

Theorem 1.4 Ring Traffic Grooming is Apx-complete for any fixed C ≥ 1, even if
the request graph has degree bounded by a constant B ≥ 10. Thus, it does not admit a
PTAS unless P = NP.

Proof : The case C = 1 has been proved in Theorem 1.3, so assume henceforth that
C > 1. The problem is in Apx for any C ≥ 1 by Lemma 1.1. To prove the Apx-hardness,
consider a (2C + 1)-partite graph as request graph, in such way that each cycle makes at
least C tours around the center of the ring. At this point we can reduce the grooming
problem to the problem of finding a maximum number of cycles of length 2C + 1 in this
graph (as in the case C = 1). This later problem is also Apx-complete by Theorem 1.2.
The details follow.

Let G be a graph satisfying the conditions of Theorem 1.2: G is a (2C + 1)-partite graph,
consisting of 2C + 1 parts A0, . . . , A2C such that the only edges are between Ai and Ai+1
(mod 2C +1), i = 0, . . . , 2C, and such that the graph induced between two consecutive parts
of G forms a graph of girth at least C + 1. In order to simplify the presentation, suppose
that this graph can be partitioned into C2C+1’s.

Let c0, . . . , c2C be a permutation of the vertices of the cycle C2C+1, such that the polygon
(c0, . . . , c2C) makes C tours around the center (for C = 1 take the triangle; for C arbitrary,
let ci = exp(2iCπ

2C+1)). Now replace each vertex ci with an interval consisting of vertices of Ai.
In this cyclic representation of the graph G, each cycle makes at least C tours around the
origin. To see this, recall that the only possible edges are between Ai and Ai+1 (mod 2C+1),
i = 0, . . . , 2C, and also that the graph induced between two consecutive parts has girth at
least C + 1. This implies that every cycle should intersect each Ai at least once, and so this
cycle makes at least C tours around the origin, as the original cycle {c0, . . . , c2C} does so.

Each cycle used in the solution should be of length exactly 2C + 1, there is no cycle of
smaller length, and longer cycles use each edge more than C times, as they make more than
C tours around the origin. Then the problem is reduced to finding edge-disjoint cycles of
length 2C + 1, which is Apx-hard by Theorem 1.2. The proof of Theorem 1.3 can now be
reproduced to obtain the same result for any C, replacing the factor 4

3 for C = 1 (because
the path with greatest density in any solution for C = 1 is a P4) with a factor 2C+2

2C+1 for a
general C (because the path with greatest density in any solution for general C is P2C+2).
Hence, Ring Traffic Grooming is Apx-complete even for bounded number of requests
per node B ≥ 10. 2

These ideas can be naturally extended to prove the Apx-completeness of Path Traffic
Grooming for any fixed C ≥ 2.

Theorem 1.5 Path Traffic Grooming is Apx-complete for any fixed C ≥ 2. Thus,
it does not admit a PTAS unless P = NP.

Chapter 1: Hardness and Approximation 49

Proof : Again, the result holds even for bounded number B of requests per node, B ≥ 10.
We prove the result for C = 2, proceeding for C > 2 as in the proof of Theorem 1.4. Consider
the family of request graphs R defined in the proof of Theorem 1.3, and place the three
partition classes consecutively on the path one after another, as shown in Figure 1.4(b).
Since each triangle induces load 2, minimizing the number of ADMs corresponds to finding
the maximum number of edge-disjoint triangles. Therefore, the problem does not admit a
PTAS unless P = NP. 2

1.4 Approximating Traffic Grooming

We are now interested in finding good approximation algorithms considering C as part
of the input. As discussed in Section 1.3, obtaining a O(

√
C)-approximation is trivial.

Since in practical applications SONET WDM rings are widely used as backbone optical
networks [106, 170], the grooming factor is usually greater than the size of the network,
i.e., C ≥ n. Thus, it turns out to be important to find approximation algorithms with an
approximation ratio not depending on C. A general approximation algorithm with this
property is the main result of this section. It provides in the worst case a O(n1/3 log2 n)-
approximation. We describe it for the ring topology, but exactly the same arguments
provide an algorithm for the path. The main idea is to greedily find subgraphs with high
density using approximation algorithms for the Dense k-Subgraph problem, which is
defined as follows: given a graph G and an integer k, find an induced subgraph H ⊆ G
on k vertices with the greatest density among all subgraphs on k vertices. In [114] the
authors provide a polynomial-time algorithm with approximation ratio 2n1/3. To simplify
the presentation, suppose that n = 2t for some t > 0 (otherwise, introduce dummy vertices
on the ring until getting size n′ = 2t, with n′ < 2n):

Algorithm A:

(1) Divide the request set into log n classes, such that in each class Ci the length of
the requests lies in the interval [2i, 2i+1), i = 0, . . . , log n − 1. For each class Ci,
the ring can be divided into intervals of length 2i such that the only requests
are between consecutive intervals. In this way we obtain n

2i subproblems for
each class: each one consists in finding an optimal solution in a bipartite graph
of size 2 · 2i. More precisely, each subproblem can be formulated as:

Bipartite Traffic Grooming
Input: A bipartite graph R, and a grooming factor C.
Output: Partition of the edges of R into subgraphs Rλ such that |E(Rλ)| ≤ C,

for 1 ≤ λ ≤ Λ.
Objective: Minimize

∑Λ
λ=1 |V(Rλ)|.

Find a solution to each Bipartite Traffic Grooming subproblem indepen-
dently using step (2), and output the union of all solutions.

50 Traffic Grooming

(2) To find a solution to each Bipartite Traffic Grooming subproblem in a
bipartite graph R, proceed greedily (until all edges are covered) by finding at
step j a subgraph R j of G \ (R1∪· · ·∪R j−1) with at most C edges in the following
way:
For each k = 2, . . . , 2C find a subgraph Bk of R \ (R1 ∪ · · · ∪ R j−1) using the
algorithm of [114] for the Dense k-Subgraph problem.
• If for some k∗, |E(Bk∗)| > C, and |E(B j)| ≤ C for all j < k∗, remove
|E(Bk∗)| − C arbitrary edges from Bk∗ and output the densest graph among
B2, . . . , Bk∗−1, Bk∗ .

• Otherwise, output the densest graph among B2, . . . , B2C.

Let OPT be an optimal solution of Ring Traffic Grooming, and let OPT1 be the cost
of the solution obtained by solving optimally all the subproblems generated by step (1)
of Algorithm A. We prove a lemma before stating Theorem 1.6.

Lemma 1.3 Let β be a given positive real number. Suppose that there exists an algorithm
that finds in any bipartite graph R on at most n vertices, a subgraph with at most C edges
which has density at least 1/β times the density of the densest subgraph with at most C
edges. Then in the greedy procedure of step (2) of Algorithm A, one obtains a solution of
cost OPT2 such that OPT2 ≤ O(log n) · β · OPT1.

Proof : Let m be the number of edges of the request graph R, and let R1,R2, . . . ,Rr

be the subgraphs generated, in this order, by the above algorithm. We will prove that∑
|V(Ri)| ≤ log(m) · β · OPT1. To prove this, we first enumerate the edges of R in order of

appearance in Ri’s: all the edges in R1 will be enumerated e1, . . . , eC1 (C1 = |E(R1)| ≤ C),
all the edges in R2 will be enumerated eC1+1, . . . , eC1+C2 (C2 = |E(R2)| ≤ C), and so on. Let
ρi be the density of the subgraph Ri, i.e., ρi =

|E(Ri)|
|V(Ri)|

, and Σ =
∑
|V(Ri)| the total cost of the

solution. For every edge e j ∈ Ri, we define c(e j) = 1
ρi

. We claim that
∑

j c(e j) = Σ. To prove

this equality just note that
∑

e j∈E(Ri) c(e j) =
|E(Ri)|
ρi

= |V(Ri)|, and so
∑

j c(e j) =
∑

i |V(Ri)| = Σ.
Let us define R′i to be the union of Ri,Ri+1, . . . ,Rr. We define ρ′i to be the density of the
densest subgraph of R′i containing at most C edges. Let us take an optimal solution for
R′i , i.e., a decomposition of R′i into subgraphs A1, . . . , As such that

∑s
k=1 |V(Ak)| is minimum.

Let ρ1, . . . , ρs be the density of these subgraphs. We have:

• ∀k ≤ s, ρk ≤ ρ
′
i : because each Ak is a subgraph of R′i containing at most C edges,

and ρ′i is the density of the densest subgraph with at most C edges in R′i .

• ρ′i ≤ βρi: because we suppose that we can find an approximation of ρ′i up to a factor
1/β.

This implies that 1
ρk
≥ 1

βρi
, and so

∑
k

|V(Ak)| =
∑

k

|E(Ak)|
ρk

≥
∑

k

|E(Ak)|
βρi

=
|E(R′i)|
βρi

.

Chapter 1: Hardness and Approximation 51

But an optimal solution for R provides a solution for R′i of cost at least the optimal solution
for R′i , i.e.,

∑
k |V(Ak)| ≤ OPT1. Using this in the above inequality we get 1

ρi
≤

β·OPT1
|E(R′i)|

, and

so for an edge e j ∈ Ri we have c(e j) = 1
ρi
≤

β·OPT1
|E(R′i)|

≤
β·OPT1
m− j+1 , and this proves that

Σ =
∑

j

c(e j) ≤ β · (
∑

j

1
m − j + 1

) · OPT1 ≤ β · log(m) · OPT1 ≤ 2β · log(n) · OPT1.

2

Theorem 1.6 A is a poly-time approximation algorithm that approximates Ring Traf-
fic Grooming within a factor O(n1/3 log2 n) for any C ≥ 1.

Proof : Algorithm A returns a valid solution of Ring Traffic Grooming, because
each request is contained in some bipartite graph, and no request is counted twice. The
runtime is polynomial in both n and C, because we run at most 2C−1 times the algorithm
of [114] for each subproblem, and there are n(

∑t−1
i=0

1
2i) − 1 = 2n − 3 subproblems. We prove

the approximation guarantee:

• We claim that OPT1 ≤ 2 log n ·OPT . Indeed, let ci be the optimal cost of the subset
of requests of length in the interval [2i, 2i+1), i = 0, . . . , log(n) − 1. It is clear that
ci ≤ OPT for each i , and thus

∑log n−1
i=0 ci ≤ log n · OPT . Finally, OPT1 ≤ 2

∑log n−1
i=0 ci,

because each vertex is taken into account in two subproblems.

• The greedy procedure described in step (2) of Algorithm A outputs a graph whose
density is at least 1

2n1/3 times the greatest density (with at most C edges) of the
updated request graph. To see that, note that the optimal density is achieved by a
subgraph on at most 2C vertices (it would be the case of C disjoint edges). Then, for
each value of k, the algorithm of [114] finds a 2n1/3-approximation of the maximum
number of edges of an induced subgraph on k vertices1. Thus, if we take the densest
subgraph among B2, . . . , B2C (removing edges if necessary) we also obtain a 2n1/3-
approximation of the greatest density of a subgraph with at most C edges. Let ρk be
the density of Bk before removing edges. The explicit formula of the greatest density
ρ that we output in step (2) of Algorithm A is:

ρ = max
k∈{2,...,2C}

min
(
ρk,

C
k

)
.

The above formula justifies that the algorithm stops the search at k = k∗. Summa-
rizing, we can use β = 2n1/3 in Lemma 1.3.

• By combining the remarks above and Lemma 1.3 we obtain that the cost A returned
by Algorithm A satisfies A ≤ 2n1/3 · OPT2 ≤ 4n1/3 log n · OPT1 ≤ 8n1/3 log2 n · OPT.

2

1In fact, the improved approximation ratio of the Dense k-Subgraph problem is O(nδ) for some constant
δ < 1/3 [114]. Obviously, the same applies to our algorithm, replacing the exponent 1/3 with the same
δ < 1/3.

52 Traffic Grooming

We can improve the approximation ratio of the algorithm if all the requests have short
length compared to the length of the ring. This situation is usual in practical applications
since nodes may want to communicate only with their nearest neighbors. Let f (n) be
any function of n. If all the requests have length at most f (n), then the above algorithm
provides an approximation ratio of O(f (n)1/3 log2 n). Indeed, in step (2) of Algorithm A,
we have to find dense subgraphs in bipartite graphs of size at most 2 f (n), hence the factor
2n1/3 can be replaced with 2(2 f (n))1/3.

Remark that all the instances of Dense k-Subgraph problem in our algorithm are bipar-
tite. Using the results of [198], it is possible to obtain a better approximation ratio when
the request graph is bipartite and satisfies some uniform density conditions.

Corollary 1.1 If the request graph R is such that in any large enough subgraph H ⊆

R, a densest subgraph (A ∪ B, E) satisfies |A|, |B| = O(
√

C) and |E| = Ω(C), then for any
constant ε > 0 there exists a polynomial-time algorithm for Ring Traffic Grooming
with approximation ratio O(nε log2 n).

To end this section, it is interesting to mention that the results of [92] show that the
density can be approximated within a constant factor two in the class of graphs excluding
a fixed graph H as minor. Thus, if the request graph R is H-minor free (for instance if R is
planar or of bounded genus), Algorithm A achieves an approximation factor of O(log2 n).

1.5 Conclusions

The contribution of this chapter can be divided into two main parts: on the one hand,
we stated inapproximability results for Ring Traffic Grooming and Path Traffic
Grooming for fixed values of C. More precisely, we proved that Ring Traffic Groom-
ing is Apx-complete for fixed C ≥ 1, and that Path Traffic Grooming is Apx-complete
for fixed C ≥ 2. In other words, we ruled out the existence of a PTAS for fixed values of C.
To prove this results we reduced Ring Traffic Grooming for C = 1 to the problem of
finding the maximum number of edge-disjoint triangles in a graph of degree bounded by B
(MECT-B for short). We proved that MECT-B is Apx-complete, and we generalized this
reduction for Path Traffic Grooming and for all values of C ≥ 1. On the other hand,
we provided a polynomial-time approximation algorithm for Ring and Path Traffic
Grooming with an approximation ratio not depending on C, considering C as part of the
input.

A number of interesting questions remain open. First, when C is not part of the input, the
non-existence of a PTAS blows the whistle to start the race of finding the best constant
factor approximation for each value of C, for both the ring (C ≥ 1) and the path (C ≥ 2).
We did not focus on this issue in this chapter.

Secondly, when C is part of the input, it is a challenging open problem to close the
complexity gap of Traffic Grooming, that is, to provide an approximation algorithm
with an approximation ratio matching the corresponding inapproximability result. We are
convinced that the inherent difficulty of the problem resides in finding dense subgraphs
with bounded number of edges. This problem is strongly related to the problem of finding

Chapter 1: Hardness and Approximation 53

the densest subgraph with bounded number of vertices, which has been recently proved
to have, essentially, the same difficulty as the Dense k-Subgraph problem [37]. The
non-existence of a PTAS for the Dense k-Subgraph problem has been proved in [159]
involving very technical proofs, and this is the best existing hardness result. A long-
standing conjecture claims that there exists some constant ε > 0 such that finding a
nε-approximation for Dense k-Subgraph is NP-hard [114]. As we proved in Section 1.4,
an α-approximation for Dense k-Subgraph yields a O(α log2 n)-approximation for Ring
Traffic Grooming. We suspect that a similar result in the other direction should also
exist. Because of this, we conjecture that:

Conjecture 1.1 There exists some constant δ > 0, such that Ring Traffic Grooming
is NP-hard to approximate in polynomial time within a factor O(nδ) when the grooming
factor C is part of the input.

In [74, Proposition 2] it is shown that Ring Traffic Grooming is in P for fixed n. Using
terminology from parameterized complexity (see Section I.2.3), this result only shows that
Ring Traffic Grooming is in XP and not necessarily FPT (if n is the parameter).
In [74] it is said that Michael Fellows has shown that if the number of ADMs is taken to
be the parameter, then Ring Traffic Grooming is in FPT. Unfortunately, the number
of ADMs tends to be much larger than the ring size, so it remains an interesting open
problem whether ring grooming is FPT if n is the parameter and C is part of the input.

Chapter 2

Bounded-degree Request Graph

In this chapter we consider the unidirectional ring topology with a generic grooming
factor C. We introduce the pseudo-dynamic case where the request graph has bounded
degree ∆, and our aim is to design a network (namely, place the ADMs at each node)
being able to support any request graph with maximum degree at most ∆. The
existing theoretical models in the literature are much more rigid, and do not allow
such adaptability. We show that the problem is essentially equivalent to finding the
least integer M(C,∆) such that the edges of any graph with maximum degree at most
∆ can be partitioned into subgraphs with at most C edges and each vertex appears in
at most M(C,∆) subgraphs. We establish the value of M(C,∆) for almost all values of
C and ∆, leaving open only the case where ∆ ≥ 5 is odd, ∆ (mod 2C) is between 3 and
C − 1, C ≥ 4, and the request graph does not contain a perfect matching. For these
open cases, we provide upper bounds that differ from the optimal value by at most
one.

Keywords: optical networks, SONET over WDM, traffic grooming, ADM, graph
decomposition, cubic graph, perfect matching, bridgeless graph.

2.1 Introduction

In this chapter we consider unidirectional SONET/WDM ring networks with symmetric
requests. As already mentioned in Section II.2 (page 31), in this case the routing is unique
and to each request between two nodes, we assign a wavelength and some bandwidth on
this wavelength. If the traffic is uniform and any given wavelength can carry at most
C requests, we can assign at most 1

C of the bandwidth to each request, C being the
grooming factor. Furthermore, if the traffic requirement is symmetric, we may assume that
symmetric requests are assigned the same wavelength, as it is easy to show (by exchanging
wavelengths) that there exists an optimal solution where all symmetric requests are given

55

56 Traffic Grooming

the same wavelength. Then each pair of symmetric requests uses 1
C of the bandwidth in

the whole ring. If the two end-nodes are u and v, we need one ADM at node u and one at
node v. The main point is that if two requests have a common end-node, they can share
an ADM if they are assigned the same wavelength.

The traffic grooming problem for a unidirectional SONET ring with n nodes, grooming
ratio C, and a symmetric request graph R has been modeled as a graph partition problem
as follows (see [48,138]). Each edge of R corresponds to a pair of symmetric requests, and
edges are colored by their assigned wavelength λ. All edges of color λ induce a connected
subgraph Bλ of R, where each node corresponds to an ADM. The grooming constraint, i.e.,
the fact that a wavelength can carry at most C requests, translates to an upper bound C
on the number of edges in each Bλ. The cost corresponds to the total number of vertices
used in the subgraphs, and the objective is therefore to minimize

∑
λ |V(Bλ)|.

While most of previous work has focused on the case where the requests are given as in-
put [J1,48,49,106,118,120,138,170], we consider the case where only the network topology
is given, together with a bound ∆ on the request graph. We would like to place, for each
value of the grooming factor C, a minimum number of ADMs at each node in such a way
that they could support any traffic pattern where each node is the end-node of at most
∆ requests. This model is interesting because the network can support dynamic traffic
without replacement of the ADMs.

From a practical point of view, it is interesting to design a network being able to support
any request graph with maximum degree not exceeding a given constant. This situation is
usual in real optical networks, since due to technology constraints the number of allowed
communications for each node is usually bounded. This flexibility can also be thought
from another point of view: if we have a limited number of available ADMs to place at
the nodes of the network, then it is interesting to know which is the maximum degree of
a request graph that our network is able to support, depending on the grooming factor.
Equivalently, given a maximum degree and a number of available ADMs, it is useful to
know which values of the grooming factor the network will support.

The aim of this chapter is to provide a theoretical framework to design such networks with
dynamically changing traffic. We study the case where the physical network is given by
an unidirectional ring, which is a widely used topology (for instance, in SONET rings).
The problem we study can be formulated as a graph partitioning problem as follows.

∆-Degree-Bounded Traffic Grooming in Unidirectional Rings
Input: Three integers n (size of the ring), C (grooming factor), and ∆

(maximum degree).
Output: An assignment of A(v) ADMs to each vertex v of the ring, in such a way that

for any request graph G with maximum degree at most ∆, there exists a
partition of E(G) into subgraphs {Bλ}1≤λ≤Λ = B, such that:

(i) |E(Bλ)| ≤ C for all λ; and
(ii) each vertex v ∈ V(G) appears in at most A(v) subgraphs.

Objective: Minimize
∑

v A(v).

Chapter 2: Bounded-degree Request Graph 57

The optimum to the above problem for each n,C, ∆ is denoted by A(n,C,∆). Before getting
into details, we first fix the notation to be used in this chapter.

Notation. The (multi)graphs considered in this chapter are finite and without self-loops.
A ∆-graph is a (multi)graph with maximum degree at most ∆. G∆ denotes the class of all
∆-graphs. A ∆-regular (multi)graph is a graph in which all vertices have degree ∆. An
almost ∆-regular (multi)graph is a (multi)graph in which all vertices have degree ∆ except
possibly one which has degree ∆−1. A bridge in a (multi)graph G is an edge whose removal
disconnects G. A matching in a (multi)graph G = (V, E) is a subset M ⊆ E which contains
each vertex at most once. A perfect matching is a matching containing all vertices. A digon
is a cycle of length 2. A trail in a (multi)graph is a sequence {{x1, x2}, {x2, x3}, . . . , {xk−1, xk}}

of distinct edges in which the second end of an edge is the first end of the next edge (the
same pair of vertices may appear more than once if there is more than one edge between
them). Vertices x2, x3, . . . , xk−1 of a trail are called midpoints. The length of a trail is the
number of edges in it. Given a (multi)graph G = (V, E) and a subset of vertices V ′ ⊆ V,
we denote by G−V ′ the (multi)graph obtained from G by removing the vertices in V ′, the
edges incident with vertices in V ′, and isolated vertices (if any). Similarly, given a subset
of edges E′ ⊆ E, we denote by G − E′ the (multi)graph obtained from G by removing the
edges in E′ and isolated vertices (if any). Given a graph with maximum degree at most
∆, a partition of G into subgraphs with at most C edges is called a C-edge-partition of G.

The function A(n,C,∆) satisfies some straightforward properties.

Lemma 2.1 The following statements hold:

(i) A(n,C, 1) = n.

(ii) A(n, 1,∆) = ∆ · n.

(iii) If C′ ≥ C, then A(n,C′,∆) ≤ A(n,C,∆).

(iv) If ∆′ ≥ ∆, then A(n,C,∆′) ≥ A(n,C,∆).

(v) A(n,C,∆) ≥ n for all ∆ ≥ 1.

(vi) If C ≥ n∆
2 , A(n,C,∆) = n.

Proof :

(i) The request graph can consist in a perfect matching, so any solution uses 1 ADM
per node.

(ii) A ∆-regular graph can be partitioned into n∆
2 disjoint edges.

(iii) Any solution for C is also a solution for C′.

(iv) If ∆′ ≥ ∆, the subgraphs with maximum degree at most ∆ are a subclass of the class
of graphs with maximum degree at most ∆′.

(v) Combine (i) and (iv).

(vi) In this case all the edges of the request graph fit into one subgraph.
2

58 Traffic Grooming

Organization of the chapter. In Section 2.2 we show that the ∆-Degree-Bounded
Traffic Grooming in Unidirectional Rings problem is essentially equivalent to
establishing the value of the parameter M(C,∆) (see Definition 2.1) for each value of C
and ∆. We solve the cases where ∆ ≥ 2 is even in Section 2.3. In Section 2.4 we focus on
the cases where ∆ ≥ 3 is odd, leaving open only the cases where ∆ ≥ 5 is odd, ∆ (mod 2C)
is between 3 and C − 1, C ≥ 4, and the graph does not contain a perfect matching (see
Table 2.1). In Section 2.4.6 we present an attempt to solve these remaining cases, that
may lead to an eventual proof. Finally, Section 2.5 concludes the chapter.

2.2 The Parameter M(C,∆)

The following definition will play a fundamental role in the remainder of this chapter.

Definition 2.1 Let M(C,∆) be the smallest number M such that A(n,C,∆) ≤ M · n for all
n ≥ 1.

Lemma 2.2 M(C,∆) is a natural number.

Proof : We know by Lemma 2.1 that, for any C ≥ 1, n ≤ A(n,C,∆) ≤ A(n, 1,∆) = ∆ · n.
Suppose that M is not a natural number. That is, suppose that r < M < r + 1 for some
positive integer r. Therefore, there must be at least (r + 1 − M)n vertices with at most r
ADMs each. For each n, let Vn,r be the subset of vertices of the request graph with at most
r ADMs. Then, since r +1−M > 0, we have that limn→∞ |Vn,r | = ∞. In other words, there is
an arbitrarily big subset of vertices with at most r ADMs per vertex. But we can consider
a request graph with maximum degree at most ∆ on the set of vertices Vn,r, and this means
that with r ADMs per node we can construct a C-edge-partition, a contradiction with the
optimality of M. 2

If the request graph is further restricted to belong to a subclass of graphs C ⊆ G∆, then
the corresponding positive integer is denoted by M(C,∆,C).

By the discussion above, A(n,C,∆) is of the form A(n,C,∆) = M(C,∆) · n − α(C,∆), where
M(C,∆) and α(C,∆) are integers depending only on C and ∆. Suppose that a ∆-graph H
requires at least M(C,∆) + 1 ADMs at some vertex. Since any ∆-graph must be supported
with the same ADMs, by relabeling the vertices of H we could force at least M(C,∆) + 1
ADMs in Ω(n) nodes of the network. This would contradict the definition of M(C,∆).
Therefore, each vertex can appear in at most M(C,∆) subgraphs. So we may conclude the
following.

Remark 2.1 For each value of C and ∆, ∆-Degree-Bounded Traffic Grooming in
Unidirectional Rings reduces to finding the least integer M(C,∆) such that the edges
of any ∆-graph can be partitioned into subgraphs with at most C edges and each vertex
appears in at most M(C,∆) subgraphs.

Chapter 2: Bounded-degree Request Graph 59

This allows us to give an equivalent definition of M(C,∆). Let G ∈ G∆ and let PC(G) be
the set of C-edge-partitions of G. For P ∈ PC(G), let occ(P) be the maximum number of
occurrences of a vertex in the partition, that is,

occ(P) = max
v∈V(G)

|{Bλ ∈ P : v ∈ Bλ}|, and then M(C,∆) = max
G∈G∆

(
min

P∈PC(G)
occ(P)

)
.

In the remainder of this chapter, we use Remark 2.1 and focus on determining M(C,∆) for
each value of C and ∆. Observe also that any ∆-graph H is a subgraph of some ∆-regular
graph G (with possibly more vertices). Note also that if we restrict a partition of G to the
vertices of H, the number of occurrences of the vertices cannot increase. Therefore,

Remark 2.2 M(C,∆) = M(C,∆,C), where C is the class of ∆-regular graphs.

The following lemma will be used throughout the chapter.

Lemma 2.3 The following statements hold trivially from Lemma 2.1:

(i) M(C, 1) = 1 for all C ≥ 1.

(ii) M(1,∆) = ∆ for all ∆ ≥ 1.

(iii) If C′ ≥ C, then M(C′,∆) ≤ M(C,∆).

(iv) If ∆′ ≥ ∆, then M(C,∆′) ≥ M(C,∆).

(v) M(C,∆) ≤ ∆ for all C,∆ ≥ 1.

The following proposition establishes a general lower bound on M(C,∆), that will allow us
to prove in many cases the optimality of the constructions of the next sections.

Proposition 2.1 M(C,∆) ≥
⌈

C+1
C

∆
2

⌉
for all values of C,∆.

Proof : Erdös and Sachs [113] proved that for any integer k there exist k-regular graphs
with arbitrary large girth. For each value of C and ∆, let G be a ∆-regular graph with
girth at least C + 1, and let n = |V(G)|. Clearly all the subgraphs (with at most C edges)
involved in the partition of the ∆n/2 edges of G are trees. Therefore, the total number of
vertices of any partition is at least ∆(C+1)

2C n (this can be easily seen using that the function
(x + 1)/x with 1 ≤ x ≤ C is minimized when x = C). Then necessarily a vertex must occur
in at least ∆(C+1)

2C subgraphs. By the definition of M(C,∆), the lower bound follows. 2

60 Traffic Grooming

2.3 Case ∆ ≥ 2 Even

In this section we establish the value of M(C,∆) for ∆ ≥ 2 even and any value of C.

Theorem 2.1 Let ∆ ≥ 2 be even. Then for any C ≥ 1, M(C,∆) =
⌈

C+1
C

∆
2

⌉
.

Proof : The lower bound follows from Proposition 2.1. Let us give an explicit construction
for any ∆-regular graph G = (V, E). Orient the edges of G in an Eulerian tour, and assign
to each vertex v ∈ V its ∆/2 out-edges, namely E+

v . For each v ∈ V, partition E+
v into⌈

∆
2C

⌉
stars with C edges centered at v (except, possibly, one star with fewer edges). Each

vertex v appears as a leaf in stars centered at other vertices exactly ∆ − ∆/2 = ∆/2 times.
Therefore, the number of occurrences of each vertex in this partition is⌈

∆

2C

⌉
+

∆

2
=

⌈
∆

2

(
1 +

1
C

)⌉
=

⌈
C + 1

C
∆

2

⌉
.

2

Note that for the special case ∆ = 2, Theorem 2.1 implies that M(C, 2) = 2 for all C ≥ 1.
In fact, for ∆ = 2 it is possible to give the exact expression of the cost function A(n,C, 2).
Indeed, it is easy to see that given a set of disjoint cycles, we can always find a C-edge-
partition such that C − 1 prescribed (arbitrary) vertices appear in only one subgraph. On
the other hand, if we pretend that at least C vertices appear in at most one subgraph, we
can consider as request graph a cycle of length at least C + 1 containing the prescribed C
vertices, and then necessarily one of those vertices appears in at least two subgraphs of
any C-edge-partition, a contradiction. Summarizing, A(n,C, 2) = 2n − (C − 1).

2.4 Case ∆ ≥ 3 Odd

The cases where ∆ is odd turn out to be inherently much more complicated than the cases
where ∆ is even. In Section 2.4.1, we present a general construction which differs from the
lower bound of Proposition 2.1 by at most 1, and we determine when this construction
is optimal. In Section 2.4.2 we provide an improved lower bound when ∆ ≡ C (mod 2C),
which meets our upper bound. In Section 2.4.4 we solve the case ∆ = 3 and C = 4,
which was the only unsolved case for ∆ = 3. In Section 2.4.5 we present an optimal
construction for graphs with a perfect matching, after proving that the lower bound of
Proposition 2.1 still holds when the request graph is restricted to have a perfect matching.
We then discuss in Section 2.4.3 the relation of the parameter M(C,∆) with the linear
C-arboricity [34, 53, 201]. Finally, we describe in Section 2.4.6 an attempt to solve the
remaining cases where ∆ ≥ 5 is odd, using the ideas developed in the previous sections.

2.4.1 General upper bound

The following proposition provides a general upper bound, which differs from the lower
bound of Proposition 2.1 by at most 1.

Proposition 2.2 Let ∆ ≥ 3 be odd. Then for any C ≥ 1, M(C,∆) ≤
⌈

C+1
C

∆
2 + C−1

2C

⌉
.

Chapter 2: Bounded-degree Request Graph 61

Proof : Let G be a ∆-regular graph. Since ∆ is odd, |V(G)| is even. Add a perfect
matching M to G to obtain a (∆ + 1)-regular multigraph G′. Orient the edges of G′ in an
Eulerian tour, and assign to each vertex v ∈ V(G′) its (∆ + 1)/2 out-edges E+

v . Remove the
edges of M and, as in the case ∆ even, partition E+

v into stars with at most C edges. To
count the number of occurrences of each vertex, we distinguish two cases. If an edge of M
is in E+

v , then v appears as center in
⌈

∆−1
2C

⌉
stars and as a leaf in ∆ − ∆−1

2 stars. Summing
both terms yields ⌈

∆ − 1
2C

⌉
+ ∆ −

∆ − 1
2

=

⌈
C + 1

C
∆

2
+

C − 1
2C

⌉
.

Otherwise, if no edge of M is in E+
v , the number of occurrences of v is⌈

∆ + 1
2C

⌉
+ ∆ −

∆ + 1
2

=

⌈
C + 1

C
∆

2
+

1 −C
2C

⌉
≤

⌈
C + 1

C
∆

2
+

C − 1
2C

⌉
.

2

The upper bound of Proposition 2.2 and the lower bound of Proposition 2.1 are equal for,
roughly speaking, half of the pairs C,∆, as shown in the following corollary.

Corollary 2.1 Let ∆ ≥ 3 be odd. If ∆ (mod 2C) = 1 or ∆ (mod 2C) ≥ C+1, then M(C,∆) =⌈
C+1

C
∆
2

⌉
.

Proof : Let ∆ = λ · 2C + h, with h odd, 1 ≤ h ≤ 2C − 1. Writing k := λ(C + 1) + h−1
2 , the

lower bound of Proposition 2.1 equals k+
⌈

1
2 + h

2C

⌉
, and the upper bound of Proposition 2.2

equals k +
⌈
1 + h−1

2C

⌉
. If h = 1 both bounds equal k + 1, and if h ≥ C + 1 both bounds equal

k + 2. 2

In particular, when C = 2 and ∆ is odd, ∆ (mod 2C) is either 1 or 3, and then by Corol-
lary 2.1 the lower bound is attained, as stated in the following corollary.

Corollary 2.2 (Case C = 2) For any ∆ ≥ 3 odd, M(2,∆) =
⌈

3∆
4

⌉
.

For all the cases we solved so far, the value of M(C,∆) equals the lower bound of Propo-
sition 2.1. It seems natural to think that the value

⌈
C+1

C
∆
2

⌉
may be always attained. We

shall see in the next section that this is not true. Namely, we prove in Theorem 2.2 that
if ∆ ≡ C (mod 2C), then M(C,∆) =

⌈
C+1

C
∆
2

⌉
+ 1.

2.4.2 Improved lower bound

In this section we prove a new lower bound which strictly improves on Proposition 2.1
when ∆ ≡ C (mod 2C).

Theorem 2.2 Let ∆ ≥ 3 be odd and let ∆ ≡ C (mod 2C). Then M(C,∆) =
⌈

C+1
C

∆
2

⌉
+ 1.

62 Traffic Grooming

Proof : We prove that if ∆ = kC with k odd, then M(C,∆) ≥
⌈

C+1
C

∆
2

⌉
+ 1 and thus, by

Proposition 2.2, M(C,∆) is equal to
⌈

C+1
C

∆
2

⌉
+ 1. Since both ∆ and k are odd, so is C, and

therefore
⌈

C+1
C

∆
2

⌉
= k · C+1

2 .

We proceed to build a ∆-regular graph G with no C-edge-partition where each vertex is
incident to at most

⌈
C+1

C
∆
2

⌉
subgraphs, hence implying that M(C,∆) >

⌈
C+1

C
∆
2

⌉
. First, we

construct a graph H where all vertices have degree ∆ except one which has degree ∆ − 1.
Furthermore, we build H so that it has girth strictly greater than C. H exists by [68,113].
Make ∆ copies of H and add a cut-vertex v joined to all vertices of degree ∆ − 1 to make
our ∆-regular graph G (see Figure 2.1 for an example of the construction of such a graph
for ∆ = C = 3).

G

HH

H

v

Figure 2.1: Cubic graph with girth 4, which is a counterexample showing that M(3, 3) = 3.

Now suppose for the sake of contradiction that there is a C-edge-partition B of G where
each vertex is incident to at most

⌈
C+1

C
∆
2

⌉
subgraphs. Since the girth of G is greater than

C, all the subgraphs in B are trees. Since
⌈

C+1
C

∆
2

⌉
< ∆, v must have degree at least 2 in

some subgraph T ′ ∈ B. Since |E(T ′)| ≤ C, the tree T ′ contains at most
⌊

C−2
2

⌋
= C−3

2 edges
of a copy H′ of H intersecting T ′. Now we only work in H′. Let α = |E(T ′ ∩ H′)| ≤ C−3

2
(note that α = 0 for C = ∆ = 3).

Let B′ = {B ∩ H′}B∈(B−{T ′}), with the empty subgraphs removed. That is, B′ contains the
subgraphs in B that partition the edges in H′ that are not in T ′. Let n = |V(H′)|, which is
odd as in H′ there is one vertex of degree ∆−1 and all the others have degree ∆. Therefore,
the total number of edges of the trees in B′ is∑

T∈B′
|E(T)| = |E(H′)| − α =

n∆ − 1
2

− α =
nkC − 1

2
− α. (2.1)

As α ≤ C−3
2 , from Equation (2.1) we get

∑
T∈B′
|E(T)| ≥

nkC − 1
2

−
C − 3

2
=

(
nk − 1

2

)
·C + 1. (2.2)

As each tree in B′ has at most C edges, from Equation (2.2) we get that |B′|, the number
of trees in B′, satisfies

|B′| ≥

⌈
nk − 1

2
+

1
C

⌉
=

nk − 1
2

+

⌈
1
C

⌉
=

nk − 1
2

+ 1. (2.3)

Chapter 2: Bounded-degree Request Graph 63

Clearly, the total number of vertices in the trees in B′ is exactly the total number of edges
in the trees in B′ plus the number of trees in B′, that is,

∑
T∈B′ |V(T)| =

∑
T∈B′ |E(T)| + |B′|.

On the other hand, the tree T ′ contains α + 1 vertices of H′, that is, |V(T ′ ∩ H′)| = α + 1.
Therefore, using Equations (2.1) and (2.3), we get that the total number of occurrences
of the vertices in H′ in some tree of B is∑

v∈V(H′)

|{T ∈ B : v ∈ T }| =
∑
T∈B′
|V(T)| + |V(T ′ ∩ H′)| =

∑
T∈B′
|E(T)| + |B′| + α + 1

=
nkC − 1

2
− α + |B′| + α + 1 ≥

nkC − 1
2

+
nk − 1

2
+ 1 + 1

= nk ·
C + 1

2
+ 1 = n ·

⌈
C + 1

C
∆

2

⌉
+ 1 ,

which implies that at least one vertex of H′ appears in at least
⌈

C+1
C

∆
2

⌉
+1 subgraphs, which

is a contradiction to B being a C-edge-partition of G in which each vertex appears in at
most

⌈
C+1

C
∆
2

⌉
subgraphs. The theorem follows. 2

It turns out that Theorem 2.2 allows us to find the value of M(3,∆) for any ∆ ≥ 3 odd.

Corollary 2.3 (Case C = 3) For any ∆ ≥ 3 odd, M(3,∆) =
⌈

2∆+1
3

⌉
.

Proof : If ∆ ≡ 1 (mod 6) or ∆ ≡ 5 (mod 6), then by Corollary 2.1, M(3,∆) =
⌈

2∆
3

⌉
=

⌈
2∆+1

3

⌉
.

Otherwise, if ∆ ≡ 3 (mod 6), then by Theorem 2.2, M(3,∆) =
⌈

2∆
3

⌉
+ 1 =

⌈
2∆+1

3

⌉
. 2

2.4.3 Relation of M(C,∆) with the linear C-arboricity

A result of Thomassen [201], which settled a conjecture of Bermond et al. [53], states that
the edges of a cubic graph can be 2-colored such that each monochromatic component is
a path of length at most 5. That is, in such a coloring (that can be seen as a partition
into paths) each vertex appears in exactly 2 paths with at most 5 edges each. Therefore,
combining this result with (iii) of Lemma 2.3 we deduce that M(C, 3) = 2 for any C ≥ 5.

Let us now discuss how these ideas can be extended to other values of C and ∆. A linear C-
forest in a graph is a forest consisting of paths of length at most C. The linear C-arboricity
of a graph G is the minimum number of linear C-forests required to partition E(G), and
is denoted by laC(G) [53]. Let laC(∆) = maxG∈G∆

laC(G). Clearly M(C,∆) ≤ laC(∆) for all
C,∆, since the paths in a linear C-forest are graphs with at most C edges. Therefore, the
following upper bound given by Alon et al. [34] also applies to M(C,∆).

Theorem 2.3 (Alon et al. [34]) There is an absolute constant β > 0 such that for
√

∆ >

C ≥ 2,

laC(∆) ≤
C + 1

C
∆

2
+ β

√
C∆ log ∆. (2.4)

It turns out that the first addend of the right-hand side of Equation (2.4) is equal to
the lower bound of Proposition 2.1, so Theorem 2.3 provides an additive O(

√
C∆ log ∆)-

approximation of M(C,∆) for
√

∆ > C ≥ 2. Although we have improved this bound for
M(C,∆) in Sections 2.3 and 2.4.1, the relation between M(C,∆) and laC(∆) is of theoretical
interest by its own.

64 Traffic Grooming

2.4.4 Case ∆ = 3, C = 4

As discussed in Section 2.4.3, M(C, 3) = 2 for C ≥ 5. On the other hand, Theorem 2.2
implies that M(3, 3) = 3, so by (ii) and (iii) of Lemma 2.3 we have that M(C, 3) = 3 for
C ≤ 3. Therefore, the interesting question is whether M(4, 3) equals 2 or 3. The remainder
of this section is devoted to prove that M(4, 3) = 2 (see Corollary 2.5). First we need a
classical result concerning cubic graphs and an easy extension to cubic multigraphs.

Theorem 2.4 (Petersen [178]) Any cubic bridgeless graph has a perfect matching.

Corollary 2.4 Any cubic bridgeless multigraph without self-loops has a perfect matching.

Proof : Let G be a cubic multigraph without self-loops. We can assume that G has no
triple edges, otherwise G has only 2 vertices and any of the 3 edges is a perfect matching.
Consider the simple graph G′ built from G as follows: for each digon {{u, v}, {u, v}}, add 2
new vertices suv and tuv, and replace the digon with the edges {u, suv}, {u, tuv}, {v, suv}, {v, tuv},
and {suv, tuv}. By Theorem 2.4, G′ has a perfect matching M′. We now construct a perfect
matching M of G from M′. For each edge e ∈ M′ such that e was also an edge of G, put e in
M′. For each digon {{u, v}, {u, v}} of G, if any of the pairs {{u, suv}, {v, tuv}} or {{u, tuv}, {v, suv}}

is in M′, put one of the copies of {u, v} in M. Otherwise, {suv, tuv} belongs to M′ and we do
nothing. It is easy to check that M is a perfect matching of G. 2

viam

We are ready to prove the main result of this section.

Theorem 2.5 The edges of every almost 3-regular multigraph G without self-loops can be
partitioned into a set W = {W1,W2, . . . ,Wk} of trails of length at most 4 such that each
vertex appears as the midpoint of a trail.

Proof : Suppose the theorem is false and let G be a counterexample with the minimum
number of vertices. G is connected as otherwise, we can take the union of the partitions
of its connected components, which exist by minimality of G.

Case 1: G contains a bridge e = {u, v}. Then G − {e} has exactly two components: U
containing u and V containing v. Without loss of generality, we may choose U to be the
component with no degree 2 vertex in G and e is chosen so that U is maximal with this
property. Thus this component U of G − {e} is almost 3-regular (only u has degree 2). By
minimality of G, U can be partitioned into a set Wu of trails as in the statement of the
theorem.

If v has degree 2 in G then V − {v} is almost 3-regular. By minimality of G, V − {v} can
be partitioned into a set Wv of trails as in the theorem. Now the only edges of G not
in any trail in Wu ∪Wv are those incident to v. Thus taking Wu ∪Wv together with a
trail consisting of the 2 edges incident to v (which has v as a midpoint) yields the required
partition of the edges of G into trails. This contradicts the fact that G is a counterexample.

Chapter 2: Bounded-degree Request Graph 65

If v has degree 3 in G, let x, y be the neighbors of v in V (see Figure 2.2(a)). We can
assume x , y (i.e., {v, x} and {v, y} are not parallel edges) since otherwise, the third edge
incident to x = y is a cut edge whose choice (instead of e) would increase the size of U.
Let H be the graph obtained from V − {v} by adding an edge f = {x, y} (see Figure 2.2(b)).
By minimality of G, H can be partitioned into a set Wv of trails. We now attempt to
transform Wu ∪Wv into a partition of G into trails.

v deg 2x

y

u

uW Wv

deg 2x

y

u

U V

e

(a) (b)

Figure 2.2: (a) A bridge e = {u, v} in an almost 3-regular graph G with components U and
V of G − {e}. (b) Graphs smaller than G from which we obtain a partition into trails Wu

and Wv.

The edge f appears in some trail {W1, {x, y},W2} ofWv, where W1 is a (possibly empty) trail
ending at x and W2 is a (possibly empty) trail starting at y. At least one of the subtrails
{W1, {x, y}} or {{x, y},W2} has fewer than 3 edges. Without loss of generality, it is {W1, {x, y}}.
Replace this trail with {W1, {x, v}, {v, u}} which has length at most 4, and {{v, y},W2} which
has length less than or equal to {W1, {x, y},W2}. Note that x and v are midpoints of the
first trail and y is the midpoint of the second trail. Furthermore, any other vertex which
was a midpoint in {W1, {x, y},W2} is still a midpoint (since W1 and W2 appear as subtrails).

Thus the union of Wu and Wv with the above replacement yields a partition of G into
trails of length at most 4 with the desired property, which is a contradiction.

Case 2: G does not contains a bridge. If G is 3-regular, let G′ = G. Otherwise, let G′

be the graph obtained from G by replacing the vertex of degree 2 with an edge between
its neighbors. Note that G′ is 3-regular and contains no bridges. Therefore, by Corollary
2.4, G′ contains a perfect matching M ⊆ E(G′).

Since G′ is 3-regular, G′−M is 2-regular. Thus, G′−M is a union of disjoint cycles. We can
orient the cycles of G′−M so that each vertex v has exactly one edge ev pointing towards v.
For each edge {u, v} ∈ M, Wuv = {eu, {u, v}, ev} is a trail of length 3 (see Figure 2.3). Note that
W = {Wuv | {u, v} ∈ M} is a partition of the edges of G′ into trails of length 3. Furthermore,
every vertex u in the matching appears as the midpoint of the trail corresponding to
the edge of the matching in which u appears. Since M is a perfect matching, every vertex
appears as the midpoint of some trail inW. Thus G′ , G as otherwise, we have constructed
a partition as required by the theorem. So G has a vertex v of degree 2 which we replaced
with an edge e = {x, y} to obtain G′. Let W = {W1, {x, y},W2} be the trail in W containing
e, and recall that W has length 3. Replacing W with {W1, {x, v}, {v, y},W2} in W yields a
partition of E(G) into trails of length at most 4, which is a contradiction. 2

Note that the simple trees with some vertex of degree 3 and the digon with a pendant edge
at each side are not allowed in the partition stated in Theorem 2.5, since these graphs
cannot be thought of as trails. The following corollary settles the value of M(4, 3).

66 Traffic Grooming

(a) (b) (c)

Figure 2.3: (a) A 3-regular graph G′ with no bridges. (b) A matching M of G′ (shown in
dashed lines) and an orientation of the cycles of G′ −M. (c) A partition of the edges of G′

into trails of length 3 using M and the orientation of the cycle of G′ − M in (b).

Corollary 2.5 M(4, 3) = 2.

Proof : By Remark 2.2, we may restrict ourselves to 3-regular graphs. Thus, a 3-regular
graph G is almost 3-regular and we may apply Theorem 2.5 to obtain a partition W. Let
B = {E(W)}W∈W. Each vertex of G appears in at most two elements of B, as G is 3-regular
and each vertex appears as the midpoint of some trail in W. 2

2.4.5 Optimal construction for graphs with a perfect matching

In this section we focus on the case where the ∆-regular graphs are further restricted
to contain a perfect matching. First observe that the proof of the general lower bound
provided in Proposition 2.1 does not imply that the same lower bound carries over to
∆-regular graphs with a perfect matching. Indeed, the proof of Proposition 2.1 uses the
existence of ∆-regular graphs with girth at least C+1, but those graphs may not necessarily
contain a perfect matching. Fortunately, we can prove that the lower bound does not
decrease when we assume that the graph contains a perfect matching.

Proposition 2.3 Let ∆ ≥ 3 be odd and let C be the class of ∆-regular graphs that contain
a perfect matching. Then M(C,∆,C) ≥

⌈
C+1

C
∆
2

⌉
for all C ≥ 1.

Proof : We shall construct a ∆-regular graph G with a perfect matching and girth at
least C + 1, and then the proof of Proposition 2.1 applied to G yields the desired bound.
The details follow.

For any two positive integers ∆ and C, Chandran provided in [68, Section 2.1] an explicit
and simple construction of a graph H such that

◦ H has girth strictly greater than C;

◦ H contains a perfect matching (in fact, H is obtained from a perfect matching by
adding the appropriate edges); and

◦ The degree of the vertices of H is either ∆ − 2, ∆ − 1, or ∆.

Chapter 2: Bounded-degree Request Graph 67

We will construct from H our ∆-regular graph G. Let v1, . . . , vk1 be the vertices of degree
∆−1 in H, and let vk1+1, . . . , vk1+k2 be the vertices of degree ∆−2 in H. Let F be a (k1 +2k2)-
regular graph with girth at least C+1 (which exists by the result of Erdös and Sachs [113]),
and let f = |V(F)|. Let the vertices of F be u1, . . . , u f . To construct G, first make f copies
of H, and let v j

i be the copy of vertex vi in the j-th copy of H, for i = 1, . . . , k1 + k2 and
j = 1, . . . , f . Intuitively, each copy of H corresponds to a vertex of F. We now add |E(F)|
edges among the f copies of H as follows. We assign labels from 1 to k1 + 2k2 to the
vertices of H with degree less than ∆ in the following way: for i = 1, . . . , k1, vertex vi gets
label i, and for i = k1 + 1, . . . , k1 + k2, vertex vi gets labels i and k2 + i. For each vertex
of F, we label arbitrarily the edges incident to it with distinct integers from 1 to k1 + 2k2
(recall that F is (k1 + 2k2)-regular). This way, each edge of F gets two labels, one from
each end-vertex. Then, for each edge {u j1 , u j2} ∈ E(F) with labels (`1, `2), we add an edge
between the vertices labeled `1 and `2 in the j1-th and j2-th copies of H, respectively.

This completes the construction of G. Note that the copies of the vertices that had degree
∆ in H have also degree ∆ in G. Since one (resp. two) edges have been added to each
vertex of degree ∆ − 1 (resp. ∆ − 2), it is clear that G is ∆-regular. Since each copy of
H had a perfect matching and no edge of any copy of H has been removed, G has also a
perfect matching. Finally, the girth of G is at least C + 1. Indeed, the girth of each copy
of H is at least C + 1 by [68]. Therefore, each cycle c of length at most C in G should visit
strictly more than one copy of H. By the construction of G, such a cycle c in G would
induce a cycle of length at most C in F among the vertices corresponding to the copies of
H visited by c. But this is impossible as the girth of F is at least C + 1. 2

We are now ready to provide an optimal construction for all ∆ ≥ 3 odd and C ≥ 1 when
the request graph is restricted to have a perfect matching.

Proposition 2.4 Let ∆ ≥ 3 be odd and let C be the class of ∆-regular graphs that contain
a perfect matching. Then M(C,∆,C) =

⌈
C+1

C
∆
2

⌉
for all C ≥ 1.

Proof : The lower bound follows from Proposition 2.3. To prove the upper bound, let G
be a ∆-regular with a perfect matching M. Then G −M is (∆− 1)-regular, with ∆− 1 even.
We orient the edges of G − M in an Eulerian tour, and assign to each vertex v ∈ V(G) its
∆−1

2 out-edges E+
v . We distinguish three cases.

(1) ∆ < C. For each edge {u, v} ∈ M, build a tree with ∆ edges consisting of {u, v}, ∆−1
2

edges from E+
u , and ∆−1

2 edges from E+
v . The number of occurrences of each vertex

is 1 + ∆ − ∆+1
2 = ∆+1

2 . The lower bound equals
⌈

C+1
C

∆
2

⌉
= ∆−1

2 +
⌈

1
2 + ∆

2C

⌉
, which equals

∆+1
2 as ∆ < C.

(2) ∆ ≥ C and C ≥ 3 is odd (the case C = 1 is trivial by Lemma 2.3). For each edge
{u, v} ∈ M, build a tree with C edges consisting of {u, v}, C−1

2 edges from E+
u , and

C−1
2 edges from E+

v . Partition the remaining ∆−1
2 −

C−1
2 = ∆−C

2 edges assigned to each
vertex into

⌈
∆−C
2C

⌉
stars with at most C edges. The number of occurrences of each

vertex is

1 +

⌈
∆ −C

2C

⌉
+ ∆ −

∆ + 1
2

=

⌈
C + 1

C
∆

2

⌉
.

68 Traffic Grooming

(3) ∆ ≥ C and C ≥ 4 is even (the case C = 2 is solved by Corollary 2.2). Build a tree
with C − 1 edges consisting of {u, v}, C−2

2 edges from E+
u , and C−2

2 edges from E+
v .

Partition the remaining ∆−1
2 −

C−2
2 = ∆−C+1

2 edges assigned to each vertex into stars
with at most C edges. The number of occurrences of each vertex is

1 +

⌈
∆ −C + 1

2C

⌉
+

∆ − 1
2

=

⌈
∆(C + 1) + 1

2C

⌉
=

⌈
C + 1

C
∆

2

⌉
,

where the last equality holds because both ∆ and (C + 1) are odd.
2

2.4.6 Towards a proof for the remaining cases

In this section, we describe an attempt to prove that the lower bound
⌈

C+1
C

∆
2

⌉
of Proposi-

tion 2.1 is attained in the remaining cases where ∆ ≥ 5 is odd. We attempt to resolve the
remaining cases by using induction and Tutte’s matching theorem. We may assume that
∆ is odd by Theorem 2.1.

The idea is to use the construction from Proposition 2.4 of Section 2.4.5, which solves the
case where the graph contains a perfect matching, as a base case for a proof by induction.
Then, if the graph does not contain a perfect matching, an easy consequence of Tutte’s
matching theorem shows that it contains an edge-cut of size at most ∆−1. We would then
like to recurse on each side of the cut as we did in the proof of Theorem 2.5 and combine
the edge-partitions of each side into a partition of the whole graph. However, as opposed
to Theorem 2.5, it is more difficult to deal with the edges across the cut in this case.

We may orient each edge e = {u, v} across the cut from u to v and let the side containing
u decide which partition will contain e. To guarantee that v is not incident to too many
subgraphs at the end, we can simply force v to be incident to one fewer subgraph in the
edge-partition of the side containing v.

We note that, since the cuts have size less than ∆, it is possible to recursively orient the
edges of cuts so that no side has more than ∆ − 1 edges pointing towards it (including
edges from previous steps of the recursion).

However, it seems difficult to control the distribution of the edges pointing towards a side.
If, for example, a single vertex v had ∆ − 1 edges pointing towards it, then it is clearly
impossible to obtain the desired edge-partition, as v would need to be in a negative number
of parts. On the other hand, if it were possible to control the distribution of the edges
pointing towards a side, the following strengthening of Proposition 2.4 would be sufficient
to prove the base case of the induction.

Definition 2.2 G is near-∆-regular if the vertices of G have degrees between ∆
2 and ∆ and

|E(G)| ≥ ∆
2 (|V(G)| − 1) − 1 (i.e., the total degree is off by at most ∆ − 1).

Lemma 2.4 Let LB(C,∆) =
⌈

C+1
C

∆
2

⌉
, the lower bound of Proposition 2.1. Let C,∆ be

positive integers with ∆ odd and (∆ − 1)/2 not a multiple of C. Let G be a near-∆-regular
graph with girth at least 5 and a perfect matching. Then G has an edge-partition where
each vertex v is incident to at most LB(C,∆) − (∆ − deg(v)) subgraphs of the partition.

Chapter 2: Bounded-degree Request Graph 69

We note that it may be possible to first recursively find all the cuts and then orient the
edges so that no vertex has more than (∆ − 1)/2 edges pointing towards it. We also note
that the above lemma is not in its strongest form (e.g., we could have the total degree
differ by more the one stated in the lemma) but we clearly cannot relax the condition
that every vertex v has degree greater than ∆/2 (otherwise, v is contained in too many
subgraphs even if we use stars of size C centered at v). We now prove Lemma 2.4.
Proof : Let M be a perfect matching in G. Since at most ∆ vertices of G have degree not
equal to ∆, at most ∆ edges in M connect an odd degree vertex to an even degree vertex.
Let G′ be the graph obtained from G by removing edges of M matching odd degree vertices
of G and adding (at most ∆/2) edges to pair up the remaining odd degree vertices of G.
Thus, G′ is an even graph and we may obtain an Eulerian orientation O′ of G′.

O′ induces an orientation of some of the edges of G. We orient the remaining edges of G
“both ways” and count half towards the in-degree and half towards the out-degree of the
vertex. Let S be the set of vertices of G with degree less than ∆. We reverse some of the
arcs of O so that all vertices in S have out-degree at least ∆/2. This can be done greedily
since G has no C4 and we are only off by ∆ − 1 from the total degree. We call this new
orientation O.

Let S ′ be the set of vertices with out-degree less than ∆/2 in O. Note that the vertices of
S ′ have degree ∆ and out-degree at least (∆ − 3)/2. Let N−(v) denote the set of vertices
with an arc to v in O. Note that for two distinct vertices u and v in G, their neighborhood
intersects in at most one vertex (since G has girth at least 5). Therefore N−(u) ∩ N−(v)
also contains at most one vertex.

Therefore, we may find a subgraph H of the graph induced by the edges N−(v) to v for all
v in S ′ with the following properties:

◦ Each vertex in N−(S ′) has degree at most 1.

◦ Each vertex in s ∈ S ′ has degree at least δ−(s) − (∆ − 1)/2 ≥ δ−(s) − (2C − 1), where
δ−(s) is the in-degree of s.

We say that a star or double-star is full if it contains exactly C edges.

Now, we can find a set S = S1 ∪ S2 ∪ S3 of edge disjoint subgraphs of G such that

◦ S1 is a set of full double stars centered at the endpoints of unoriented edges in O,

◦ S2 is a set of full stars,

◦ S3 = {S v}v∈V(G), where S v is a star centered at v of size at most C − 1, and

◦ only stars in S3 contain edges of H.

These edge disjoint subgraphs can be found greedily by first finding S1 and then parti-
tioning the out-edges of each vertex into sets of size C and a remainder set of edges of size
≤ C.

Now, for each s ∈ S ′, remove all but two stars centered at s in S2 and remove one star
centered at s in S3. Let R be the set of edges removed in this way. For each edge

70 Traffic Grooming

e = {u, v} ∈ E(H), add an out-edge of v in R if there is any left (and remove this edge from
R) to the star containing e. By the properties of H, no edges of R are left in the end.

We claim that this new set of subgraphs form a C-edge-partition where each vertex v is
incident to at most LB(C,∆) − (∆ − deg(v)) partitions.

Indeed, the elements of S′ are edge disjoint and have size at most C (since every star in
S3 has size at most C − 1). The vertices v ∈ V − S ′′ are incident to

∆ + 1
2C

+ deg(v) −
∆ + 1

2
=

∆ + 1
2C

+
∆ − 1

2
− (∆ − deg(v))

=
∆(C + 1) + 1 −C

2C
− (∆ − deg(v))

≤ LB(C,∆) − (∆ − deg(v))

subgraphs if v is not incident to an unoriented edge, and

1 +

⌈
∆ −C

2C

⌉
+ deg(v) −

∆ + 1
2

= 1 +

⌈
∆ −C

2C

⌉
+

∆ − 1
2
− (∆ − deg(v))

=

⌈
∆ + C + C(∆ − 1)

2C

⌉
− (∆ − deg(v))

=

⌈
(C + 1)∆

2C

⌉
− (∆ − deg(v))

= LB(C,∆) − (∆ − deg(v))

subgraphs if v is incident to an unoriented edge. This satisfies the conditions in the lemma.

Recall that vertices in S ′ have out-degree at least (∆ − 3)/(2C). If v ∈ S ′ and v is incident
to an unoriented edge, v appears in

∆ − 3 − (2C − 2)
2C

+ deg(v) −
∆ − 3

2
=

∆ − 1 − 2C
2C

+ deg(v) −
∆ + 1

2
+

4
2

=
∆ − 1

2C
− 2 + deg(v) −

∆ + 1
2

+ 2

≤
∆ + 1

2C
+ deg(v) −

∆ + 1
2

≤ LB(C,∆) − (∆ − deg(v))

subgraphs. If v ∈ S ′ and and v is not incident to an unoriented edge, v appears in

1 +

⌈
∆ − 3 −C − (2C − 2)

2C

⌉
+ deg(v) −

∆ − 3
2

= 1 +

⌈
∆ − 1 −C

2C

⌉
− 2 + deg(v) −

∆ + 1
2

+ 2

≤ 1 +

⌈
∆ −C

2C

⌉
+ deg(v) −

∆ + 1
2

= LB(C,∆) − (∆ − deg(v))

Chapter 2: Bounded-degree Request Graph 71

subgraphs. Again, the conditions in the lemma are satisfied as required.
2

2.5 Conclusions

In this chapter we introduced the traffic grooming problem in unidirectional WDM rings
when the request graph belongs to the class of graphs with maximum degree ∆. Such a
model allows the network to support dynamic traffic without reconfiguring the electronic
equipment. We showed that this problem is essentially equivalent to finding the least
integer M(C,∆) such that the edges of any graph with maximum degree at most ∆ can
be partitioned into subgraphs with at most C edges and each vertex appears in at most
M(C,∆) subgraphs. We established the value of M(C,∆) for many cases, leaving open only
the case where ∆ ≥ 5 is odd, ∆ (mod 2C) is between 3 and C − 1, C ≥ 4, and the graph
does not contain a perfect matching. Table 2.1 summarizes what is known about M(C,∆),
including the case where the graph has a perfect matching. For the remaining cases, we
hope to either extend the counterexample given in Section 2.4.2 or to complete the partial
proof given in Section 2.4.6, which can be seen as a strengthening of Proposition 2.4.

Considering bounded-degree request graphs is natural from a networking perspective. It
would be also interesting to consider as input other families of request graphs that make
sense from a telecommunications point of view, like circulant graphs or graphs of bounded
diameter.

C|∆ 1 2 3 4 5 6 7 8 9 . . . ∆ even ∆ odd
1 1 2 3 4 5 6 7 8 9 . . . ∆ ∆

2 1 2 3 3 4 5 6 6 7 . . .
⌈

3∆
4

⌉ ⌈
3∆
4

⌉
3 1 2 3 (2) 3 4 5 (4) 5 6 7 (6) . . .

⌈
2∆
3

⌉ ⌈
2∆+1

3

⌉ (⌈
2∆
3

⌉)
4 1 2 2 3 4 4 5 5 6 . . .

⌈
5∆
8

⌉
≥

⌈
5∆
8

⌉
(=)

5 1 2 2 3 4 (3) 4 5 5 6 . . .
⌈

3∆
5

⌉
≥

⌈
3∆
5

⌉
(=)

6 1 2 2 3 ≥ 3 (=) 4 5 5 6 . . .
⌈

7∆
12

⌉
≥

⌈
7∆
12

⌉
(=)

7 1 2 2 3 ≥ 3 (=) 4 5 (4) 5 6 . . .
⌈

4∆
7

⌉
≥

⌈
4∆
7

⌉
(=)

8 1 2 2 3 ≥ 3 (=) 4 ≥ 4 (=) 5 6 . . .
⌈

9∆
16

⌉
≥

⌈
9∆
16

⌉
(=)

9 1 2 2 3 ≥ 3 (=) 4 ≥ 4 (=) 5 6 (5) . . .
⌈

5∆
9

⌉
≥

⌈
5∆
9

⌉
(=)

. .

C 1 2 2 3 ≥ 3 (=) 4 ≥ 4 (=) 5 ≥ 5 (=) . . .
⌈

C+1
C

∆
2

⌉
≥

⌈
C+1

C
∆
2

⌉
(=)

Table 2.1: Known values of M(C,∆). The bold cases remain open. The cases in brack-
ets only hold if the graph has a perfect matching. The symbol “(=)” means that the
corresponding lower bound is attained.

Chapter 3

Bidirectional WDM Rings

In this chapter we study the minimization of ADMs (Add-Drop Multiplexers) in
optical WDM bidirectional rings considering symmetric shortest path routing and
all-to-all unitary requests. We precisely formulate the problem in terms of graph
decompositions, and state a general lower bound for all the values of the grooming
factor C and n, the size of the ring. We first study exhaustively the cases C = 1,
C = 2, and C = 3, providing improved lower bounds, optimal constructions for several
infinite families, as well as asymptotically optimal constructions and approximations.
We then study the case C > 3, focusing specifically on the case C = k(k + 1)/2 for some
k ≥ 1. We give optimal decompositions for several congruence classes of n, using the
existence of a certain combinatorial design. We conclude with a comparison of the
switching cost in unidirectional and bidirectional WDM rings.

Keywords: traffic grooming, SONET ADM, optical WDM network, graph decom-
position, combinatorial designs.

3.1 Introduction

Whereas traffic grooming in unidirectional rings has been widely studied in the litera-
ture (see page 36), the bidirectional ring has not been studied from a graph partitioning
approach. Filling this gap in the literature is the main objective of this chapter.

Namely, we focus on bidirectional rings with symmetric shortest path routing, and on the
all-to-all case. We begin by formally stating the problem in terms of graph partitioning in
Section 3.1.1. In Section 3.2 we provide lower bounds that improve those existing in the
literature. The remainder of the chapter is devoted to find families of solutions for certain
values of C and n. Namely, in Section 3.3 we show that the case C = 1 is relatively easy
to solve. In Section 3.4 we study the case C = 2, improving the general lower bound and
providing a 34

33 -approximation for all values of n. In Section 3.5 we tackle the case C = 3,
improving the general lower bound and giving families of optimal and asymptotically

73

74 Traffic Grooming

optimal solutions for all values of n. In Section 3.6 we study the case C > 3, by either
improving the general lower bound or providing families of optimal solutions when C is of
the form 1 + 2 + . . .+ k. In Section 3.7 we compare the lower bounds for the switching cost
in unidirectional and bidirectional rings. We conclude the chapter in Section 3.8. We first
state precisely the problem we study.

3.1.1 Statement of the problem

Load constraint. In a graph-theoretical approach, we are given an optical network
represented by a directed graph G on n vertices (in many cases a symmetric one) – called
the physical graph –, for example a unidirectional ring ~Cn or a bidirectional symmetric ring
C∗n. We are given also a traffic (or instance) matrix, that is a family of connection requests
represented by an arc-weighted multidigraph I – called the logical or request graph – where
the number of arcs from i to j corresponds to the number of requests from i to j, and the
weight of each arc corresponds to the amount of bandwidth used by each request. Here we
suppose that there is exactly one request from i to j (all-to-all case) and that each request
uses the same bandwidth. In that case I = K∗n. We also suppose that the bandwidth
used by any request is a fraction 1/C of the available bandwidth of a wavelength. Said
otherwise, each wavelength λ can carry on a given arc at most C requests. This positive
integer C is called the grooming factor. For a wavelength λ, we denote by Bλ the set of
requests carried by λ. Satisfying a request r from i to j consists in finding a dipath P(r) in
G and assigning it a wavelength λ. Note that a wavelength λ is directed either clockwise
or counterclockwise, so all the dipaths associated to requests in a same Bλ are directed in
the same way.

For a subgraph Bλ of requests of I, we define the load of an arc e of G, L(Bλ, e), as the
number of requests which are routed through e, that is

L(Bλ, e) := |{P(r); r ∈ E(Bλ); e ∈ P(r)}|.

Note that if Bλ is associated to a clockwise (resp. counterclockwise) wavelength λ, only
the clockwise (resp. counterclockwise) arcs of the ring are loaded by Bλ. The constraint
given by the grooming factor C means that for each subgraph Bλ and each arc e, L(Bλ, e)
is at most C. In this chapter we focus on the bidirectional ring topology with all-to-
all unitary requests. Therefore, our problem consists in finding a partition of K∗n into
subdigraphs Bλ satisfying the load constraint for C∗n and such that the total number of
vertices is minimized. We have two choices for routing a request (i, j): either clockwise
or counterclockwise. Although there is no physical constraint imposing it, it is common
for the operator to consider symmetric routings. That is, if the request (i, j) is routed
clockwise, then the request (j, i) is routed counterclockwise. Furthermore it is also common
for the sake of simplicity to use shortest path routing. Therefore we will restrict ourselves
to symmetric shortest path routings. Let us see how the restrictions on the routing affect
the solutions.

Constraints on the routing. In a ring C∗n with an odd number of vertices, shortest
path routing implies symmetric routing. But in a ring with an even number of vertices

Chapter 3: Bidirectional WDM Rings 75

this is not necessarily the case, as a request of the form (i, i + n
2) can be routed via a

shortest path in both directions. Consider for example n = 4 and C = 2. If we do not
impose symmetric routing, we can have a solution consisting of the two subdigraphs Bλ1

with the requests (0, 1), (1, 2), (2, 3), (3, 0), (0, 2), and (2, 0) routed clockwise, and Bλ2 with
the requests (1, 0), (0, 3), (3, 2), (2, 1), (1, 3), and (3, 1) routed counterclockwise. Altogether
we use 8 ADMs. Suppose now that we further impose symmetric routing, and assume
without loss of generality that the requests (0, 2) and (1, 3) are routed clockwise. The best
we can do for a Bλ with 4 vertices is to put 5 requests if λ is clockwise, namely (0, 1),
(1, 2), (2, 3), (3, 0), and at most one of (0, 2) and (1, 3). The other request out of (0, 2) and
(1, 3) will need 2 ADMs, so we use a total of 12 ADMs. If we do not use any Bλ with
4 vertices, note that a subdigraph with 3 (resp. 2) vertices contains at most 3 requests
(resp. 1 request). Therefore to route all the requests we need at least 12 ADMs.

Imposing shortest path routing might increase the number of ADMs of an optimal so-
lution. Consider for example n = 3 and C = 3. With shortest path routing, we need
two subdigraphs Bλ1 with the requests (0, 1), (1, 2), (2, 0) and Bλ2 with the requests (1, 0),
(2, 1), (0, 2), for a total of 6 ADMs (each arc of C∗3 is loaded once). Without the constraint
of shortest path routing, we can do it with 3 ADMs, namely with all the requests routed
clockwise. In that case, the requests (1, 0), (2, 1), and (0, 2) are routed via dipaths of length
2 (for instance, the request (1, 0) used the arcs (1, 2) and (2, 0)). In that case the load of
the arcs (in the clockwise direction) is 3.

We cannot always use shortest path routing and have a minimum load. Indeed, consider
the case C = 1 and a set of 3 requests (i, j), (j, k), and (k, i) forming a triangle. The
subdigraph formed by the 3 requests routed in the same direction has load 1, but there is
not reason that the associated routes are shortest paths. For example, let n = 5 and (0, 1),
(1, 2), (2, 0) be the three mentioned requests, which we assume to be routed clockwise. If
we want a valid solution, then the request (2, 0) is routed via the path [2, 3, 4, 0] of length
3 (and not 2). If we want to use shortest paths, then these three requests induce load
2, hence they cannot fit together in the same wavelength. Summarizing, in this example
either we use shortest paths and the load is 2 or we get a solution with load one but not
using shortest paths.

Symmetric shortest path routing. However, in the sequel of the chapter we will only
consider symmetric shortest path routing. Besides being a common scenario in telecom-
munication networks, this assumption also simplifies the problem, as we can split it into
two separate problems, half of the requests being routed clockwise and half counterclock-
wise. Each of these two subproblems can be viewed as a grooming problem where G = ~Cn

(the unidirectional cycle) and I = Tn, where Tn is a tournament on n vertices, that is, a
complete oriented graph (for each pair of vertices {i, j} there is exactly one of the arcs (i, j)
or (j, i)).

As we consider shortest path routing, for n odd Tn is unique. But for n even we have two
possibilities for the pairs of the form {i, i + n

2 }: either the arc (i, i + n
2) or (i + n

2 , i). So the
choice of these arcs has to be made. We are ready to state precisely our problem.

76 Traffic Grooming

Traffic Grooming in Bidirectional Rings
Input: A unidirectional cycle ~Cn with vertices 0, . . . , n − 1, a grooming factor C and a

digraph of requests consisting of the tournament Tn with arcs (i, i + 1) for
0 ≤ i ≤ n− 1 and 1 ≤ q ≤ n−1

2 , plus if n is even n
2 arcs of the form (i, i + n

2), where
we cannot have both (i, i + n

2) and (i + n
2 , i) (or said otherwise, for n even we have

one of the two arcs (i, i + n
2) or (i + n

2 , i) for 0 ≤ i ≤ n
2 − 1).

Output: A partition of Tn into digraphs Bλ, 1 ≤ λ ≤ Λ, such that for each arc e ∈ E(~Cn),
L(Bλ, e) ≤ C.

Objective: Minimize
∑Λ
λ=1 |V(Bλ)|. The minimum will be denoted A(C, n).

Remark 3.1 Solutions to the original problem can be found by solving the above problem
and using the solution for the counterclockwise requests by reversing the orientation of the
arcs of ~Cn and Tn. Therefore, the total number of ADMs for the original problem – under
the constraints of symmetric shortest path routing – is 2A(C, n).

Let us see an example for n = 5 and C = 1. Then the following three subdigraphs form a so-
lution with 10 ADMs: one with arcs (0, 1), (1, 3), (3, 0), another with arcs (1, 2), (2, 4), (4, 1),
and another with arcs (0, 2), (2, 3), (3, 4), (4, 0). A solution for the bidirectional ring C∗5 and
I = K∗n uses 20 ADMs.

Let now n = 5 and C = 2. We can use the preceding solution or another one
with also 10 ADMs with only two ~C5’s with arcs (0, 2), (1, 2), (2, 3), (3, 4), (4, 5) and
(0, 2), (2, 4), (4, 1), (1, 3), (3, 0), the second one inducing load 2. But we can do better,
with only 8 ADMs, with one subdigraph with arcs (1, 3), (3, 4), (4, 1), and another one with
arcs (0, 1), (1, 2), (0, 2), (2, 3), (2, 4), (3, 0), (4, 0). This latter partition is optimal.

To tackle our problem we will use tools from design theory, similar to those used for the
unidirectional ring and I = Kn [48, 49]. In particular, it is helpful to use for a given C di-
graphs having a maximum ratio number of arcs over number of vertices (see Section 3.2.2).

Admissible digraphs. Let Bλ = (Vλ, Eλ) be a digraph with Vλ = {a0, . . . , ap−1} involved
in a partition of the tournament Tn. Note that the edges of Bλ belong to Tn, so (ai, a j) ∈ Eλ

if and only d ~Cn
(ai, a j) ≤ n

2 , where d ~Cn
(ai, a j) is the distance between ai and a j in ~Cn.

A digraph Bλ is said to be admissible if it satisfies the load constraint, that is, L(Bλ, e) ≤ C
for each arc e ∈ E(~Cn). A partition of Tn into admissible subdigraphs is called valid.
As the paths associated to an arc of Bλ form a dipath (an interval) in ~Cn, the load is
exactly the same as if we consider Bλ embedded in a cycle ~Cp with vertex set 0, 1, . . . , p−1.
More precisely, we associate to Bλ the digraph Bp

λ with vertices 0, 1, . . . , p − 1 and with
(i, j) ∈ E(Bp

λ) if and only if (ai, a j) ∈ E(Bλ). Hence, to compute the load we will consider
digraphs with p vertices and their load in the associated ~Cp. Note that it can happen that
d ~Cn

(ai, a j) ≤ n
2 but d ~Cp

(i, j) > p
2 , and viceversa.

Figure 3.1(a) illustrates a digraph Bλ that is admissible for n = 8 and C = 2, as it induces
load 2 in ~C8. Its associated digraph B4

λ is shown in Figure 3.1(b). Figure 3.1(c) shows a
digraph B′λ which has also Bλ as associated digraph, but it is not admissible as (a3, a0) is
not an arc of T8.

Chapter 3: Bidirectional WDM Rings 77

0

4

(b)

Bλ3

2

1

a0

a1

a2

a3

(a)

Bλ

a0

a1

a2

a3

(c)

Bλ
'

Figure 3.1: (a) Digraph Bλ admissible for n = 8 and C = 2; (b) Its associated digraph B4
λ;

(c) Non-admissible digraph B′λ that has also B4
λ as associated digraph.

Figure 3.2(a) shows and admissible digraph for n = 7 and C = 2. Its associated digraph
B5
λ, which is depicted in Figure 3.2(b), induces load 2 but the arc (1, 4) is not routed via

a shortest path (although the arc (a1, a4) was in Bλ).

0a0

a1

a2

a4

(a)

Bλ

a3

(b)

Bλ
5

1

23

4

Figure 3.2: (a) Digraph Bλ admissible for n = 7 and C = 2; (b) Its associated digraph B5
λ.

In what follows we will compute the load in the associated digraph, but we will have to
be careful that the arcs of Bλ are those of Tn, as pointed out by the above examples.

3.2 Lower Bounds

In this section we state general lower bounds on the number of ADMs used by any solution.

3.2.1 Equations of the problem

Given a valid solution of the problem, let ap denote the number of subgraphs of the
partition with exactly p nodes, let A denote the total number of ADMs, let Λ denote the
number of subgraphs of the partition, and let Eλ be the set of arcs of Bλ. Recall that here

78 Traffic Grooming

I = Tn, which has n(n−1)
2 arcs. The following equalities hold:

A =

n∑
p=2

pap (3.1)

n∑
p=2

ap = Λ (3.2)

Λ∑
λ=1

|Eλ| =
n(n − 1)

2
(3.3)

Proposition 3.1 For I = Tn,

Λ ≥

⌈
n2 + α

8C

⌉
, where α =

−1, if n is odd
4, if n ≡ 2 (mod 4)
8, if n ≡ 0 (mod 4)

Proof : The set of arcs of Tn of the form (i, i + q), 0 ≤ q < n
2 , load each arc of the ring

exactly q times. So if n is odd the load of any arc of the ring is 1 + 2 + . . . + n−1
2 = n2−1

8 .

If n is even the load due to these arcs is 1 + 2 + . . . + n−2
2 = n2−2n

8 . We have to add the load
due to arcs of Tn of the form

(
i, i + n

2

)
. As there are n

2 such arcs, the total load is n2

4 and so
one arc of the ring has load at least n

4 .

If n ≡ 2 (mod 4) that gives a load at least
⌈

n
4

⌉
= n+2

4 , so one arc has load at least n2−2n
8 + n+2

4 =

n2+4
8 .

If n ≡ 0 (mod 4) the maximum load due to the arcs
(
i, i + n

2

)
is at least n

4 , but in this case

we can give a better bound. Indeed, suppose w.l.o.g. that we have the arc
(
0, n

2

)
, and let j

be the number of arcs starting in the interval [1, n
2 − 1] of the form

(
i, i + n

2

)
with 0 < i < n

2 .

The load of the arc
(

n
2 − 1, n

2

)
of the ring is then j + 1. As there are n

2 − 1− j arcs ending in
the interval [1, n

2 −1], the load of the arc (0, 1) is 1+ n
2 −1− j. Therefore the sum of the loads

of the arcs (0, 1) and
(

n
2 − 1, n

2

)
is n

2 + 1, and so one of these 2 arcs has load
⌈

n
4 + 1

2

⌉
= n

4 + 1.

The total load of this arc is n2−2n
8 + n

4 + 1 = n2+8
8 .

As each subgraph can load one arc at most C times, we obtain the lemma. 2

3.2.2 The parameter γ(C, p)

To obtain accurate lower bounds we need to bound the value of |Eλ| for a digraph with
|Vλ| = p vertices, satisfying the load constraint (admissible digraph). As we discussed in
the preceding section, we need only to consider the associated digraph embedded in ~Cp.
To this end, we introduce the following definition.

Definition 3.1 Let γ(C, p) be the maximum number of arcs of a digraph H with p vertices
such that L(H, e) ≤ C, for every arc e of ~Cp.

Chapter 3: Bidirectional WDM Rings 79

The next lemma gives the value of γ(C, p) and shows that, in fact, the maximum number
of requests we can groom is attained by taking those of minimum length. It is worth to
mention that this property is not true if the physical graph is a path, as shown with a
counterexample in [44].

Proposition 3.2 Let C =
k(k+1)

2 + r, with 0 ≤ r ≤ k. Then

γ(C, p) =

p(p−1)

2 , if p ≤ 2k + 1, or p = 2k + 2 and r ≥ k+2
2

kp + 2r − 1 , if p = 2k + 2 and 1 ≤ r < k+2
2

kp +
⌊

rp
k+1

⌋
, otherwise

The graphs achieving γ(C, p) are either the tournament Tp if p is small (namely, if p ≤ 2k+1
or p = 2k + 2 and r ≥ k+2

2), or subgraphs of a circulant digraph containing all the arcs of
length 1, 2, . . . , k, plus some arcs of length k + 1 if r > 0.

Proof : We distinguish three cases according to the value of p.

Case 1. If p is small, that is such that the tournament Tp loads each arc at most C times,
then γ(C, p) =

p(p−1)
2 . Let us now see for which values of p this fact holds.

If p is odd, the load of Tp is p2−1
8 ≤ C. The inequality p2−1 ≤ 8C implies p2−1 ≤ 4k(k+1)+8r,

and is satisfied if p ≤ 2k + 1, as p2 − 1 ≤ 4k(k + 1).

If p is even, the load of Tp is p2

8 + 1+δ
2 , where δ = 1 if p ≡ 0 (mod 4) (see proof of

Proposition 3.1).

If p ≤ 2k, it holds p2+8
8 ≤ 4k2+8

8 ≤
k(k+1)

2 ≤ C.

For p = 2k + 2, it holds p2

8 + 1+δ
2 = k2

2 + k + 1 + δ
2 ≤

k2+k
2 + r = C if and only if r ≥ k+2+δ

2 , with
δ = 1 if p ≡ 0 (mod 4), that is, if k is odd. Therefore, the condition is satisfied if r ≥ k+2

2 .

In the next two cases, we provide first a lower bound on γ(C, p), and then we prove a
matching upper bound.

Case 2. If p = 2k+2 and 1 ≤ r < k+2
2 , a solution is obtained by taking all the arcs of length

1, 2, . . . , k
(
=

p−2
2

)
– giving a load of k(k+1)

2 – plus 2r−1 arcs of length p
2 . For example, we can

take the arcs
(
i, i +

p
2

)
for i = 0, 2, . . . , 2r−2

(
<

p
2

)
and the arcs

(
i, i − p

2

)
for i = 1, 3, . . . , 2r−3.

The load due to these arcs is at most r. Therefore, in this case γ(C, p) ≥ kp + 2r − 1.

Case 3. If p > 2k + 2 or p = 2k + 2 and r = 0, a solution is obtained by taking all the arcs
of length 1, 2, . . . , k plus

⌊
rp

k+1

⌋
arcs of length k + 1, in such a way that the load due to these

arcs is at most C, which is always possible (for example, if p is prime with k + 1, we take
the requests ((k + 1)i, (k + 1)(i + 1)) for 0 ≤ i ≤

⌊
rp

k+1

⌋
− 1, the indices being taken modulo p).

Therefore, in this case

γ(C, p) ≥ kp +

⌊ rp
k + 1

⌋
. (3.4)

Let us now turn to upper bounds. Suppose we have a solution with γ arcs, γi being of
length i on ~Cp. As each arc of length i loads i arcs, and the total load of the arcs of ~Cp is

80 Traffic Grooming

at most Cp, we have that

Cp ≥

∞∑
i=1

iγi ≥

k∑
i=1

iγi + (k + 1)

γ − k∑
i=1

γi

=

k∑
i=1

ip + (k + 1)(γ − kp) +

k∑
i=1

(k + 1 − i)(p − γi)︸ ︷︷ ︸
≥0

≥
k(k + 1)

2
· p + (k + 1)(γ − kp).

Since Cp =
k(k+1)

2 · p + rp, we obtain rp ≥ (k + 1)(γ − kp), and therefore

γ(C, p) ≤ kp +
rp

k + 1
. (3.5)

Combining Equations (3.4) and (3.5), we get the result for case 3. For case 2, i.e., when
p = 2k +2 and 1 ≤ r < k+2

2 , Equation (3.5) yields γ(C, p) ≤ kp+2r. If we have equality, then
necessarily γi = p for i = 1, . . . , k, so we have all arcs of length at most k. However, the 2r
arcs of length at least k + 1 induce a load at least r + 1 on some arc of ~Cp, so the total load
would be strictly greater than C. Therefore, we have at most γ(C, p) ≤ kp + 2r − 1, which
gives the result. 2

We define the parameter ρ(C) = maxp
{
γ(C,p)

p

}
.

Proposition 3.3 Let C = k(k + 1)/2 + r, with 0 ≤ r ≤ k. Then ρ(C) ≤ k + r/k + 1.

Proof : In Case 1 of the proof of Proposition 3.2, ρ(C) ≤ p−1
2 . If p ≤ 2k + 1, ρ(C) ≤ k. If

p = 2k + 2 and r ≥ k+2
2 , ρ(C) = k + 1

2 < k + r
k+1 . Otherwise, by Equation (3.5),

ρ(C) ≤
kp +

rp
k+1

p
= k +

r
k + 1

, (3.6)

where C =
k(k+1)

2 + r, with 0 ≤ r ≤ k. So, in all cases, ρ(C) ≤ k + r
k+1 . 2

Table 3.1 shows the parameter γ(C, p) for small values of C and p, as well as the parameter
ρ(C).

3.2.3 General lower bounds

By Propositions 3.1 and 3.2, Equations (3.1), (3.2), and (3.3) become

A =

n∑
p=2

pap (3.7)

n∑
p=2

ap ≥

⌈
n2 + α

8C

⌉
, where α =

−1 , if n is odd
4 , if n ≡ 2 (mod 4)
8 , if n ≡ 0 (mod 4)

(3.8)

n∑
p=2

apγ(C, p) ≥
n(n − 1)

2
(3.9)

Chapter 3: Bidirectional WDM Rings 81

p 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ρ(C)
C = 1 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1
C = 2 1 3 5 7 9 10 12 13 15 16 18 19 21 22 24 3/2
C = 3 1 3 6 10 12 14 16 18 20 22 24 26 28 30 32 2
C = 4 1 3 6 10 13 16 18 21 23 25 28 30 32 35 37 7/3
C = 5 1 3 6 10 15 18 21 24 26 29 32 34 37 40 42 8/3
C = 6 1 3 6 10 15 21 24 27 30 33 36 39 42 45 48 3
C = 7 1 3 6 10 15 21 25 29 32 35 39 42 45 48 52 13/4
C = 8 1 3 6 10 15 21 27 31 35 38 42 45 49 52 56 14/4
C = 9 1 3 6 10 15 21 28 33 37 41 45 48 52 56 60 15/4
C = 10 1 3 6 10 15 21 28 36 40 44 48 52 56 60 64 4

Table 3.1: The parameter γ(C, p) for some values of C and p, as well as ρ(C). The bold
values achieve ρ(C).

We are ready to prove the general lower bound on the number of ADMs used by any
solution.

Theorem 3.1 (General Lower Bound) Let C =
k(k+1)

2 +r, with 0 ≤ r ≤ k. The number
of ADMs required in a bidirectional ring with n nodes and grooming factor C satisfies

A(C, n) ≥
⌈
n(n − 1)
2 · ρ(C)

⌉
=

⌈
n(n − 1)

2
k + 1

k(k + 1) + r

⌉
. (3.10)

Proof : Using Equations (3.7) and (3.9), and the definition of ρ(C), we get that the
number A of ADMs used by any solution satisfies

n(n − 1)
2

≤

n∑
p=2

ap · γ(C, p) =

n∑
p=2

p · ap · ρ(C) = ρ(C) · A.

From the above equation and using Equation (3.6), we get

A ≥
⌈
n(n − 1)
2 · ρ(C)

⌉
=

⌈
n(n − 1)

2
k + 1

k(k + 1) + r

⌉
.

2

To achieve the lower bound of Theorem 3.1, the only possibility is to use graphs on
p vertices with γ(C, p) arcs. The bold values in Table 3.1 achieve ρ(C), and therefore
the subgraphs corresponding to those values (which exist by Proposition 3.2) are good
candidates to construct an optimal partition of the request graph.

Comparison of existing lower bounds. In [74] the Ring Traffic Grooming prob-
lem in the bidirectional ring is studied. The authors state a lower bound regardless of
routing for a general set of requests. In the particular case of uniform traffic, they get a

82 Traffic Grooming

lower bound of n2−1
4
√

2C
(see [74, Theorem 1, page 198]). They indicate in their article that

they can improve this bound by a factor of 2 for all-to-all uniform unitary traffic. We
thank T. Chow and P. Lin for sending us the proof of the following theorem, which is only
announced in [74]:

Theorem 3.2 ([73,74]) If a traffic instance of ring grooming is uniform and unitary,
then, regardless of routing,

A(C, n) ≥
1

2
√

C

√
n2(n − 1)2

2
− n(n − 1).

The lower bound we obtained in Theorem 3.1 is greater than the bound of Theorem 3.2,
but it should be observed that we restrict ourselves to shortest path symmetric routing.
Our bound is n(n−1)

2ρ(C) and the lower bound of Theorem 3.2 is less than n(n−1)
2
√

2C
. The fact that

our bound is better follows from the fact that ρ(C) <
√

2C. Indeed,

ρ2(C) ≤
(
k +

r
k + 1

)2
= k2 +

2kr
k + 1

+
r2

(k + 1)2 < k2 + 2r + 1 < k2 + k + 2r = 2C.

3.3 Case C = 1

For C = 1, by Proposition 3.2 γ(1, p) = p if p ≥ 2. Furthermore, all the directed cycles
achieve ρ(1) (see Table 3.1).

Theorem 3.3

A(1, n) =

 n(n−1)
2 , if n is odd
n2

2 , if n is even

Proof : For C = 1, the only possible subgraphs involved in the partition of the edges
of Tn are cycles and paths. If only cycles are used, the total number of ADMs is n(n−1)

2 ,
which equals the lower bound of Theorem 3.1. Each path involved in the partition adds
one unity of cost with respect to n(n−1)

2 .

If n = 2q + 1 is odd, by [52, Theorem 3.3] we know that the arcs of Tn can be covered with
q ~C3’s and q(q−1)

2
~C4’s. The total number of vertices of this construction is 3q + 2q(q− 1) =

q(2q + 1) =
n(n−1)

2 .

If n is even, each vertex must appear with odd degree in at least one subgraph, so the
number of paths in any construction is at least n/2. Therefore, the lower bound becomes
n(n−1)

2 + n
2 = n2

2 . By [52, Theorem 3.4] the arcs of Tn can be covered with

• 4 ~C3’s and 2q2 − 3 ~C4’s, if n = 4q with q > 1;

• 2 ~C3’s and 2q2 + 2q − 1 ~C4’s, if n = 4q + 2.

Chapter 3: Bidirectional WDM Rings 83

For n = 4, we cover T4 with a ~C4 and two arcs. Note that in these constructions, some arcs
are covered more than once. In both cases, the total number of vertices of the construction
is n2

2 , hence the lower bound is attained.

Finally, one can check that in the constructions of [52], the length of the arcs involved in
the covering of Tn is in all cases bounded above by

⌊
n
2

⌋
, and therefore all the cycles induce

load 1. 2

Remark 3.2 For the original problem with G = C∗n and I = K∗n, if we apply Theorem 3.3
we get in the case n/2 a value of n2 ADMS; but if we delete the constraint of symmetric
routings we get a value of n(n − 1)/2 by using [52, Theorems 4.1 and 4.2] (however these
constructions use many K2’s).

3.4 Case C = 2

When C = 2 the general lower bound of Theorem 3.1 gives A(2, n) ≥ n(n−1)
3 . We first improve

this bound in Section 3.4.1, and then give solutions with a good approximation ratio in
Section 3.4.2.

3.4.1 Improved lower bounds

For C = 2, by Proposition 3.2 γ(2, 2) = 1, γ(2, 3) = 3, γ(2, 4) = 5 (note that γ(2, 4) = 6 if
the routing is not restricted to be symmetric), and γ(2, p) =

⌊ 3p
2

⌋
for p ≥ 5. The optimal

solutions for p ≥ 4 even consist of the p arcs of length 1 (i, i + 1) for 0 ≤ i ≤ p − 1, plus the
p/2 arcs of length 2 (2i, 2i + 2) for 0 ≤ i ≤ p/2 − 1 (in fact, triangles sharing a vertex; see
Figure 3.3 for p = 6). For p odd we have two classes of optimal graphs (see Figure 3.3 for
p = 5).

Figure 3.3: Some admissible digraphs for C = 2.

Equation (3.9) becomes in the case C = 2

n∑
p=2

apγ(2, p) = a2 + 3a3 + 5a4 + 7a5 + 9a6 + 10a7 + 12a8 + . . . ≥
n(n − 1)

2
.

Therefore,

A =

n∑
p=2

pap ≥
2
3

n∑
p=2

apγ(2, p) +
4
3

a2 + a3 +
2
3

a4 +
1
3

(a5 + a7 + a9 + . . .) (3.11)

≥
n(n − 1)

3
+

4
3

a2 + a3 +
2
3

a4 +
1
3

(a5 + a7 + a9 + . . .). (3.12)

84 Traffic Grooming

We can already see that the bound n(n−1)
3 cannot be attained. Indeed, to reach it we need

to use only graphs with 6, 8, 10, . . . vertices. But the number of graphs Λ satisfies, by
Proposition 3.1, Λ ≥ n2−1

16 , so A ≥ 6 n2−1
16 > n(n−1)

3 .

The following proposition gives a lower bound of order 11
32 n(n − 1). Note that 11/32 >

11/33 = 1/3.

Proposition 3.4 (Tighter Lower Bound for C = 2)

A(2, n) ≥
⌈
11n2 − 8n − 3

32

⌉
=

⌈
11
16

n(n − 1)
2

+
3n − 3

32

⌉
. (3.13)

Proof : We can write A ≥ 6(Λ − a2 − a3 − a4 − a5) + 2a2 + 3a3 + 4a4 + 5a5, that is,

A ≥ 6Λ − (4a2 + 3a3 + 2a4 + a5). (3.14)

From Equations (3.11) and (3.12) we get that

3A ≥ n(n − 1) + (4a2 + 3a3 + 2a4 + a5). (3.15)

Summing Equations (3.14) and (3.15) gives

4A ≥ 6Λ + n(n − 1). (3.16)

By Proposition 3.1, we have that

Λ ≥
n(n − 1)

16
+

n + α

16
. (3.17)

Combining Equations (3.16) and (3.17) and using that α ≥ −1 yields

A ≥
11n(n − 1)

32
+

3n
32

+
3α
32
≥

11n2 − 8n − 3
32

.

2

3.4.2 Upper bounds

In this section we build families of solutions for C = 2. We conjecture that there exists
a decomposition using A vertices with ratio A

n(n−1)
2

of order 11
16 , which would be optimal by

Proposition 3.4. For that, we should find some (multipartite) graphs achieving this ratio.
A candidate is K4,4,4, which has 48 edges. Unfortunately, we have not been able to cover
it with 33 vertices (which would achieve the optimal ratio) but only with 34, giving a
34/33-approximation.

For the sake of the presentation, we first present a simple 12/11-approximation inspired
from a construction of [52].

Chapter 3: Bidirectional WDM Rings 85

A 12/11-approximation

This construction is defined recursively. Suppose we have a solution for n vertices using
An ADMs, with n = 2p or n = 2p + 1. Let the vertex set be labeled 0A < 1A < . . . <

(p − 1)A < 0B < 1B < . . . < (p − 1)B, plus ∞ is n is odd. For n + 2, we add two vertices xA

and xB with the order xA < 0A < 1A < . . . < (p − 1)A < xB < 0B < 1B < . . . < (p − 1)B <

∞. We use as subdigraphs those of the solution for n plus the bp/2c digraphs on the 6
vertices xA, iA, (i+ bp/2c)A, xB, iB, (i+ bp/2c)B and the 8 arcs (xA, iA), (xA, (i+ bp/2c)A), (iA, xB),
((i + bp/2c)A, xB), (xB, iB), (xB, (i + bp/2cB), (iB, xA), ((i + bp/2c)B, xA), for 0 ≤ i ≤ bp/2c − 1.

If n = 2p with p even, there remains uncovered the arc (xA, xB).

If n = 2p + 1 with p even, there remain the 3 arcs (xA, xB), (xB,∞), and (∞, xA), which we
cover with the circuit (xA, xB,∞).

If n = 2p with p odd, there remain the 5 arcs (xA, (p− 1)A), ((p− 1)A, xB), (xB, (p− 1)B), ((p−
1)B, xA), and (xA, xB), which we cover with a digraph on 4 vertices containing all of them.

Finally, if n = 2p+1 with p odd, there remain the 7 arcs (xA, (p−1)A), ((p−1)A, xB), (xB, (p−
1)B), ((p−1)B, xA), (xA, xB), (xB,∞), and (∞, xA), which we cover with a digraph on 5 vertices
containing all of them.

One can check that, in all cases, the arcs (u, v) considered satisfy d ~Cn
(u, v) ≤ n/2.

To compute the number of ADMs of this construction, we have the recurrence relations
A4q+2 = A4q + 6q + 2, A4q+4 = A4q+2 + 6q + 4, A4q+3 = A4q+1 + 6q + 3, and A4q+5 = A4q+3 + 6q + 5.
Starting with A2 = 2 or A4 = 6 (obtained with the partition with the digraph on 4 vertices
formed by the C4 (0, 1, 2, 3) plus the arc (0, 2) and the digraph on 2 vertices (1, 3)) and
A3 = 3 or A5 = 8 (obtained with the partition of T5 using the first digraph on 5 vertices
of Figure 3.3 and the remaining T3), we get A4q = 6q2 = 6n2

16 , A4q+2 = 6q2 + 6q + 2 = 6n2+8
16 ,

A4q+1 = 6q2 + 2q = 6n2−4n−2
16 , and A4q+3 = 6q2 + 8q + 3 = 6n2−4n+6

16 .

In all cases, the number of ADMs is of order 6
8

n(n−1)
2 , so asymptotically the ratio between

the number of ADMs of this construction and the lower bound of Proposition 3.4 tends to
6
8

16
11 = 12

11 .

A 34/33-approximation

It will be useful to use the notation G5 and G6 to refer to the digraphs depicted in Fig-
ure 3.4. The key idea of this construction is that an oriented tripartite graph K4,4,4 can be
partitioned into admissible subdigraphs for C = 2 using 34 vertices overall, as follows.

Let the tripartition classes of the K4,4,4 be {1A, 1B, 1C , 1D}, {2A, 2B, 2C , 2D}, {3A, 3B, 3C , 3D},
and let the vertices be ordered in the ring 1A < 2A < 3A < 1B < 2B < 3B < 1C < 2C <

3C < 1D < 2D < 3D. The arcs of an oriented K4,4,4 can be partitioned into 4 G6’s with
{x1, x2, x3, x4, x5, x6} = {1A, 2A, 3B, 1C , 2C , 3D}, {1B, 2B, 3B, 1D, 2D, 3D}, {1B, 2C , 3C , 1D, 2A, 3A},
and {1A, 3A, 2B, 1C , 3C , 2D}, plus 2 G5’s with {x1, x2, x3, x4, x5} = {3A, 1C , 2C , 1D, 2D} and
{3D, 2A, 2B, 1D, 1C} (see Figure 3.4). The total number of vertices of this partition is 34.

We are now ready to explain the construction. We take an integer p ≡ 1 or 3 (mod 6),
hence Kp can be partitioned into triangles. We replace each vertex i of Kp with 4 vertices

86 Traffic Grooming

G6G5
x1 x2

x2

x3

x3

x4

x4 x5

x5 x6

x1

G7

Figure 3.4: Digraphs G5 and G6 used in the 34/33-approximation for C = 2, and digraph
G7 suitable for C = 3 referred in the proof of Proposition 3.6.

iA, iB, iC , iD, and order the vertices 1A < . . . < pA < 1B < 2B < . . . < pB < 1C < . . . < pC <

1D < . . . < pD. To a triple {i, j, k} corresponding to a triangle of Kp, with i < j < k, we
associate the decomposition described above of the K4,4,4 on vertices {`A, `B, `C , `D : ` =

i, j, k}. In this way, Kp×4 can be partitioned into p(p−1)
6 K4,4,4’s, or equivalently into p(p−1)

6 ·4
G6’s and p(p−1)

6 · 2 G5’s. Overall, we use 34p(p−1)
6 vertices. Each of the subdigraphs of

this partition is admissible, as the distance in the ring between the endpoints of an arc is
strictly smaller than 2p.

To partition an oriented K4p, there remain only the K4’s induced inside each class of the
Kp×4. As A(2, 4) = 6, we use 6p vertices to cover all the K4’s.

Therefore, if p ≡ 1 or 3 (mod 6), an oriented K4p can be partitioned using 6p +
34p(p−1)

6 =
34p2+2p

6 = 34n2+8n
96 vertices. To decompose K4p+1, we add a vertex ∞, and we partition the

p K5’s using 8 vertices for each one of them. Overall, we use 8p +
34p(p−1)

6 =
34p2+14p

6 =
34n2−12n−24

96 vertices.

If p . 1 or 3 (mod 6), we introduce dummy vertices to get p′ ≡ 1 or 3 (mod 6), we do the
construction described above, and then we remove the dummy edges and vertices. It is
clear that these dummy vertices add O(n) vertices to the construction, hence the coefficient
of the term n2 remains the same.

Since 33n2−24n−9
96 is a lower bound by Proposition 3.4, this construction constitutes a 34/33-

approximation.

3.5 Case C = 3

We first provide improved lower bounds for some congruence classes in Section 3.5.1 and
then we provide constructions in Section 3.5.2, which are either optimal or asymptotically
optimal.

3.5.1 Improved lower bounds

In this case (see Table 3.1) we have γ(3, 2) = 1, γ(3, 3) = 3, γ(3, 4) = 6, and γ(3, p) = 2p for
p ≥ 5, so ρ(3) = 2. Therefore, by Theorem 3.1, we get

Chapter 3: Bidirectional WDM Rings 87

Proposition 3.5 A(3, n) ≥ n(n−1)
4 .

By Equations (3.7) and (3.9) we have

2A =

n∑
p=2

2pap = 4a2 + 6a3 + 8a4 +

n∑
p=5

2pap

n(n − 1)
2

≤

n∑
p=2

apγ(3, p) = a2 + 3a3 + 6a4 +

n∑
p=5

2pap

So,

A ≥
n(n − 1)

4
+

3
2

a2 +
3
2

a3 + a4.

Therefore, if the lower bound is attained, then necessarily a2 = a3 = a4 = 0. We will
see in Section 3.5.2 that this is the case for n ≡ 1 or 5 (mod 12), using optimal digraphs
on 5 vertices (namely T5) and on 6 vertices (namely ~K2,2,2, see Figure 3.5). Optimal
graphs are obtained by using arcs of length 1 and 2, so the degree of any vertex in an
optimal subdigraph is 4. That is possible only if the total degree of a vertex, namely n−1,
is a multiple of 4. Otherwise, the following proposition shows that the lower bound of
Proposition 3.5 cannot be attained.

Proposition 3.6 mh
If n ≡ 3 (mod 4), A(3, n) ≥ n(n−1)

4 + n
6 = 3n2−n

12 .

If n ≡ 0 (mod 2), A(3, n) ≥ n(n−1)
4 + n

4 = n2

4 .

Proof : We use the following observation: If a vertex x has out-degree 3 (resp. in-degree
3) in a digraph Bλ, then its nearest out-neighbor A+

x (resp. in-neighbor A−x) has in-degree
1 and out-degree at most 1 (resp. out-degree 1 and in-degree at most 1). Indeed, suppose
x has out-degree 3, and let A+

x , B
+
x ,C

+
x be the out-neighbors of x. Then the load of the arc

entering A+
x is already 3, so A+

x has no other in-neighbor than x. The load of the arc leaving
A+

x is already 2, so A+
x has at most 1 out-neighbor y. If y has 2 or more in-neighbors, then

A+
x is not its nearest one. Hence, to each vertex x of out-degree 3 (resp. in-degree 3) is

associated a distinct vertex A+
x (resp. A−x) of degree at most 2.

Consider the digraphs in which a given vertex x appears. Let αx
i be the number of times

x appears with degree i, and let αi =
∑

x α
x
i . Vertex x appears in

∑
i α

x
i digraphs, so

A =
∑

x

∑
i

αx
i =

∑
i

αi. (3.18)

As each vertex has degree n − 1, n − 1 =
∑

i i · αx
i , and so

n(n − 1) =
∑

x

∑
i

i · αx
i =

∑
i

i · αi. (3.19)

Due to the load constraint, a vertex has out-degree (resp. in-degree) at most 3 in all the
digraphs in which it appears. Therefore, its degree is at most 6, that is, αi = 0 for i ≥ 7.
Furthermore, by the above observation if a vertex has degree 6 (resp. 5), to this vertex

88 Traffic Grooming

are associated 2 vertices (resp. 1 vertex) of degree at most 2, and all these vertices are
distinct, so

α1 + α2 ≥ 2α6 + α5. (3.20)

Combining Equations (3.18) and (3.19) we get

4A = n(n − 1) + 3α1 + 2α2 + α3 − α5 − 2α6. (3.21)

We distinguish two cases: n even or n = 4t + 3.

If n is even, n − 1 is odd and each vertex must appear at least in one Bλ with odd degree,
so

α1 + α3 + α5 ≥ n. (3.22)

Using Equation (3.20) multiplied by 2 in Equation (3.21) we get 4A ≥ n(n − 1) + α1 + α3 +

α5 + 2α6, so by Equation (3.22), 4A ≥ n(n− 1) + n, as claimed. Note that to obtain equality
we need α6 = 0, α1 + α2 = α5, and α1 + α3 + α5 = n.

If n = 4t + 3, the degree of each vertex satisfies n − 1 ≡ 2 (mod 4), so no vertex can appear
with degree 4 in all the digraphs. Each vertex must appear either at least once with degree
6 or 2, or at least twice with odd degree (for example, 5 and 5, 3 and 3, 1 and 1, or 5 and
1), so

α2 + α6 +
1
2

(α1 + α3 + α5) ≥ n. (3.23)

Equation (3.21) can be rewritten as

4A = n(n − 1) +
2
3

(
α2 + α6 +

1
2

(α1 + α3 + α5)
)

+
4
3

(α2 + α1 − 2α6 − α5) +
2
3
α3 +

4
3
α1. (3.24)

Using Equations (3.20) and (3.23) in Equation (3.24) yields 4A ≥ n(n− 1) + 2
3 n + 2

3α3 + 4
3α1,

or A ≥ n(n−1)
4 + n

6 , as claimed. Note that to reach the equality, we need to have α1 = α3 = 0,
α2 = 2α6 + α5 by Equation (3.20), and 2α6 + 2α2 + α5 = 2n by Equation (3.23), so α2 = 2n

3 ,
hence an optimal decomposition should use n

3 digraphs like the digraph G7 depicted in
Figure 3.4, having 1 vertex of degree 6 and 2 vertices of degree 2. 2

3.5.2 Constructions

Our constructions rely on the existence of 3-GDD’s, that is, decompositions of complete
multipartite graphs into K3’s. We recall the definition and some basic results below.

Decompositions or complete multipartite graphs into K3’s. Let v1, v2, . . . , vq be
non-negative integers; the complete multipartite graph with group sizes v1, v2, . . . , vq is
defined to be the graph with vertex set V1 ∪ V2 ∪ · · · ∪ Vq where |Vi| = vi, and two vertices
u ∈ Vi and v ∈ V j are adjacent if i , j. Using terminology of design theory, the graph
of type pα1

1 pα2
2 . . . pαh

h is the complete multipartite graph with αi groups of size pi. The
existence of a partition of this multipartite graph into Kk’s is equivalent to the existence of
a k-GDD (Group Divisible Design) of type pα1

1 pα2
2 . . . pαh

h (see [77]). Here we are interested
in the existence of 3-GDD’s, that is, partitions into K3’s. When |Vi| = p for all i, we denote
by Kp×q the multipartite graph of type pq. Trivial necessary conditions for the existence
of a 3-GDD are

Chapter 3: Bidirectional WDM Rings 89

(i) the degree of each vertex is even; and

(ii) the number of edges is a multiple of 3.

These conditions are in general sufficient. In particular, the following results will be used
later.

Theorem 3.4 ([77]) espai.
A 3-GDD of type 2q with q ≥ 3 exists if and only if q ≡ 0 or 1 (mod 3).
A 3-GDD of type 2q−14 with q ≥ 4 exists if and only if q ≡ 1 (mod 3).
A 3-GDD of type 3q with q ≥ 3 exists if and only if q is odd.
A 3-GDD of type 3q−11 with q ≥ 3 exists if and only if q is odd.
A 3-GDD of type 3q−15 with q ≥ 5 exists if and only if q is odd.
A 3-GDD of type 3q−111 with q ≥ 7 exists if and only if q is odd.

The basic partition. In what follows ~K2,2,2 will denote the digraph on 6 vertices and
12 arcs depicted in Figure 3.5. This digraph can be viewed as being obtained from the
K3 (i, j, k) with i < j < k by replacing each vertex i with two vertices iA and iB forming an
independent set.

K2,2,2
iA

i

jk

jA

kA

iBjB

kB

(a)

T5

iA

ji jAiB

jB

(b)

8

8

Figure 3.5: (a) Digraph ~K2,2,2 obtained from K3 (i, j, k), with i < j < k; (b) digraph T5
obtained from a K3 of the form (∞, i, j).

Note that ~K2,2,2 is an optimal digraph for C = 3, since it attains the ratio ρ(3) = 2 (see
Table 3.1). The idea of the constructions consists in starting from some graph G (mainly
a multipartite graph) which can be decomposed into K3’s, replacing each vertex with two
non-adjacent vertices, and then using the following lemma.

Lemma 3.1 If a graph G = (V, E) with vertex set {1, 2, . . . , |V |} can be decomposed into h
K3’s, then the digraph H obtained from G by replacing each vertex i with two non-adjacent
vertices iA and iB, and where the vertices are ordered 1A, 2A, . . . , |V |A, 1B, 2B, . . . , |V |B, has a
valid decomposition into ~K2,2,2’s with a total of 6h vertices.

Proof : To each triangle (i, j, k) with 1 ≤ i < j < k ≤ |V | is associated the ~K2,2,2 with
vertices 1 ≤ iA < jA < kA ≤ |V | < iB < jB < kB ≤ 2|V |. To show that the decomposition is
valid for C = 3, it suffices to show that the distance between the end-vertices of any arc of
any ~K2,2,2 is at most |V |. That is true for the arcs (xA, yA) or (xB, yB) as they satisfy x < y,
and also for the arcs (xA, yB) or (xB, yA) as they satisfy x > y (see Figure 3.5(a)). 2

90 Traffic Grooming

Some small cases. We provide here decompositions of some particular small digraphs
that will be used in the constructions of Propositions 3.8 and 3.9.

Lemma 3.2 A(3, 5) = 5, A(3, 6) ≤ 10, A(3, 7) ≤ 12, A(3, 8) ≤ 18, A(3, 9) ≤ 21, A(3, 10) ≤ 28,
A(3, 11) ≤ 31, and A(3, 23) ≤ 132.

Proof : Case n = 5. The decomposition is given in Figure 3.5(b), and can be viewed as
obtained from the K3 (∞, i, j) by replacing each of i, j with two vertices.

Case n = 6, 7. The complete graph K4 can be decomposed into one K1,3 (0;∞, 1, 2) and
one K3 (∞, 1, 2). Replace each of the vertices i, j, k with two vertices. The T7 on the
ordered vertices ∞, 0A, 1A, 2A, 0B, 1B, 2B can be partitioned into a T5 on ∞, 1A, 2A, 1B, 2B

((see Figure 3.5(b) with i = 1, j = 2)) and the admissible digraph on 7 vertices and 11 arcs
depicted in Figure 3.6(b) with i = 0, j = 1, k = 2. So we obtained a valid decomposition
using 12 vertices. Deleting vertex ∞ yields a decomposition of T5 with 10 vertices.

Case n = 8, 9. K5 is the union of two K3’s (∞, 1, 3), (0, 2, 3) and a C4 (∞, 0, 1, 2). Re-
placing each vertex with two vertices we get a partition of the T9 on the ordered ver-
tices ∞, 0A, 1A, 2A, 3A, 0B, 1B, 2B, 3B. Namely, to the K3 (∞, 1, 3) we associate a T5 on
∞, 1A, 3A, 1B, 3B (see Figure 3.5(b) with i = 1, j = 3). To the K3 (0, 2, 3) we associate a
~K2,2,2 on 0A, 2A, 3A, 0B, 2B, 3B. To the C4 (∞, 0, 1, 2) we associate the digraph on 7 vertices
of Figure 3.6(a) with i = 0, j = 1, k = 2 and the triangle (1A, 2A, 2B). Therefore, A(3, 9) ≤ 21.
Vertex 1A appears in 3 digraphs, so A(3, 8) ≤ 21 − 3 = 18.

Case n = 10, 11. K6 can be partitioned into 3 K3’s (∞, 1, 3), (∞, 2, 4), (0, 1, 4), a star K1,3
(0;∞, 2, 3), and a P4 [1, 2, 3, 4]. Replacing each vertex with two vertices we get a par-
tition of the T11 on the ordered vertices ∞, 0A, 1A, 2A, 3A, 4A, 0B, 1B, 2B, 3B, 4B into 2 T5’s
on ∞, 1A, 3A, 1B, 3B and ∞, 2A, 4A, 2B, 4B, a ~K2,2,2 on 0A, 1A, 4A, 0B, 1B, 4B, a digraph on 7
vertices and 11 arcs depicted in Figure 3.6(b) with i = 0, j = 2, k = 3, and an ad-
missible digraph on 8 vertices with arcs (1A, 2A), (2A, 3A), (3A, 4A), (1B, 2B), (2B, 3B), (3B, 4B),
(2A, 1B), (2B, 1A), (3A, 2B), (3B, 2A), (4A, 3B), (4B, 3A). Therefore, A(3, 11) ≤ 31, and as vertex
∞ appears in 3 subgraphs, we get A(3, 10) ≤ 28.

Case n = 23. We decompose K12 into 19 K3’s and 3 K1,3’s, where vertex ∞ appears in
5 K3’s and in a star (i;∞, j, k), the two other stars being of the form (i′; j′k′, `′) with
i′ < j′ < k′ < `′. We obtain a decomposition of T23 into 5 T5’s, 14 ~K2,2,2’s, 1 digraph of
Figure 3.6(a), and 2 digraphs of Figure 3.6(c). Thus, A(3, 23) ≤ 5 ·5+14 ·6+7+8+8 = 132.
2

Constructions. We begin with an optimal partition for n ≡ 0, 1, 4, or 5 (mod 12), and
then we provide near-optimal constructions for the remaining values.

Proposition 3.7 mh
If n ≡ 0 or 4 (mod 12), A(3, n) = n2

4 .

If n ≡ 1 or 5 (mod 12), A(3, n) =
n(n−1)

4 .

Chapter 3: Bidirectional WDM Rings 91

i

j

k

A

B

A

A

i

j

k

B

B

lA

lB

(c)

j

k

B

A

A

i

j

k

B

B

8

iA

(b)

i

j

k

AB

A

A

i

j

k

B

B

8

(a)

Figure 3.6: (a) Digraph associated to a C4 (∞, i, j, k). Digraphs associated to stars (K1,3’s),
with ∞ < i < j < k < `: (b) star of the form (i;∞, j, k); (c) star of the form (i; j, k, `).

Proof : The lower bound follows from Propositions 3.5 and 3.6. For the upper bound, we
will apply Lemma 3.1 with G = K2×q (type 2q), which can be decomposed by Theorem 3.4
into 2q(q−1)

3 K3’s if q ≡ 0 or 1 (mod 3). As G has 2q vertices, the graph H described in
Lemma 3.1 has 4q vertices and can be decomposed into admissible ~K2,2,2’s. Adding an
admissible T4 on each of the q independent sets of H (of the form {iA, jA, iB, jB} where {i, j}
is an independent set of G), we get a valid decomposition of T4q into q T4’s and 2q(q−1)

3
admissible ~K2,2,2’s. So using A(3, 4) = 4, we get A(3, 4q) ≤ qA(3, 4) + 4q(q − 1) = 4q2 for
q ≡ 0 or 1 (mod 3). So A(3, n) ≤ n2

4 for n ≡ 0 or 4 (mod 12).

For n = 4q + 1, we add to the vertex set of H an extra vertex ∞. Adding to the arcs of
H the q tournaments T5 built on ∞, iA, jA, iB, jB, where vertices i, j are not adjacent in G,
we get a decomposition of T4q+1 into q admissible T5’s plus 2q(q−1)

3 admissible ~K2,2,2’s (the
distance being at most 2q− 1 in H and so 2q in T4q+1). Using A(3, 5) = 5 (see Lemma 3.2),
we get A(3, 4q + 1) ≤ qA(3, 5) + 4q(q − 1) = 4q2 + q =

(4q+1)4q
4 for q ≡ 0 or 1 (mod 3). So

A(3, n) ≤ n(n−1)
4 for n ≡ 1 or 5 (mod 12). 2

We group the non-optimal constructions in Proposition 3.8 and Proposition 3.9 according
to whether they differ from the lower bound by either a constant or a linear additive term,
respectively.

Proposition 3.8 mh
If n ≡ 8 (mod 12), A(3, n) ≤ n2

4 + 2.
If n ≡ 9 (mod 12), A(3, n) =

n(n−1)
4 + 3.

Proof : We start from G of type 2q−14 with q ≡ 1 (mod 3), which can be decomposed by
Lemma 3.1 into 2(q−1)(q+2)

3 K3’s. As in the proof of Proposition 3.7, we get a decomposition
of T4q+4 into q − 1 T4’s, one T8 and 2(q−1)(q+2)

3
~K2,2,2’s (indeed, the independent set Vq of G

has 4 vertices, so in H it induces an independent set of 8 vertices). So using A(3, 4) = 4 and
A(3, 8) ≤ 18 (see Lemma 3.2), we get A(3, 4q + 4) ≤ (q− 1)A(3, 4) + A(3, 8) + 4(q− 1)(q + 2) ≤
4q2 + 8q + 6 =

(4q+4)2

4 + 2 for q ≡ 1 (mod 3), so A(3, n) ≤ n2

4 + 2 for n ≡ 8 (mod 12).

Similarly, adding a vertex ∞ to H we get a decomposition of T4q+1 into q − 1 T5’s, one
T9 and h =

2(q−1)(q+2)
3 K3’s. So using A(3, 5) = 5 and A(3, 9) ≤ 21 we get A(3, 4q + 5) ≤

92 Traffic Grooming

(q − 1)A(3, 5) + A(3, 9) + 4(q − 1)(q + 2) ≤ 4q2 + 9q + 8 =
(4q+5)(4q+4)

4 + 3 for q ≡ 1 (mod 3), so
A(3, n) ≤ n(n−1)

4 + 3 for n ≡ 9 (mod 12). 2

Proposition 3.9 mh
If n ≡ 2 (mod 12), A(3, n) ≤ n2

4 + n+4
6 .

If n ≡ 3 (mod 12), A(3, n) ≤ n2+3
4 .

If n ≡ 6 (mod 12), A(3, n) ≤ n2

4 + n
6 .

If n ≡ 7 (mod 12), A(3, n) ≤ n2−1
4 .

If n ≡ 10 (mod 12), A(3, n) ≤ n2

4 + n+8
6 .

If n ≡ 11 (mod 12), A(3, n) ≤ n2+3
4 + ε, with ε = 1 for n = 11, 35.

Proof : We use as graph G of Lemma 3.1 a multipartite graph of type 3q−1u with 3(q−1)+u
vertices, in order to get a decomposition of T6(q−1)+2u (resp. T6(q−1)+2u+1) into q − 1 T6’s
(resp. T7’s), one T2u (resp. T2u+1) and the digraph H itself decomposed by Lemma 3.1 into
h =

9(q−1)(q−2)
6 + u(q − 1) ~K2,2,2’s. We distinguish several cases according to the value of u.

Case 1: u = 1, q ≥ 3 odd.

Let n ≡ 2 (mod 12), n = 6q− 4. Using that A(3, 2) = 2 and A(3, 6) ≤ 10 we get A(3, 6q− 4) ≤
(q − 1)A(3, 6) + A(3, 2) + (q − 1)(9q − 12) ≤ 9q2 − 11q + 4 =

(6q−4)2

4 + q = n2

4 + n+4
6 .

Let n ≡ 3 (mod 12), n = 6q− 3. Using that A(3, 3) = 3 and A(3, 7) ≤ 12 we get A(3, 6q− 3) ≤
(q − 1)A(3, 7) + A(3, 3) + (q − 1)(9q − 12) ≤ 9q2 − 9q + 3 =

(6q−3)2

4 + 3
4 = n2+3

4 .

Case 2: u = 3, q ≥ 3 odd.

Let n ≡ 6 (mod 12), n = 6q. Using that A(3, 6) ≤ 10 we get A(3, 6q) ≤ qA(3, 6) + 9q(q − 1) ≤
9q2 + q = n2

4 + n
6 .

Let n ≡ 7 (mod 12), n = 6q + 1. Using that A(3, 7) ≤ 12 we get A(3, 6q + 1) ≤ qA(3, 7) +

9q(q − 1) ≤ 9q2 + 3q = n2−1
4 .

Case 3: u = 5, q ≥ 5 odd.

Let n ≡ 10 (mod 12), n = 6q + 4. Using that A(3, 6) ≤ 10 and A(3, 10) ≤ 28 we get
A(3, 6q+4) ≤ (q−1)A(3, 6)+A(3, 10)+(q−1)(9q+12) ≤ 9q2 +13q+6 =

(6q+4)2

4 +
6q+12

6 = n2

4 + n+8
6 .

Let n ≡ 11 (mod 12), n = 6q + 5. Using that A(3, 7) ≤ 12 and A(3, 11) ≤ 31 we get
A(3, 6q + 5) ≤ (q − 1)A(3, 7) + A(3, 11) + (q − 1)(9q + 12) ≤ 9q2 + 15q + 7 = n2+3

4 .

For q = 23 we have A(3, 23) ≤ 132 = 232−1
4 , one less than the value given by the preceding

construction. Using u = 11, q ≥ 7 odd, n = 6q + 17, A(3, 7) ≤ 12, and A(3, 23) ≤ 132 we get
A(3, 6q + 17) ≤ (q − 1)A(3, 7) + A(3, 23) + (q − 1)(9q + 48) ≤ 9q2 + 51q + 72 =

(6q+17)2−1
4 = n2−1

4 .
It might be that A(3, 11) ≤ 30, and then the bound n2−1

4 would be also attained for n = 11
and 35. 2

3.6 Case C > 3

For C > 3, we distinguish two cases according to whether C is of the form k(k+1)
2 or not.

We focus on those cases in Sections 3.6.1 and 3.6.2.

Chapter 3: Bidirectional WDM Rings 93

3.6.1 C not of the form k(k + 1)/2

If C is not of the form k(k+1)
2 , we can improve the lower bound of Theorem 3.1, as we did for

C = 2 in Proposition 3.4. We provide the details for C = 4 and sketch the ideas for C = 5,
that show how to improve the lower bound for any value of C not of the form k(k + 1)/2.

Proposition 3.10

A(4, n) ≥
7
32

n(n − 1) =

(
3
14

+
1

224

)
n(n − 1).

Proof : The values of γ(4, p) are given in Table 3.1, so Equation (3.11) becomes in the
case C = 4

A =

n∑
p=2

pap ≥
3
7

n∑
p=2

apγ(4, p)+
11
7

a2+
12
7

a3+
10
7

a4+
5
7

a5+
3
7

a6+
1
7

(a7+2a8+a10+2a11+a13+2a14+. . .).

(3.25)
Using that

∑n
p=2 apγ(4, p) ≥ n(n−1)

2 , Equation (3.25) becomes

14A ≥ 3n(n − 1) + 22a2 + 24a3 + 20a4 + 10a5 + 6a6 + 2a7 + 4a8 + . . . (3.26)

On the other hand,

A ≥ 9

Λ − 8∑
i=2

ai

 +

8∑
i=2

i · ai = 9Λ − 7a2 − 6a3 − 5a4 − 4a5 − 3a6 − 2a7 − a8. (3.27)

Summing Equations (3.26) and (3.27) and using that Λ ≥
n(n−1)

32 + n−1
32 by Proposition 3.1

yields

15A ≥
105
32

n(n − 1) +
9
32

(n − 1), and therefore A ≥
7
32

n(n − 1) +
3

160
(n − 1).

2

For C = 5, a similar computation with ρ(5) = 8/3 gives

8A ≥
3
2

n(n − 1) + 13a2 + 15a3 + 14a4 + 10a5 + 3a6 + 2a7 + a8. (3.28)

A ≥ 9Λ − 7a2 − 6a3 − 5a4 − 4a5 − 3a6 − 2a7 − a8. (3.29)

So again, Summing Equations (3.28) and (3.29) and using that Λ ≥
n(n−1)

40 + n−1
40 by Propo-

sition 3.1 yields

A ≥
n(n − 1)

6
+

n(n − 1)
40

+
n − 1

40
=

23
120

n(n − 1) +
n − 1

40
=

(
3
16

+
1

240

)
n(n − 1) +

n − 1
40

.

94 Traffic Grooming

3.6.2 C of the form k(k + 1)/2

For C =
k(k+1)

2 the lower bound of Theorem 3.1 can be attained, according to the existence
of a type of k-GDD, called Balanced Incomplete Block Design (BIBD). A (v, k, 1)-BIBD
consists simply of a partition of Kv into Kk’s.

Theorem 3.5 If there exists a (k + 1)-GDD of type kq (that is, a decomposition of Kk×q

into Kk+1’s), then there exists an optimal admissible partition of T2kq+1 for C =
k(k+1)

2 with
n(n−1)

2k ADMs.

Proof : The lower bounds follows from Theorem 3.1. For the upper bound, as we did
in Proposition 3.7 (case k = 2, C = 2), we replace each vertex i of Kk×q with two vertices
iA and iB, and add a new vertex ∞. We label the vertices of the obtained T2kq+1 with
∞, 1A, . . . , (kq)A, 1B, . . . , (kq)B. To each Kk+1 of the decomposition of Kk×q we associate a
T2×(k+1), which is an optimal digraph for C =

k(k+1)
2 with 2(k + 1) vertices and 2k(k + 1)

edges, hence attaining ρ(C) = k. So adding vertex ∞ to the stable sets of size 2k we obtain
a decomposition of T2kq+1 into q T2k+1’s (which are also optimal) and T2×(k+1)’s.

If Kk×q is decomposable into Kk+1’s, the number of Kk+1’s (and so the number of T2×(k+1)’s)
is kq(q−1)

k+1 . Therefore the total number of ADMs is q(2k + 1) + 2kq(q− 1) =
(2kq+1)2kq

2k =
n(n−1)

2k .
2

Note that a decomposition of Kk×q into Kk+1’s is equivalent to a decomposition of Kkq+1
into Kk+1’s by adding a new vertex ∞, that is, a (kq + 1, k + 1, 1)-BIBD. In particular, such
designs are known to exist if n is large enough and (kq + 1)kq ≡ 0 (mod k(k + 1)) [77]. For
example, for k = 3 and q ≡ 0 or 1 (mod 4), or k = 4 and q ≡ 0 or 1 (mod 5).

Corollary 3.1 mh
If C = 6 and n ≡ 1 or 7 (mod 24), A(6, n) =

n(n−1)
6 .

If C = 10 and n ≡ 1 or 9 (mod 40), A(10, n) =
n(n−1)

8 .

Corollary 3.2 For C ∈ {15, 21, 28, 36}, there exists a small set of values of n for which the
existence of a BIBD remains undecided (179 values overall, see [77, pages 73-74]). For
the values of n different from these undecided BIBDs, the following results apply.
If C = 15 and n ≡ 1 or 11 (mod 30), A(15, n) =

n(n−1)
10 .

If C = 21 and n ≡ 1 or 13 (mod 84), A(21, n) =
n(n−1)

12 .
If C = 28 and n ≡ 1 or 15 (mod 112), A(28, n) =

n(n−1)
14 .

If C = 36 and n ≡ 1 or 17 (mod 144), A(36, n) =
n(n−1)

16 .

Wilson proved [205] that for v large enough, Kv can be decomposed into subgraphs iso-
morphic to any given graph G, if the trivial necessary conditions about the degree and the
number of edges are satisfied. Thus, we can assure that optimal constructions exist when
C =

k(k+1)
2 for all k > 0.

Corollary 3.3 If C =
k(k+1)

2 , then A(C, n) =
n(n−1)

2k for n ≡ 1 or 2k + 1 (mod 4C) large
enough.

Chapter 3: Bidirectional WDM Rings 95

We can also use decompositions of Kp×q into Kk+1’s to get constructions asymptotically
optimal, but not attaining the lower bound like for C = 3. For instance, for C = 6 the
proof of Theorem 3.5 gives (without adding the vertex ∞) that for q ≡ 0 or 1 (mod 4) and
n ≡ 0 or 6 (mod 24),

A(6, 6q) ≤ qA(6, 6) + 6q(q − 1) = 6q2 =
n2

6
.

That might be an optimal value if we could improve the lower bound for C = 6 as we did
for C = 3 in Proposition 3.6, but the calculations become considerably more complicated.

Corollary 3.4 mh
For n ≡ 0 or 6 (mod 24), n(n−1)

6 ≤ A(6, n) ≤ n2

6 .
For n ≡ 0 or 8 (mod 40), n(n−1)

8 ≤ A(10, n) ≤ n2

8 .

For a general C of the form C =
k(k+1)

2 , the improved lower bound one could expect is n2

2k .

3.7 Unidirectional or Bidirectional Rings?

This section is devoted to compare unidirectional and bidirectional rings in terms of mini-
mizing electronics cost, when these rings are used in a WDM network with traffic grooming.
In [48] general lower bounds are given in unidirectional rings:

Auni(C, n) ≥
n(n − 1)

2
1

η(C)
,

where η(C) =

{ k−1
2 , if (k−1)k

2 ≤ C ≤ (k−1)(k+1)
2

C
k+1 , if (k−1)(k+1)

2 ≤ C ≤ k(k+1)
2

In this chapter we have provided a general lower bound for all values of C and n in
bidirectional rings (taking into account requests both clockwise and counterclockwise):

Abi(C, n) ≥
n(n − 1)

2
2k

(k − 1)k + r
,

where C = 1 + 2 + . . . + k − 1 + r =
(k−1)k

2 + r, with 0 ≤ r < k.

The first observation is that both bounds behave like
(
n
2

)
on n, and like 1√

C
on C. Fur-

thermore, the bounds coincide when C = (k − 1)k/2 for all k > 0. It is straightforward to
prove that for all other values of C the unidirectional ring bound is strictly larger. This is
what one can expect a priori, because the set of possible routings in a bidirectional ring
contains unidirectional routing as a particular case. In this chapter we have focused on
symmetric routing following a shortest path in the bidirectional ring, so this result gives
indeed important information. We depict both bounds in the first graph of Figure 3.7. In
this figure the bounds are normalized by n(n − 1)/2 and the horizontal axis is logarithmic

96 Traffic Grooming

on C. The solid (resp. dashed) line represents the bidirectional (resp. unidirectional)
bound.

A natural question is the following: does it exist a construction for bidirectional rings
with cost strictly smaller that the lower bound for unidirectional rings? Indeed, consider
C = 2, and then the ratio between both bounds is 12/11 = 1, 0909. That is, if we have an
α-approximation for bidirectional rings with α < 12/11, the cost of this solution is strictly
smaller than the lower bound for unidirectional rings. The 34/33-approximation provided
in Section 3.4.2 is such an example. Thus, we conclude that the cost in bidirectional rings
with shortest path routing, in terms of number of ADMs needed, can be strictly smaller
than the cost in unidirectional rings.

Because of Wilson’s theorem [205], both lower bounds are achieved for infinite values of
C and n. Thus, it makes sense to compare these bounds to infer which type of routing is
better in terms of electronics cost. Let us consider the ratio between both bounds, namely
A∗uni(C, n) and A∗bi(C, n). If (k−1)k

2 ≤ C ≤ (k−1)(k+1)
2 :

1 ≤
A∗uni(C, n)
A∗bi(C, n)

=
(k − 1)k + r

(k − 1)k
= 1 +

r
(k − 1)k

≤ 1 +
1
k

Finally, if (k−1)(k+1)
2 ≤ C ≤ k(k+1)

2 :

1 ≤
A∗uni(C, n)
A∗bi(C, n)

=
k + 1

C
(k − 1)k + r

2k
=

(
1 +

1
k

) (
1 −

r
2C

)
≤ 1 +

1
k

That is, in all cases we have that

1 ≤
A∗uni(C, n)
A∗bi(C, n)

≤ 1 +
1
k

(3.30)

From Equation (3.30) we conclude that

lim
C→∞

A∗uni(C, n)
A∗bi(C, n)

= 1, ∀ n > 0,

as we can see in the second graph of Figure 3.7.

Hence, for big values of n there is no real improvement in bidirectional rings, in terms of cost
of electronic switching. Is this conclusion surprising? In fact, our objective function it the
number of electronic terminations, that is, the number of ADMs. And, roughly speaking,
we need to place an ADM in a node when a request either originates or terminates,
regardless of routing. Thus, it is not that surprising that, asymptotically, bidirectional
routing does not improve unidirectional routing. Of course, there is a drawback when
using unidirectional rings. This drawback is the bandwidth utilization. Let us say that
a request routed along a path of length l uses l units of bandwidth. In the all-to-all
case, in a unidirectional ring on n nodes each pair of communicating nodes uses n units
of bandwidth, since the requests (i, j) and (j, i) are routed via disjoint paths. Thus, the
total bandwidth utilization is

(
n
2

)
· n, and the load of each link is n(n−1)

2 . On the other
hand, in a bidirectional ring it is easy to compute the load of a link, that turns out
to be n2−1

4 for n odd. That is, the bandwidth utilization is asymptotically twice better
in bidirectional rings. In conclusion, there is a trade-off between bandwidth utilization
(better in bidirectional rings) and technological simplicity (better in unidirectional rings).
But, concerning the electronics cost, both rings behave in a similar fashion.

Chapter 3: Bidirectional WDM Rings 97

Bidirectional Bound

Unidirectional Bound

1.5

3

0.5

log(C)

65

2.0

4

1.0

210

Ratio Unidirectional/Bidirectional Bounds

1.15

1.1

40

1.05

C

60

1.125

50

1.075

1.025

30

1.0

20100

Figure 3.7: Comparison of lower bounds for unidirectional and bidirectional rings.

3.8 Conclusions

In this chapter we studied the minimization of ADMs in optical WDM bidirectional ring
networks under the assumption of symmetric shortest path routing and all-to-all unitary
requests. We precisely formulated the problem in terms of graph decompositions, and
stated a general lower bound for all the values of C and n. We then studied extensively the
cases C = 2 and C = 3, providing improved lower bounds, optimal constructions for several
infinite families, as well as asymptotically optimal constructions and approximations. To
the best of our knowledge, these are the first optimal solutions in the literature for traffic
grooming in bidirectional rings. We then study the case C > 3, focusing specifically on the
case C = k(k + 1)/2 for some k ≥ 1. We gave optimal decompositions for several congruence
classes of n, using the existence of a certain combinatorial design. We concluded with a
comparison of the switching cost in unidirectional and bidirectional WDM rings.

Further research is needed to find new families of optimal solutions for other values of C.
The first step should be to improve the general lower bound for other values of C, namely,
finding a closed formula. It would be interesting to consider other kinds of routing in
bidirectional rings, not necessarily symmetric or using shortest paths. Stating which kind
of routing is the best for each value of n and C would be a nice result. Finally, studying
the traffic grooming problem using graph partitioning tools in other topologies, like trees
or hypercubes, would be also interesting.

Chapter 4

Two-period Grooming

In this chapter we study grooming for two-period optical networks, a variation
of the traffic grooming problem for WDM ring networks introduced by Colbourn,
Quattrocchi, and Syrotiuk [80, 81]. In the two-period grooming problem, during the
first period of time, there is all-to-all uniform traffic among n nodes, each request using
1/C of the bandwidth; and during the second period, there is all-to-all uniform traffic
only among a subset V of v nodes, each request now being allowed to use 1/C′ of the
bandwidth, where C′ < C. We determine the minimum drop cost (minimum number
of ADMs) for any n, v and C = 4 and C′ ∈ {1, 2, 3}. To do this, we use tools of graph
decompositions. Indeed the two-period grooming problem corresponds to minimizing
the total number of vertices in a partition of the edges of the complete graph Kn

into subgraphs, where each subgraph has at most C edges and where furthermore it
contains at most C′ edges of the complete graph on v specified vertices. Subject to the
condition that the two-period grooming has the least drop cost, the minimum number
of wavelengths required is also determined in each case.

Keywords: traffic grooming, SONET ADM, optical networks, graph decomposition,
design theory.

4.1 Introduction

In this chapter we deal with the traffic grooming problem for a unidirectional SONET ring
with n nodes, grooming ratio C, and all-to-all uniform unitary traffic. This problem has
been modeled as a graph partition problem in both [48] and [138]. In the all-to-all case
the set of requests is modeled by the complete graph Kn. To a wavelength λ is associated
a subgraph Bλ in which each edge corresponds to a pair of symmetric requests (that is, a
circle) and each node to an ADM. The grooming constraint, i.e., the fact that a wavelength
can carry at most C requests, corresponds to the fact that the number of edges |E(Bλ)| of
each subgraph Bλ is at most C. The cost corresponds to the total number of vertices used
in the subgraphs, and the objective is therefore to minimize this number.

99

100 Traffic Grooming

Traffic Grooming in Unidirectional Rings with All-to-all Traffic
Input: Two integers n and C.
Output: Partition E(Kn) into subgraphs Bλ, 1 ≤ λ ≤ Λ, s.t. |E(Bλ)| ≤ C for all λ.
Objective: Minimize

∑Λ
λ=1 |V(Bλ)|.

With the all-to-all set of requests, optimal constructions for a given grooming ratio C have
been obtained using tools of graph and design theory [77]. See Section II.3.2 (page 36) for
a survey of the results in unidirectional rings with all-to-all traffic. Graph decompositions
have been extensively studied for other reasons as well. See [62] for an excellent survey, [83]
for relevant material on designs with blocksize three, and [77] for terminology in design
theory.

Most of the papers on grooming deal with a single (static) traffic matrix. Some articles
consider variable (dynamic) traffic, such as finding a solution which works for the maximum
traffic demand [56, 210] or for all request graphs with a given maximum degree [C15,
C18], but all keep a fixed grooming factor. In [81] an interesting variation of the traffic
grooming problem, grooming for two-period optical networks, has been introduced in order
to capture some dynamic nature of the traffic. Informally, in the two-period grooming
problem each time period supports different traffic requirements. During the first period
of time there is all-to-all uniform traffic among n nodes, each request using 1/C of the
bandwidth; but during the second period there is all-to-all traffic only among a subset
V of v nodes, each request now being allowed to use a larger fraction of the bandwidth,
namely 1/C′ where C′ < C.

Denote by X the subset of n nodes. Therefore the two-period grooming problem can be
expressed as follows.

Two-Period Grooming in the Ring
Input: Four integers n, v, C, and C′.
Output: A partition (denoted N(n, v; C,C′)) of E(Kn) into subgraphs Bk, 1 ≤ λ ≤ Λ,

such that for all λ, |E(Bλ)| ≤ C, and |E(Bλ)∩ (V ×V)| ≤ C′, with V ⊆ X, |V | = v.
Objective: Minimize

∑Λ
λ=1 |V(Bλ)|.

Following [80], a grooming is denoted by N(n,C). When the grooming N(n,C) is optimal,
i.e., minimizes the total ADM cost, then the grooming is denoted by ON (n,C). Whether
general or optimal, the drop cost of a grooming is denoted by cost N(n,C) or cost ON (n,C),
respectively.

A grooming of a two-period network N(n, v; C,C′) with grooming ratios (C,C′) coincides
with a graph decomposition (X,B) of Kn (using standard design theory terminology, B is
the set of all the blocks of the decomposition) such that (X,B) is a grooming N(n,C) in the
first time period, and (X,B) faithfully embeds a graph decomposition of Kv such that (V,D)
is a grooming N(v,C′) in the second time period. Let V ⊆ X. The graph decomposition
(X,B) embeds the graph decomposition (V,D) if there is a mapping f : D → B such that D is
a subgraph of f (D) for every D ∈ D. If f is injective (i.e., one-to-one), then (X,B) faithfully
embeds (V,D). This concept of faithfully embedding has been explored in [79,180].

Chapter 4: Two-period Grooming 101

We use the notation ON (n, v; C,C′) to denote an optimal grooming N(n, v; C,C′).

As it turns out, an ON (n, v; C,C′) does not always coincide with an ON (n,C). Generally
we have cost ON (n, v; C,C′) ≥ cost ON (n,C) (see Examples 4.2 and 4.3). Of particular
interest is the case when cost ON (n, v; C,C′) = cost ON (n,C) (see Example 4.1).

Example 4.1 Let n = 7, v = 4, C = 4. Let V = {0, 1, 2, 3} and W = {a0, a1, a2}. An optimal
decomposition is given by the three triangles (a0, 0, 1), (a1, 1, 2), and (a2, 2, 3), and the three
4-cycles (0, 2, a0, a1), (0, 3, a0, a2), and (1, 3, a1, a2), giving a total cost of 21 ADMs.

This solution is valid and optimal for both C′ = 1 and C′ = 2, and it is optimal for the
classical Traffic Grooming in the Ring problem when n = 7 and C = 4. Therefore,
cost ON (7, 4; 4, 1) = cost ON (7, 4; 4, 2) = cost ON (7, 4) = 21.

Example 4.2 Let n = 7, v = 5, C = 4, and C′ = 2. Let V = {0, 1, 2, 3, 4} and W = {a0, a1}.
We see later that an optimal decomposition is given by the five kites (a0, 1, 2; 0), (a0, 3, 4; 1),
(a1, 1, 3; 2), (a1, 2, 4; 0) and (a0, a1, 0; 1), plus the edge {0, 3}, giving a total cost of 22 ADMs.
So cost ON (7, 5; 4, 2) = 22. Note that this decomposition is not a valid solution for C′ = 1,
since there are subgraphs containing more than one edge with both end-vertices in V.

Example 4.3 Let n = 7, v = 5, C = 4, and C′ = 1. Let again V = {0, 1, 2, 3, 4} and
W = {a0, a1}. We see later that an optimal decomposition is given by the four K3s (a0, 1, 2),
(a0, 3, 4), (a1, 0, 3), and (a1, 2, 4), the C4 (0, 1, a1, a0), plus the five edges {0, 4}, {1, 3}, {0, 2},
{1, 4}, and {2, 3}, giving a total cost of 26 ADMs. So cost ON (7, 5; 4, 1) = 26.

Colbourn, Quattrocchi, and Syrotiuk [80,81] completely solved the cases when C = 2 and
C = 3 (C′ = 1 or 2). In this chapter we determine the minimum drop cost of an N(n, v; 4,C′)
for all n ≥ v ≥ 0 and C′ ∈ {1, 2, 3}.

We are also interested in determining the minimum number of wavelengths, or wavecost,
required in an assignment of wavelengths to a decomposition. Among the ON (n, 4)s one
having the minimum wavecost is denoted by MON (n, 4), and the corresponding mini-
mum number of wavelengths by wavecostMON (n, 4). We characterize the ON (n, v; C,C′)
whose wavecost is minimum among all ON (n, v; C,C′)s, and which is denoted by
MON (n, v; C,C′); the wavecost is itself denoted by wavecostMON (n, v; C,C′).

We deal separately with each value of C′ ∈ {1, 2, 3}. Table 4.1 summarizes the cost formulas
for n = v + w > 4.

4.2 Preliminaries

We establish some notation to be used throughout the chapter. Kn denotes a com-
plete graph on n vertices and KX represents the complete graph on the vertex set X.
A triangle with edges {{x, y}, {x, z}, {y, z}} is denoted by (x, y, z). A 4-cycle with edges
{{x, y}, {y, z}, {z, u}, {u, x}} is denoted by (x, y, z, u). A kite with edges {{x, y}, {x, z}, {y, z}, {z, u}}
is denoted by (x, y, z; u). The groomings to be produced also employ paths; the path on k

102 Traffic Grooming

cost ON (v + w, v; 4, 1) =

(
v+w

2

)
if v ≤ w + 1(

v+w
2

)
+

(
v
2

)
−

⌊
vw
2

⌋
if v ≥ w + 1

cost ON (v+w, v; 4, 2) =

(
v+w

2

)
if v ≤ 2w(

v+w
2

)
+

⌈
1
2

(
v
2

)⌉
− vw

2 + δ if v > 2w and v even

where δ =

1 if w = 2, or

if w = 4 and
v ≡ 0 (mod 4)

0 otherwise(
v+w

2

)
+

⌈
1
2

((
v
2

)
− vw −

⌈
w
2

⌉)⌉
+ δ if v > 2w and v odd

where δ =

1 if w = 3 and

v ≡ 3 (mod 4)
0 otherwise

cost ON (v + w, v; 4, 3) =
(
v+w

2

)
Table 4.1: Cost formulas for n = v + w > 4.

Chapter 4: Two-period Grooming 103

vertices Pk is denoted by [x1, . . . , xk] when it contains edges {xi, xi+1} for 1 ≤ i < k. Now let
G = (X, E) be a graph. If |X| is even, a set of |X|/2 disjoint edges in E is a 1-factor; a parti-
tion of E into 1-factors is a 1-factorization. Similarly, if |X| is odd, a set of (|X|−1)/2 disjoint
edges in E is a near 1-factor; a partition of E into near 1-factors is a near 1-factorization.
We also employ well-known results on partial triple systems and group divisible designs
with block size three; see [83] for background.

The vertices of the set V are the integers modulo v denoted by 0, 1, . . . , v− 1. The vertices
not in V, that is in X \ V, forms the set W of size w = n − v and is denoted by a0, . . . , aw−1,
the indices being taken modulo w.

Among graphs with three or fewer edges (i.e., when C = 3),the only graph with the
minimum ratio (number of vertices over the number of edges) is the triangle. For C = 4
three different such graphs have minimum ratio 1: the triangle, the 4-cycle, and the kite.
This simplifies the problem substantially. Indeed, in contrast to the lower bounds in [81],
in this case the lower bounds arise from easy classification of the edges on V. We recall
the complete characterization for optimal groomings with a grooming ratio of four:

Theorem 4.1 [48, 151] cost ON (4, 4) = 7 and, for n ≥ 5, cost ON (n, 4) =
(
n
2

)
. Further-

more a MON (4, 4) employs two wavelengths and can be realized by a kite and a P3 (or a
K3 and a star), and a MON (n, 4), n ≥ 5, employs

⌈
n(n−1)

8

⌉
wavelengths and can be realized

by t K3s and
⌈

n(n−1)
8 − t

⌉
4-cycles or kites, where

t =

0 if n ≡ 0, 1 (mod 8)
1 if n ≡ 3, 6 (mod 8)
2 if n ≡ 4, 5 (mod 8)
3 if n ≡ 2, 7 (mod 8)

.

In order to unify the treatment of the lower bounds, in a decomposition N(v + w, v; 4,C′)
for C′ ∈ {1, 2}, we call an edge with both ends in V neutral if it appears in a triangle,
4-cycle, or kite; we call it positive otherwise. An edge with one end in V and one in W is
a cross edge.

Lemma 4.1 ng

1. In an N(v + w, v; 4,C′) with C′ ∈ {1, 2}, the number of neutral edges is at most 1
2C′vw.

2. When v is odd and C′ = 2, the number of neutral edges is at most vw − w
2 .

Proof : Every neutral edge appears in a subgraph having at least two cross edges. Thus
the number of subgraphs containing one or more neutral edges is at most 1

2 vw. Each can
contain at most C′ neutral edges, and hence there are at most 1

2C′vw neutral edges. This
proves the first statement.

Suppose now that C′ = 2 and v is odd. Any subgraph containing two neutral edges
employs exactly two cross edges incident to the same vertex in W. Thus the number α of
such subgraphs is at most 1

2 w(v− 1). Then remaining neutral edges must arise (if present)
in triangles, kites, or 4-cycles that again contain two cross edges but only one neutral edge;
their number, β, must satisfy β ≤ vw

2 − α. Therefore the number of neutral edges, 2α + β,
satisfies 2α + β ≤ 1

2 w(v − 1) + vw
2 = vw − w

2 . 2

104 Traffic Grooming

When C = 3 there are strong interactions among the decompositions placed on V, on W,
and on the cross edges [80,81]; fortunately here we shall see that the structure on V suffices
to determine the lower bounds. Because every N(v + w, v; 4,C′) is an N(v + w, v; 4,C′ + 1)
for 1 ≤ C′ ≤ 3, and N(v + w, v; 4, 4) coincides with N(v + w, 4), cost ON (v + w, v; 4, 1) ≥
cost ON (v + w, v; 4, 2) ≥ cost ON (v + w, v; 4, 3) ≥ cost ON (v + w, 4). We use these obvious
facts to establish lower and upper bounds without further comment.

4.3 Case C′ = 1

4.3.1 ON (n, v; 4, 1)

Theorem 4.2 Let n = v + w ≥ 5.

1. cost ON (v + w, v; 4, 1) = cost ON (v + w, 4) when v ≤ w + 1.

2. cost ON (v + w, v; 4, 1) =
(
v+w

2

)
+

(
v
2

)
− b vw

2 c when v ≥ w + 1.

Proof : To prove the lower bound, we establish that cost ON (v + w, v; 4, 1) ≥
(
v+w

2

)
+

(
v
2

)
−

b vw
2 c. It suffices to prove that the number of subgraphs employed in an N(v+w, v; 4, 1) other

than triangles, kites, and 4-cycles is at least d
(

v
2

)
− 1

2 vwe =
(

v
2

)
− b 1

2 vwc. By Lemma 4.1, this
is a lower bound on the number of positive edges in any such decomposition; because each
positive edge lies in a different subgraph of the decomposition, the lower bound follows.

Now we turn to the upper bounds. For the first statement, because an ON (v + w, v; 4, 1)
is also an ON (v + w, v − 1; 4, 1), it suffices to consider v ∈ {w,w + 1}. When v = w, write
v = 4s+ t with t ∈ {0, 3, 5, 6}. Form on V a complete multipartite graph with s classes of size
four and one class of size t. Replace edge e = {x, y} of this graph by the 4-cycle (x, y, ax, ay).
On {x1, . . . , x`, ax1 , . . . , ax` } whenever {x1, . . . , x`} forms a class of the multipartite graph,
place a decomposition that is optimal for drop cost and uses 4, 7, 12, and 17 wavelengths
when ` is 3, 4, 5, or 6, respectively (see Section 4.6.1).

Now let v = w + 1. Let V = {0, . . . , v − 1} and W = {a0, . . . , av−2}. Form triangles (i, i + 1, ai)
for 0 ≤ i < v − 1. Then form 4-cycles (i, j + 1, ai, a j) for 0 ≤ i < j ≤ v − 2.

Finally, suppose that v ≥ w + 2. When v is even, form a 1-factorization F0, . . . , Fv−2 on V.
For 0 ≤ i < w, let {ei j : 1 ≤ j ≤ v

2 } be the edges of Fi, and form triangles Ti j = {ai} ∪ ei j.
Now for 0 ≤ i < w; 1 ≤ j ≤ bw

2 c; and furthermore j , w
2 if i ≥ w

2 and w is even, adjoin edge
{ai, ai+ j mod w} to Ti j to form a kite. All edges of 1-factors {Fi : w ≤ i < v − 1} are taken as
K2s.

When v is odd, form a near 1-factorization F0, . . . , Fv−1 on V, in which Fv−1 contains the
edges {{2h, 2h + 1} : 0 ≤ h < v−1

2 }, and near 1-factor Fi misses vertex i for 0 ≤ i < v. Then
form 4-cycles (2h, 2h + 1, a2h+1, a2h) for 0 ≤ h < bw

2 c. For 0 ≤ i < w, let {ei j : 1 ≤ j ≤ v−1
2 } be

the edges of Fi, and form triangles Ti j = {ai} ∪ ei j. Without loss of generality we assume
that w−1 ∈ e01; when w is odd, adjoin {w−1, aw−1} to T01 to form a kite. Now for 0 ≤ i < w;
1 ≤ j ≤ bw

2 c; and furthermore j , w
2 if i ≥ w

2 and w is even and j , 1 if i = 2h for 0 ≤ h < bw
2 c,

adjoin edge {ai, ai+ j mod w} to Ti j to form a kite. All edges of near 1-factors {Fi : w ≤ i < v−1}
and the v−1

2 − b
w
2 c remaining edges of Fv−1 are taken as K2s.

Chapter 4: Two-period Grooming 105

When v ≥ w + 1, each subgraph contains exactly one edge on V and so their number is
(

v
2

)
.

This fact is later used to prove Theorem 4.4. 2

4.3.2 MON (n, v; 4, 1)

Theorem 4.3 Let v + w ≥ 5. For C′ = 1 and v ≤ w,

wavecost MON (v + w, v; 4, 1) = wavecost MON (v + w, 4).

Proof : We need only treat the cases when v ∈ {w,w − 1}; the case with v = w is
handled in the proof of Theorem 4.2. When v = w − 1, the argument is identical to that
proof, except that we choose v = 4s + t with t ∈ {0, 1, 2, 3} and place decompositions on
{x1, . . . , x`, ax1 , . . . , ax` , av} instead, with 1,3,6,9 wavelengths when ` = 1, 2, 3, 4 respectively
(see Section 4.6.2). 2

Theorem 4.4 When v > w,

wavecost MON (v + w, v; 4, 1) =

(
v
2

)
.

Proof : Since every edge on V appears on a different wavelength,
(

v
2

)
is a lower bound.

As noted in the proof of Theorem 4.2 the constructions given there meet this bound. 2

The solutions used from Theorem 4.2 are (essentially) the only ones to minimize the
number of graphs in an ON (v + w, v; 4, 1) with v > w. However, perhaps surprisingly they
are not the only ones to minimize the number of wavelengths. To see this, consider a
ON (v + w, v; 4, 1) with v > w > 2 from Theorem 4.2. Remove edges {a0, a1}, {a0, a2}, and
{a1, a2} from their kites, and form a triangle from them. This does not change the drop
cost, so the result is also an ON (v + w, v; 4, 1). It has one more graph than the original.
Despite this, it does not need an additional wavelength, since the triangle (a0, a1, a2) can
share a wavelength with an edge on V. In this case, while minimizing the number of
connected graphs serves to minimize the number of wavelengths, it is not the only way to
do so.

4.4 Case C′ = 2

4.4.1 ON (n, v; 4, 2)

Theorem 4.5 Let v + w ≥ 5 and v be even.

1. When v ≤ 2w, cost ON (v + w, v; 4, 2) = cost ON (v + w, 4).

2. When v ≥ 2w + 2, cost ON (v + w, v; 4, 2) =
(
v+w

2

)
+ d 1

2

(
v
2

)
e − vw

2 + δ, where δ = 1 if w = 4
or if w = 2 and v ≡ 0 (mod 4), and δ = 0 otherwise.

106 Traffic Grooming

Proof : By Lemma 4.1,
(

v
2

)
− vw is a lower bound on the number of positive edges in any

N(v + w, v; 4, 2); every subgraph of the decomposition containing a positive edge contains
at most two positive edges. So the number of subgraphs employed in an N(v + w, v; 4, 2)
other than triangles, kites, and 4-cycles is at least d 1

2

((
v
2

)
− vw

)
e. The lower bound follows

for w , 2, 4.

As in the proof of Lemma 4.1, denote by α (resp. β) the number of subgraphs containing
2 (resp 1) neutral edges and so at least two cross edges. We have 2α + β ≤ 2α + 2β ≤ vw.
Equality in the lower bound, when v ≡ 0 (mod 4), arises only when β = 0 and therefore
to meet the bound an ON (w, 4) must be placed on W implying that δ = 1 if w = 2 or 4.
When v ≡ 2 (mod 4), we can have 2α + β = vw − 1 and so β = 1. We can use an edge on W
in a graph with an edge on V. But when w = 4, the five edges that would remain on W
require drop cost 6, and so δ = 1.

Now we turn to the upper bounds. If w ≥ v − 1, apply Theorem 4.2. Suppose that
w ≤ v− 2. Let V = {0, . . . , 2t − 1} and W = {a0, . . . , aw−1}. Place an ON (w, 4) on W. Form a
1-factorization on V containing factors {F0, . . . , Fw−1,G0, . . . ,G2t−2−w} in which the last two
1-factors are {{2h, 2h + 1} : 0 ≤ h < t} and {{2h + 1, 2h + 2 mod 2t} : 0 ≤ h < t}, whose union is
a Hamilton cycle. For 0 ≤ i < w, form triangles Ti j by adding ai to each edge ei j ∈ Fi. For
0 ≤ i < min(w, 2t − 1 − w), observe that Hi = Fi ∪ Gi is a 2-factor containing even cycles.
Hence there is a bijection σ mapping edges of Fi to edges of Gi so that e and σ(e) share a
vertex. Adjoin edge σ(ei j) to the triangle Ti j to form a kite. In this way, all edges between
V and W appear in triangles or kites, and all edges on V are employed when v ≤ 2w. When
v ≥ 2w + 2, the edges remaining on V are those of the factors Gw, . . . ,Gv−2−w.

When v , 2w + 2, the union of these edges is connected because the union of the last
two is connected, and hence it can be partitioned into P3s (and one P2 when v ≡ 2
(mod 4)) [66, 207]. When w = 2 and v ≡ 2 (mod 4), the drop cost can be reduced by 1 as
follows. Let {x, y} be the P2 in the decomposition, and let {x, z} ∈ G0. Let T be the triangle
obtained by removing {x, z} from its kite. Add {a0, a1} to T to form a kite. Add the P3
[y, x, z]. In this way two isolated P2s are replaced by a P3, lowering the drop cost by 1.

When v = 2w + 2, we use a variant of this construction. Let R be a graph with vertex
set V that is isomorphic to v

4 K4s when v ≡ 0 (mod 4) and to v−6
4 K4s and one K3,3 when

v ≡ 2 (mod 4). Let F1, . . . , Fw−1,G1, . . . ,Gw−1 be the 1-factors of a 1-factorization of the
complement of R (one always exists [189]). Proceed as above to form kites using ai for
1 ≤ i < w and the edges of Fi and Gi. For each K4 of R with vertices {p, q, r, s}, form kites
(a0, q, p; r) and (a0, r, s; p). Then add the P3 [r, q, s]. If R contains a K3,3 with bipartition
{{p, q, r}, {s, t, u}}, add kites (a0, s, p; t), (a0, q, t; r), and (a0, r, u; p). What remains is the P4
[r, s; q, u], which can be partitioned into a P2 and a P3. 2

In order to treat the odd case, we establish an easy preliminary result:

Lemma 4.2 Let w > 3 be a positive integer. The graph on w vertices containing all edges
except for bw

2 c disjoint edges (i.e., Kw \ b
w
2 cK2) can be partitioned into

1. 4-cycles when w is even;

2. kites and 4-cycles when w ≡ 1 (mod 4); and

3. kites, 4-cycles, and exactly two triangles when w ≡ 3 (mod 4).

Chapter 4: Two-period Grooming 107

Proof : Let W = {a0, . . . , aw−1}. When w is even, form 4-cycles {(a2i, a2 j, a2i+1, a2 j+1) : 0 ≤
i < j < w

2 } leaving uncovered the w
2 edges {a2i, a2i+1}. (This is also a consequence of a much

more general result in [129].)

When w is odd, the proof is by induction on w by adding four new vertices. So we provide
two base cases for the induction to cover all odd values of w.

For w = 5, K5 \ {{a0, a1}, {a2, a3}} can be partitioned into the two kites (a2, a4, a0; a3) and
(a3, a4, a1; a2).

For w = 7, K7 \ {{a0, a1}, {a2, a3}, {a4, a5}} can be partitioned into the kites (a3, a6, a0; a5),
(a1, a6, a4; a3) and (a5, a6, a2; a1), and the K3s (a0, a2, a4) and (a1, a3, a5).

By induction consider an optimal decomposition of Kw − F, with F = {{a2h, a2h+1} :
0 ≤ h < w−1

2 }. Add four vertices aw, aw+1, aw+2, aw+3. Add the C4s (a2h, aw, a2h+1, aw+1)
and (a2h, aw+2, a2h+1, aw+3) where 0 ≤ h < w−1

2 . Cover the edges of the K5 on
{aw−1, aw, aw+1, aw+2, aw+3} minus the edges {aw−1, aw} and {aw+1, aw+2}, using two kites as
shown for the case when w = 5. 2

Theorem 4.6 Let v + w ≥ 5 and v be odd.

1. When v ≤ 2w − 1, cost ON (v + w, v; 4, 2) = cost ON (v + w, 4).

2. When v ≥ 2w + 1, cost ON (v + w, v; 4, 2) =
(
v+w

2

)
+ d 1

2

((
v
2

)
− vw + dw

2 e
)
e+ δ, where δ = 1

if w = 3 and v ≡ 3 (mod 4), 0 otherwise.

Proof : To prove the lower bound, it suffices to prove that the number of sub-
graphs employed in an N(v + w, v; 4, 2) other than triangles, kites, and 4-cycles is at least
d 1

2

((
v
2

)
− vw + dw

2 e
)
e. As in the proof of Theorem 4.5, this follows from Lemma 4.1. When

w = 3 and v ≡ 3 (mod 4), at least
(

v
2

)
− 3v + 2 edges are positive, an even number. To meet

the bound, exactly one cross edge remains and exactly two edges on W remain. These
necessitate a further graph that is not a triangle, kite, or 4-cycle.

Now we turn to the upper bounds. By Theorem 4.5, cost ON ((v + 1) + (w−1), v + 1; 4, 2) =

cost ON (v + w, 4) when v ≤ 2w − 3. So suppose that v ≥ 2w − 1. Write v = 2t + 1.

When w = t + 1, form a near 1-factorization on V consisting of 2t + 1 near 1-factors,
F0, . . . , Ft, G0, . . . ,Gt−1. Without loss of generality, Fi misses vertex i for 0 ≤ i ≤ t, and Ft

contains the edges {{k, t + k + 1} : 0 ≤ k < t}. The union of any two near 1-factors contains a
nonnegative number of even cycles and a path with an even number of edges. For 0 ≤ i ≤ t,
form triangles Ti j by adding ai to each edge ei j ∈ Fi. As in the proof of Theorem 4.5, for
0 ≤ i < t, use the edges of Gi to convert every triangle Ti j into a kite. Then add edge {i, ai}

to triangle Tti constructed from edge {i, t + 1 + i}. What remains is the single edge {t, at}

together with all edges on W.

When w < {2, 4}, place an ON (w, 4) on W of cost
(
w
2

)
so that at appears in a triangle in the

decomposition, and use the edge {t, at} to convert this to a kite. We use a decomposition
having 1 ≤ δ ≤ 4 triangles, therefore getting a solution with at most 3 triangles. Such a
decomposition exists by Theorem 4.1 if w . 0, 1 (mod 8). If w ≡ 0, 1 (mod 8) we build a
solution using 4 triangles as follows. If w ≡ 1 (mod 8), form an ON (w − 2, 4) on vertices

108 Traffic Grooming

{0, . . . ,w − 3} with 3 triangles. Add the triangle (w − 3,w − 2,w − 1) and the 4-cycles
{(2h,w − 2, 2h + 1,w − 1) : 0 ≤ h < w−3

2 }. For w = 8 a solution with 4 triangles is given in
Section 4.6.3. In general, for w ≡ 0 (mod 8), form an ON (w−8, 4) on vertices {0, . . . ,w−9}
with 4 triangles. Add the 4-cycles {(2h,w − 2 j, 2h + 1,w − 2 j + 1) : 0 ≤ h < w−8

2 }; 1 ≤ j ≤ 4
and an ON (8, 4) without triangles on the 8 vertices {w − 8, . . . ,w − 1}.

Two values for w remain. When w = 2, an ON (5, 3; 4, 1) is also an ON (5, 3; 4, 2). The
case when v = 7 and w = 4 is given in Section 4.6.3. The solution given has only 1 triangle.

Henceforth w ≤ t. For t > 2, form a near 1-factorization {F0, . . . , Fw−1,G0, . . . ,G2t−1−w} of
Kv \ Ct, where Ct is the t-cycle on (0, 1, . . . , t − 1); such a factorization exists [179]. Name
the factors so that the missing vertex in Fi is bi/2c for 0 ≤ i < w (this can be done, as
every vertex i satisfying 0 ≤ i < t is the missing vertex in two of the near 1-factors).
Form triangles using F0, . . . , Fw−1 and convert to kites using G0, . . . ,Gw−1 as before. There
remain 2(t − w) near 1-factors Gw, . . . ,G2t−1−w. For 0 ≤ h < t − w, Gw+2h ∪Gw+2h+1 contains
even cycles and an even path, and so partitions into P3s. Then the edges remaining are
(1) the edges of the t-cycle; (2) the edges {{bi/2c, ai} : 0 ≤ i < w}; and (3) all edges on W.
For 0 ≤ i < bw

2 c, form triangle (i, a2i, a2i+1) and add edge {i, i + 1} to convert it to a kite.
Edges {{i, i + 1 mod t} : bw

2 c ≤ i < t} of the cycle remain from (1); edge {w−1
2 , aw−1} remains

when w is odd, and no edge remains when w is even, from (2); and all edges excepting a
set of bw

2 c disjoint edges on W remain.

When w , 3, we partition the remaining edges in (1) (which form a path of length t−bw
2 c),

into P3s when t − bw
2 c is even, and into P3s and the P2 {0, t − 1} when t − bw

2 c is odd. We
adjoin edge {w−1

2 , aw−1} to the P3 (from the t-cycle) containing the vertex w−1
2 to form a P4.

Finally, we apply Lemma 4.2 to exhaust the remaining edges on W.

When w = 3, the remaining edges are those of the path [0, t− 1, t− 2, . . . , 2, 1, a2] and edges
{{a2, a0}, {a2, a1}}. Include {{1, 2}, {1, a2}, {a2, a0}, {a2, a1}} in the decomposition, and partition
the remainder into P3s and, when v ≡ 3 (mod 4), one P2 {0, t − 1}.

The case when t = 2 is done in Example 4.2 (the construction is exactly that given above,
except that we start with a near 1-factorization of K5 \ {{0, 1}, {0, 3}}). 2

4.4.2 MON (n, v; 4, 2)

Theorem 4.7 For C′ = 2 and v ≤ 2w,

wavecost MON (v + w, v; 4, 2) = wavecost MON (v + w, 4).

Proof : It suffices to prove the statement for v ∈ {2w − 2, 2w − 1, 2w}. When v = 2w − 1,
apply the construction given in the proof of Theorem 4.6, where we noted that there are
at most 3 triangles. The proof of Theorem 4.6 provides explicit solutions when w ∈ {2, 4}.

Now suppose that v = 2w. In the proof of Theorem 4.5, v
2 = w triangles containing one

edge on V and two edges between a vertex of V and aw−1 remain. Then convert w − 1
triangles to kites using edges on W incident to aw−1. That leaves one triangle. When the
remaining edges on the w − 1 vertices of W support a MON (w − 1, 4) that contains at
most two triangles, we are done. It remains to treat the cases when w−1 ≡ 2, 7 (mod 8) or

Chapter 4: Two-period Grooming 109

w− 1 = 4.For the first case, let x be one vertex of the triangle left containing aw−1, namely
(aw−1, x, y). Consider the pendant edge {x, t} ∈ Gw−2 used in a kite containing aw−2. Delete
{x, t} from this kite and adjoin {aw−3, aw−2} to the unique triangle so formed forming another
kite. Finally adjoin {x, t} to the triangle (aw−1, x, y). Proceed as before, but partition all
edges on {a0, . . . , aw−2} except edge {aw−3, aw−2} into 4-cycles and kites. The case when
w − 1 = 4 is similar, but we leave three of the triangles arising from Fw−1 and partition
K5 \ P3 into two kites.

Now suppose that v = 2w − 2. We do a construction similar to that above. In the proof of
Theorem 4.5, there remain 3 v

2 = 3(w − 1) triangles joining aw−3 (resp. aw−2, aw−1) to Fw−3
(resp. Fw−2, Fw−1). Then convert the w − 1 triangles containing aw−1 to kites using edges
on W incident to aw−1, w−2 triangles containing aw−2 to kites using the remaining edges on
W incident to aw−2, and w− 3 triangles containing aw−3 to kites using edges on W incident
to aw−3. That leaves three triangles. So, if w− 3 ≡ 0, 1 (mod 8) we are done. Otherwise, as
above, choose in each of the three remaining triangles vertices x1, x2, x3; consider the edges
{x1, t1} (resp. {x2, t2}) appearing in the kites containing aw−4 and x1 (resp. aw−4 and x2), and
the edge {x3, t3} in the kite containing aw−5 and x3. Delete these edges and adjoin them to
the three remaining triangles. Finally adjoin the edges {aw−4, aw−5} and {aw−4, aw−6} to the
two triangles obtained from the two kites containing aw−4, and adjoin the edge {aw−5, aw−6}

to the triangle obtained from the kite containing aw−5. Proceed as before, but partition
all edges on {a0, . . . , aw−4} except the triangle (aw−6, aw−5, aw−4) into 4-cycles and kites. 2

Theorem 4.8 1. When v > 2w is even,

wavecost MON (v + w, v; 4, 2) =

⌈(
2
(
v
2

)
+

(
w
2

))
/4

⌉
.

2. When v > 2w is odd,

wavecost MON (v + w, v; 4, 2) =

⌈(
2
(
v
2

)
+

(w − 1)(w + 1)
2

)
/4

⌉
.

Proof : First we treat the case when v is even. Then (by Theorem 4.5) an ON (v+w, v; 4, 2)
must employ vw or vw − 1 neutral edges, using all vw edges between V and W. Each such
graph uses two edges on V and none on W, except that a single graph may use one on
V and one on W. Now the edges of V must appear on d 1

2

(
v
2

)
e different wavelengths, and

these wavelengths use at most one edge on W (when v ≡ 2 (mod 4)). Thus at least d
(
w
2

)
/4e

additional wavelengths are needed when v ≡ 0 (mod 4), for a total of d
(

v
2

)
/2 +

(
w
2

)
/4e. When

v ≡ 2 (mod 4), at least d(
(
w
2

)
− 1)/4e additional wavelengths are needed; again the total is

d
(

v
2

)
/2 +

(
w
2

)
/4e. Theorem 4.5 realizes this bound.

When v is odd, first suppose that w is even. In order to realize the bound of Theorem
4.6 for drop cost, by Lemma 4.1, w

2 neutral edges appear in subgraphs with one neutral
edge and all other neutral edges appear in subgraphs with two. In both cases, two edges
between V and W are consumed by such a subgraph. When two neutral edges are used,
no edge on W can be used ; when one neutral edge is used, one edge on W can also be

110 Traffic Grooming

used. It follows that the number of wavelengths is at least 1
2 (

(
v
2

)
− w

2) + w
2 + 1

4 (
(
w
2

)
− w

2). This
establishes the lower bound. The case when w is odd is similar. The proof of Theorem
4.6 gives constructions with at most 3 triangles and so establishes the upper bound except
when v ≡ 1 (mod 4) and w ≡ 3 (mod 4), w , 3, where the construction employs one more
graph than the number of wavelengths permitted. However, one graph included is the P2
{0, t − 1}, and in the decomposition on W, there is a triangle. These can be placed on the
same wavelength to realize the bound. 2

When v ≡ 1 (mod 4) and w ≡ 3 (mod 4), w , 3, we place a disconnected graph, P2 ∪ K3,
on one wavelength in order to meet the bound. The construction of Theorem 4.6 could be
modified to avoid this by instead using a decomposition of Kw \ (K3 ∪

w−3
2 K2) into 4-cycles

and kites, and using the strategy used in the case for w = 3. In this way, one could prove
the slightly stronger result that the number of (connected) subgraphs in the decomposition
matches the lower bound on number of wavelengths needed.

In Theorem 4.4, the number of wavelengths and the drop cost are minimized simulta-
neously by the constructions given; each constructed ON (v + w, v; 4, 1) has not only the
minimum drop cost but also the minimum number of wavelengths over all N(v+w, v; 4, 1)s.
This is not the case in Theorem 4.8. For example, when v > (1 +

√
2)w, it is easy to

construct an N(v + w, v; 4, 2) that employs only d
(

v
2

)
/2e wavelengths, which is often much

less than are used in Theorem 4.8. We emphasize therefore that a MON (v + w, v; 4, 2)
minimizes the number of wavelengths over all ON (v + w, v; 4, 2)s, not necessarily over all
N(v + w, v; 4, 2)s.

4.5 Case C′ = 3

4.5.1 ON (n, v; 4, 3)

Theorem 4.9 Let v + w ≥ 5.

1. When w ≥ 1, cost ON (v + w, v; 4, 3) = cost ON (v + w, 4).

2. cost ON (v + 0, v; 4, 3) = cost ON (v, 3).

Proof : The second statement is trivial. Moreover cost ON (n, 4) = cost ON (n, 3) when
n ≡ 1, 3 (mod 6), and hence the first statement holds when v + w ≡ 1, 3 (mod 6). To
complete the proof it suffices to treat the upper bound when w = 1.

When v + 1 ≡ 5 (mod 6), there is a maximal partial triple system (X,B) with |X| = v + 1
covering all edges except those in the 4-cycle (r, x, y, z). Set W = {r}, V = X \W, and add
the 4-cycle to the decomposition to obtain an ON (v + 1, v; 4, 3).

When v ≡ 1, 5 (mod 6), set ` = v − 1 and when v ≡ 3 (mod 6) set ` = v − 3. Then ` is even.
Form a maximal partial triple system (V,B), |V | = v, covering all edges except those in an
`-cycle (0, 1, . . . , ` − 1) [82]. Add a vertex a0 and form kites (a0, 2i, 2i + 1; (2i + 2) mod `) for
0 ≤ i < `

2 . For i ∈ {`, . . . , v − 1}, choose a triple Bi ∈ B so that i ∈ Bi and Bi = B j only if
i = j. Add {a0, i} to Bi to form a kite. This yields an ON (v + 1, v; 4, 3). 2

Chapter 4: Two-period Grooming 111

4.5.2 MON (n, v; 4, 3)

We focus first on lower bounds in Section 4.5.2 and then we provide constructions attaining
these lower bounds in Section 4.5.2.

Lower Bounds

When C′ = 3, Theorem 4.9 makes no attempt to minimize the number of wavelengths. We
focus on this case here. Except when n ∈ {2, 4} or v = n, cost ON (n, v; 4, 3) =

(
n
2

)
, and every

graph in an ON (n, v; 4, 3) is a triangle, kite, or 4-cycle. Let δ, κ, and γ denote the numbers
of triangles, kites, and 4-cycles in the grooming, respectively. Then 3δ + 4κ + 4γ =

(
n
2

)
,

and the number of wavelengths is δ + κ + γ. Thus in order to minimize the number of
wavelengths, we must minimize the number δ of triangles. We focus on this equivalent
problem henceforth.

In an ON (n, v; 4, 3), for 0 ≤ i ≤ 3 and 0 ≤ j ≤ 4, let δi j, κi j, and γi j denote the number of
triangles, kites, and 4-cycles, respectively, each having i edges on V and j edges between
V and W. The only counts that can be nonzero are δ00, δ02, δ12, δ30; κ00, κ01, κ02, κ03,
κ12, κ13, κ22, κ31; γ00, γ02, γ04, γ12, γ22. We write σi j = κi j + γi j when we do not need to
distinguish kites and 4-cycles. Our objective is to minimize δ00 + δ02 + δ12 + δ30 subject to
certain constraints; we adopt the strategy of [81] and treat this as a linear program.

Let ε = 0 when v ≡ 1, 3 (mod 6), ε = 2 when v ≡ 5 (mod 6), and ε = v
2 when v ≡ 0 (mod 2).

We specify the linear program in Figure 4.1. The first row lists the primal variables. The
second lists coefficients of the objective function to be minimized. The remainder list the
coefficients of linear inequalities, with the final column providing the lower bound on the
linear combination specified. The first inequality states that the number of edges on V
used is at least the total number on V, while the second specifies that the number of edges
used between V and W is at most the total number between V and W. For the third, when
v ≡ 5 (mod 6) at least four edges on V are not in triangles, and so at least two graphs
containing edges of V do not have a triangle on V; when v ≡ 0 (mod 2) every graph can
induce at most two odd degree vertices on V, yet all are odd in the decomposition.

δ30 δ12 δ02 δ00 κ31 σ22 κ13 σ12 γ04 κ03 σ02 κ01 σ00

1 1 1 1 0 0 0 0 0 0 0 0 0
3 1 0 0 3 2 1 1 0 0 0 0 0

(
v
2

)
0 -2 -2 0 -1 -2 -3 -2 -4 -3 -2 -1 0 −vw
0 1 0 0 0 1 1 1 0 0 0 0 0 ε

Figure 4.1: The linear program for ON (n, v; 4, 3).

We do not solve this linear program. Rather we derive lower bounds by considering its
dual. Let y1, y2, and y3 be the dual variables. A dual feasible solution has y1 = 1

3 , y2 = 1,
and y3 = 4

3 , yielding a dual objective function value of 1
6 v(v − 1) − vw + 4

3ε. Recall that
every dual feasible solution gives a lower bound on all primal feasible solutions

112 Traffic Grooming

On the other hand, 3δ ≡
(
n
2

)
(mod 4) and so δ ≡ 9δ ≡ 3

(
n
2

)
(mod 4). The value of 3

(
n
2

)
(mod 4) is in fact the value of t given in Theorem 4.1. Therefore if x is a lower bound on δ

in an ON (n, v; 4, 3), so is 〈x〉n, where 〈x〉n denotes the smallest nonnegative integer x such
that x ≥ x and x ≡ 3

(
n
2

)
(mod 4).

The discussion above proves the general lower bound on the number of triangles:

Theorem 4.10 Let v + w ≥ 5, and let

L(v,w) =

1
6 v(v − 1) − vw if v ≡ 1, 3 (mod 6)

1
6 v(v − 1) − vw + 8

3 if v ≡ 5 (mod 6)
1
6 v(v + 3) − vw if v ≡ 0 (mod 2)

Then the number of triangles in an ON (v + w, v; 4, 3) is at least

δmin(v,w) = 〈L(v,w)〉v+w

Remark 4.1 In particular, if v is odd and w ≥ d v−1
6 e or if v is even and w ≥ d v−4

6 e, then
L(v,w) ≤ 0 and the minimum number of triangles is δmin(v,w) = 〈0〉v+w ≤ 3.

Upper Bounds

We first state two simple lemmas to be used intensively in the proof of Theorem 4.11. The
following result shows that in fact we do not need to check exactly that the number of
triangles of an optimal construction meets the bound of Theorem 4.10.

Lemma 4.3 Any ON (v + w, v; 4, 3) is a MON (v + w, v; 4, 3) if the number of triangles
that it contains is at most max(3, dL(v,w)e + 3).

Proof : In the closed interval [dL(v,w)e, dL(v,w)e+3] there is exactly one integer congruent
to 3

(
n
2

)
(mod 4), and so necessarily exactly one integer equal to δmin(v,w). 2

Combining Remark 4.1 and Lemma 4.3 we deduce that when v is odd and w ≥ d v−1
6 e or

if v is even and w ≥ d v−4
6 e, to prove the optimality of a construction it is enough to check

that there are at most three triangles.

As a prelude to the constructions, let (V,B) be a partial triple system, V = {0, . . . , v − 1},
and B = {B1, . . . , Bb}. Let ri be the number of blocks of B that contain i ∈ V. A headset is
a multiset S = {s1, . . . , sb} so that sk ∈ Bk for 1 ≤ k ≤ b, and for 0 ≤ i ≤ v − 1 the number of
occurrences of i in S is b ri

3 c or d ri
3 e.

Lemma 4.4 Every partial triple system has a headset.

Proof : Form a bipartite graph Γ with vertex set V ∪ B, and an edge {v, B} for v ∈ V
and B ∈ B if and only if v ∈ B. The graph Γ admits an equitable 3-edge-colouring [91];
that is, the edges can be coloured green, white, and red so that every vertex of degree d is
incident with either bd/3c or dd/3e edges of each colour. Then for 1 ≤ k ≤ b, Bk is incident
to exactly three edges, and hence to exactly one edge {ik, Bk} that is green; set sk = ik.
Then (s1, . . . , sb) forms the headset. 2

Chapter 4: Two-period Grooming 113

Theorem 4.11 Let v + w ≥ 5. When w ≥ 1,

wavecost MON (v + w, v; 4, 3) =

⌈((
v + w

2

)
+ δmin(v,w)

)
/4

⌉
.

Proof : The lower bound follows from Theorem 4.10, so we focus on the upper bound.

When w ≥ 1, an ON (v + w, v; 4, 3) of cost
(
v+w

2

)
is an ON (v + w, v − 1; 4, 3). Let us show

that it suffices to prove the statement for w ≤ v+9
6 when v is odd, and for w ≤ v+4

6 when v
is even. Equivalently, we show that if it is true for these values of w, then it follows for
any w. Note that δmin(v,w) ≤ 3 if δmin(v + 1,w − 1) ≤ 3.

Indeed, let v be even. If w = b v+4
6 c + 1, the result follows from the case for v + 1 (odd) and

w − 1 = b v+4
6 c ≤

v+1+9
6 , in which case δmin(v + 1,w − 1) = 〈0〉v+w. If w = b v+4

6 c + 2 it follows
from the case for v + 1 (odd) and w − 1 = b v+4

6 c + 1 ≤ v+1+9
6 , and δmin(v + 1,w − 1) = 〈0〉v+w.

If w ≥ b v+4
6 c + 3 it follows from the case for v + 2 (even) and w − 2.

Let v be odd. If w = b v+9
6 c+ 1 it follows from the case for v + 1 (even) and w− 1, which has

been already proved (in this case also δmin(v + 1,w− 1) = 〈0〉v+w). If w ≥ b v+9
6 c+ 2 it follows

from the case for v + 2 (odd) and w − 2.

In each case, we use the same general prescription. Given a partial triple system (V,B),
a headset S = {s1, . . . , sb} is formed using Lemma 4.4. Add vertices W = {a0, . . . , aw−1}, a
set disjoint from V of size w ≥ 1. For each i let Di be a subset of {0, . . . ,w − 1}, which
is specified for each subcase, and that satisfies the following property: |Di| is at most the
number of occurrences of i in the headset S . Among the blocks Bk such that sk = i, we
choose |Di| of them, namely the subset {B j

k : j ∈ Di}, and form |Di| kites by adding for each
j ∈ Di the edge {a j, i} to the block B j

k.

The idea behind the construction is that if we can choose |Di| = w, we use all the edges
between V and W leaving a minimum number of triangles in the partition of V (see Case
O1a). Unfortunately it is not always possible to choose |Di| = w, in particular when w is
greater than the number of occurrences of i in the headset. So we distinguish different
cases:

Case O1a. v = 6t + 1 or 6t + 3 and w ≤ v−1
6 . Let (V,B) be a Steiner triple system.

For 0 ≤ i < v, let Di = {0, . . . ,w − 1}. Apply the general prescription. If v = 6t + 1, i
appears t times in S and w ≤ v−1

6 = t. If v = 6t + 3, i appears t or t + 1 times in S
and w ≤ t. In both cases |Di| is at most the number of occurrences of i in S , so the
construction applies and all the edges between V and W are used in the kites. All the
edges on V are used and v(v−1)

6 − vw triangles remain. Finally, it remains to partition
the edges of W. When w < {2, 4}, form a MON (w, 4) on W, and doing so we have
at most δmin triangles. If w = 2 or w = 4 remove edges {a0, 0} and {a1, 0} from their
kites and partition KW together with these edges into a triangle (w = 2) or two kites (w = 4).

Case O1b. v = 6t + 5 and w ≤ v−1
6 . Form a partial triple system (V,B) covering all

edges except those in the C4 (0, 1, 2, 3). For 0 ≤ i ≤ 3, let Di = {0, . . . ,w − 2} and for
4 ≤ i < v Di = {0, . . . ,w − 1}. Apply the general prescription. Add the kites (aw−1, 1, 2; 3)

114 Traffic Grooming

and (aw−1, 3, 0; 1). Here again i appears at least t times in S and w ≤ t. So Di is at most
the number of occurrences of i in S . Again we have used all the edges on V and all the
edges between V and W. It remains to partition the edges of W, and this can be done as
in the Case O1a.

Case O2. v = 6t + 3 and w = t + 1, v > 3. Form a partial triple system covering all edges
except those on the v-cycle {{i, (i + 1) mod v} : 0 ≤ i < v} [82]. Set Di = {1, . . . ,w − 1} for all
i. Apply the general prescription. Adjoin edges from a0 to a partition of the cycle, minus
edge {0, v− 1}, into P3s. The only edge between V and W that remains is {a0, v− 1}. When
an ON (w, 4) exists having 1, 2, 3, or 4 triangles, this edge is used to convert a triangle to
a kite. This handles all cases except when w ∈ {2, 4}. In these cases, remove the pendant
edge {a1, v − 1} from its kite. When w = 2, {a0, a1, v − 1} forms a triangle. When w = 4,
partition the edges on W together with {a0, v − 1} and {a1, v − 1} into two kites.

Case O3. v = 6t + 1 and w = t + 1.

When t = 1, a MON (7 + 2, 7; 4, 3) has B = {(0, a1, a0; 6), (2, 0, 6; a1), (3, 0, 4; a1), (1, 0, 5; a1),
(3, 6, 5; a0), (4, 6, 1; a1), (3, 2, 1; a0), (5, 2, 4; a0), (a0, 2, a1, 3)}.

A solution with t = 2 is given in Section 4.6.4.

When t ≥ 3, form a 3-GDD of type 6t with groups {{6p + q : 0 ≤ q < 6} : 0 ≤ p < t}. Let
D6p+q = {0, . . . ,w − 2} \ {p} for 0 ≤ p < t and 0 ≤ q < 6. Apply the general prescription. For
0 ≤ p < t, on {6p + q : 0 ≤ q < 6} ∪ {v − 1} ∪ {aw−1, ap} place a MON (7 + 2, 7; 4, 3) obtained
from the solution B for t = 1, by replacing q by 6p + q : 0 ≤ q < 6, 6 by v − 1 a0 by aw−1
and a1 by ap; then omit the kite (ap, 6p, aw−1; v − 1). All edges on W remain; the edges
{aw−1, 6p} and {ap, 6p} remain for 0 ≤ p < t, and the edge {aw−1, v − 1} remains.

Add the kites (aw−2, 6(w − 2), aw−1; v − 1) and for 0 ≤ j < w − 2 = t − 1 (6 j, aw−1, a j; aw−2). If
w − 2 < {2, 4}, that is t < {3, 5}, place a MON (w − 2, 4) on W − aw−2 − aw−1. Note that, as
3
(
w−2

2

)
≡ 3

(
v+w

2

)
(mod 4), we have the right number of triangles (at most 3). If w− 2 ∈ {2, 4}

remove edges {a0,w − 2} and {a1,w − 2} from their kites, and partition Kw together with
these edges.

Case O4. v = 6t + 5 and w = t + 1.

For t = 0, a MON (5 + 1, 5; 4, 3) has kites (3, a0, 0; 1), (1, a0, 2; 3), (1, 3, 4; a0), and triangle
(0, 2, 4).

For t = 1, let V = {0, . . . , 10} and W = {a0, a1}. A MON (11 + 2, 11; 4, 3) is formed
by using an MON (5 + 1, 5; 4, 3) on {0, 1, 2, 3, 4} ∪ {a0}, and a partition of the remaining
edges, denoted by Q, into 15 kites and a triangle. So we have two triangles, attaining
δmin(11, 2) as 13 ≡ 5 (mod 8). The partition of Q is as follows: the triangle (a0, a1, 10) and
the kites (0, 6, 5; a0), (1, 8, 6; a0), (2, 9, 7; a0), (3, 10, 8; a0), (4, 6, 9; a0), (8, 9, 0; a1), (5, 7, 1; a1),
(5, 8, 2; a1), (6, 7, 3; a1), (5, 10, 4; a1), (3, 9, 5; a1), (2, 10, 6; a1), (0, 10, 7; a1), (4, 7, 8; a1), and
(1, 10, 9; a1).

For t = 2, a MON (17 + 3, 17; 4, 3) is given in Section 4.6.4.

Chapter 4: Two-period Grooming 115

For t ≥ 3, form a 3-GDD of type 6t with groups {{6p + q : 0 ≤ q < 6} : 0 ≤ p < t}. Let
D6p+q = {0, . . . ,w − 2} \ {p} for 0 ≤ p < t and 0 ≤ q < 6. Apply the general prescription.
There remain uncovered for each p the edges of the set Qp obtained from the complete
graph on the set of vertices {6p + q : 0 ≤ q < 6} ∪ {v − 5, v − 4, v − 3, v − 2, v − 1} ∪ {aw−1, ap}

minus the complete graph on {v − 5, v − 4, v − 3, v − 2, v − 1} ∪ {aw−1}.

To deal with the edges of Qp, we start from a partition of Q, where we replace pendant
edges in kites as follows: replace {a1, 4} by {a1, 10}, {a0, 8} by {a0, 10}, and {a1, 2} by {a0, 8}.
We delete the triangle (a0, a1, 10), resulting in a new partition of Q into 15 kites and the 3
edges {a0, a1}, {a1, 2}, and {a1, 4}. Then we obtain a partition of Qp by replacing {0, 1, 2, 3, 4}
by {v− 5, v− 4, v− 3, v− 2, v− 1}, q + 5 by 6p + q for 0 ≤ q < 6, a0 by aw−1, and a1 by ap. At
the end we get a partition of Qp into 15 kites plus the 3 edges {aw−1, ap}, {ap, v − 3}, and
{ap, v − 1}.

Now the 3t edges {{aw−1, ap}, {ap, v − 3}, {ap, v − 1} : 0 ≤ p < t} plus the uncovered edges of
KW form a Kt+3 missing a triangle on {aw−1, v − 3, v − 1}. If t + 3 ≡ 2, 3, 4, 5, 6, 7 (mod 8),
use Theorem 4.1 to form a ON (t + 3, 4) having a triangle (v − 3, v − 1, aw−1) and 0, 1, or 2
other triangles; remove the triangle (v − 3, v − 1, aw−1) to complete the solution with 1, 2,
or 3 triangles (the triangle (v − 5, v − 3, v − 1) is still present). A variant is needed when
t + 3 ≡ 0, 1 (mod 8). In these cases, form a ON (t + 3, 4) (having no triangles) in which
(v − 3, aw−1, v − 1; a1) is a kite. Remove all edges of this kite, and use edge {a1, v − 1} to
convert triangle (v − 5, v − 3, v − 1) to a kite.

Finally, place a MON (5 + 1, 5; 4, 3) on {v − 5, v − 4, v − 3, v − 2, v − 1} ∪ {a0}. Altogether we
have a partition of all the edges using at most 3 triangles.

Case O5. v = 6t + 5 and w = t + 2.

When t = 0, partition all edges on {0, 1, 2, 3, 4}∪ {a0, a1} except {a0, a1} into kites (3, 1, a0; 0),
(3, 2, a1; 0), (a1, 1, 4; 2), (0, 1, 2; a0), and (3, 0, 4; a0). Then a MON (5 + 2, 5; 4, 3) is obtained
by removing pendant edges {a0, 0} and {a1, 0} and adding triangle (a0, a1, 0).

When t = 1, a MON (11 + 3, 11; 4, 3) on {0, . . . , 10} ∪ {a0, a1, a2} is obtained by taking the
above partition on {0, 1, 2, 3, 4} ∪ {a0, a1}, the triangle (a0, a1, a2), and a partition of the
remaining edges (which form a graph called Q) into 11 kites and 6 4-cycles as follows:
kites (2, 9, 7; a0), (4, 5, 10; a0), (2, 10, 6; a1), (4, 6, 9; a2), (7, 10, 0; a2), (6, 8, 1; a2), (5, 8, 2; a2),
(5, 9, 3; a2), (7, 8, 4; a2), (6, 7, 5; a2), and (9, 10, 8; a1); and 4-cycles (0, 6, a0, 5), (0, 8, a0, 9),
(1, 5, a1, 7), (1, 9, a1, 10), (3, 6, a2, 7), and (3, 8, a2, 10).

A solution with t = 2 is given in Section 4.6.4.

When t ≥ 3, form a 3-GDD of type 6t with groups {{6p + q : 0 ≤ q < 6} : 0 ≤ p < t}. Let
D6p+q = {0, . . . ,w−3} \ {p} for 0 ≤ p < t and 0 ≤ q < 6. Apply the general prescription. Add
a partition of the complete graph on {v−5, v−4, v−3, v−2, v−1}∪{aw−2, aw−1} as in the case
when t = 0. It remains to partition, for each p, 0 ≤ p < t, the graph Qp is obtained from
the complete graph on {6p + q : 0 ≤ q < 6} ∪ {v − 5, v − 4, v − 3, v − 2, v − 1} ∪ {aw−2, aw−1, ap}

minus the complete graph on {v − 5, v − 4, v − 3, v − 2, v − 1} ∪ {aw−2, aw−1}. This partition
is obtained from that of Q by replacing {0, 1, 2, 3, 4} by {v − 5, v − 4, v − 3, v − 2, v − 1}, a0
by aw−2, a1 by aw−1, and a2 by ap. What remains is precisely the edges on W, so place a

116 Traffic Grooming

MON (w, 4) on W to complete the construction.

Case O6. v = 6t + 3 and w = t + 2.

When t = 0, a MON (3 + 2, 3; 4, 3) has triangles (a0, 0, 1) and {a1, 1, 2} and 4-cycle
(0, 2, a0, a1).

When t = 1, on {0, . . . , 8} ∪ {a0, a1, a2}, place kites (2, 6, 4; a0), (0, 8, 4; a1), (0, 5, 7; a1),
(3, 6, 0; a2), (1, 7, 4; a2), (5, 8, 2; a2), (1, 6, 5; a2), (2, 7, 3; a2), (3, 8, 1; a2), (3, 5, a0; a2),
(7, a0, 6; a2), (6, 8, a1; a2), (7, a2, 8; a0), and 4-cycle (3, 4, 5, a1). Adding the blocks of a
MON (3 + 2, 3; 4, 3) forms a MON (9 + 3, 9; 4, 3).

A solution with t = 2 is given in Section 4.6.4.

When t ≥ 3, form a 3-GDD of type 6t with groups {{6p + j : 0 ≤ q < 6} : 0 ≤ p < t}. Let
D6p+q = {0, . . . ,w − 3} \ {p} for 0 ≤ p < t and 0 ≤ q < 6. Apply the general prescription.
For 0 ≤ p < t, on {6p + q : 0 ≤ q < 6} ∪ {v − 3, v − 2, v − 1} ∪ {aw−2, aw−1, ap} place a
MON (9 + 3, 9; 4, 3), omitting a MON (3 + 2, 2; 4, 3) on {aw−2, aw−1, v − 3, v − 2, v − 1}.
Place a MON (3 + 2, 2; 4, 3) on {aw−2, aw−1, v − 3, v − 2, v − 1}. Remove edges {a0, aw−2} and
{a1, aw−1} from their kites, and convert the two triangles in the MON (3 + 2, 2; 4, 3) to
kites using these. What remains is all edges on {a0, . . . , aw−3} and everything is in kites
or 4-cycles excepting one triangle involving a0 and one involving a1. If w − 2 ≡ 0, 1, 3, 6
(mod 8), place a MON (w − 2, 4) on {a0, . . . , aw−3}. Otherwise partition all edges on
{a0, . . . , aw−3} except {a0, a2} and {a1, a2} into kites, 4-cycles, and at most one triangle, and
use the last two edges to form kites with the excess triangles involving a0 and a1. The
partition needed is easily produced for w − 2 ∈ {4, 5, 7, 9} and hence by induction for all
the required orders.

Case E1. v ≡ 0 (mod 2) and w ≤ v+2
6 . Write v = 6t + s for s ∈ {0, 2, 4}. Let L = (V, E) be a

graph with edges

{{3i, 3i + 1}, {3i, 3i + 2}, {3i + 1, 3i + 2} : 0 ≤ i < t} ∪ {{i, 3t + i} : 0 ≤ i < 3t},

together with {6t, 6t + 1} when s = 2 and with {{6t, 6t + 1}, {6t, 6t + 2}, {6t, 6t + 3}} when s = 4.
Let (V,B) be a partial triple system covering all edges except those in L (this is easily pro-
duced). Let Di = {0, . . . ,w − 2} for 0 ≤ i < v. Apply the general prescription. For 0 ≤ i < t
and j ∈ {0, 1, 2}, form the 4-cycle (aw−1, 3i+((j+1) mod 3), 3i+ j, 3t+3i+ j). When s = 4, form
4-cycle (aw−1, 6t +2, 6t, 6t +3). When s ∈ {2, 4}, form a triangle (aw−1, 6t, 6t +1). All edges on
V are used and all edges on W remain. All edges between V and W are used. Except when
w ∈ {2, 4}, or w ≡ 2, 7 (mod 8) and v ≡ 2, 4 (mod 6) form a MON (w, 4) on W to complete
the proof. When w ≡ 2, 7 (mod 8) and v ≡ 2, 4 (mod 6), convert {aw−1, 6t, 6t + 1} to a kite
using an edge of the Kw, and partition the Kw \K2 into kites and 4-cycles. When w ∈ {2, 4},
remove edges {a0, 0} and {a1, 0} from their kites, and partition Kw together with these edges.

Case E2. v ≡ 2 (mod 6) and w = v+4
6 . Choose m as large as possible so that m ≤ v

2 ,
m ≤

(
w
2

)
, and

(
w
2

)
− m ≡ 0 (mod 4). Partition the

(
w
2

)
edges on W into sets Ec and Eo with

|Ec| = m, so that the edges on Eo can be partitioned into kites and 4-cycles; this is easily

Chapter 4: Two-period Grooming 117

done. Place these kites and 4-cycles on W. Then let {ei : 0 ≤ i < m} be the edges in Ec; let
a fi ∈ ei when 0 ≤ i < m; fi = 0 when m ≤ i < v−2

2 ; and f(v−2)/2 = 1 if m < v
2 . Next form a

3-GDD of type 2v/2 on V so that {{2i, 2i + 1} : 0 ≤ i < v
2 } forms the groups, and B forms the

blocks. For 0 ≤ i < v
2 , let D2i = D2i+1 = {0, . . . ,w − 1} \ { fi}. Apply the general prescription.

Now for 0 ≤ i < v
2 , form the triangle (a fi , 2i, 2i + 1) and for 0 ≤ i < m add edge ei to form a

kite. At most three triangles remain except when v ∈ {14, 20}, where four triangles remain.
To treat these cases, we reduce the number of triangles; without loss of generality, the
3-GDD contains a triple {v − 8, v − 6, v − 4} in a kite with edge {a1, v − 8}. Remove this
kite, and form kites (a0, v − 7, v − 8; v − 6), (a0, v − 5, v − 6; v − 4), (a0, v − 3, v − 4; v − 8), and
(v − 2, v − 1, a1; v − 8). 2

Corollary 4.1 Let v ≥ 4 and µ3(v) be defined by:

v 6 6t, t ≥ 2 1 + 6t 2 + 6t 9 3 + 6t, t ≥ 2 4 10 4 + 6t, t ≥ 2 5 + 6t
µ3(v) 1 1 + t t 1 + t 1 1 + t 1 2 2 + t 1 + t

Then wavecost MON (v + w, v; 4, 3) =
⌈

(v+w)(v+w−1)
8

⌉
if and only if w ≥ µ3(v).

4.6 Some Small Constructions

4.6.1 Used in the proof of Theorem 4.2

MON (3 + 3, 3; 4, 1): B = {(0, a0, 1; a2), (1, a1, 2; a0), (2, a2, 0; a1), (a0, a1, a2)}.

MON (4 + 4, 4; 4, 1): B = {(1, 2, a3; a0), (0, 3, a2; a1), (a1, 1, 3; a0), (a0, a2, 1; 0), (a0, a1, 2; 0),
(a1, a3, 0; a0), (2, 3, a3, a2)}.

MON (5 + 5, 5; 4, 1): B = {(1, 2, a3; a0), (0, 3, a2; a1), (a1, 1, 3; a0), (a0, a2, 1; 0), (a0, a1, 2; 0),
(a1, a3, 0; a0), (2, a2, 4; a4), (3, a3, 4), (a2, a3, a4), (2, 3, a4), (0, 4, a0, a4), (1, 4, a1, a4)}.

MON (6 + 6, 6; 4, 1): B = {(1, 2, a3; a0), (0, 3, a2; a1), (a1, 1, 3; a0), (a0, a2, 1; 0), (a0, a1, 2; 0),
(a1, a3, 0; a0), (4, 5, a5; a4), (2, a2, 4; a4), (2, 3, a4; 5), (3, 4, a3), (a2, a3, a4), (0, 4, a0, a4),
(1, 4, a1, a4), (0, 5, a0, a5), (1, 5, a1, a5), (2, 5, a2, a5), (3, 5, a3, a5)}.

4.6.2 Used in the proof of Theorem 4.3

MON (1 + 2, 1; 4, 1): B = {(0, a0, a1)}.

MON (2 + 3, 2; 4, 1): B = {(0, a0, a1), (1, a1, a2), (0, 1, a0, a2)}.

MON (3 + 4, 3; 4, 1): B = {(0, a0, a1), (1, a1, a2), (0, 1, a0, a2), (2, a2, a3), (0, 2, a0, a3),
(1, 2, a1, a3)}.

MON (4 + 5, 4; 4, 1): B = {(0, 1, a0; a3), (0, 2, a1; a3), (0, 3, a2; a3), (2, 3, a0; a4), (1, 3, a1; a4),
(1, 2, a3; 3), (0, a3, a4; 3), (1, a2, a4; 2), (a0, a1, a2; 2)}.

118 Traffic Grooming

4.6.3 Used in the proof of Theorem 4.6

ON (8, 4) with 4 triangles: B = {(1, 2, 0; 4), (0, 3, 6; 7), (0, 7, 5; 2), (4, 5, 3; 1), (1, 4, 7), (1, 5, 6),
(2, 3, 7), (2, 4, 6)}.

MON (7 + 4, 7; 4, 2): B = {(a0, 4, 2; 3), (a0, 3, 6; 0), (a0, 0, 5; 1), (a1, 5, 3; 4), (a1, 4, 6; 1),
(a1, 1, 0; 2), (a2, 0, 4; 5), (a2, 6, 5; a3), (a2, 1, 2; 5), (0, 3, a3; 2), (1, a0, a2, 3), (a0, a1, a2, a3),
(a1, 2, 6, a3), (1, 4, a3)}.

4.6.4 Used in the proof of Theorem 4.11

MON (13 + 3, 13; 4, 3): B = {(5 + i, 4 + i, 1 + i; a1) | i = 0, 1, . . . , 9} ∪ {(1 + i, 5 + i, 4 + i; a0) | i =

10, 11, 12} ∪ {(3 + i, 1 + i, 9 + i; a2) | i = 6, 7, . . . , 12} ∪ {(9 + i, 1 + i, 3 + i; a0) | i = 1, 2, . . . , 5} ∪
{(9, 3, 1; a2), (0, a1, a2; 12), (12, a1, a0; 0), (a0, 9, a2, 10), (a0, a2, 11; a1), (a0, 9, a2, 10)}, where the
sums are computed modulo 13.

MON (15 + 4, 15; 4, 3): B = {(1, 2, 3), (a0, 4, a1, 5), (a0, 10, a1, 11), (5, 4, 1; a3), (7, 1, 6; a1),
(6, 4, 2; a3), (7, 5, 2; a2), (4, 7, 3; a2), (6, 5, 3; a3), (9, 1, 8; a1), (10, 1, 14; a0), (11, 1, 0; a2),
(13, 1, 12; a2), (10, 2, 8; a2), (11, 2, 9; a0), (12, 2, 14; a2), (0, 2, 13; a3), (8, 3, 11; a3), (10, 3, 12; a0),
(13, 3, 9; a2), (14, 3, 0; a3), (12, 8, 4; a2), (11, 4, 13; a0), (0, 10, 4; a3), (9, 4, 14; a1), (8, 5, 13; a2),
(0, 5, 12; a3), (14, 11, 5; a3), (10, 9, 5; a2), (8, 6, 0; a0), (14, 13, 6; a3), (9, 6, 12; a1), (10, 6, 11; a2),
(14, 8, 7; a3), (9, 7, 0; a1), (10, 7, 13; a1), (12, 11, 7; a0), (6, a2, a0; 2), (7, a2, a1; 3), (10, a3, a2; 1),
(1, a0, a1; 2), (9, a1, a3; 14), (8, a3, a0; 3)}.

MON (17 + 3, 17; 4, 3): B = {(7, 16, 0), (a0, a2, 0), (a0, 1, 2; 3), (a0, 3, 4; 1), (4, 5, 2; a1),
(1, 3, 5; a0), (16, a0, a1; a2), (6, 10, 1; a1), (9, 14, 1; a2), (15, 1, 7; a2), (1, 8, 12; a2), (1, 0, 13; a2),
(1, 16, 11; a1), (2, 11, 6; a1), (2, 16, 8; a2), (10, 15, 2; a2), (9, 2, 13; a1), (0, 2, 12; a1), (2, 7, 14; a2),
(6, 13, 3; a1), (11, 3, 7; a1), (12, 3, 16; a2), (9, 0, 3; a2), (3, 10, 14; a1), (8, 3, 15; a1), (14, 6, 4; a2),
(4, 11, 15; a2), (7, 12, 4; a1), (13, 4, 8; a1), (4, 16, 9; a2), (0, 4, 10; a1), (5, 12, 6; a2), (7, 13, 5; a2),
(8, 14, 5; a1), (15, 5, 9; a1), (5, 16, 10; a2), (5, 0, 11; a2), (9, 7, 6; a0), (10, 8, 7; a0), (11, 9, 8; a0),
(12, 10, 9; a0), (13, 11, 10; a0), (14, 12, 11; a0), (15, 13, 12; a0), (16, 14, 13; a0), (0, 15, 14; a0),
(6, 16, 15; a0), (8, 6, 0; a1)}.

MON (17 + 4, 17; 4, 3): B = {(2, 9, 11), (9, 12, 16), (a0, 13, 14; 15), (a0, 15, 16; 13),
(16, 0, 14; a1), (13, 15, 0; a0), (13, 2, 1; a3), (13, 12, 3; a3), (13, 11, 4; a3), (5, 10, 13; a1),
(6, 9, 13; a2), (7, 8, 13; a3), (14, 4, 2; a3), (14, 12, 5; a3), (11, 14, 6; a3), (14, 10, 7; a3), (1, 3, 14; a2),
(9, 8, 14; a3), (1, 4, 15; a1), (3, 5, 15; a2), (2, 6, 15; a3), (15, 7, 12; a3), (15, 11, 8; a3), (1, 16, 5; a1),
(6, 4, 16; a2), (3, 7, 16; a3), (2, 8, 16; a1), (10, 16, 11; a3), (1, 6, 0; a1), (4, 8, 0; a2), (10, 15, 9, ; a3),
(2, 10, 0; a3), (5, 0, 7; a1), (3, 0, 9; a1), (12, 0, 11; a1), (1, a0, 7; 6), (8, 6, a0; a3), (9, a0, 5; 11),
(10, a0, 4; 9), (11, a0, 3; 10), (2, a0, 12; 8), (8, a1, 1; 11), (10, a1, 6; 3), (12, 4, a1; a3), (3, a1, 2; 7),
(1, a2, 9; 7), (10, a2, 8; 3), (11, a2, 7; 4), (12, a2, 6; 5), (2, a2, 5; 8), (3, a2, 4; 5), (a1, a0, a2; a3),
(12, 1, 10; a3)}.

Chapter 4: Two-period Grooming 119

4.7 Conclusions

The determination of cost ON (n, v; C,C′) appears to be easier when C′ = 4 than the case
for C′ = 3 settled in [80, 81]. Nevertheless the very flexibility in choosing kites, 4-cycles,
or triangles also results in a wide range of numbers of wavelengths among decompositions
with optimal drop cost. This leads naturally to the question of minimizing the drop cost
and the number of wavelengths simultaneously. In many cases, the minima for both can
be realized by a single decomposition. However, it may happen that the two minimization
criteria compete. Therefore we have determined the minimum number of wavelengths
among all decompositions of lowest drop cost for the specified values of n, v, and C′.

Part III

Degree-constrained Subgraphs

121

123

III.1 Motivation

We begin with an example. Let G be a 4-regular (multi)graph. Does G contain a 3-regular
subgraph? Not necessarily, as the example of a triangle with two edges between each pair
of vertices shows. Now suppose we add an arbitrary edge to G. It turns out that the claim
is now true.

Theorem III.1 (Alon, Friedland, and Kalai [32]) Every 4-regular graph plus an
edge contains a 3-regular subgraph.

Theorem III.1 was proved using facts from number theory. Using more sophisticated
arguments, the same authors proved the following strengthening of Theorem III.1.

Theorem III.2 (Alon, Friedland, and Kalai [33]) Suppose that every vertex of a
graph G has degree k or k + 1, and at least one vertex has degree k + 1. Then for ev-
ery prime power q such that k ≥ 2(q − 1), G contains a q-regular subgraph.

The above examples illustrate how apparently simple but difficult may be to assure
the existence of a subgraph satisfying certain degree constraints. A general instance
of a Degree-constrained Subgraph problem consists of an edge-weighted or vertex-
weighted graph G and the objective is to find an optimal weighted subgraph, subject to
certain degree constraints on the vertices of the subgraph. This class of combinatorial prob-
lems has been extensively studied due to its numerous applications in network design, as
it is the case of the Minimum-degree Spanning Tree [130] and the Minimum-degree
Steiner Tree [131] problems. If the input graph is bipartite, they have as particular
cases classical transportation and assignment problems in operations research [85]. These
problems have attracted a lot of attention in the last decades and have resulted in a large
body of literature [30,38,54,60,61,65,111,112,112,130–132,156,166,168,172,181,193].

In the sequel of the second part of this thesis we shall convince the reader that this family
of problems provides a rich source of nice and interesting problems to apply a variety of
algorithmic techniques and graph-theoretical approaches.

Relation to traffic grooming. We now discuss how degree-constrained subgraph prob-
lems are related to traffic grooming. More precisely, how the study of traffic grooming
lead the author to the study of degree-constrained subgraph problems.

We have presented in Section 1.4 (page 49) an algorithm that computes a solution to the
Ring Traffic Grooming problem with an approximation ratio of O(n1/3 · log2 n), where
n is the size of the ring. This approximation ratio can be informally factorized as follows.

◦ a factor log n comes from the fact of partitioning the request set into log n classes of
similar length;

◦ another factor log n comes from the fact of greedily removing subgraphs from the
request graph1;

1It is usual to pay a factor log n in greedy algorithms for NP-hard problems, the archetypical example
being the log n-approximation for the Minimum Set Cover problem [202].

124 Degree-constrained Subgraphs

◦ finally, the factor n1/3 appears because we used the algorithm of [114] for the Dense
k-Subgraph (DkS) problem (see page 26) to find dense subgraphs.

That is, if we had an approximation algorithm with ratio β for the DkS problem, this
would automatically yield an approximation algorithm with ratio O(β · log2 n) for the Ring
Traffic Grooming problem.

Unfortunately, the DkS problem is a really difficult problem. First of all, note that the NP-
hardness of DkS easily follows from the NP-hardness of Maximum Clique. On the other
hand, if we do not fix the size of the subset of vertices S , then finding a densest subgraph of
G reduces to an instance of the Max-Flow Min-Cut problem, and hence it can be solved
in polynomial time (see [163, Chapter 4] for more details). The DkS problem has attracted
a lot of attention during the last decade, primarily in approximation algorithms [92, 114,
159]. Understanding the complexity of DkS remains widely open, as the gap between the
best hardness result (Apx-hardness [159]) and the best approximation algorithm (with
ratio O(n1/3−ε) [114]) is huge. Andersen and Chellapilla have recently studied in [37] two
relaxed versions of the DkS problem. Namely, they have proved that the problem of
finding a densest subgraph with at least k vertices can be efficiently approximated (they
provide a 3-approximation), but that the problem of finding a densest subgraph with at
most k vertices is essentially as hard as the DkS problem itself.

Therefore, it seems natural to ask whether one can efficiently find dense subgraphs using
another approach. As it seems to be very hard to find subgraphs with the greatest density,
or equivalently with the greatest average degree, one could try to find small subgraphs with
prescribed minimum degree, which would also guarantee high density. This discussion
naturally leads to the definition of the following problem (see Chapter 6 for more details).

≤ k-size Subgraph of Minimum Degree ≥ d (kSMDd)
Input: A graph G = (V, E) and a positive integer k.
Parameter: k.
Question: Does there exist a subset S ⊆ V, with |S | ≤ k, such that G[S] has minimum

degree at least d?

Let us see how kSMDd is related to DkS. Suppose we are looking for an induced subgraph
G[S] of size at most k and with density at least ρ. In addition, assume that S is minimal,
i.e., no subset of S has density greater than ρ(S). This implies that every vertex of S has
degree at least ρ/2 in G[S]. To see this, observe that if there is a vertex v with degree
strictly smaller than ρ/2, then removing v from S results in a subgraph of density greater
than ρ(S) and of smaller size, contradicting the minimality of S . Secondly, if we have an
induced subgraph G[S] of minimum degree at least ρ, then S is a subset of density at least
ρ/2. These two observations together show that, modulo a constant factor, looking for a
densest subgraph of G of size at most k is equivalent to looking for the largest possible value
of ρ for which kSMDρ returns Yes for the parameter k. As the local degree conditions
are more rigid than the global density of a subgraph, it may be more convenient to work
directly with kSMDd. A better understanding of the kSMDd problem could provide
an alternative way to approach the DkS problem, and therefore by transitivity also to
approach the Traffic Grooming problem.

125

III.2 State-of-the-art and our Contribution

In the preceding section we have introduced the problem of finding a minimum subgraph
with given minimum degree. It is natural to consider its dual version: finding a maximum
subgraph (in terms of number of edges or vertices) with given maximum degree. These
two problems and some variants are the main topic of Chapters 5, 6, and 7.

III.2.1 The role of connectivity

As mentioned above, we will study in the forthcoming chapters the problem of finding
a maximum subgraph with given maximum degree. If we do not impose any further
restriction on the desired subgraph, it turns out that the problem (for both the vertex and
edge version) is solvable in polynomial time using matching techniques [85, 134, 165]. In
fact, also the version where nodes or edges have associated weights and the objective is
to maximize the total weight of a subgraph respecting the degree constraints, is solvable
in polynomial time [134] (as it happens for the classical Maximum Matching problem).
Even a more general version where the input contains an interval of allowed degrees for
each node is known to be solvable in polynomial time [165].

Suppose now that we restrict the output subgraph to be connected, i.e., we would like to
find a maximum connected subgraph with given maximum degree. Then the problem is
exactly one of the classical NP-hard problems of Garey and Johnson’s book: [134, Problem
GT26]. Is this phenomenon surprising? Why does connectivity change completely the
complexity of the problem? The explanation is the following: the degree of a vertex in a
solution is a local property, in the sense that it depends only on how many of its incident
edges are included in the solution; on the other hand, connectivity is a global property, as
in order to check that a subgraph is connected one needs to explore the whole subgraph.
Therefore, it seems natural that if the only constraints on the solution are the degree of the
vertices, an algorithm along the lines of the classical augmenting paths algorithm to find
a maximum matching (see for instance [165]) could find an optimal solution in polynomial
time. This change from local to global is what makes the problem become NP-hard.

We prove in Chapter 5 that the problem is in fact even harder: it is not in Apx (see
page 23) for any fixed maximum degree d ≥ 2 unless P,NP, and if there is a polynomial
time algorithm for d ≥ 2, with performance ratio 2O(

√
log n), then NP ⊆ DTIME(2O(log5 n)).

These results were previously known only for the case d = 2 [156], that corresponds to
the Longest Path problem. On the other hand, we give an approximation algorithm
for general unweighted graphs with ratio min{m/ log n, nd/(2 log n)}, and an approximation
algorithm for general weighted graphs with ratio min{n/2, m/d}. (Here n = |V(G)| and
m = |E(G)|, where G is the input graph.) The first algorithm uses an algorithm introduced
in [35], which is based on the color-coding method. We also present a constant-factor
approximation when the input graph has a low-degree spanning tree, in terms of the
integer d.

We also prove in Chapter 5 that the problem of finding a minimum subgraph of given
minimum degree is not in Apx for any fixed degree d ≥ 3. These are the first hardness
results for this problem.

126 Degree-constrained Subgraphs

To prove the hardness results for the two problems mentioned above, we use the error
amplification technique, which is a powerful tool to prove that certain approximation
algorithms cannot exist provided, as usual, that P,NP.

III.2.2 Parameterizing the input

In order to better understand the complexity of NP-hard problems, the theory of pa-
rameterized complexity (see page 24) provides a framework to refine the measure of the
complexity of such problems, by means of introducing a parameter to the input (which
is commonly assumed to be small compared to the size of the input) and analyzing the
running time of the algorithms in terms of that parameter. Since the degree-constrained
subgraph problems we consider in this part of the thesis seem to be really hard to solve – in
view of the inapproximability results of Chapter 5 –, the next natural step is to analyze
their parameterized complexity. This is the topic of Chapter 6.

This approach brings us a very interesting insight. Indeed, when parameterizing by the size
of the desired subgraph, the behavior of the two aforementioned problems is completely
different, whereas the seem to have similar (classical) complexity. Namely, the problem of
finding a maximum connected subgraph with bounded maximum degree is FPT, and the
problem of finding a minimum subgraph (that of course, we can assume to be connected)
with bounded minimum degree is W[1]-hard. The fact that the first problem is FPT follows
directly from the fact that the corresponding parameter is minor closed (see page 25 for the
definition of minor closed parameters), as it is proved in Lemma 7.2 (page 173). Proving
the W[1]-hardness of the second problem is a more difficult task; see Chapter 6 for the
details. Moreover, we prove in Chapter 6 that the problem of finding a minimum regular
subgraph (induced or not) is W[1]-hard, by a reduction from the Multi-Color Clique
problem (see Theorems 6.1 and 6.2 in Chapter 6).

III.2.3 Topologically restricting the input

A class of graphs is called sparse if for every graph G in this class, |E(G)| = O(|V(G)|).
Examples of sparse graph classes are planar graphs (for which the number of edges is at
most three times the number of edges [97]), graphs embeddable in a fixed surface or, more
generally, families of graphs excluding a fixed graph as a minor. When restricting the
input graphs to belong to some sparse class, it is usual that hard problems become easier.
This paradigm is the cornerstone idea of the second part of Chapter 6 and Chapters 7
and 8.

Namely, in Section 6.3 we provide explicit FPT algorithms for the discussed problems in
graphs with bounded local treewidth and graphs with excluded minors. These algorithms
are based on dynamic programming techniques and structural results from graph minors
theory. We stress that the classification result asserting that these problems are FPT for
graphs with excluded minors is a consequence of the powerful meta-theorems of Frick and
Grohe [128] and of Dawar, Grohe, and Kreutzer [89] (see page 156 of Section 6.1.3 for the
details). Our contribution is to give explicit algorithms that run considerably faster than
those implied by the mentioned meta-theorems.

127

As mentioned in Section III.2.2, the fact that the problem of finding a maximum con-
nected degree-bounded subgraph is FPT is a direct consequence of the Graph Minors
Theorem. In general graphs, one cannot hope the function f (k) to be subexponential (i.e.,
2o(k)), because this would contradict the widely believed exponential time hypothesis [101].
However, when we restrict the input to be planar, then such algorithms are indeed possi-
ble. In Chapter 7 we obtain subexponential parameterized algorithms for the mentioned
problem, as well as for a few variants. Our approach follows the general framework that
has been developed during the last years, which combines bidimensionality theory and
refined dynamic programming techniques [95, 98–102, 144]. As it is usual in bidimension-
ality theory, we obtain algorithms with f (k) = 2O(

√
k). Loosely speaking, the idea of this

approach is as follows. Suppose we have a graph G with branchwidth bw(G) and we want
to decide whether a parameter P is at least k in G (for instance, “does G have a path of
length at least k?”). We distinguish two cases according to bw(G):

• If bw(G) is big (greater than
√

k), we must exhibit a certificate that P(G) is also big,
by proving that the parameter is minor closed and looking at its behavior on the
square grid. Then the answer to the parameterized problem is automatically YES.

• Otherwise, if bw(G) is small (smaller than
√

k), we compute P(G) efficiently using
Catalan structures and dynamic programming techniques over an optimal branch
decomposition of G.

Finally, we deal in Chapter 8 with graphs embedded in surfaces [171]. In this case we
consider a more general family of problems than the ones considered so far, as specified
in the paragraph below. It is a common approach for solving NP-hard problems to use
dynamic programming algorithms over a branch (or tree) decomposition of the input
graph [58]. We focus on this approach, and particularize it when the input graph is
embedded in a surface.

Namely, we provide in Chapter 8 a framework for the design of 2O(k) · n step dynamic
programming algorithms for surface-embedded graphs on n vertices of branchwidth at most
k. Our technique applies to graph problems for which dynamic programming uses tables
encoding set partitions. For general graphs, the best known algorithms for such problems
run in 2O(k·log k) · n steps. That way, we considerably extend the class of problems that
can be solved by algorithms whose running times have a single exponential dependence on
branchwidth, and improve the running time of several existing algorithms. Our approach
is based on a new type of branch decomposition called surface cut decomposition, which
generalizes sphere cut decompositions for planar graphs (see page 176), and where dynamic
programming should be applied for each particular problem. The construction of such a
decomposition uses a new graph-topological tool called polyhedral decomposition. The main
result of this chapter – namely, Theorem 8.4 in page 216 – is that if dynamic programming
is applied on surface cut decompositions, then the time dependence on branchwidth is
single exponential. This fact is proved by a detailed analysis of how non-crossing partitions
are arranged on surfaces with boundary and uses diverse techniques from topological
graph theory and analytic combinatorics. As a consequence of our results, we can derive
subexponential exact and parameterized algorithms in graphs of bounded genus for the
problems in the mentioned category.

Chapter 5

Hardness and Approximation

An instance of a Degree-Constrained Subgraph problem consists of an edge-
weighted or vertex-weighted graph G = (V, E), |V | = n, |E| = m, and the objective
is to find an optimal weighted subgraph, subject to certain degree constraints on the
vertices of the subgraph. This chapter considers three natural Degree-Constrained
Subgraph problems and studies their approximability.

The Maximum Degree-Bounded Connected Subgraph (MDBCSd) prob-
lem takes as additional input a weight function ω : E → R+ and an integer d ≥ 2,
and asks for a subset E′ ⊆ E such that the subgraph G′ = (V, E′) is connected, has
maximum degree at most d, and

∑
e∈E′ ω(e) is maximized. We prove that MDBCSd

is not in Apx for any d ≥ 2, and that if there is a polynomial time algorithm for
MDBCSd, d ≥ 2, with performance ratio 2O(

√
log n), then NP ⊆ DTIME(2O(log5 n)).

On the other hand, we provide a (min{m/ log n, nd/(2 log n)})-approximation algorithm
for unweighted graphs, and a (min{n/2, m/d})-approximation algorithm for weighted
graphs. We also prove that when G has a low-degree spanning tree, the MDBCSd

problem can be approximated within a small constant factor in unweighted graphs.
The Minimum Subgraph of Minimum Degree≥d (MSMDd) problem involves

finding a smallest subgraph of G with minimum degree at least d. We prove that
MSMDd is not in Apx for any d ≥ 3 and provide an O(n/ log n)-approximation al-
gorithm for the classes of graphs excluding a fixed graph as a minor, using dynamic
programming techniques and a known structural result on graph minors. In partic-
ular, this approximation algorithm applies to planar graphs and graphs of bounded
genus.

The Dual Degree-Dense k-Subgraph (DDDkS) problem involves finding a
subgraph H of G such that |V(H)| ≤ k and δH is maximized, where δH is the minimum
degree in H. We present a deterministic O(nδ)-approximation algorithm in general
graphs, for some universal constant δ < 1/3.

Keywords: approximation algorithms, degree-constrained subgraphs, hardness of
approximation, Apx, PTAS, dense subgraphs, graph minors, excluded minor.

129

130 Degree-constrained Subgraphs

5.1 Introduction

In this chapter we consider three natural Degree-Constrained Subgraph problems
and study them in terms of approximation algorithms. A general instance of a Degree-
Constrained Subgraph problem [30, 38, 193] consists of an edge-weighted or vertex-
weighted graph and the objective is to find an optimal weighted subgraph, subject to
certain degree constraints on the vertices of the subgraph.

Degree-Constrained Subgraph problems have attracted a lot of attention in the last
decades and have resulted in a large body of literature [30, 38, 112, 130–132, 156, 166,
181, 193]. The most well-studied ones are probably the Minimum-Degree Spanning
Tree [130] and the Minimum-Degree Steiner Tree [131] problems.

Beyond the esthetic and theoretical appeal of Degree-Constrained Subgraph prob-
lems, the reasons for such intensive study are rooted in their wide applicability in the areas
of interconnection networks and routing algorithms, among others. For instance, given an
interconnection network modeled by an undirected graph, one may be interested in finding
a small subset of nodes having a high degree of connectivity for each node. This translates
into finding a small subgraph with a lower bound on the degree of its vertices, i.e., to the
MSMDd problem, to be defined shortly. Note that if the input graph is bipartite, these
problems are equivalent to classical transportation and assignment problems in operation
research.

The first problem studied in this chapter is a classical NP-hard problem listed in [134]
(c.f. Problem [GT26] for the unweighted version). Let d ≥ 2 be a fixed integer.

Maximum Degree-Bounded Connected Subgraph (MDBCSd)
Input: A graph G = (V, E) and a weight function ω : E → R+.
Output: A subset E′ ⊆ E such that the subgraph G′ = (V, E′) is connected (except,

possibly, for isolated vertices), has maximum degree at most d, and∑
e∈E′ ω(e) is maximized.

For d = 2, the unweighted MDBCSd problem corresponds to the Longest Path problem.
Indeed, given the input graph G (which can be assumed to be connected), let P and G′ be
optimal solutions of Longest Path and MDBCS2 in G, respectively. Then observe that
|E(G′)| = |E(P)| unless G is Hamiltonian, in which case |E(G′)| = |E(P)| + 1. One could also
ask the question: what happens when G′ is not required to be connected in the definition
of MDBCSd? It turns out that without the connectivity constraint, both the edge version
and the vertex version (where the goal is to maximize the total weight of the vertices
of a subgraph respecting the degree constraints) of the MDBCSd problem are known to
be solvable in polynomial time using matching techniques [85, 134, 165]. In fact, without
connectivity constraints, even a more general version where the input contains an interval
of allowed degrees for each node is known to be solvable in polynomial time.

The most general version of Degree-Constrained Subgraph problem is to find a sub-
graph under constraints given by lower and upper bounds on the degree of each vertex,
the objective being to minimize or maximize some parameter (usually the size of the
subgraph). A common variant ignores the lower bound on the degree and just requires

Chapter 5: Hardness and Approximation 131

the vertices of the subgraphs to have a given maximum degree [181], in which case the
typical optimization criterion is to maximize the size of a subgraph satisfying the degree
constraints. The resulting problem is also called an Upper Degree-Constrained Sub-
graph problem in [132]. In contrast, we are unaware of existing results considering just
a lower bound on the degrees of the vertices of the subgraph, except for combinatorial
conditions on the existence of such a subgraph [111,112]. In an attempt to fill this void in
the literature, the last two problems considered in this chapter aim at minimizing the size
of a subgraph and maximizing the lower bound on the minimum degree, respectively. For
a graph H, let δH denote the minimum degree of the vertices in H. Let d ≥ 2 be fixed.

Minimum Subgraph of Minimum Degree≥d (MSMDd)
Input: An undirected graph G = (V, E).
Output: A subset S ⊆ V such that for H = G[S], δH ≥ d and |S | is minimized.

Dual Degree-Dense k-Subgraph (DDDkS)
Input: An undirected graph G = (V, E) and a positive integer k.
Output: An induced subgraph H of size |V(H)| ≤ k, such that δH is maximized.

Note that the problem kSMDd defined in Section III.1 (page 124) is the parameterized
version of the MSMDd problem defined above. MSMDd is closely related to MDBCSd.
Indeed, MSMDd corresponds exactly to the dual (unweighted) node-minimization version
of MDBCSd. MSMDd is also a generalization of the Girth problem (finding a shortest
cycle), which corresponds exactly to the case d = 2. The MSMDd is studied in the realm
of parameterized complexity in Chapter 6, where it is shown that MSMDd is W[1]-hard
for d ≥ 4 and explicit fixed-parameter tractable (FPT) algorithms are given for the class
of graphs excluding a fixed graph as a minor and graphs of bounded local treewidth,
for d ≥ 3. Besides the above discussion, our main motivation for studying MSMDd is
its close relation to the well studied Dense k-Subgraph (DkS) [114, 159] and Traffic
Grooming [J1] problems. See Section III.1 (page 123) for more details.

The above discussion illustrates that the study of the above mentioned problems is very
natural and that the results obtained for them can reverberate in several other important
optimization problems, coming from both theoretical and practical domains.

Our Contribution: In this chapter we obtain both approximation algorithms and re-
sults on hardness of approximation. All of our hardness results are based on the hypothesis
that P , NP. More precisely, our results are the following:

• We prove that the MDBCSd problem is not in Apx for any d ≥ 2, and that if there is
a polynomial time algorithm for MDBCSd, d ≥ 2, with performance ratio 2O(

√
log n),

then NP ⊆ DTIME(2O(log5 n)). On the other hand, we give an approximation algo-
rithm for general unweighted graphs with ratio min{m/ log n, nd/(2 log n)}, and an
approximation algorithm for general weighted graphs with ratio min{n/2, m/d}. The
first algorithm uses an algorithm introduced in [35], which is based on the color-
coding method. We also present a constant-factor approximation when the input
graph has a low-degree spanning tree, in terms of the integer d.

132 Degree-constrained Subgraphs

• We prove that the MSMDd problem is not in Apx for all d ≥ 3. The proof is obtained
by the following two steps. First, by a reduction from Vertex Cover, we prove
that MSMDd does not admit a PTAS. In particular, this implies that MSMDd is
NP-hard for any d ≥ 3. Then, we use the error amplification technique to prove that
MSMDd is not in Apx for any d ≥ 3. On the positive side, we give an O(n/ log n)-
approximation algorithm for the class of graphs excluding a fixed graph H as a minor,
using a known structural result on graph minors and dynamic programming over
graphs of bounded treewidth. In particular, this gives an O(n/ log n)-approximation
algorithm for planar graphs and graphs of bounded genus.

• We give a deterministic O(nδ)-approximation algorithm for the DDDkS problem in
general graphs, for some universal constant δ < 1/3. We also provide a randomized
O(
√

n log n)-approximation algorithm, which is completely different in nature. Al-
though the approximation ratio is significantly worse, the idea of the proof is quite
simple and nice.

Organization of the chapter: The basic definitions required in this chapter can be
found in Section I.2 (page 23). In Section 5.2 we establish that MDBCSd is not in Apx for
any d ≥ 2, and in Section 5.3 we present two approximation algorithms for unweighted and
weighted general graphs, respectively. The constant-factor approximation for MDBCSd

when the input graph has a low-degree spanning tree is provided in Section 5.3.2 for
unweighted graphs. In Section 5.4 we prove that MSMDd is not in Apx for any d ≥ 3,
and in Section 5.5 we give an O(n/ log n)-approximation algorithm for the class of graphs
excluding a fixed graph H as a minor. In Section 5.6 we give two approximation algorithms
for the DDDkS problem. Finally, we conclude with some remarks and open problems in
Section 5.7.

5.2 Hardness of Approximating MDBCSd

As mentioned in Section 7.1, MDBCS2 corresponds to the Longest Path (or Cycle)
problem, which is known to not admit any constant-factor approximation [156], unless
P = NP. In this section we extend this result and prove that, under the assumption
that P,NP, MDBCSd is not in Apx for any d ≥ 2, proving first that MDBCSd is
not in PTAS for any d ≥ 2. Finally, we also prove in Theorem 5.4 that if there is a
polynomial time algorithm for MDBCSd, d ≥ 2, with a performance ratio of 2O(

√
log n),

then NP ⊆ DTIME(2O(log5 n)).

Theorem 5.1 MDBCSd does not admit a PTAS for any d ≥ 2, unless P = NP.

Proof : We prove the result for the case when d ≥ 3; the result for d = 2 follows
from [156]. We give our reduction from the traveling salesman problem TSP(1, 2), which
does not admit a PTAS unless P = NP [176]. An instance of TSP(1, 2) consists of a
complete graph G = (V, E) on n vertices and a weight function f : E → {1, 2} on its edges,
and the objective is to find a traveling salesman tour of minimum weight in G.

Chapter 5: Hardness and Approximation 133

We show that if there is a PTAS for MDBCSd, d ≥ 3, then one can construct a PTAS
for TSP(1, 2). Towards this, we transform the graph G into a new augmented graph G′

with a modified weight function g on its edges. For every vertex v ∈ V we add to G′

d − 2 new vertices {v1, · · · , vd−2} and an edge from v to every vertex vi, 1 ≤ i ≤ d − 2.
Thus G′ = (V ∪ V ′, E ∪ E′) where V ′ =

⋃
v∈V {v1, · · · , vd−2} is the set of new vertices and

E′ = {{vi, v} | 1 ≤ i ≤ d − 2, v ∈ V} is the set of new edges. We define the weight function g
on the edges of G′ as:

g(e) =

{
3 − f (e), e ∈ E, (weights of original edges get flipped)
3, e ∈ E′.

Next we prove a claim characterizing the structure of the maximal solutions of MDBCSd

in G′. Essentially, it shows that any given solution G1 of MDBCSd in G′ with value W
can be transformed into another solution G2 of MDBCSd in G′ with value at least W,
such that G2 contains all the newly added edges and induces a Hamiltonian cycle in G.

Claim 5.1 Any given solution G1 = (V ∪ V ′, E1) to MDBCSd in G′ can be transformed
in polynomial time into a solution G2 = (V ∪ V ′, E2) of MDBCSd in G′ such that (i)
G3 = (V, E ∩ E2) is a Hamiltonian cycle in G, and (ii)

∑
e∈E2 g(e) ≥

∑
e′∈E1 g(e′).

Proof : We prove the claim by describing a series of transformations, applied in order of
appearance, successively improving the solution, and eventually yielding the desired G2.
For a given edge set F, let X(F) be the set of vertices containing the end-points of the
edges in F.

(a) Suppose E1 ∩ E′ = ∅. Then H = (X(E1), E1) is connected and every vertex v ∈ X(E1)
has degree at most d in H. This implies that H contains a cycle, so removing any
edge from this cycle will not break connectivity. So we can remove any edge {u, v}
from this cycle and add the edges {u1, u} and {v1, v}, obtaining a solution of larger
weight. Therefore, we assume henceforth that E1 ∩ E′ , ∅.

(b) Suppose V \X(E1) , ∅, that is, there is a vertex v ∈ V which is not contained in X(E1).
In this case, by Observation (a) there exists a vertex u ∈ X(E1) such that one of the
edges {ui, u}, 1 ≤ i ≤ d − 2, is in E1. We then set E1 ← E1 − {{ui, u}} ∪ {{u, v}, {v, vi} | 1 ≤
i ≤ d − 2}. Clearly, connectivity is maintained (as removing edges from E′ does not
break connectivity) and the weight of solution increases by at least 1. This procedure
is repeated until the current solution contains all the vertices of G.

(c) Suppose H′ = (V, E ∩ E1) is neither a spanning tree nor a Hamiltonian cycle. Notice
that H′ is connected, as removing degree 1 vertices of V ′ does not break connectivity.
This implies that there is a cycle C in H′ and a vertex v on it such that degH′(v) ≥ 3
(otherwise, H′ would be disconnected). This implies that there exists an edge e =

{v, vi} such that e < E1. Let {u, v} be an edge on C. We then set E1 ← E1 − {{u, v}} ∪
{{v, vi}}. Again, connectivity is clearly maintained (as removing an edge from a cycle
does not break connectivity) and the weight of the solution increases by at least 1.
This procedure is repeated until H′ is either a spanning tree or a Hamiltonian cycle.

(d) Suppose H′ = (V, E ∩ E1) is a spanning tree. If H′ is a path then the end-points of
this path, say u and v, have degree 1 in H′, hence we can add the edge {u, v} and
obtain a solution of greater weight. So let us suppose that H′ is not a path, hence

134 Degree-constrained Subgraphs

there exists a vertex v of degree at least 3 in H′. This implies that there exists an
edge e = {v, vi} such that e < E1. Let {u, v} be an edge incident to v in the spanning
tree H′. Consider the spanning forest H′− {{u, v}}, consisting of two sub-tress H′u and
H′v containing u and v respectively. Select a leaf w1 ∈ H′u and a leaf w2 ∈ H′v (w2 , v),
and set E1 ← E1 − {{u, v}} ∪ {{v, vi}, {w1,w2}}. Clearly the resulting graph is connected
and has greater weight.

The above transformation rules can be applied in polynomial time to obtain a graph G3
that is a solution of MDBCSd in G′ and satisfies the conditions described in the statement
of the claim. 2

Suppose that there exists a PTAS for MDBCSd realized by an approximation scheme Aδ.
This family of algorithms takes as input a graph G′′ and a parameter δ > 0, and returns
a solution of MDBCSd of weight at least (1 − δ)OPTG′′ , where OPTG′′ is the value of an
optimum solution of MDBCSd in G′′.

Using this scheme, we now proceed to construct a PTAS for TSP(1, 2). Given a graph G,
an instance of TSP(1, 2), and ε > 0, do the following.

1. Apply the transformation described before Claim 5.1 to G and obtain the graph G′.

2. Fix δ = h(ε, d) (to be specified later) and run Aδ on G′. Let G′′ be the resulting
solution.

3. Apply the polynomial time transformation described in Claim 5.1 on G′′, the solution
obtained by Aδ on G′. Let the new solution be G∗ = (V ∪ V1, E∗).

4. Return E∗ ∩ E as the solution of TSP(1, 2).

Now we prove that the solution returned by our algorithm satisfies
∑

e∈E∗∩E f (e) ≤ (1+ε)OT ,
where OT is the weight of an optimum tour in G. Let such an optimum tour contain a
edges of weight 1 and b edges of weight 2. Then OT = a + 2b and a + b = n. Equivalently
a = 2n − OT and b = OT − n. Let OD be the value of an optimum solution of MDBCSd in
G′. Then by Claim 5.1 and the flipping nature of the function g, we have that

OD = (d − 2)3n + 2a + b. (5.1)

Let 3(d − 2)n + O∗D be the value of the solution returned by Aδ, where O∗D is the sum of
the edge weights of the Hamiltonian cycle in G, that is, O∗D =

∑
e∈E∗∩E g(e). Since Aδ is a

PTAS,
3(d − 2)n + O∗D ≥ (1 − δ)OD. (5.2)

Combining Equation (5.1) and Inequality (5.2) gives

O∗D ≥ (1 − δ)OD − 3(d − 2)n = 3n − OT + δOT − n(3d − 3)δ. (5.3)

On the other hand, the value of the solution returned by our algorithm for TSP(1, 2) is
O∗T = 3n−O∗D (since if O∗D = 2x+y, x being the number of edges of weight 2 and y being the
number of edges of weight 1, with x + y = n, then the value of the solution for TSP(1, 2)
is x + 2y). Substituting O∗D = 3n − O∗T in Inequality (5.3) and using the fact that OT ≥ n
yields

O∗T ≤ OT − δOT + n(3d − 3)δ ≤ OT − δn + n(3d − 3)δ. (5.4)

Chapter 5: Hardness and Approximation 135

To show that O∗T ≤ (1 + ε)OT , by (5.4) it is enough to show that −δn + n(3d − 3)δ ≤ ε ·OT .
Rather, we show that −δn + n(3d − 3)δ ≤ εn, which automatically implies the required
bound. This can be done by setting δ = h(ε, d) = ε

3d−4 , yielding a PTAS for TSP(1, 2).
Since TSP(1, 2) does not admit a PTAS [176], the last assertion also rules out the existence
of a PTAS for MDBCSd for any d ≥ 3, unless P = NP. 2

To show the non-existence of a constant factor approximation, we first make a simplifica-
tion and then define a graph product.

Remark 5.1 We assume that the input graph G = (V, E) of MDBCSd admits an op-
timal solution containing a cycle. This can be assumed without loss of generality by
adding, for each vertex v ∈ V, two new vertices v1, v2 and a triangle consisting of the
edges {v, v1}, {v, v2}, {v1, v2} with weight ε, 0 < ε << mine∈E ω(e). Let G′ be the transformed
graph. By the choice of ε, the new edges do not affect the structure of the optimal solutions
in G. If all the optimal solutions in G were trees, these triangles could be added (for d ≥ 3)
to the leaves of any solution in G to obtain a solution in G′ containing a cycle.

We define the following edge squaring operation.

Definition 5.1 Given a graph G = (V, E) and an edge {u, v} ∈ E, define G2
u,v as the graph

obtained from G by replacing every edge e = {x, y} ∈ E with a copy Ge of G and adding the
two edges {x, u} and {y, v} with weight ε, 0 < ε << mine∈E ω(e). The vertices x and y are
referred as the contact vertices of Ge.

Observe that this graph product differs from the edge square graph introduced in [156] to
prove the hardness of Longest Path, in which for every edge e = {x, y} ∈ E, the vertices
x and y are joined to every vertex in Ge. We need this new definition for technical reasons,
as the structure of the solutions of MDBCSd for d = 2 and for d ≥ 3 differs considerably.
The graphs G2

u,v are important because of the following lemma.

Lemma 5.1 Let G = (V, E) be a graph for which the total edge weight in an optimal
solution for MDBCSd is `. Then,

(a) there exists an edge {u, v} ∈ E such that the total edge weight of an optimal solution
to MDBCSd in G2

u,v is at least `2 − `, and

(b) for any edge {u, v} ∈ E, given a solution of weight t in G2
u,v, one can obtain in poly-

nomial time a solution of weight
√

t in G.

Proof : We may assume, by subdividing edges, that all the edges of G have unit weight.
Let S = (V, E′) be a connected subgraph of G of degree at most d having ` edges. By
Remark 5.1, we can assume that S contains a cycle C. Let {u, v} be an edge in C. Then
the removal of {u, v} does not disconnect S . Consider the subgraph H of G2

u,v containing `
copies of S , one for each edge in S , plus the corresponding contact vertices to connect the
copies. Let H′ be the subgraph obtained from H by removing the edge {u, v} in each copy
of S . This subgraph H′ is connected by the choice of {u, v}, has maximum degree at most
d, and has total weight `2 − ` + 2ε` ≥ `2 − `, proving (a).

Consider any solution H in G2
u,v with t edges which we want to use in order to find a

solution S in G. We can ignore the edges of weight ε. Observe that subgraph H can
pass from one copy of G corresponding to an edge to another copy of G corresponding to
another edge only via contact vertices. To define S we distinguish two cases:

136 Degree-constrained Subgraphs

• Case a: H intersects at least
√

t copies of G in G2
u,v.

Then let S be the subgraph of G induced by the edges corresponding to these copies
of G in G2

u,v.

• Case b: H intersects strictly fewer than
√

t copies of G.
Then let S 1 be H ∩ Ge, with Ge being the copy of G in G2

u,v such that |E(H ∩ Ge)|
is maximized. Let e = {x, y}. If S 1 is connected, we set S = S 1. Otherwise, S 1 has
exactly two connected components C1 and C2, containing u and v, respectively. Since
H is connected and S 1 is disconnected, necessarily the edges {x, u} and {y, v} belong
to H. Therefore, as ∆H ≤ d, the vertices u and v have degree at most d − 1 in S 1.
Let S be the graph obtained from S 1 by adding the edge {u, v}. (Recall that G2

u,v is
defined only for {u, v} being an edge of G.)

In both cases S is connected, has maximum degree at most d, and has at least
√

t
edges. Since at least one of the cases must occur, it follows that given a solution of
size t in G2

u,v, one can obtain in polynomial time a solution of size
√

t in G.

Part (b) of the lemma follows. 2

Using Lemma 5.1 one can show the following lemma, similar to [156, Theorem 8].

Theorem 5.2 For any d ≥ 2, if MDBCSd has a polynomial time algorithm that achieves
a constant factor approximation, then it has a PTAS.

Proof : Again, we prove the result for d ≥ 3, as the result for d = 2 follows from [156]. Let
A be an algorithm that achieves a C-approximation for MDBCSd, for a constant C > 1.
Given the input graph G = (V, E), we build the graphs G2

u,v for each edge {u, v} ∈ E, and
inductively iterate this construction p times, where p is an integer to be specified later.
Denote by G2k

the set of all graphs obtained from G after k iterations.

Let OPT be the weight of an optimal solution to MDBCSd in G, and let OPT2k be the
maximum weight over all graphs H in G2k

of an optimal solution to MDBCSd in H. By
Lemma 5.1(a),

OPT2p ≥ OPT 2
2p−1 − OPT2p−1 = OPT 2

2p−1 − o(OPT 2
2p−1) ≥ . . . ≥ OPT 2p

− o(OPT 2p
). (5.5)

The PTAS is now obtained as follows. We run algorithm A on each graph H ∈ G2p
, and

then pick the best solution among them. This yields a weight at least OPT2p/C, since A
is a C-approximation algorithm. Beginning from this solution, we apply Lemma 5.1(b) p
times to obtain a solution to MDBCSd in G with weight S OL, such that

S OL ≥
(OPT2p

C

)1/2p

≥

(
OPT 2p

− o(OPT 2p
)
)1/2p

C1/2p =
OPT
C1/2p − o(OPT), (5.6)

where we have used Equation (5.5). It is then clear from Equation (5.6) that for any
ε > 0, there exists an integer p(ε) such that for any graph G with n = |V(G)| large enough,
OPT
S OL ≤ 1 + ε. Since for any fixed ε > 0, the number of graphs in G2p(ε)

is polynomial in n,
we have constructed a polynomial time (1 + ε)-approximation algorithm for any ε > 0. In
other words, MDBCSd admits a PTAS for any d ≥ 3, as claimed. 2

Chapter 5: Hardness and Approximation 137

Theorems 5.1 and 5.2 together yield the following.

Theorem 5.3 The MDBCSd problem, for d ≥ 2, does not admit any constant-factor
approximation, unless P = NP.

Karger et al. [156] also rule out an existence of weaker approximation for finding a longest
path in a given graph. In the same spirit we show the following theorem.

Theorem 5.4 If there is a polynomial time algorithm for MDBCSd, d ≥ 2, with perfor-
mance ratio 2O(

√
log n), then NP ⊆ DTIME(2O(log5 n)).

Proof : Let A be an algorithm of approximation ratio 2O(
√

log n) for MDBCSd. Let
G = (V, E) be an instance to MDBCSd with n vertices and having an optimum solution
containing ` edges. We choose p to be the smallest integer such that N = n3p

≥ 2log5 n. Let
g(n) = 2O(

√
log n).

Now we generate the set of graphs G2p
(defined in the proof of Theorem 5.2) by applying

p times the edge squaring operation starting with G and then repeatedly applying it on
previously obtained graphs. Note that the number of vertices of the elements in G2p

is bounded above by N. By Lemma 5.1(a) we know that G2p
contains a graph which

has a solution of size at least `2p
− o(`2p

). Running A on all the elements of G2p
and

picking the graph with the largest number of edges, we obtain a solution H of size at least(
`2p
− o(`2p

)
)
/g(N). Since p = O(log log n), the number of graphs in G2p

is bounded above

by n2p
= nO(log n) = 2O(log2 n). Furthermore, starting with the solution H and repeatedly

applying Lemma 5.1(b), we obtain a solution to MDBCSd in G of size at least (`−o(`))/h(n),
where

h(n) = g(N)1/2p
= 2O(

√
log N/2p) = 2O(log2.5 n/2p) = O(1) .

The last equality follows because 2p ≥ log2.5 n. Since p = O(log log n) it follows that we have
a constant factor approximation algorithm for ` = Ω(log n/ log log n). If ` ≤ c log n/ log log n,
for a fixed constant c, then the problem can be solved exactly in time nO(log n/ log log n) =

2O((log n)2/ log log n) ≤ 2O(log5 n). To find an exact solution, proceed as follows. Enumerate all
subgraphs on 2c log n/ log log n vertices and at most c log n/ log log n edges. Notice that
the number of such subgraphs is upper bounded by 2O(log n log log n). Let H be one of the
enumerated graphs. Then we check whether its maximum degree is upper bounded by d
and whether it is connected. If both requirements are met then we check whether there
is a subgraph isomorphic to H in G. To do so we use the result of Alon et al. [35], which
shows that if H has treewidth t and |V(H)| = h then one can check whether there is a
subgraph isomorphic to H in G in 2O(h)nt+1 log n time. Observe that the treewidth of H is
upper bounded by ` ≤ c log n/ log log n. Hence we can find an optimum solution in time

2O(log n log log n) · 2O(log n/ log log n)n(log n/ log log n)+1 log n ≤ 2O(log2 n).

This implies that we can approximate MDBCSd within a constant factor in time 2O(log5 n),
which is polynomial in N. But by Theorem 5.3 we know that finding a constant factor
approximation to MDBCSd is NP-hard, hence we have given a simulation of a NP-hard
problem in time 2O(log5 n). The theorem follows. 2

138 Degree-constrained Subgraphs

5.3 Approximating MDBCSd

In this section we focus on approximating MDBCSd. As seen in Section 5.2, MDBCSd

does not admit any constant-factor approximation in general graphs.

First, we provide in Section 5.3.1 approximation algorithms in general graphs for both
the weighted and unweighted versions of the problem. Then, we show in Section 5.3.2
that when the input graph has a low-degree spanning tree (in terms of d), the problem
becomes easy to approximate in unweighted graphs. Specifically, Proposition 5.2 provides
a constant-factor approximation for such graphs.

5.3.1 General graphs

In this section we deal with general graphs. Concerning the Longest Path problem
(which corresponds to the case d = 2 of MDBCSd as discussed in the introduction) the
best currently known approximation algorithm [57] has approximation ratio O

(
n(log log n

log n)2
)

(which was an improvement on the approximation ratio O(n/ log n) of the algorithm in [35]).
Using the results of [35], we provide in Theorem 5.6 an approximation algorithm for
MDBCSd in general unweighted graphs for any d ≥ 2. We then turn to weighted graphs
and provide a new approximation algorithm for general weighted graphs in Theorem 5.7.
Finally we compare both algorithms for unweighted graphs.

We need a preliminary lemma, that uses the following result.

Proposition 5.1 ([173]) Any unordered tree on n nodes can be represented using 2n+o(n)
bits with adjacency being supported in O(n) time.

Let Tn,d be the set of non-isomorphic unlabeled trees on n nodes with maximum degree at
most d.

Lemma 5.2 The set Tlog n,d can be generated in polynomial time on n.

Proof : It is well known that |Tn,n−1| ∼ Cαnn−5/2 as n→ ∞, for positive constants C and
α, c.f. [182]. Hence, the set Tlog n,log n−1 is of size polynomial in n. In addition, one can
efficiently generate all the elements of Tlog n,log n−1. Indeed by Proposition 5.1 any unlabeled
tree on log n nodes can be represented using 2 log n + o(log n) bits with adjacency being
supported in O(log n) time. Finally, the set Tlog n,d is obtained from Tlog n,log n−1 by removing
all the elements T with ∆T > d, where ∆T is the maximum degree of the tree T . 2

The main ingredient of the first algorithm is a powerful result of [35], which uses the
color-coding method.

Theorem 5.5 ([35]) If a graph G = (V, E) contains a subgraph isomorphic to a graph
H = (VH , EH) whose treewidth is at most t, then such a subgraph can be found in 2O(|VH |) ·

|V |t+1 · log |V | time.

Chapter 5: Hardness and Approximation 139

In particular, trees on log |V | vertices can be found in time |V |O(1) · log |V |. We are ready to
describe our algorithm for unweighted graphs.

Algorithm A:

(1) Generate all the elements of Tlog n,d. Define the set F ← ∅.

(2) For each T ∈ Tlog n,d, test if G contains a subgraph isomorphic to T . If such a
subgraph is found, add it to F .

(3) If F = ∅ or d > log n, output an arbitrary connected subgraph of G with d edges.
Otherwise, output any element in F .

Theorem 5.6 For all d ≥ 2, algorithm A provides a ρ-approximation algorithm for
MDBCSd in unweighted graphs, with ρ = min{m, nd/2}/ log n.

Proof : Let us first observe that the running time of algorithm A is polynomial in
n. Indeed, steps (1) and (2) can be executed in polynomial time by Lemma 5.2 and
Theorem 5.5, respectively. Step (3) takes constant time. Algorithm A is clearly correct,
since by definition of the set Tlog n,d the output graph is a solution of MDBCSd in G.

Finally, let us consider the approximation ratio of algorithm A. Let OPT be the number
of edges of an optimal solution of MDBCSd in G, and let ALG be the number of edges of
the solution found by algorithm A. We distinguish two cases:

• If OPT ≥ d·log n
2 , then any optimal solution Ĥ has at least log n vertices. In particular,

Ĥ contains a tree on log n vertices, and so does G. Hence, this tree will be found
in step (2), and therefore ALG ≥ log n − 1. (We can assume that ALG ≥ log n
by replacing everywhere Tlog n,d with Tlog n+1,d.) On the other hand, we know that
OPT ≤ min{m, nd/2}.

• Otherwise, if OPT <
d·log n

2 , then ALG ≥ d. Note that such a connected subgraph
with d edges can be greedily found starting from any node of G.

In both cases,

OPT
ALG

≤ max

min
{
m, nd

2

}
log n

,
log n

2

 =
min{m, nd/2}

log n

(since log n = O(
√

n)), as claimed. 2

In particular, if d = 2, Algorithm A reduces to the Longest Path algorithm of [35].

Theorem 5.7 The MDBCSd problem admits a ρ-approximation algorithm B in weighted
graphs, with ρ = min{n/2,m/d}.

Proof : Let us describe the algorithm B. Let F be the set of d heaviest edges in the
input graph G, and let W be the set of endpoints of those edges. We distinguish two cases
according to the connectivity of the subgraph H = (W, F). Let ω(F) denote the total weight
of the edges in F.

140 Degree-constrained Subgraphs

If H is connected, the algorithm returns H. We claim that this yields a ρ-approximation.
Indeed, if an optimal solution consists of m∗ edges of total weight ω∗, then ALG = ω(F) ≥
ω∗

m∗ ·d, since by the choice of F the average weight of the edges in F cannot be smaller than
the average weight of the edges of an optimal solution. As m∗ ≤ m and m∗ ≤ dn/2, we get
that ALG ≥ ω∗

m · d and ALG ≥ ω∗

dn/2 · d = ω∗

n/2 .

Now suppose H = (W, F) consists of a collection F of k connected components. Then we glue
these components together in k− 1 phases. In each phase, we pick two components C,C′ ∈
F , and combine them into a new connected component Ĉ by adding a connecting path,
without touching any other connected component of F . We then set F ← F \{C,C′}∪ {Ĉ}.

Each phase operates as follows. For every two components C,C′ ∈ F , compute their
distance, defined as d(C,C′) = min{dist(u, u′,G) | u ∈ C, u′ ∈ C′}. Take a pair C,C′ ∈ F
attaining the smallest distance d(C,C′). Let u ∈ C and u′ ∈ C′ be two vertices realizing this
distance, i.e., such that dist(u, u′,G) = d(C,C′). Let p(u, u′) be a shortest path between u
and u′ in G. Let Ĉ be the connected component obtained by merging C, C′ and the path
p(u, u′).

For the correctness proof, we need the following two observations: First, observe that in ev-
ery phase, the path p(u, u′) used to merge the components C and C′ does not go through any
other cluster C′′, since otherwise, d(C,C′′) would be strictly smaller than d(C,C′), contra-
dicting the choice of the pair (C,C′). Moreover, p(u, u′) does not go through any other ver-
tex v in the cluster C except for its endpoint u, since otherwise, dist(v, u′,G) < dist(u, u′,G),
contradicting the choice of the pair u, u′. Similarly, p(u, u′) does not go through any other
vertex v′ in C′.

We now claim that after i phases, the maximum degree of H satisfies ∆H ≤ d − k + i + 1.
This is proved by induction on i. For i = 0, i.e., for the initial graph H = (W, F), we observe
that as F consists of d edges arranged in k separate components, the largest component
will have no more than d − k + 1 edges, hence ∆H ≤ d − k + 1, as required. Now suppose
the claim holds after i − 1 phases, and consider phase i. All nodes other than those of
the path p(u, u′) maintain their degree from the previous phase. The nodes u and u′

increase their degree by 1, so by the inductive hypothesis, their new degree is at most
(d − k + (i− 1) + 1) + 1 = d − k + i + 1, as required. Finally, the intermediate nodes of p(u, u′)
have degree 2 ≤ d − k + i + 1 (since i ≥ 1 and k ≤ d).

It follows that by the end of phase k − 1, ∆H ≤ d − k + k − 1 + 1 = d. Also, at that point H
is connected. Hence H is a valid solution.

Finally, the approximation ratio of the algorithm is still at most ρ = min{n/2,m/d}, since
this ratio was guaranteed for the originally selected F, and the final subgraph contains the
set F. 2

For unweighted graphs, comparing approximation ratios of Algorithm A of Theorem 5.6
and Algorithm B of Theorem 5.7, we conclude that Algorithm A performs better when
d < 2 log n, while Algorithm B is better when d ≥ 2 log n. So if we run both the algorithms
and select the best solution, we obtain the following.

Corollary 5.1 In unweighted graphs, the MDBCSd problem admits a ρ-approximation
algorithm, with ρ = min{n/2, nd/(2 log n), m/d, m/ log n}.

Chapter 5: Hardness and Approximation 141

5.3.2 Graphs with low-degree spanning trees

We first state a simple lemma about the optimal solutions of the (polynomially solvable)
problem MDBSd (the definition is the same as the MDBCSd problem, except that the
connectivity of the output subgraph is not required).

Lemma 5.3 Given a graph G and two integers d, k , 1 < k ≤ d, such that k divides d, let
OPTd and OPTd/k be the optimal solutions of MDBSd and MDBSd/k in G, respectively.
Then OPTd ≤

3k
2 · OPTd/k.

Proof : Let Ĥd be the subgraph of G attaining OPTd. By the classical Vizing’s the-
orem [97], there exists a coloring of the edges of Ĥd using at most d + 1 colors. Order
these chromatic classes according to non-increasing total edge-weight, and let Hd/k be the
subgraph of G induced by the first d/k classes. Then the maximum degree of Hd/k does
not exceed d/k, and the sum of its edge weights is at least d·OPTd

k·(d+1) . Hence

OPTd ≤
d + 1

d
· k · OPTd/k .

For d ≥ 2, the function d+1
d is maximized when d = 2. 2

For example, if G = C5 and d = k = 2, then OPT2 = 5 ≤ 3/2 · 2 · OPT1 = 3 · 2 = 6.

Definition 5.2 (k-tree) A k-tree of a connected graph is a spanning tree with maximum
degree at most k.

We are now ready to describe our approximation algorithm.

Proposition 5.2 Given two integers d, ` , 1 < ` < d, let Gd,` be the class of graphs that
have a (d/` − 1)-tree. Then, for any G ∈ Gd,`, MDBCSd can be approximated in G within
a constant factor 3

2
`
`−1 .

Proof : Assume without loss of generality that ` divides d (otherwise, replace d/` with
dd/`e). Since G has a (d/` − 1)-tree, by [130], one can find in polynomial time a spanning
tree S of G with maximum degree at most d/`. Let k = `

`−1 , and let H be the optimal
solution of MDBSd/k in G (recall that MDBSd is in P, but the output graph is not
necessarily connected). Then it is clear that the graph S ∪ H is a solution of MDBCSd

in G, since it is connected and has maximum degree at most d. By Lemma 5.3 and using
the fact that any solution for MDBCSd is also a solution for MDBSd, we conclude that
S ∪ H provides a 3

2
`
`−1 -approximation for MDBCSd in G. 2

For example, if G has a spanning tree of maximum degree at most d/2 − 1, then Proposi-
tion 5.2 states that MDBCSd admits a 3-approximation in G.

142 Degree-constrained Subgraphs

The relation between MDBCSd and graph toughness

Given a graph G, denote by κ(G) the number of connected components of G.

Definition 5.3 (Toughness of a graph [206]) The toughness t(G) of a graph G =

(V, E) is the largest number t such that, for any subset S ⊆ V, |S | ≥ t · κ(G[V \ S]), provided
that κ(G[V \ S]) > 1.

It is proved in [206] that if t(G) ≥ 1
k−2 , for k ≥ 3, then G has a k-tree.

Theorem 5.8 ([206]) Let G be a graph. If t(G) ≥ 1
k−2 , with k ≥ 3, then G has a k-tree.

Let us relate the above definitions with the MDBCSd problem. If a graph G does not
satisfy the conditions of Proposition 5.2, then G does not have a (d/2 − 1)-tree. In this
case one has some additional knowledge about the structure of G. Namely, Theorem 5.8
states that, provided that d ≥ 8, the toughness t(G) of G satisfies t(G) < 1

d/2−3 , implying
that there exists a subset S ⊆ V(G) such that

κ(G[V \ S]) > |S | ·
(
d
2
− 3

)
.

It would be interesting to explore the question whether this structural result permits to
approximate MDBCSd in G efficiently.

5.4 Hardness of Approximating MSMDd

The main result of this section, Theorem 5.12, states that MSMDd does not admit a
constant-factor approximation on general graphs, for any fixed d ≥ 3. We first prove in
Section 5.4.1 that MSMDd does not admit a PTAS, and then use the error amplification
technique to prove the main result. Our reduction is obtained from the Vertex Cover
(VC) problem (see Section I.2.1).

5.4.1 MSMDd does not admit a PTAS for any d ≥ 3

The result is first established for the case d = 3, in Theorem 5.9, and then extended to
any d ≥ 3 in Theorem 5.10.

Theorem 5.9 The MSMD3 problem does not admit a PTAS, unless P = NP.

Proof : We present a gap-preserving reduction from Vertex Cover, which does not
admit a PTAS in cubic graphs, unless P = NP [31]. Given a cubic graph H as instance
of Vertex Cover, with |V(H)| = n, we construct an instance G = f (H) of MSMD3 as
follows. Without loss of generality, we may assume that |E(H)| = 3n/2 = 3 · 2` for some
integer `. Let T be the complete ternary rooted tree with root r and height `+1, which has
3 ·2` leaves and 3 ·2`+1−2 vertices overall. We identify the leaves of T with the elements in
E(H), and denote –with slight abuse of notation– this set by E (note that E ⊆ V(T)). We

Chapter 5: Hardness and Approximation 143

T

E(H)

E(H)

V(H)

E

A

F

Figure 5.1: An example of the graph G built in the reduction of Theorem 5.9.

add another copy of E, called F, and a Hamiltonian cycle on E ∪ F inducing a bipartite
graph with partition classes E and F, as shown in Fig. 5.1. We also identify the vertices of
F with the elements in E(H). Now we add a set A of |V(H)| new vertices identified with the
elements in V(H), and join them to the vertices in F according to the incidence relations
in H: we add an edge between a vertex in F corresponding to e ∈ E(H) and a vertex in A
corresponding to u ∈ V(H) if and only if e contains u. This completes the construction of
G, which is illustrated in Fig. 5.1.

We now claim that minimum subgraphs of G of minimum degree at least 3 correspond to
minimum vertex covers of H, and vice-versa. To see this, first note that if such a subgraph
D of G contains a vertex of V(T) ∪ F, then it should contain all the vertices of V(T) ∪ F,
because of the construction of G and the degree constraints. On the other hand, D cannot
contain only vertices of A (as they induce an independent set), hence D must contain all
the vertices of V(T) ∪ F. Note that all the vertices of F have degree two in G[V(T) ∪ F].
Therefore, the problem reduces to finding a smallest subset of vertices in A covering all
the vertices in F. This is exactly the Vertex Cover problem in H. Thus, we have that

OPTMSMD3(G) = OPTVC(H) + |V(T)| + |F| = OPTVC(H) + 9n/2 − 2 . (5.7)

(We will omit in the sequel the reference to G and H in OPTMSMD3 and OPTVC, respec-
tively.) Note also that any solution to MSMD3 in G of size S OLMSMD3 defines a solution
to Vertex Cover in H of size S OLVC = S OLMSMD3 − 9n/2 + 2. Assume now for contra-
diction that MSMD3 admits a PTAS, that is, for any ε > 0 we can find in polynomial
time a solution to MSMD3 in G of size S OLMSMD3 ≤ (1 + ε) · OPTMSMD3 . Therefore, we
could find in polynomial time a solution to Vertex Cover in H of size

S OLVC = S OLMSMD3 − 9n/2 + 2 ≤ (1 + ε) · OPTMSMD3 − 9n/2 + 2 . (5.8)

Using Equation (5.7) in Equation (5.8) we get

S OLVC ≤ (1 + ε) · OPTVC + ε · (9n/2 − 2) . (5.9)

144 Degree-constrained Subgraphs

Note that since H is cubic, any vertex cover of H has size at least |E(H)|/3 = n/2, so in
particular n/2 ≤ OPTVC. Using this inequality in Equation (5.9) yields

S OLVC ≤ (1 + ε) · OPTVC + ε · (9 · OPTVC − 2) ≤ (1 + 10ε) · OPTVC .

That is, the existence of a PTAS for MSMD3 would imply the existence of a PTAS for
Vertex Cover in cubic graphs, which is impossible unless P = NP [31]. 2

Theorem 5.10 The MSMDd problem does not admit a PTAS for any fixed d ≥ 3, unless
P = NP.

Proof : The proof consists in a generalization of the reduction presented in Theorem 5.9
for d = 3. Let d ≥ 3 be a fixed integer. We present a reduction from Vertex Cover,
which does not admit a PTAS in d-regular graphs, unless P = NP [31, 177]. Given
a d-regular graph H as instance of Vertex Cover, with |V(H)| = n, we construct an
instance G = f (H) of MSMDd as follows. Without loss of generality, we may assume that
|E(H)| = nd/2 = d · (d − 1)`, for some integer `. Let T be the complete d-ary rooted tree
with root r and height `+ 1, which has d · (d−1)` leaves and 1 + d · (d−1)`+1−1

d−2 vertices overall.
We identify the leaves of T with the elements in E(H), and denote –with slight abuse of
notation– this set by E (note that E ⊆ V(T)). We add another copy of E, called F, and
the following edges (assuming that ` is big enough) according to the parity of d:

• if d ≥ 3 is odd: d−1
2 Hamiltonian cycles on E ∪ F, each inducing a bipartite graph

with partition classes E and F.

• if d ≥ 4 is even: d−2
2 Hamiltonian cycles on E ∪ F, each inducing a bipartite graph

with partition classes E and F, plus one perfect matching between E and F.

We also identify the vertices of F with the elements in E(H). Now we add a set A of
|V(H)| new vertices identified with the elements in V(H), and join them to the vertices
in F according to the incidence relations in H: we add an edge between a vertex in F
corresponding to e ∈ E(H) and a vertex in A corresponding to u ∈ V(H) if and only if e
contains u. This completes the construction of G. Note that the vertices in E have regular
degree d, and those in F have regular degree d + 1.

As in the case d = 3, minimum subgraphs of G of minimum degree at least d correspond
to minimum vertex covers of H, and vice-versa. Thus, we have that

OPTMSMDd (G) = OPTVC(H) + |V(T)|+ |E(H)| = OPTVC(H) +
nd
2
·

2d − 3
d − 2

−
2

d − 2
, (5.10)

where we have used that |V(T)| = 1 + d · (d−1)`+1−1
d−2 and |E(H)| = nd/2 = d · (d − 1)`. (We will

omit in the sequel the reference to G and H in OPTMSMDd and OPTVC, respectively.) Note
also that any solution to MSMDd in G of size S OLMSMDd defines a solution to Vertex
Cover in H of size S OLVC = S OLMSMDd −

nd
2 ·

2d−3
d−2 + 2

d−2 . Assume now for contradiction
that MSMDd admits a PTAS, that is, for any ε > 0 we can find in polynomial time a

Chapter 5: Hardness and Approximation 145

solution to MSMDd in G of size S OLMSMDd ≤ (1 + ε) · OPTMSMDd . Therefore, we could
find in polynomial time a solution to Vertex Cover in H of size

S OLVC ≤ (1 + ε) · OPTMSMDd −
nd
2
·

2d − 3
d − 2

+
2

d − 2
. (5.11)

Using Equation (5.10) in Equation (5.11) we get

S OLVC ≤ (1 + ε) · OPTVC + ε ·

(
nd
2
·

2d − 3
d − 2

−
2

d − 2

)
. (5.12)

Note that since H is d-regular, any vertex cover of H has size at least |E(H)|/d = n/2, so
in particular n/2 ≤ OPTVC. Using this inequality in Equation (5.12) yields

S OLVC ≤ (1 + ε) · OPTVC + ε ·

(
d ·

2d − 3
d − 2

· OPTVC

)
−

2ε
d − 2

≤

(
1 +

(
1 + d ·

2d − 3
d − 2

)
· ε

)
· OPTVC .

That is, the existence of a PTAS for MSMDd would imply the existence of a PTAS for
Vertex Cover in d-regular graphs, which is impossible unless P = NP [31,177]. 2

5.4.2 MSMDd is not in Apx for any d ≥ 3

We are now ready to prove the main result of this section. Again, we focus on the case
d = 3 in Theorem 5.11 and then extend the ideas for any d ≥ 3 in Theorem 5.12.

Theorem 5.11 The MSMD3 problem does not admit any constant-factor approximation,
unless P = NP.

Proof : The proof is by appropriately applying the error amplification technique. Let
G1 = {G} be the family of graphs constructed in Theorem 5.9 (see Figure 5.1) from the
instances H of vertex cover, G being a typical member of this family, and let α > 1 be the
factor of inapproximability of MSMD3, that exists by Theorem 5.9.

We construct a sequence of families of graphs Gk, such that MSMD3 is hard to approximate
within a factor θ(αk) in the family Gk. This proves that MSMD3 does not have any
constant-factor approximation. In the following, Gk will denote a typical element of Gk

constructed using the element G of G1. We describe the construction of G2, and obtain
the result by repeating the same construction inductively to obtain Gk. For every vertex
v in G, we construct a graph Gv as follows. First, letting dv = degG(v), take a copy of G
and choose dv other arbitrary vertices x1, . . . , xdv of degree three in T ⊂ G. Then, replace
each of these vertices xi with a cycle of length four, and join three of the vertices of the
cycle to the three neighbors of xi, i = 1, . . . , dv. Let Gv be the graph obtained in this way.
Note that it contains exactly dv vertices of degree two in Gv.

Now take a copy of G, and replace each vertex v with Gv. Then, join the dv edges incident
to v to the dv vertices of degree two in Gv. This completes the construction of the graph
G2, which is illustrated in Figure 5.2.

146 Degree-constrained Subgraphs

v
x1x2

xdv

Gv

Figure 5.2: Error amplification in the proof of Theorem 5.11.

We have that |V(G2)| = |V(G)|2 + o(|V(G)|2), because each vertex of G is replaced with a
copy of G where we had replaced some of the vertices with a cycle of length four.

To find a solution of MSMD3 in G2, note that for any v ∈ V(G), once a vertex in Gv is
chosen, we have to look for MSMD3 in G, which is hard up to a constant factor α. But
approximating the number of v’s for which we should touch Gv is also MSMD3 in G, which
is hard up to the same factor α. This proves that approximating MSMD3 in G2 is hard
up to a factor α2. The proof of the theorem is completed by repeating this procedure,
applying the same construction to obtain G3, and inductively Gk. 2

Theorem 5.12 The MSMDd problem does not admit any constant-factor approximation
for any fixed d ≥ 3, unless P = NP.

Proof : The proof is based on applying the error amplification technique, generalizing the
proof of Theorem 5.11. Let d ≥ 3 be a fixed integer, let G1 = G be the graph constructed
in Theorem 5.10, and let α > 1 be the factor of inapproximability of MSMDd, that exists
by Theorem 5.10. We construct a sequence of graphs Gk, such that MSMDd is hard to
approximate within a factor θ(αk) in Gk. This proves that MSMDd does not have any
constant-factor approximation. Indeed, suppose that MSMDd admits a C-approximation
for some constant C > 0. Then we can choose k such that αk > C, and then MSMDd is
hard to approximate in Gk within a factor αk > C, a contradiction.

We describe the construction of G2, and obtain the result by repeating the same construc-
tion inductively to create Gk, a typical element of Gk. For every vertex v in G, construct
a graph Gv as follows: first, take a copy of G, and choose dv = degG(v) other arbitrary
vertices x1, . . . , xdv of degree d in T ⊂ G. Then, replace each of these vertices xi with the
following:

• if d is odd: a graph on d + 1 vertices with regular degree d − 1.

• if d is even: a graph on d + 2 vertices having one vertex v∗ of degree d + 1, and all
the others of degree d − 1.

Next, join d of the vertices of this new graph (different from v∗) to the d neighbors of xi,
i = 1, . . . , dv. Let Gv be the graph obtained in this way. Note that we have exactly dv

vertices of degree d − 1 in Gv.

Chapter 5: Hardness and Approximation 147

Now, take a copy of G, and replace each vertex v with Gv. Then, join the dv edges incident
to v to the dv vertices of degree d − 1 in Gv. This completes the construction of the graph
G2.

We have that |V(G2)| = |V(G)|2 +o(|V(G)|2), because each vertex of G is replaced with a copy
of G where we had replaced some of the vertices with a graph of size d + 1 or d + 2. The
same idea of the proof of Theorem 5.11 applies to this case, proving the Apx-hardness of
MSMDd for d ≥ 3. 2

5.5 Approximating MSMDd

In this section, it is shown that for fixed d, MSMDd is in P for graphs whose treewidth
is O(log n). This is done by presenting a polynomial time algorithm based on dynamic
programming. We refer to Section Section I.1.1 (page 21) for the definitions of tree de-
composition and treewidth.

This dynamic programming algorithm is then used in Section 5.5.2 to provide an O(n
log n)-

approximation algorithm of MSMDd for all classes of graphs excluding a fixed graph as
a minor. This algorithm relies on a partitioning result for minor-excluded class of graphs,
proved by Demaine et al. in [92].

5.5.1 MSMDd is in P for graphs with small treewidth

In order to prove our results, we need the following lemma which gives the time complexity
of finding a smallest induced subgraph of degree at least d in graphs of bounded treewidth.

Lemma 5.4 (Lemma 6.1 of Chapter 6) Let G be a graph on n vertices with a tree
decomposition of width at most t, and let d be a positive integer. Then in time O((d +

1)t(t + 1)d2
n), one can either find a smallest induced subgraph of minimum degree at least

d in G, or identify that no such subgraph exists.

A graph G is q-degenerate if every induced subgraph of G has a vertex of degree at most
q. It is well known that there is a constant c such that for every h, every graph with no Kh

minor is ch
√

log h-degenerate [97]. This implies that M-minor-free graphs with |M| = h are
ch

√
log h-degenerate and hence the largest value of d for which MSMDd is non-empty is

ch
√

log h, a constant. The above discussion, combined with the time complexity analysis
mentioned in Lemma 5.4, imply the following.

Corollary 5.2 Let G be an n-vertex graph excluding a fixed graph M as minor, with a
tree decomposition of width O(log n), and let d be a positive integer constant. Then in
polynomial time one can either find a smallest induced subgraph of minimum degree at
least d in G, or conclude that no such subgraph exists.

148 Degree-constrained Subgraphs

5.5.2 Approximation algorithm for M-minor-free graphs

The following result of Demaine et al. [92] provides a way for partitioning the vertices of
a graph excluding a fixed graph as a minor into subsets with small treewidth.

Theorem 5.13 ([92]) For a fixed graph M, there is a constant cM such that for every
integer k ≥ 1 and for every M-minor-free graph G, the vertices of G (or the edges of G)
can be partitioned into k + 1 sets such that any k of the sets induce a graph of treewidth at
most cMk. Furthermore, such a partition can be found in polynomial time.

One may assume without loss of generality that the minimum degree of the minor-free
input graph G = (V, E) is at least d (by removing all the vertices of lower degree), and also
that |V(G)| = n = 2p for some integer p ≥ 0 (otherwise, replace log n with

⌈
log n

⌉
in the

description of the algorithm).

Description of the algorithm:

(1) Relying on Theorem 5.13, partition V(G) in polynomial time into log n + 1 sets
V0, . . . ,Vlog n such that any log n of the sets induce a graph of treewidth at most
cM log n, where cM is a constant depending only on the excluded graph M.

(2) Run the dynamic programming algorithm of Section 5.5.1 on all the subgraphs Gi =

G[V \ Vi] of log n sets, i = 0, . . . , log n.
(3) This procedure finds all the solutions of size at most log n. If no solution is found,

output the whole graph G.

This algorithm clearly provides an O(n/ log n)-approximation for MSMDd in minor-free
graphs, for all d ≥ 3. The running time of the algorithm is polynomial in n, since in step
(2), for each Gi, the dynamic programming algorithm runs in O((d + 1)ti(ti + 1)d2

n) time,
where ti is the treewidth of Gi, which is at most cM log n.

5.6 Approximating DDDkS

We provide a deterministic approximation algorithm for the DDDkS problem in Theo-
rem 5.14 (strongly based on the algorithm for DkS of [114]), and a randomized approx-
imation algorithm in Theorem 5.15. Even though the performance of the randomized
algorithm is worse than the one of the deterministic algorithm, we include it because the
idea behind the algorithm is quite simple.

Theorem 5.14 The DDDkS problem admits a deterministic O(nδ)-approximation algo-
rithm, for some universal constant δ < 1/3.

Proof : Given an input graph G, let ρOPT
k be the optimal average degree of a subgraph of

G on exactly k vertices (i.e., the optimum of DkS), and let δOPT
k be the optimal minimum

degree of a subgraph of G with at most k vertices (i.e., the optimum of DDDkS). Let
C be the approximation ratio of the algorithm for DkS of [114], i.e., C = O(nδ) for some
universal constant δ < 1/3. Given a graph H, let ρH denote the average degree of H.

Chapter 5: Hardness and Approximation 149

We know, by [114], that we can find a subgraph Hk of G on k vertices such that ρHk ≥

ρOPT
k /C. Removing recursively the vertices of Hk with degree strictly smaller that ρHk/2

we obtain a subgraph H′k of Hk on at most k vertices such that δH′k
≥ ρHk/2 ≥ ρ

OPT
k /(2C).

The next step consists of proving that there exists an integer k0, 1 ≤ k0 ≤ k, such that
ρOPT

k0
≥ δOPT

k , so we can run the DkS algorithm for each k′ ≤ k, remove low-degree vertices
each time, and take the best solution of DDDkS among H′2,H

′
3, . . . ,H

′
k−1,H

′
k.

Finally, let us prove that k0 exists. Let H be the optimal solution of DDDkS, δH = δOPT
k .

Let k0 = |V(H)| (k0 ≤ k). This is the k0 we are looking for, because ρOPT
k0
≥ ρH ≥ δH = δOPT

k .

The above procedure clearly constitutes a (2C)-approximation for DDDkS. 2

Theorem 5.15 The DDDkS problem admits a randomized O(
√

n log n)-approximation al-
gorithm.

Proof : For every 1 ≤ d ≤ n, let H[d] be the maximum subgraph of G with minimum
degree δH[d] ≥ d, in the sense that H[d] contains any other subgraph H of G of minimum
degree at least d. Also let n[d] = |V(H[d])|. The first stage of the algorithm computes H[d]
for every 1 ≤ d ≤ n. This is easily done by initializing H[1] = G and then successively
removing from H[d] all the vertices of degree d to obtain H[d + 1]. Note that n[d] can be
zero, i.e., H[d] can be the empty subgraph. The algorithm stops whenever it finds n[d] = 0.

Let d̃ be the index such that n[d̃] > 0 and n[d̃ + 1] = 0 (clearly d̃ ≤ n − 1). If k ≥ n[d̃], then
H[d̃] is an exact solution to the problem, hence the output to the DDDkS problem is d̃.
It remains to handle the case where k < n[d̃]. In this case, it is also clear that the solution
d∗ we are looking for is bounded by d̃, i.e., d∗ < d̃. Two cases may occur.

• Case a : k ≤ 16
√

n log n or d̃ ≤ 16
√

n log n.

In this case any connected subgraph of G of size at most k (for example a connected
subtree of a spanning tree of G of size k, or even just an edge) has minimum degree
at least one, hence it provides a solution that is within a factor 1/(16

√
n log n) of the

optimal solution.

• Case b : Both d̃, k > 16
√

n log n.

Construct a subgraph H of H[d̃] in the following way: select each vertex of H[d̃]
with probability 1/

√
n, and take H to be the induced subgraph of H[d̃] by the set of

selected vertices. Let n0 = |V(H)|.

Claim 5.2 The number of selected vertices satisfies n0 ≤ 2n[d̃]/
√

n with probability at least
1 − 1/n4. In particular, n0 ≤ k with probability at least 1 − 1/n4.

Proof : Observe that n0 can be expressed as the sum of n[d̃] independent Boolean random
variables B1, . . . , Bn[d̃]. Since E[n0] = n[d̃]/

√
n, applying Chernoff’s bound on the upper tail

yields

Prob
[
B1 + · · · + Bn[d̃] >

2n[d̃]
√

n

]
< exp

(
−

n[d̃]
4
√

n

)
.

150 Degree-constrained Subgraphs

Therefore, because n[d̃] > k > 16
√

n log n, we have

Prob
[
n0 >

2n[d̃]
√

n

]
< exp(−4 log n) =

1
n4 ,

and since n[d̃] ≤ n, with probability at least 1− 1
n4 , n0 ≤ 2n[d̃]/

√
n ≤ 2

√
n < 16

√
n log n < k.

2

Claim 5.3 For every vertex v ∈ V(H), degH(v) ≥ d̃
2
√

n
with probability at least 1 − 1/n2.

Proof : Observe first that degH(v) is a sum of degH[d̃](v) independent Boolean random
variables, and so the expected degree of v in H is degH[d̃](v)/

√
n ≥ d̃/

√
n. This is because

every vertex of H[d̃] has degree at least d̃. This implies

Prob
[
degH(v) <

d̃
2
√

n

]
≤ Prob

[
degH(v) <

degH[d̃](v)

2
√

n

]
.

Applying Chernoff’s bound on the lower tail we have

Prob
[
degH(v) <

degH[d̃](v)

2
√

n

]
< exp

(
−

degH[d̃](v)

8
√

n

)
≤ exp

(
−

d̃
8
√

n

)
,

which in turn implies (because d̃ > 16
√

n log n),

Prob
[
degH(v) <

d̃
2
√

n

]
≤ exp

(
−

16
√

n log n
8
√

n

)
=

1
n2 .

2

Claim 5.4 δH ≥ d̃/(2
√

n) with probability at least 1 − 1/n.

Proof : By Claim 5.3, the probability that any node v of H has degH(v) < d̃/(2
√

n) is at
most 1

n2 · |H| ≤ 1/n. 2

Claim 5.2 and Claim 5.4 together show that with probability at least 1 − 1
n −

1
n4 ≥ 1 − 2

n ,
H has at most k vertices and has minimum degree at least d̃/(2

√
n). Therefore, with

high probability, H provides a solution of DDDkS which is within a factor 1/(2
√

n) of the
optimal solution. This concludes the proof of the theorem. 2

Chapter 5: Hardness and Approximation 151

5.7 Conclusions

This chapter considered three Degree-Constrained Subgraph problems and studied
their behavior in terms of approximation algorithms and hardness of approximation. Our
main results and several interesting questions that remain open are discussed below.

We proved that the MDBCSd problem is not in Apx for any d ≥ 2, and that if there is
a polynomial time algorithm for MDBCSd, d ≥ 2, with a performance ratio of 2O(

√
log n),

then NP ⊆ DTIME(2O(log5 n)). We provided a deterministic approximation algorithm
with ratio min{m/ log n, nd/(2 log n)} (resp. min{n/2, m/d}) for general unweighted (resp.
weighted) graphs. Finally, we gave a constant-factor approximation when the input graph
has a low-degree spanning tree. Closing the huge gap between the hardness bound and
the approximation ratio of our algorithm looks like a promising research direction.

We proved that the MSMDd problem is not in Apx for any d ≥ 3. It would be interesting
to strengthen this hardness result using the power of the PCP theorem. On the positive
side, we gave an O(n/ log n)-approximation algorithm for the class of graphs excluding a
fixed graph H as a minor. Finding an approximation algorithm for MSMDd in general
graphs seems to be a challenging open problem. It seems that MSMDd remains hard even
for proper minor-closed classes of graphs.

We provided a O(nδ)-approximation algorithm for the DDDkS problem, for some universal
constant δ < 1/3. It would be interesting to provide hardness results complementing this
approximation algorithm. Another avenue for further research could be to consider a mixed
version between DDDkS and MSMDd, that would result in a two-criteria optimization
problem. Namely, given a graph G, the goal would be to maximize the minimum degree
while minimizing the size of the subgraph, both parameters being subject to a lower and
an upper bound, respectively.

Chapter 6

Parameterized Complexity of
Finding Degree-constrained
Subgraphs

In this chapter we study the parameterized complexity of problem of finding degree-
constrained subgraphs, taking as the parameter the number of vertices of the desired
subgraph. Namely, given two positive integers d and k, we study the problem of
finding a d-regular (induced or not) subgraph with at most k vertices and the problem
of finding a subgraph with at most k vertices and of minimum degree at least d.

We first show that both problems are fixed-parameter intractable in general graphs.
More precisely, we prove that the first problem is W[1]-hard using a reduction from
Multi-Color Clique. The hardness of the second problem follows from an easy ex-
tension of an already know result. We then provide explicit fixed-parameter tractable
(FPT) algorithms to solve both problems in graphs with bounded local treewidth and
graphs with excluded minors, using a dynamic programming approach. In particular,
the problems become fixed-parameter tractable in planar graphs, graphs of bounded
genus, and graphs with bounded maximum degree.

Keywords: parameterized complexity, degree-constrained subgraph, W[1]-hardness,
dynamic programming, excluded minors.

6.1 Introduction

As discussed in Section III.1 (page 123), problems of finding subgraphs with certain degree
constraints are well studied both algorithmically and combinatorially, and have a number
of applications in network design [C8, 114, 137, 159, 160]. In this chapter we consider two
natural such problems: finding a small regular (induced or not) subgraph and finding a

153

154 Degree-constrained Subgraphs

small subgraph with given minimum degree. We focus on these problems in Sections 6.1.1
and 6.1.2, respectively.

6.1.1 Finding a small regular subgraph

The complexity of finding regular graphs as well as regular (induced) subgraphs has been
intensively studied in the literature [61, 65, 70, 75, 134, 168, 172, 195]. One of the first
problems of this kind was stated by Garey and Johnson: Cubic Subgraph, that is,
the problem of deciding whether a given graph contains a 3-regular subgraph, is NP-
complete [75]. More generally, the problem of deciding whether a given graph contains
a d-regular subgraph for any fixed degree d ≥ 3 is NP-complete on general graphs [70]
as well as on planar graphs [195] (where in the latter case only d = 4 and d = 5 were
considered, since any planar graph contains a vertex of degree at most 5). Note that
this problem is clearly polynomial-time solvable for d ≤ 2. If the regular subgraph is
required to be induced, Cardoso et al. proved that finding a maximum cardinality d-
regular induced subgraph is NP-complete for any fixed integer d ≥ 0 [65] (for d = 0 and
d = 1 the problem corresponds to Maximum Independent Set and Maximum Induced
Matching, respectively).

Concerning parameterized complexity of finding regular subgraphs, Moser and Thilikos
proved that the following problem is W[1]-hard for every fixed integer d ≥ 0 [172]:

≥ k-size d-Regular Induced Subgraph
Input: A graph G = (V, E) and a positive integer k.
Parameter: k.
Question: Does there exist a subset S ⊆ V, with |S | ≥ k, such that G[S] is d-regular?

On the other hand, the authors proved that the following problem (which can be seen as
the dual of the above one) is NP-complete but has a problem kernel of size O(kd(k + d)2)
for d ≥ 1 [172]:

≤ k-Almost d-Regular Graph
Input: A graph G = (V, E) and a positive integer k.
Parameter: k.
Question: Does there exist a subset S ⊆ V, with |S | ≤ k, such that G[V \S] is d-regular?

Mathieson and Szeider studied in [168] variants and generalizations of the problem of
finding a d-regular subgraph (for d ≥ 3) in a given graph by deleting at most k vertices. In
particular, they answered a question of [172], proving that the ≤ k-Almost d-Regular
Graph problem (as well as some variants) becomes W[1]-hard when parameterized only
by k (that is, it is unlikely that there exists an algorithm to solve it in time f (k) · nO(1),
where n = |V(G)| and f is a function independent of n and d).

Given two integers d and k, it is also natural to ask for the existence of an induced
d-regular graph with at most k vertices. The corresponding parameterized problem is
defined as follows.

Chapter 6: Parameterized Complexity of Finding Degree-constrained Subgraphs 155

≤ k-size d-Regular Induced Subgraph (kdRIS)
Input: A graph G = (V, E) and a positive integer k.
Parameter: k.
Question: Does there exist a subset S ⊆ V, with |S | ≤ k, such that G[S] is d-regular?

Note that the complexity of ≤ k-size d-Regular Induced Subgraph does not follow
directly from the complexity of ≥ k-size d-Regular Induced Subgraph as, for instance,
the approximability of the problems of finding a densest subgraph on at least k vertices or
on at most k vertices are significantly different [37].

In general, a graph may not contain an induced d-regular subgraph on at most k vertices,
while containing a non-induced d-regular subgraph on at most k vertices. This observation
leads to the following problem:

≤ k-size d-Regular Subgraph (kdRS)
Input: A graph G = (V, E) and a positive integer k.
Parameter: k.
Question: Does there exist a d-regular subgraph H ⊆ G, with |V(H)| ≤ k?

Observe that ≤ k-size d-Regular Subgraph could a priori be easier than its correspond-
ing induced version, as it happens for the Maximum Matching (which is in P) and the
Maximum Induced Matching (which is NP-hard) problems.

To the best of our knowledge, the two parameterized problems defined above have not been
considered in the literature. We prove in Section 6.2 that both problems are W[1]-hard
for every fixed d ≥ 3, by reduction from Multi-Color Clique.

6.1.2 Finding a small subgraph with given minimum degree

For a finite, simple, and undirected graph G = (V, E) and d ∈ N, the d-girth gd(G) of G
is the minimum order of an induced subgraph of G of minimum degree at least d. The
notion of d-girth was proposed and studied by Erdős et al. [111, 112] and Bollobás and
Brightwell [60]. It generalizes the usual girth, the length of a shortest cycle, which coincides
with the 2-girth. (This is indeed true because every induced subgraph of minimum degree
at least two contains a cycle.) Combinatorial bounds on the d-girth can also be found
in [54, 158]. The corresponding optimization problem is exactly the MSMDd problem
defined in Chapter 5 (page 131). From the parameterized complexity point of view, it is
natural to introduce a parameter k ∈ N and ask for the existence of a subgraph with at
most k vertices and with minimum degree at least d. The problem can be formally defined
as follows.

≤ k-size Subgraph of Minimum Degree ≥ d (kSMDd)
Input: A graph G = (V, E) and a positive integer k.
Parameter: k.
Question: Does there exist a subset S ⊆ V, with |S | ≤ k, such that G[S] has minimum

degree at least d?

156 Degree-constrained Subgraphs

Note that the case d = 2 in in P, as discussed above. The special case of d = 4 appears in
the book of Downey and Fellows [103], where it is announced that Wareham proved that
kSMD4 is W[1]-hard. From this result, it is easy to prove that kSMDd is W[1]-hard for
every fixed d ≥ 4 (see Section 6.2). The case d = 3 remains open. Note that in the kSMDd
problem we can assume without loss of generality that we are looking for the existence of
an induced subgraph, since we only require the vertices to have degree at least d.

6.1.3 Presentation of the results

We do a thorough study of the kdRS, the kdRIS, and the kSMDd problems in the realm
of parameterized complexity. Some basic background of parameterized complexity can be
found in Section I.2.3. Our results can be classified into two categories:

General graphs: We show in Section 6.2 that kdRS is not fixed-parameter tractable
by showing it to be W[1]-hard for any d ≥ 3 in general graphs. We will see that the graph
constructed in our reduction implies also the W[1]-hardness of kdRIS. In general, parame-
terized reductions are quite stringent because of parameter-preserving requirements of the
reduction, and require some technical care. Our reduction is based on a new methodology
emerging in parameterized complexity, called multi-color clique edge representation. This
has proved to be useful in showing various problems to be W[1]-hard recently [72]. We
first spell out step by step the procedure to use this methodology, which can be used as
a template for future purposes. Then we adapt this methodology to the reduction for the
kSMDd problem. Our reduction is robust, in the sense that similar problems can be shown
to be W[1]-hard with minor modifications. The hardness of kSMDd for d ≥ 4 follows from
an easy extension of a result of Wareham [103].

Graphs with bounded local treewidth and graphs with excluded minors: Both
the kSMDd and kdRS problems can be easily defined in first-order logic, where the formula
only depends on k and d, both being bounded by the parameter. Frick and Grohe [128] have
shown that first-order definable properties of graph classes of bounded local treewidth can
be decided in time n1+1/k for all k, in particular in time n2, and first-order model checking
is FPT on M-minor-free graphs. This immediately gives us the classification result that
both problems are FPT for d ≥ 3 in graphs with bounded local treewidth and graphs
excluding a fixed graph M as a minor. These classification results can be generalized to a
larger class of graphs, namely graphs locally excluding a fixed graph M as a minor, by a
recent result of Dawar, Grohe and Kreutzer [89]. These results are by nature very general
and can involve huge coefficients (dependence on k). A natural problem arising in this
context is then the design of an explicit algorithm for kSMDd for d ≥ 3 in these graph
classes with explicit time complexity, faster than the one coming from the meta-theorem
of Frick and Grohe. In Section 6.3, we provide a fast and explicit algorithms for kSMDd,
d ≥ 3, in graphs with bounded local treewidth and graphs excluding a fixed graph M as a
minor. For the sake of simplicity, we present the algorithm for the kSMDd problems, but
the same algorithms can be applied to the kdRS problem, with the same time bounds. Our
algorithms use standard dynamic programming over graphs with bounded treewidth and

Chapter 6: Parameterized Complexity of Finding Degree-constrained Subgraphs 157

a few results concerning the clique decomposition of M-minor-free graphs developed by
Robertson and Seymour in their graph minor theory [187]. A set of non-trivial observations
allow to get improvements in the time complexity of the algorithms. We note that our
dynamic programming over graphs with bounded treewidth is also generic and can handle
variations on degree-constrained subgraph problems with simple changes.

6.2 Fixed-Parameter In-tractability Results

As mentioned in the introduction, kSMDd is known to be W[1]-hard for d = 4 [103]. It
can be easily proved that kSMDd is W[1]-hard for every d ≥ 4, by reducing kSMDd to
kSMDd+1.

Indeed, let G be an instance of kSMDd, with parameter k. We construct an instance G′

of kSMDd+1 from G by adding a vertex u and connecting it to all the vertices of G. We
set the parameter to k + 1. If there is a subset of vertices S ⊆ V(G) of size at most k and
with minimum degree at least d, then S ∪ {u} is a solution to kSMDd+1 in G′ (the degree
of u is also at least d + 1 since we can assume that k ≥ d + 1). Conversely, if there is a
subset of vertices S ⊆ V(G′) of size at most k + 1 and with minimum degree at least d + 1,
we construct a solution to kSMDd in G as follows.

• if u ∈ S , then S \ {u} is a solution in G.

• otherwise, if u < S , let v be an arbitrary vertex in S . Then any connected component
of the subgraph induced by S \{v} is a solution in G, since |S \{v}| ≤ k and the degrees
of the vertices in S \ {v} have decreased by at most 1 after the removal of v.

In the remainder of this section we give a W[1]-hardness reduction for kdRS. The definition
of a parameterized reduction can be found in Section I.2.3 (page 24). Our reduction is
from Multi-Color Clique, which is known to be W[1]-complete by a simple reduction
from the ordinary Clique [115], and is based on the methodology known as multi-color
edge representation. The Multi-Color Clique problem is defined as follows.

Multi-color Clique
Input: An graph G = (V, E), a positive integer k, and a proper k-coloring of V(G).
Parameter: k.
Question: Does there exist a clique of size k in G consisting of exactly one vertex of

each color?

Consider an instance G = (V, E) of Multi-color Clique with its vertices colored with
the set of colors {c1, · · · , ck}. Let V[ci] denote the set of vertices of color ci. For each edge
e = {u, v} of G, with u ∈ V[ci], v ∈ V[c j], and i < j, we first replace e with two arcs e f = (u, v)
and eb = (v, u). By abuse of notation, we also call this digraph G. Let E[ci, c j] be the set
of arcs e = (u, v), with u ∈ V[ci] and v ∈ V[c j], for 1 ≤ i , j ≤ k. An arc (u, v) ∈ E[ci, c j]
is called forward (resp. backward) if i < j (resp. i > j). We also assume that |V[ci]| = N
for all i, and that |E[ci, c j]| = M for all i , j, i.e., we assume that the color classes of G,

158 Degree-constrained Subgraphs

and also the arc sets between them, have uniform sizes. For a simple justification of this
assumption, we can reduce Multi-color Clique to itself, taking the union of k! disjoint
copies of G, one for each permutation of the color sets.

In this methodology, the basic encoding bricks correspond to the arcs of G, which we call
arc gadgets. We generally have three kinds of gadgets, which we call selection, co-
herence, and match gadgets. These are engineered together to get an overall reduction
gadget for the problem. In an optimal solution to the problem (that is, a solution providing
a Yes answer), the selection gadget ensures that exactly one arc gadget is selected among
arc gadgets corresponding to arcs going from a color class V[ci] to another color class V[c j].
For any color class V[ci], the coherence gadget ensures that the out-going arcs from V[ci],
corresponding to the selected arc gadgets, have a common vertex in V[ci]. That is, all the
arcs corresponding to these selected arc gadgets emanate from the same vertex in V[ci].
Finally, the match gadget ensures that if we have selected an arc gadget corresponding
to an arc (u, v) from V[ci] to V[c j], then the arc gadget selected from V[c j] to V[ci] cor-
responds to (v, u). That is, both of e f and eb are selected together. In what follows, we
show how to particularize this general strategy to obtain a reduction from Multi-color
Clique to kdRS for d ≥ 3. To simplify the presentation, we first describe our reduction
for the case d = 3 (in Section 6.2.1) and then we describe the required modifications for
the case d ≥ 4 in Section 6.2.2.

6.2.1 W[1]-hardness for the cubic case

In this section we give in detail the construction of all the gadgets for d = 3. Recall that
an arc (u, v) ∈ E[ci, c j] is forward if i < j, and it is backward if i > j. We refer the reader
to Figure 6.1 to get an idea of the construction.

Arc gadgets: For each arc (u, v) ∈ E[ci, c j] with i < j (resp. i > j) we have a cycle Ce f

(resp. Ceb) of length 3 + 2(k − 2) + 2, with the set of vertices:

• selection vertices: e f
s1, e f

s2, and e f
s3 (resp. eb

s1, eb
s2, and eb

s3);

• coherence vertices: e f
ch1r, e

f
ch2r (resp. eb

ch1r, e
b
ch2r), for all r ∈ {1, . . . , k} and r , i, j; and

• match vertices: e f
m1 and e f

m2 (resp. eb
m1 and eb

m2).

Selection gadgets: For each pair of indices i, j with 1 ≤ i , j ≤ k, we add a new vertex
Aci,c j , and connect it to all the selection vertices of the cycles Ce f if i < j (resp. Ceb if i > j)
for all e ∈ E[ci, c j]. This gadget is called forward selection gadget (resp. backward selection
gadget) if i < j (resp. i > j), and it is denoted by Si, j.

That is, we have k(k − 1) clusters of gadgets: one gadget Si, j for each set E[ci, c j], for
1 ≤ i , j ≤ k.

Chapter 6: Parameterized Complexity of Finding Degree-constrained Subgraphs 159

es1
f

ech2q
f

ech1k
f

ech2k
f

em1
f

em2
f

es3
f

es2
f

e

e f

e*

ech11
f

ech21
f

ech1q
f

es1
b

es2
b

es3
b

ech11
b

ech21
b

ech1k
b

ech2k
b

em1
b

e b
m2*

Aci cp, Acp ci,

C e bC

e' fC

e'' fC

e' bC

e'' bC

pqu
qpu

ech2pech1p

Aci cq,

ech2pech1p

_ _
^ ^

e xC e xC_
^

S i p, Sp i,

S i q,

Figure 6.1: Gadgets used in the reduction of the proof of Theorem 6.1 (we suppose i < p).

Coherence gadgets: For each i, 1 ≤ i ≤ k, let us consider all the selection gadgets of the
form Si,p, p ∈ {1, · · · , k} and p , i. For any u ∈ V[ci], and any two indices 1 ≤ p , q ≤ k,
p, q , i, we add two new vertices upq and uqp, and a new edge {upq, uqp}. For every arc
e = (u, v) ∈ E[ci, cp], with u ∈ V[ci], we pick the cycle Cex , x ∈ { f , b} depending on whether e
is forward or backward, and add two edges of the form {ech1q, upq} and {ech2q, upq}. Similarly,
for an arc e = (u,w) ∈ E[ci, cq], with u ∈ V[ci], we pick the cycle Cex , x ∈ { f , b}, and add two
edges {ech1p, uqp} and {ech2p, uqp}.

Match gadgets: For any pair of arcs e f = (u, v) and eb = (v, u), we consider the two
cycles Ce f and Ceb corresponding to e f and eb. Now, we add two new vertices e∗ and e∗, a
matching edge {e∗, e∗}, and all the edges of the form {e f

m1, e
∗}, {e f

m2, e
∗}, {eb

m1, e∗} and {eb
m2, e∗}

where e f
m1, e f

m2 are match vertices on Ce f , and eb
m1 , eb

m2 are match vertices on Ceb .

This completes the construction of the gadgets, and the union of all of them defines the
graph GG depicted in Figure 6.1.

We now prove that this construction yields the reduction through a sequence of simple
claims.

160 Degree-constrained Subgraphs

Claim 6.1 Let G be an instance of Multi-color Clique, and GG be the graph we con-
structed above. If G has a multi-colored k-clique, then GG has a 3-regular subgraph of size
k′ = (3k + 1)k(k − 1).

Proof : Let ω be a multi-color clique of size k in G. For every edge e ∈ E(ω), select the
corresponding cycles Ce f , Ceb in GG. Let us define S as follows.

S =
⋃

e∈ω,x∈{ f ,b}

NGG [V(Cex)] .

It is straightforward to check that GG[S] is a 3-regular subgraph of GG. To verify the size
of GG[S], note that we have 2 ·

(
k
2

)
cycles in GG[S] and each of them contributes (3k − 1)

vertices (this includes vertices on the cycle themselves). 2

Claim 6.2 Any 3-regular subgraph of GG contains one of the cycles Cex , x ∈ {b, f }, corre-
sponding to arc gadgets.

Proof : Note that if such a subgraph of GG intersects a cycle Cex , then it must contain all
of its vertices. Further, if we remove all the vertices corresponding to arc gadgets in GG,
then the remaining graph is a forest. These two facts together imply that any 3-regular
subgraph of G (G) should intersect at least one cycle Cex corresponding to an arc gadget,
hence it must contain Cex . 2

Claim 6.3 If GG contains a 3-regular subgraph of size k′ = (3k + 1)k(k − 1), then G has a
multi-colored k-clique.

Proof : Let H = G[S] be a 3-regular subgraph of size k′. Now, by Claim 6.2, S must
contain all the vertices of a cycle corresponding to an arc gadget. Furthermore, notice that
to ensure the degree condition in H, once we have a vertex of a cycle in S , all the vertices
of this cycle and their neighbors are also in S . Without loss of generality, let Ce f be this
cycle, and suppose that it belongs to the gadget Si, j, i.e., e ∈ E[ci, c j] and i < j. Notice
that by construction, this forces some of the other vertices to belong also to S . Indeed,
its match vertices force the cycle Ceb of S j,i to be in S . The coherence vertices of Ce f force
S to contain at least one cycle in Si,l, for all l ∈ {1, · · · , k}, l , i. They in turn force S to
contain at least one cycle from the remaining gadgets Sp,q for all p , q ∈ {1, . . . , k}. The
selection vertices of each such cycle in Sp,q force S to contain Ap,q. But because of our
condition on the size of S (|S | = k′), we can select exactly one cycle gadget from each of the
gadgets Sp,q, p , q ∈ {1, 2, · · · , k}. Let E′ be the set of edges in E(G) corresponding to arc
gadgets selected in S . We claim that G[V[E′]] is a multi-color clique of size k in G. Here
V[E′] is a subset of vertices of V(G) containing the end points of the edges in E′. First of
all, because of the match vertices, once e f is in E′, eb is forced to be in E′. To conclude the
proof we only need to ensure that all the edges from a particular color class emanate from
the same vertex. But this is ensured by the restriction on the size of S and the presence
of coherence vertices on the cycles selected in S from Sp,q, p , q ∈ {1, 2, · · · , k}. To see
this, let us take two arcs e = (u, v) ∈ (E[ci, cp] ∩ E′) and e′ = (u′,w) ∈ (E[ci, cq] ∩ E′). Now
the four vertices upq, uqp, u′pq, and u′qp belong to S . If u is different from u′, then S has
at least two elements more than the expected size k′, which contradicts the condition on
the size of S . All these facts together imply that G[V(E′)] forms a multi-colored k-clique
in the original graph G. 2

Chapter 6: Parameterized Complexity of Finding Degree-constrained Subgraphs 161

Claims 6.1 and 6.3 together yield the following theorem:

Theorem 6.1 k3RS is W[1]-hard.

We shall see in the next section that the proof of the Theorem 6.1 can be generalized to
larger values of d. Note that the 3-regular subgraph constructed in the proof of Theo-
rem 6.1 is a 3-regular induced subgraph, so our proof implies the following corollary.

Corollary 6.1 k3RIS is W[1]-hard.

6.2.2 W[1]-hardness for higher degrees

In this section we generalize the reduction given in Section 6.2.1 for d ≥ 4. The main idea
is to change the role of the cycles Ce by (d − 1)-regular graphs of appropriate size. We
show below all the necessary changes in the construction of the gadgets to ensure that the
proof for d = 3 works for d ≥ 4.

Arc gadgets for d ≥ 4: Let us take C to be a (d − 1)-regular graph of size (d − 1) + (d −
1)(k − 2) + d, if it exists (that is, if (d − 1) is even or k is odd). If such a graph does not
exist, we take a graph of size (d − 1) + (d − 1)(k + 2) + d + 1 and with regular degree d − 1 on
the set C of (d − 1) + (d − 1)(k + 2) + d vertices and degree d on the last vertex v. As before,
we replace each edge e with two arcs e f and eb. For each arc ex ∈ E[ci, c j], we add a copy
of C, that we call Cex , with the following vertex set:

• selection vertices: ex
s1, ex

s2, · · · , e
x
sd;

• coherence vertices: ex
ch1r, · · · , e

x
ch(d−1)r, for all r ∈ {1, . . . , k}, r , i, j; and

• match vertices: ex
m1, · · · , e

x
m(d−1).

Selection gadgets for d ≥ 4: Without loss of generality suppose that x = f . As before,
we add a vertex Aci,c j , and for every arc e f ∈ E[ci, c j] we add all the edges from Aci,c j to all
the selection vertices of the graph Ce f . We call this gadget Si, j.

Coherence gadgets for d ≥ 4: Fix an i, 1 ≤ i ≤ k. Let us consider all the selection
gadgets of the form Si,p, p ∈ {1, · · · , k} and p , i. For any u ∈ V[ci], and any two indices
p , q ≤ k, p, q , i, we add a new edge {upq, uqp}. For every arc e = (u, v) ∈ E[ci, cp], with
u ∈ V[ci], we pick the graph Cex , x ∈ { f , b}, depending on whether e is forward or backward,
and add d − 1 edges of the form {ech1q, upq}, {ech2q, upq}, . . . , {ech(d−1)q, upq}. Similarly, for an
arc e = (u,w) ∈ E[ci, cq], with u ∈ V[ci], we pick the graph Cex , x ∈ { f , b}, and add d − 1
edges of the form {ech1p, uqp}, . . . , {ech(d−1)p, uqp}.

162 Degree-constrained Subgraphs

Match gadgets for d ≥ 4: For the two arcs e f = (u, v) and eb = (v, u), we consider the
two graphs Ce f and Ceb corresponding to e f and eb. Now we add a matching edge {e∗, e∗}
and add all the edges of the form {e f

m1, e
∗}, . . . , {e f

m(d−1), e
∗} and {eb

m1, e∗}, . . . , {e
b
m1, e∗}, where

e f
mi, eb

mi are match vertices of Ce f and of Ceb , respectively.

This completes the construction of the gadgets, and the union of all of them defines the
graph GG. It is not hard to see that a proof similar to that of Theorem 6.1 shows that G,
an instance of multi-color clique, has a multi-colored clique of size k if and only if GG has
a d-regular subgraph of size k′ = dk + 1. We have the following theorem.

Theorem 6.2 kdRS is W[1]-hard for all d ≥ 3.

Notice that again the d-regular subgraph constructed in the proof of Theorem 6.2 turns
out to be an induced subgraph of regular degree d in GG. As a consequence we obtain the
following corollary:

Corollary 6.2 kdRIS is W[1]-hard for all d ≥ 3.

6.3 FPT Algorithms for Graphs with Bounded Local
Treewidth and Graphs with Excluded Minors

In this section, we provide explicit (and fast) algorithms for kSMDd, d ≥ 3, in graphs
with bounded local treewidth (Section 6.3.1) and in graphs excluding a fixed graph M as
a minor (Section 6.3.2). We first provide the necessary background.

The definition of treewidth (see page 21) can be generalized to take into account the local
properties of G, and this is called local treewidth. To define it formally, we first need to
define the r-neighborhood of vertices of G. The distance dG(u, v) between two vertices u
and v of G is the length of a shortest path in G from u to v. For r ≥ 1, a r-neighborhood
of a vertex v ∈ V is defined as Nr

G(v) = {u ∈ V | dG(v, u) ≤ r}.

The local treewidth of a graph G is a function ltwG : N → N which associates to every
integer r ∈ N the maximum treewidth of an r-neighborhood of vertices of G, i.e.,

ltwG(r) = max
v∈V(G)

{tw(G[Nr
G(v)])}.

A graph class G has bounded local treewidth if there exists a function f : N→ N such that
for each graph G ∈ G and for each integer r ∈ N, we have ltwG(r) ≤ f (r). For a given
function f : N→ N, G f is the class of all graphs G of local tree-width at most f , i.e., such
that ltwG(r) ≤ f (r) for every r ∈ N. We refer to [108] and [141] for more details.

We now provide the basics to understand the structure of the classes of graphs excluding
a fixed graph as a minor.

Let G1 = (V1, E1) and G2 = (V2, E2) be two disjoint graphs, and k ≥ 0 an integer. For
i = 1, 2, let Wi ⊆ Vi form a clique of size h and let G′i be the graph obtained from Gi by
removing a set of edges (possibly empty) from the clique Gi[Wi]. Let F : W1 → W2 be

Chapter 6: Parameterized Complexity of Finding Degree-constrained Subgraphs 163

a bijection between W1 and W2. The h-clique sum or the h-sum of G1 and G2, denoted
by G1 ⊕h,F G2, or simply G1 ⊕G2 if there is no confusion, is the graph obtained by taking
the union of G′1 and G′2 by identifying w ∈ W1 with F(w) ∈ W2, and by removing all the
multiple edges. The image of the vertices of W1 and W2 in Gi ⊕G2 is called the join of the
sum.

Note that ⊕ is not well defined; different choices of G′i and the bijection F can give different
clique sums. A sequence of h-sums, not necessarily unique, which result in a graph G, is
called a clique sum decomposition or, simply, a clique decomposition of G.

Let Σ be a surface with boundary cycles C1, . . . ,Ch. A graph G is h-nearly embeddable
in Σ, if G has a subset X of vertices of size at most h, called apices, such that there are
(possibly empty) subgraphs G0, . . . ,Gh of G \ X such that

1. G \ X = G0 ∪ · · · ∪Gh;

2. G0 is embeddable in Σ (we fix an embedding of G0);

3. G1, . . . ,Gh are pairwise disjoint;

4. For 1 ≤ · · · ≤ h, let Ui := {ui1 , . . . , uimi
} = V(G0) ∩ V(Gi), Gi has a path-decomposition

({Bi j}, 1 ≤ j ≤ mi) of width at most h such that

(a) for 1 ≤ i ≤ h and for 1 ≤ j ≤ mi we have u j ∈ Bi j; and
(b) for 1 ≤ i ≤ h, we have V(G0) ∩ Ci = {ui1 , . . . , uimi

} and the points ui1 , . . . , uimi
appear on Ci in this order (either walking through the cycles clockwise or coun-
terclockwise).

6.3.1 Graphs with bounded local treewidth

In order to prove our results, we need the following lemma, which gives the time complex-
ity of finding a smallest induced subgraph of degree at least d in graphs with bounded
treewidth.

Lemma 6.1 Let G be a graph on n vertices with a tree-decomposition of width at most t,
and let d be a positive integer. Then in time O((d + 1)t(t + 1)d2

n) we can decide whether
there exists an induced subgraph of degree at least d in G and, if such a subgraph exists,
find one of the smallest size.

Proof : Let (T,X) be the given tree-decomposition. We assume that T is a rooted tree,
and that the decomposition is nice, which means the following:

• Each node has at most two children;

• For every node t with exactly two children t1 and t2, Xt = Xt1 = Xt2 ;

• For every node t with exactly one child s, either Xt ⊂ Xs and |Xs| = |Xt|+ 1, or Xs ⊂ Xt

and |Xt| = |Xs| + 1.

Note that such a decomposition always exists and can be found in linear time, and in fact
we may assume that |V(T)| = O(n). As usual in algorithms based on tree decompositions,

164 Degree-constrained Subgraphs

we employ a dynamic programming approach based on this decomposition, which at the
end either produces a connected subgraph of G of minimum degree at least d and of size
at most k, or decides that G does not have any such subgraph.

As the tree decomposition is rooted, we can speak of the subgraph defined by the subtree
rooted at node i. More precisely, for any node i of T , let Yi be the set of all vertices that
appear either in Xi or in X j for some descendant j of i. Denote by G[Yi] the graph induced
by the nodes in Yi.

Note that if i is a node in the tree and j1 and j2 are two children, then Y j1 and Y j2
are disjoint except for vertices in Xi, i.e., Y j1 ∩ Y j2 = Xi. A P-coloring of the vertices
in Xi, for the palette P = {0, 1, . . . , d}, is a function ci : Xi → P. The support of c is
supp(c) = {v ∈ Xi | c(v) , 0}.

For any such P-coloring c of vertices in Xi, let a(i, c) be the minimum size of an induced
subgraph H(i, c) of G[Yi], which has degree c(v) for every v ∈ Xi with c(v) , d, and degree
at least d on its other vertices. Note that H(i, c) ∩ Xi = supp(c). If such a subgraph does
not exist, we define a(i, c) = +∞.

We develop recursive formulas for a(i, c). In the base case, i is a leaf of the tree decompo-
sition. Hence Yi = Xi. The size of the minimum induced subgraph with prescribed degrees
is exactly |supp(c)| if G[supp(c)] satisfies the degree conditions, and is +∞ if it does not.

In the recursive case, node i has at least one child. We distinguish between three cases,
depending on the size of the bag of i and its number of children.

Case (1): i has only one child j and Xi ⊂ X j.
Then |X j| = |Xi|+ 1 and Xi = X j \ {v} for some vertex v. Also, Yi = Y j, since Xi does not add
any new vertices. Consider a coloring c : Xi → P. Consider the two colorings c0 : X j → P

and c1 : X j → P of X j, defined as follows: c0 = c1 = c on Xi, and c0(v) = 0, c1(v) = d. Then
we let a(i, c) = min{a(j, c0), a(j, c1)}.

Case (2): i has only one child j and X j ⊂ Xi.
Then |X j| = |Xi| − 1 and X j = Xi \ {v} for some vertex v. Also, Y j = Yi \ {v}. Let c be a
coloring of Xi. It is clear that the only neighbors of v in G[Yi] are already in Xi.

• If c(v) ≥ 1, for any collection A of c(v) edges in G[Xi] connecting v to vertices
v1, . . . , vc(v), with c(vi) ≥ 1 (note that such a collection may not exist at all), we
consider the coloring cA of X j as follows: cA(vi) = c(vi) − 1 for any 1 ≤ i ≤ c(v), and
cA(w) = c(w) for any other vertex w. Then we define

a(i, c) = min
A
{a(j, cA)} + 1 .

• If c(v) = 0, we simply define a(i, c) = a(j, c).

Note that there are at most (t + 1)d+1 choices for such a collection A.

Case (3): i has two children j1 and j2.
Then Xi = X j1 = X j2 . Let c be a coloring of Xi, then supp(c) ⊂ Xi is part of the subgraph
we are looking for. For any vertex v ∈ Xi, calculate the degree degG[Xi](v). Suppose that v
has degree dv

1, d
v
2 in H ∩G[Y j1],H ∩G[Y j2] (H is the subgraph we are looking for). These

Chapter 6: Parameterized Complexity of Finding Degree-constrained Subgraphs 165

degree sequences should guarantee the degree condition on v imposed by the coloring c. In
other words, if c(v) ≤ d − 1 then we should have dv

1 + dv
2 − dG[Xi] = c(v), and if c(v) = d, then

dv
1 + dv

2 − dG[Xi] ≥ d. Every such sequence D = {dv
1, d

v
2 | v ∈ Xi} on vertices of Xi determines

two colorings cD1 and cD2 of X j1 and X j2 respectively. For each such pair of colorings, let
H1 and H2 be the minimum subgraphs with these degree constraints in G[Y j1] and G[Y j2]
respectively. Then H1 ∪ H2 satisfies the degree constraints imposed by c. We define

a(i, c) = min
D
{|H| | H = H1 ∪ H2}

for all degree distributions as above. For every vertex we have at most d2 possible degree
choices for dv

1 and dv
2. We have also |Xi| ≤ t + 1. This implies that the minimum is taken

over at most (t + 1)d2
colorings.

As the size of our tree-decomposition is linear on n, we can determine all the values a(i, c)
for every i ∈ V(T) and every coloring of Xi in time linear in n. Now return the minimum
value of a(i, c) computed for all colorings c, for values in the set {0, d} assigning at least
one non-zero value. The time dependence on t follows from the size of the bags and the
choices made using the colorings. 2

Lemma 6.1 leads to the following theorem:

Theorem 6.3 For any d ≥ 3 and any function f : N → N, kSMDd is fixed-parameter
tractable on G f . Furthermore, the algorithm runs in time O((d + 1) f (2k)(f (2k) + 1)d2

n2).

Proof : Let G = (V, E) be a graph in G f , that is, G has bounded local treewidth and the
bound is given by the function f . We first notice that if there exists an induced subgraph
H ⊆ G of size at most k and degree at least d, then H can be supposed to be connected.
Secondly, if we know a vertex v of H, then H is contained in Nk

G[v], which has diameter
at most 2k. Hence there exists the desired H if and only if there exists v ∈ V such that H
is contained in Nk

G[v]. To solve the problem, for each v ∈ V, we find a tree-decomposition
of Nk

G[v] of width at most f (2k) in time polynomial in n, and then run the algorithm of
Lemma 6.1. 2

The function f (k) is known to be 3k, Cggk, and b(b − 1)k−1 for planar graphs, graphs of
genus g, and graphs of degree at most b, respectively [108, 141]. Here Cg is a constant
depending only on the genus g of the graph. As an easy corollary of Theorem 6.3, we have
the following:

Corollary 6.3 kSMDd can be solved in O((d+1)6k(6k+1)d2
n2), O((d+1)2Cggk(2Cggk+1)d2

n2)
and O((d + 1)2b(b−1)k−1

(2b(b − 1)k−1 + 1)d2
n2) time in planar graphs, graphs of genus g, and

graphs of degree at most b, respectively.

6.3.2 M-minor-free graphs

In this section, we consider the class of M-minor-free graphs. We need the following
theorem of Robertson and Seymour [187] (see also Demaine et al. in [92] for an algorithmic
version).

166 Degree-constrained Subgraphs

Bt

Bp(t)

Bs Bs1 2

As1

At

As2

Xt

Bt

Bp(t)

Bs Bs1 2

^

vertices in
(apices)

^

^^

Figure 6.2: Tree-decomposition of a minor-free graph. The vertices in Xt (i.e., the apices)
are depicted by ◦. Note that Bs1 and Bs2 could have non-empty intersection (in Bt).

Theorem 6.4 ([92,187]) For every graph M, there exists an integer h, depending only
on the size of M, such that every graph excluding M as a minor can be obtained by clique
sums of order at most h from graphs that can be h-nearly embedded in a surface Σ in
which M cannot be embedded. Furthermore, such a clique decomposition can be found in
polynomial time.

Let G be an M-minor-free graph, and let (T,B = {Bt}) be a clique decomposition of G given
by Theorem 6.4. We suppose in addition that T is rooted at a given vertex r ∈ V(G). We
define At := Bt ∩ Bp(t) where p(t) is the unique parent of the vertex t in T , and Ar = ∅. Let
B̂t be the graph obtained from Bt by adding all the possible edges between the vertices of
At and also between the vertices of As, for each child s of t. In this way, At and As’s will
induce cliques in B̂t (see Figure 6.2). In addition, G becomes an h-clique sum of the graphs
B̂t according to the above tree T where each B̂t is h-nearly embeddable in a surface Σ in
which M cannot be embedded. Let Xt be the set of apices of B̂t; we have |Xt| ≤ h and B̂t \Xt

has linear local treewidth. We denote by Gt the subgraph induced by all the vertices of
Bt ∪

⋃
s Bs, for s ranging over all descendants of t in T .

In order to simplify the presentation, in what follows, we will restrict ourselves to the case
d = 3, but it is quite straightforward to check that the proof extends to all d ≥ 3. Recall
that we are looking for a subset of vertices S , of size at most k, which induces a graph
H = G[S] of minimum degree at least three.

Our algorithm consists of two levels of dynamic programming. The top level of dynamic
programming runs over the clique decomposition, and within each subproblem of this
dynamic programming, we focus on the induced subgraph of the vertices in Bt. Our first
level of dynamic programming computes the size of a smallest subgraph of Gt, complying
with degree constraints on the vertices of At. These constraints, as before, represent the

Chapter 6: Parameterized Complexity of Finding Degree-constrained Subgraphs 167

degree of each vertex of At in the subgraph Ht := Gt[S t], i.e., the trace of H in Gt, where
S t = S ∩ V(Gt). This two-level dynamic programming requires a combinatorial bound
on the treewidth as a function of the parameter k for each of the Bt’s (after removing
the apices Xt from Bt). The next two lemmas are used later to obtain this combinatorial
bound.

Lemma 6.2 Let H = G[S] be a connected induced subgraph of G. Then the subgraph
B̂t[S ∩ Bt] is connected.

The proof of Lemma 6.2 easily follows from the properties of a tree-decomposition and the
fact that At and As’s are cliques in B̂t, for s a child of t in T .

Lemma 6.3 Let H = G[S] be a smallest connected subgraph of G of minimum degree at
least three. Then the subgraph B̂t[S t ∩ Bt \ Xt] has at most 3h + 1 connected components,
where h is the integer given by Theorem 6.4.

Proof : Let C1, . . . ,Cr be the connected components of L := B̂t[S t ∩ Bt \ Xt]. We want
to prove that r ≤ 3h + 1. Assume for the sake of a contradiction that r > 3h + 1. We
will find another solution H′ with size strictly smaller than H, which will contradict our
assumption that H is of minimum size.

The graph H′ is defined as follows. For each vertex v ∈ Xt ∩ S t, let

bv := min{dHt (v), 3}.

Then for each vertex v ∈ Xt∩S t, we choose at most bv connected components of L, covering
at least bv neighbors of v in Ht. We also add the connected component containing all the
vertices of At \ Xt (recall that At induces a clique in B̂t). Let A be the union of all the
vertices of these connected components. Since |Xt| ≤ h, A has at most 3h + 1 connected
components. Also, since As induces a clique in B̂t, for each child s of t such that As∩A , ∅,
we have that As \ Xt ⊂ A. We define H′ as follows.

H′ := G

 ⋃
{s : As∩A,∅}

S s

 ∪ ((Xt ∪ A) ∩ S t) ∪ (S \ S t)

 .
Clearly, H′ ⊆ H. We have that |H′| < |H| because, assuming that r > 3h + 1, there are some
vertices of Ht ⊂ H which are in some connected component Ci which does not intersect H′.

Thus, it just remains to prove that H′ is indeed a solution of kSMD3, i.e., H′ has minimum
degree at least 3. We prove it using a sequence of four simple claims:

Claim 6.4 The degree of each vertex v ∈ (V(H′) ∩ Xt) is at least 3 in H′.

Proof : This is because each such vertex v has degree at least bv in H′t . If dv < 3, then v
should be in At (if not, v has degree dv < 3 in H, which is impossible), hence v is connected
to at least 3 − dv vertices in S \ S t. But S \ S t is included in H′, and so every vertex of
Xt ∩ V(H′) has degree at least 3 in H′. 2

168 Degree-constrained Subgraphs

Claim 6.5 The degree of each vertex in (H \ Ht) is at least 3 in H′.

Proof : This follows because At ∩ H ⊂ H′. 2

Claim 6.6 The degree of each vertex in A is at least 3 in H′.

Proof : Every vertex in A has the same degree in both H′ and H. This is because A is
the union of some connected components, and no vertex of A is connected to any other
vertex in any other component. 2

Claim 6.7 Every other vertex of H′ also has degree at least 3.

Proof : To prove the claim we prove that the vertices of H′ \ (G[Xt] ∪ (H \ Ht) ∪ A) have
degree at least 3 in H′. Remember that all these vertices are in some S s, for some s such
that As has a non-empty intersection with A. We claim that all these vertices have the
same degree in both H and H′. To prove this, note that H′ ∩ As = H ∩ As for all such s.
Indeed, (As \ Xt) ⊂ A, and so As ⊂ (A ∪ Xt). Let u be such a vertex. We can assume that
u < Xt. If u ∈ As, then clearly u ∈ A, and we are done. If u ∈ (S s \ A), then every neighbor
of u is in Hs. But Hs ⊂ H′, hence we are also done in this case. 2

This concludes the proof of the lemma. 2

We define a coloring of At to be a function c : At ∩ S → {0, 1, 2, 3}. For i < 3, c(v) = i
means that the vertex v has degree i in the subgraph Ht of Gt that we are looking for, and
c(v) = 3 means that v has degree at least three in Ht. By a(t, c) we denote the minimum
size of a subgraph of Gt with the prescribed degrees in At according to c. We describe in
what follows the different steps of our algorithm.

Recursively, starting from the leaves of T and moving towards the root, for each node
t ∈ V(T) and for every coloring c of At, we compute a(t, c) from the values of a(s, c), where
s is a child of t, or we store a(t, c) = +∞ if no such subgraph exists. The steps involved in
computing a(t, c) for a fixed coloring c are the following:

(i) We guess a subset Rt ⊆ Xt \ At such that Rt ⊆ S t. We have at most 2h choices for Rt.

(ii) For each vertex v in Rt, we guess whether v is adjacent to a vertex of Bt \ (Rt ∪ At),
i.e., we test all the 2-colorings γ : Rt → {0, 1}; a coloring has the following meaning:
γ(v) = 1 if and only if v is adjacent to a vertex of Bt \ (Rt ∪ At). The number of such
colorings is at most 2h. Let γ be a fixed coloring. For each of the vertices v in Rt

with γ(v) = 1, we guess one vertex in Bt \ (Rt ∪ At), which we suppose to be in S t.
For each coloring γ, we have at most nh choices for the new vertices which could be
included in S t. If a vertex has γ(v) = 0, it is not allowed to be adjacent to any vertex
of Bt besides the vertices in At ∪ Rt. Let Dγ

t be the chosen vertices at this level.

Chapter 6: Parameterized Complexity of Finding Degree-constrained Subgraphs 169

(iii) We remove now all the vertices of Xt from Bt. Lemma 6.3 ensures that the induced
graph B̂t[S t∩Bt \Xt] has at most 3h+1 connected components. We then choose these
connected components of B̂t[S t ∩ Bt \ Xt] by guessing a vertex from these connected
components in Bt \ Xt. Since we need to choose at most 3h + 1 vertices this way, we
have at most (3h + 1)n3h+1 new choices. Let these newly chosen vertices be Fγ

t and

Rγt = Rt ∪ Dγ
t ∪ Fγ

t ∪ {v ∈ At \ Xt | c(v) , 0}.

Let G∗t be the graph induced by the k-neighborhood (vertices at distance at most k)
of all vertices of Rγt in B̂t \ Xt, i.e., G∗t = (B̂t \ Xt)[Nk(Rγt)].

(iv) Each connected component of G∗t has diameter at most 2k in B̂t \ Xt. As B̂t \ Xt has
bounded local treewidth, this implies that G∗t has treewidth bounded by a function
of k. By the result of Demaine and Hajiaghayi [93], this function can be chosen to
be linear.

(v) In this step, we first find a tree-decomposition (Tγ, {Up}) of G∗t . Since As ∩ G∗t is a
clique, it appears in a bag of this tree-decomposition. Let p be the node representing
this bag in Tγ. We create now a new bag containing the vertices of As ∩ G∗t , and
modify Tγ by adding a leaf connected to p which contains this new bag. With
slight abuse of notation, we call this new decomposition Tγ and denote by s this
distinguished leaf containing the bag As∩G∗t . We also add all the vertices of At to all
the bags of this tree-decomposition, increasing the bag size by at most h. Now we
apply a dynamic programming algorithm similar to the one we used for the bounded
local treewidth case. Remember that for each child s of t, we have a leaf in this
(new) decomposition with the bag As ∩G∗s. The aim is to find an induced subgraph
of minimum size which respects all the choices we have made earlier.

We start from the leaves of Tγ and move towards its root. At this point we have all
the values of a(s, c′) for all possible colorings c′ of As, where s is a child of t (because
of the first level of dynamic programming). To compute a(t, c) we apply the dynamic
programming algorithm of Lemma 6.1 with the restriction that for each distinguished
leaf s of this decomposition, we already have all the values a(s, c) for all colorings of
As ∩G∗s (we extend this coloring to all As by giving the zero values to the vertices of
As \G∗s). Note that the only difference between this dynamic programming and the
one of Lemma 6.1 is the way we initialize the leaves of the tree.

(vi) Among all the subgraphs we found in this way, we keep the minimum size of a
subgraph with the degree constraint c on At. Let a(t, c) be this minimum.

(vii) If for some vertex t and a coloring c : At → {0, 3}, we have 1 ≤ a(t, c) ≤ k, the
algorithm return Yes, meaning that the graph contains a subgraph of size at most
k and minimum degree at least three. If not, we conclude that such a subgraph does
not exist.

This completes the description of the algorithm. Now we discuss the time complexity of this
algorithm. Let CM be the constant determining the linear local treewidth of the surfaces in
which M cannot be embedded. For each fixed coloring c, we need time 4CMk(CMk +1)9n4h+1

to obtain a(t, c), where t ∈ T . Since the number of colorings of each At is at most 4h, and
the size of the clique decomposition is O(n), we get the following theorem:

170 Degree-constrained Subgraphs

Theorem 6.5 Let C be the class of graphs with excluded minor M. Then, for any graph
in C, one can find an induced subgraph of size at most k with degree at least 3 in time
O(4O(k+h)(O(k))9nO(1)), where the constants in the exponents depend only on M.

Theorem 6.5 can be generalized to larger values of d with slight modifications. We have
the following theorem:

Theorem 6.6 Let C be a class of graphs with an excluded minor M. Then, for any graph
in C, one can find an induced subgraph of size at most k with degree at least d in time
O((d + 1)O(k+h)(O(k))d2

nO(1)), where the constants in the exponents depend only on M.

6.4 Conclusions

In this chapter we studied the parameterized complexity of the following two problems:
given two positive integers d and k, finding a d-regular (induced or not) subgraph with at
most k vertices, and finding a subgraph with at most k vertices and of minimum degree at
least d.

We first showed that both problems are fixed-parameter intractable in general graphs.
More precisely, we proved that the first problem is W[1]-hard using a reduction from
Multi-Color Clique. The hardness of the second problem followed from an extension
of an already know result. We then provided explicit fixed-parameter tractable (FPT)
algorithms to solve both problems in graphs with bounded local treewidth and graphs
with excluded minors, using a dynamic programming approach. These algorithms are
considerably faster than those coming from the meta-theorem of Frick and Grohe [128]
about problems definable in first-order logic over “locally tree-decomposable structures”.

Finally, note that the parameterized tractability of the kSMDd problem for the case d = 3
remains open. We conjecture that:

Conjecture 6.1 kSMD3 is W[1]-hard.

Chapter 7

Subexponential Parameterized
Algorithms on Planar Graphs

In this chapter we present subexponential parameterized algorithms on planar
graphs for a family of problems that consist in, given a graph G, finding a connected
(induced) subgraph H with bounded maximum degree, while maximizing the number
of edges (or vertices) of H. These problems are natural generalizations of Longest
Path. Our approach uses bidimensionality theory combined with novel dynamic pro-
gramming techniques over branch decompositions of the input graph. These techniques
can be applied to a more general family of problems that deal with finding connected
subgraphs under certain degree constraints.

Keywords: parameterized complexity, planar graphs, subexponential algorithm,
branch decomposition, graph minors, bidimensionality, Catalan structures.

7.1 Introduction

During the last years a considerable amount of work has been devoted to design subex-
ponential parameterized algorithms for NP-hard optimization problems on planar graphs
and, more generally, on sparse classes of graphs [95,98–102,144]. In this chapter we apply
the general approach of [95,98–102,144] to a family of problems dealing with finding con-
nected subgraphs under degree constraints. Along the way, we introduce novel dynamic
programming techniques over branch decompositions that can be applied to more general
classes of problems.

171

172 Degree-constrained Subgraphs

We define the following family of problems for d ≥ 2.

Maximum d-Degree-Bounded Connected Subgraph (MDBCSd)
Input: A graph G and a non-negative integer k.
Question: Does G contain a connected subgraph H with maximum degree at most d

and at least k edges?

If d = 2 the problem is equivalent to the Longest Path (or Cycle, if G is Hamilto-
nian) problem, hence MDBCSd is a generalisation of it. MDBCSd is one of the classical
NP-hard problems listed in [134], and we have seen in Chapter 5 that it is not in Apx
for any d ≥ 2. Without the connectivity constraint, the problem is known to be in P
using matching techniques [165]. When the problem is parameterized by k we denote it
by k-MDBCSd. (We refer to [123] for an introduction to parameterized complexity.) Our
target is to find 2O(

√
k) · O(n) step algorithms to solve it when the input is restricted to pla-

nar graphs. Section 7.3 is devoted to obtain combinatorial bounds using bidimensionality
theory. Section 7.4 presents new dynamic programming techniques, that can be applied
to general graphs. In Section 7.5 we see how to speed-up these algorithms when the input
is restricted to planar graphs, using Catalan structures. This strategy can be extended to
several related problems asking for a maximum connected subgraph satisfying certain de-
gree constraints, as discussed in Section 7.6. Some open problems are listed in Section 7.7.
We first provide some background in Section 7.2.

7.2 Background

Recall the definition of branchwidth from Section I.1.1 (page 22) and the definition of
graph minor from Section I.1.2 (page 22). Recall also that a parameter P defined on
simple undirected graphs is closed under taking of minors (or simply minor closed) if
G′ � G ⇒ P(G′) ≤ P(G) (here “�” denotes the minor relation). The following fundamental
theorem states that square grids are the obstruction for branchwidth on planar graphs.

Theorem 7.1 (Robertson, Seymour, and Thomas [185]) Let ` ≥ 1 be an integer.
Every planar graph of branchwidth at least ` contains an (b`/4c × b`/4c)-grid as a minor.

A parameter P is minor bidimensional [94] with density δ if

• P is minor closed, and
• for the (r × r)-grid R, P(R) = (δr)2 + o((δr)2).

Theorem 7.1 implies the following useful property.

Lemma 7.1 (Demaine et al. [94]) If P is a bidimensional parameter with density δ

then for any planar graph G, bw(G) ≤ 4
δ ·
√

P(G) + O(1).

There is a recent and powerful theory about bidimensional parameters, called bidimen-
sionality theory, that has proved very useful in the design of subexponential exact and
parameterized algorithms for many hard problems [95,98–102,144].

Chapter 7: Subexponential Parameterized Algorithms on Planar Graphs 173

7.3 Bounds for Branchwidth

We define the following parameter on simple undirected graphs.

medbcsd(G) = max{|E(H)| | H ⊆ G ∧ H is connected ∧ ∆(H) ≤ d}.

Lemma 7.2 For any integer d ≥ 1, the parameter medbcsd is minor closed.

Proof : If G′ occurs from G after an edge removal, then clearly medbcsd(G′) ≤ medbcsd(G).
Let us see that the same holds if G′ occurs from G after the contraction of an edge {x, y}.
Indeed, we shall see that given any connected subgraph H′ ⊆ G′ with ∆(H′) ≤ d, we can
find a connected subgraph H∗ ⊆ G with ∆(H∗) ≤ d and |E(H∗)| ≥ |E(H′)|. Let H be the
major of H′ in G. We can assume that vxy ∈ V(H′), otherwise we set H∗ = H. We define
Nxy = NH(x)∩NH(y), Nx−y = NH(x)−Nxy−{y}, and Ny−x = NH(y)−Nxy−{x}. The subgraph H
is connected and |E(H)| ≥ |E(H′)|, but the vertices x, y, and those in Nxy may have degree
d + 1. Since ∆(H′) ≤ d, also |NH′(vxy)| = |Nx−y| + |Ny−x| + |Nxy| ≤ d. Suppose w.l.o.g. that
|Nx−y| ≥ |Ny−x|. We distinguish several cases to define the subgraph H∗: If |Nx−y| = d, let
H∗ = (V(H)− {y}, E(H)− {x, y}). Suppose henceforth that |Nx−y| < d. If |Nxy| = 0, let H∗ = H.
If Nxy = {z1}, let H∗ = (V(H), E(H) − {x, z1}). Finally, if Nxy = {z1, . . . , zk} for some k ≥ 2, let
H∗ = (V(H), E(H) − {x, z1} − ∪

k
i=2{y, zi}). It is easy to check that, in all cases, the subgraph

H∗ is connected, ∆(H∗) ≤ d, and |E(H∗)| ≥ |E(H′)|. 2

Using Lemmas 7.2 and 7.1 we can obtain a combinatorial bound of the parameter medbcsd

in terms of the branchwidth of the planar graph G.

Lemma 7.3 For any d ≥ 2 and for any planar graph G it holds that

bw(G) ≤
4
δ
·
√

medbcsd(G) + O(1), with δ =

1 , if d = 2
√

3/2 , if d = 3
√

2 , if d ≥ 4

Proof : We shall prove that the parameter medbcsd(G) is bidimensional for any d ≥ 2. It
is minor closed due to Lemma 7.2. Let us see how the parameter behaves on the grid. Let R
be an (r×r)-grid. If d = 2, then clearly medbcs2(R) ≥ r2−1 (or r2 if r is even, because in this
case the grid contains a Hamiltonian cycle). That is, the density of medbcs2 is 1. If d ≥ 4
then the optimal solution contains all the edges, i.e., medbcsd(R) = 2r(r−1). Said otherwise,
the density is

√
2. Finally, if d = 3, we shall see that medbcs3(R) ≥ 2r(r − 1) −

⌈
r−2

2

⌉
(r − 2).

Such a solution is obtained in the following way. Take all the horizontal edges of the grid,
and the vertical edges corresponding to the first and the last column. Then, beginning
from the first row, take alternatively the remaining vertical edges (see Figure 7.1 for an
illustration). One can easily check that the subgraph obtained in this way is connected,
has maximum degree 3 and has 2r(r−1)−

⌈
r−2

2

⌉
(r−2) edges. That is, the density of medbcs3

is at least
√

3/2. The result follows from Lemma 7.1. 2

174 Degree-constrained Subgraphs

Figure 7.1: Connected subgraphs with maximum degree 3 on (4×4), (5×5), and (6×6)-grids
respectively, used in the proof of Lemma 7.3.

7.4 The Algorithms

Let G be in this section a (not necessarily planar) graph on n vertices. We denote the
empty set by ∅ and the empty function by ∅. Let (T, µ) be a branch decomposition of
width ≤ ` of G. We pick an arbitrary edge e∗ ∈ E(T), we subdivide it by adding a new
vertex vnew and then add a new vertex r and make it adjacent to vnew. We extend µ by
setting µ(r) = ∅ and we root T at vertex r. For each e ∈ E(T) let Te be the tree of the forest
T\e that does not contain r as a leaf (i.e., the tree that is “below” e in the rooted tree T)
and let Ee be the edges that are images, via µ, of the leaves of T that are also leaves of Te.
We denote Ge = G[Ee]. Observe that, if er = {vnew, r}, then Ger = G.

Given a set A, we define a d-weighted packing of A as any pair (A, ψ) where A is a (possible
empty) collection of mutually disjoint nonempty subsets of A and ψ : A → {0, . . . , d} is a
mapping corresponding integers from 0 to d to the elements of A. It will be convenient to
think of such a packing A of A as a hypergraph G = (A,A). Note that, by definition, A
is a matching in G. For convenience, given such a collection A, we denote by ∪A the set⋃

X∈A X.

Let (A, ψ) and (A′, ψ′) be two d-weighted packings of two sets A and A′. We define
(A, ψ) ⊕ (A′, ψ′) as the 2d-weighted packing (A′′, ψ′′) of A′′ = A ∪ A′ where A′′ is the
packing of A′′ defined by the connected components of the hypergraph (A ∪ A′,A ∪ A′)
(i.e., the nonempty subsets of the packing A′′ are the vertex sets corresponding to the
connected components of the hypergraph (A ∪ A′,A∪A′)) and where for any x ∈ A ∪ A′,

ψ′′(x) =

ψ(x) , if x ∈ A − A′

ψ(x) + ψ′(x) , if x ∈ A ∩ A′

ψ′(x) , if x ∈ A′ − A

If (A, ψ) is a d-weighted packing of a set A and A′ ⊆ A, we define (A, ψ)|A′ as the d-weighted
packing (A′, ψ′) of the set A′ where A′ = {X ∩ A′ | X ∈ A} and ψ′ = {(x, ψ(x)) | x ∈ A′}.

Let Pe be the collection of all d-weighted packings (A, ψ) of mid(e), and let ` = |mid(e)|.
Observe that if er = {vnew, r}, then Per = {(∅,∅)}. We use the notation C(H) for the set of

Chapter 7: Subexponential Parameterized Algorithms on Planar Graphs 175

connected components of a graph (or hypergraph) H. Given (A, ψ) ∈Pe we define

opte(A, ψ) = max{{0} ∪ {|E(H)| : ∃ H ⊆ Ge : ∆(H) ≤ d ∧

if (A , ∅) then
{V(H′) ∩mid(e) | H′ ∈ C(H)} = A ∧

{(v,degH(v)) | v ∈ ∪A∈AA} = ψ

else if (A = ∅) then
|C(H)| ≤ 1 ∧ V(H) ∩mid(e) = ∅ }}

Clearly, opter
(∅,∅) = medbcsd(G). The idea is the following:

• If A , ∅, we look for the best solution H in the graph Ge such that its restriction to
mid(e) induces the connected components given by A and obeys the degrees given
by ψ.

• Otherwise, if A = ∅, we look for the best solution H in Ge not intersecting mid(e).
Since mid(e) is a separator of G, it is clear that in this case the solution H must be
a connected subgraph of Ge disjoint from mid(e).

Let us now see how these values of opte(A, ψ) can be explicitly computed using dynamic
programming over a branch decomposition of G.

Let e, e1, e2 be three edges of T that are incident to the same vertex and such that e is
closer to the root of T than the other two (see the upper part of Figure 7.2). To perform
the join/forget operations in the middle set mid(e), we distinguish two cases according to
the packing A of mid(e):

(1) In the case A , ∅, the value of opte(A, ψ) is given by

opte(A, ψ) = max{{0} ∪ {l : ∃(Ai, ψi) ∈Pei , i = 1, 2, such that
∪A1 ∩ (mid(e1) ∩mid(e2)) = ∪A2 ∩ (mid(e1) ∩mid(e2)) ∧

(A1, ψ1) ⊕ (A2, ψ2) is a d-weighted
packing of mid(e1) ∪mid(e2) ∧

(A, ψ) = ((A1, ψ1) ⊕ (A2, ψ2))|mid(e) ∧

if (A1 = ∅) then l = opte2
(A2, ψ2)

if (A2 = ∅) then l = opte1
(A1, ψ1)

else l = opte1
(A1, ψ1) + opte2

(A2, ψ2) }}

176 Degree-constrained Subgraphs

(2) In the case A = ∅, the value of opte(∅, ψ) is given by

opte(∅, ψ) = max{{0} ∪ {l : ∃(Ai, ψi) ∈Pei , i = 1, 2, such that
∪A1 ∩ (mid(e1) ∩mid(e2)) = ∪A2 ∩ (mid(e1) ∩mid(e2)) ∧

(A1, ψ1) ⊕ (A2, ψ2) is a d-weighted
packing of mid(e1) ∪mid(e2) ∧

(∅, ψ) = ((A1, ψ1) ⊕ (A2, ψ2))|mid(e) ∧

if (A1 = ∅ ∧ A2 = ∅) then
l = max{opte1

(A1, ψ1), opte2
(A2, ψ2)}

if (A1 , ∅ ∧ A2 = ∅) then
l = max{opte2

(A2, ψ2), {opte1
(A1, ψ1)|X : X ∈ A1}}

if (A1 = ∅ ∧ A2 , ∅) then
l = max{opte1

(A1, ψ1), {opte2
(A2, ψ2)|X : X ∈ A2}}

if (A1 , ∅ ∧ A2 , ∅) then
l = max{opte1

(X, ψ1)|mid(e1) + opte2
(X, ψ2)|mid(e2) :

X ∈ C(mid(e1) ∪mid(e2),A1 ∪A2)} }}

These ideas are schematically illustrated in Figure 7.2. Finally, suppose that eleaf = {x, y} ∈
E(T) is an edge such that either x or y is a leaf of T . Let {v1, v2} ∈ E(G) be the image under
µ of the endpoint of e which is a leaf of T . Then

opteleaf
(A, ψ) =

{
1 , if (A = {{v1, v2}} ∧ ψ = {(v1, 1), (v2, 1)})
0 , otherwise

Running time. The size of the tables of the dynamic programming over the branch
decomposition of the input graph, namely |Pe|, determines the running time of our algo-
rithms. The number of ways a set of ` elements can be partitioned into nonempty subsets
is well-known as the `-th Bell number [117] and is denoted by B`. We can express |Pe| in
terms of the Bell numbers:

|Pe| = (d + 1)` ·
∑̀
i=0

(
`

i

)
B`−i ≤ (d + 1)` · 22`·log `, (7.1)

where the last inequality is an easy exercise using that B` ≤ e`−1
(log `)` `! [117]. At each

edge e of the branch decomposition, to compute all the values opte(A, ψ) we test all the
possibilities of combining d-weighted packings of the two middle sets mid(e1) and mid(e2).
The operations (A1, ψ1) ⊕ (A2, ψ2) and (A, ψ) |A′ take O(|mid(e)|) time. Let m = |E(G)|.
Hence, by Equation (7.1), given a branch decomposition of a general graph G of width at
most `, the value of medbcsd(G) can be computed in (d + 1)2` · 24`·log ` · ` · m steps.

7.5 Speed-up for Planar Graphs using Catalan Structures

In this section we will see that when the input is restricted to planar graphs the term
2O(`·log `) in Equation (7.1) can be reduced to 2O(`). We need first some definitions.

Chapter 7: Subexponential Parameterized Algorithms on Planar Graphs 177

mid(e)

mid(e) mid(e)1 2

A

1A 2A
e

ee1 2

(1.2)(1.1)

(2.1) (2.2) (2.3)

Figure 7.2: Join/forget operations in the dynamic programming over a branch decompo-
sition. The dark regions represent an optimal subgraph in each case. Case (1): A , ∅;
(1.1) A1 , ∅,A2 , ∅; (1.2) A1 , ∅,A2 = ∅. Case (2): A = ∅; (2.1) A1 = ∅,A2 = ∅; (2.2)
A1 = ∅,A2 , ∅; (2.3) A1 , ∅,A2 , ∅.

Let G be a planar graph embedded on a sphere S. An O-arc is a subset of S homeomorphic
to a circle. An O-arc in S is called a noose of the embedding of G if it meets G only
in vertices. A sphere cut decomposition or sc-decomposition (T, µ, π) of G is a branch
decomposition of G with the following property: for every edge e of T , there exists a
noose Oe meeting every face at most once and bounding the two open discs ∆1 and ∆2
such that Gi ⊆ ∆i ∪ Oe, 1 ≤ i ≤ 2. Thus Oe meets G only in mid(e) and its length is
|mid(e)|. A clockwise traversal of Oe in the embedding of G defines the cyclic ordering π

of mid(e). We always assume that the vertices of every middle set mid(e) = V(G1) ∩ V(G2)
are enumerated according to π.

Theorem 7.2 (Seymour and Thomas [190]) Let G be a planar graph of branchwidth
at most ` without vertices of degree one embedded on a sphere. Then there exists an
sc-decomposition of G of width at most `.

In addition, such an sc-decomposition can be constructed in time O(n3) [143].

The size of the tables of the dynamic programming algorithm is given by in how many
ways a solution of k-MDBCSd in Ge can intersect mid(e). Let (T, µ, π) be a sphere cut
decomposition of width ≤ `, and we can assume ` ≤ bw(G) by Theorem 7.2. Then the

178 Degree-constrained Subgraphs

Figure 7.3: Catalan structures in the middle set of a sphere cut decomposition.

vertices of mid(e) are situated around a noose. A non-crossing partition (ncp) is a partition
P(n) = {P1, . . . , Pm} of the set S = {1, . . . , n} such that there are no numbers a < b < c < d
where a, c ∈ Pi, and b, d ∈ P j with i , j.

When we restrict the input graph G to be planar, then the subgraph given by the inter-
section of a partial solution of k-MDBCSd in Ge with mid(e) is also planar. The reduction
from 2O(`·log `) to 2O(`) is based on calculating in how many ways we can draw hyperedges
inside a cycle such that they touch the cycle on its vertices and they do not share common
internal points in the plain (they do not intersect), as it is illustrated in Figure 7.3.

The number of such configurations is closely related to the number of non-crossing parti-
tions over ` vertices, which is equal to the `-th Catalan number CN(`) = 1

`+1

(
2`
`

)
∼ 4`√

π`3/2 ≤

4` [162].

Indeed, in the same spirit of Equation (7.1) we can write

|Pe| = (d + 1)` ·
∑̀
i=0

(
`

i

)
CN(` − i) ≤ (d + 1)` ·

∑̀
i=0

(
`

i

)
4`−i =

= (d + 1)`4` ·
∑̀
i=0

(
`

i

) (
1
4

)i

= (d + 1)`4` ·
(
1 +

1
4

)`
= (d + 1)` · 5`.

Since G is planar, |E(G)| = O(|V(G)|), hence so is the number of middle sets in any branch
decomposition of G. Therefore,

Proposition 7.1 For every planar graph G and given a sphere cut decomposition (T, µ, π)
of G of width ≤ `, the value of medbcsd(G) can be computed in O

(
(d + 1)2` · 52` · ` · n

)
steps.

Let δ be the constant defined in Lemma 7.3. Summarizing,

Theorem 7.3 k-Planar Maximum d-Degree-Bounded Connected Subgraph is
solvable in time O

(
2log(5(d+1))8

√
k/δ
√

k · n + n3
)

for any d ≥ 2.

Proof : First, using Theorem 7.2, we construct in time O(n3) an optimal sphere cut
decomposition of G of width bw(G). We distinguish two cases: If bw(G) > 4/δ ·

√
k, then

by Lemma 7.3 the answer to the parameterized problem is automatically YES. Otherwise,
bw(G) ≤ 4/δ ·

√
k and the value of medbcsd(G) can be computed by Proposition 7.1 in time

O
(
(d + 1)8

√
k/δ · 58

√
k/δ · 4/δ

√
k · n

)
= O

(
2log(5(d+1))8

√
k/δ
√

k · n
)
. 2

Chapter 7: Subexponential Parameterized Algorithms on Planar Graphs 179

7.6 Extensions

Appropriate modifications of the dynamic programming algorithm of Section 7.4 allow us
to obtain also subexponential parameterized algorithms for the variant of the problem in
which the aim is to maximize the number of vertices of the subgraph H, as well as for the
variant in which the output subgraph is required to be induced (for both the edge and
vertex maximization versions). Another variant is when the list of prescribed degrees of
the vertices belongs to a subset of Zq for a fixed integer q. Finally, we discuss how to
transform these parameterized algorithms into subexponential exact algorithms on planar
graphs.

7.6.1 Maximizing the number of vertices

In this section we focus on the following family of problems for d ≥ 2:

Vertex Maximum d-Degree-Bounded Connected Subgraph (VMDBCSd)
Input: A graph G and a non-negative integer k.
Question: Does G contain a connected subgraph H with

∆(H) ≤ d and |V(H)| ≥ k?

In order to obtain subexponential parameterized algorithms for VMDBCSd on planar
graphs, let us see how the techniques presented in the preceding sections must be modified.
The corresponding parameter is

mvdbcsd(G) = max{|V(H)| | H ⊆ G ∧ H is connected ∧ ∆(H) ≤ d}.

First, it is easy to check that Lemmas 7.2 and 7.3 hold for the parameter mvdbcsd(G) with
δ = 1 for any d ≥ 2. Secondly, the dynamic programming approach of Section 7.4 remains
the same, except for the following modifications.

When computing a partial solution opte(A, ψ) in Ge from the partial solutions in Ge1 and
Ge2 , we have to be careful in order to avoid counting twice the vertices that belong to both
mid(e1) and mid(e2). More precisely,

• in the case A , ∅, A1 , ∅, and A2 , ∅ we have that

l = opte1
(A1, ψ1) + opte2

(A2, ψ2) − |V(G[A1]) ∩ V(G[A2])|,

where G[Ai], i = 1, 2, denotes the hypergraph induced by the hyperedges in Ai; and

• in the case A = ∅, A1 , ∅, and A2 , ∅ we have that

l = max{opte1
(X, ψ1)|mid(e1) + opte2

(X, ψ2)|mid(e2) −

|V(G[X]) ∩mid(e1) ∩mid(e2)| :

X ∈ C(mid(e1) ∪mid(e2),A1 ∪A2)} }.

180 Degree-constrained Subgraphs

Also, if eleaf = {x, y} ∈ E(T) is an edge such that x is a leaf of T , and {v1, v2} ∈ E(G) is the
image of x under µ, then

opteleaf
(A, ψ) =

2 , if (A = {{v1, v2}} ∧ ψ = {(v1, 1), (v2, 1)})
∨ (A = {{v1}, {v2}} ∧ ψ = {(v1, 0), (v2, 0)})

1 , if (A = {{v1}} ∧ ψ = {(v1, 0), (v2, 0)})
∨ (A = {{v2}} ∧ ψ = {(v1, 0), (v2, 0)})

0 , otherwise

Finally, the speed-up described in Section 7.5 can be applied directly to VMDBCSd, since
Catalan structures also appear in the middle sets of a sc-decomposition of the planar input
graph. Summarizing,

Theorem 7.4 k-Planar Vertex Maximum d-Degree-Bounded Connected Sub-
graph is solvable in time O

(
2log(5(d+1))8

√
k
√

k · n + n3
)

for any d ≥ 2.

7.6.2 Looking for an induced subgraph

It is also natural to ask, instead of for a subgraph H of the input graph G, for an induced
subgraph H. In this section we focus on the edge-maximization version of the problem,
the modifications for the node-maximization version being analogous to those described in
Section 7.6.1. We denote the problem by Maximum d-Degree-Bounded Connected
Induced Subgraph (MDBCISd).

In contrast to the dynamic programming presented in Section 7.4, now we need only to
consider those packings A of mid(e) that “respect” the fact that the solution subgraph
must be induced. For this, the only difference from the algorithms for the non-induced
case is that the optimal solution in the leaves of the branch decomposition becomes

opteleaf
(A, ψ) =

{
1 , if (A = {{v1, v2}} ∧ ψ = {(v1, 1), (v2, 1)}
0 , otherwise

Since for any middle set mid(e), P ind
e ⊆Pe, the running time of Theorem 7.3 also applies to

k-Planar Maximum d-Degree-Bounded Connected Induced Subgraph, replacing
the constant δ with δ/

√
2 when d ∈ {2, 3}, due to the fact that the optimal subgraphs of

MDBCISd on the square grid (see Lemma 7.2) must be induced.

7.6.3 More general constraints on the degree

All the variants of the problem considered so far have in common that the degree of any
vertex belonging to the output subgraph must lie in the interval [0, d]. It makes sense
to consider a more general version in which the interval of allowed degrees depends on
each vertex. Namely, for each vertex v ∈ V(G) we are given an interval Iv = [`v, rv] and
we look for a maximum connected subgraph H in which the degree of each vertex v lies
in Iv. (If 0 ∈ Iv then vertex v may not belong to V(H).) When the output subgraph is
not required to be connected, some variants of the problem are in P and some others

Chapter 7: Subexponential Parameterized Algorithms on Planar Graphs 181

become NP-hard [165]. In general, we cannot guarantee that the parameters associated
with this general problem are minor closed, hence the approach used with MDBCSd does
not carry over. Nevertheless, we can obtain an algorithm to solve it similar to the one of
Proposition 7.1, replacing the term (d + 1)2` with (maxv∈V(G) rv + 1)2`. The ideas behind the
dynamic programming are essentially the same.

Another variant is obtained when forcing the allowed degrees to belong to a subset of Zq

for some fixed integer q. In this case it is not difficult to see that the term (d + 1)2` can
be replaced with q2`. For instance, the case where all the degrees are required to be 0
(mod 2) corresponds to the Maximum Eulerian Subgraph problem. This approach,
given a planar graph with a sphere cut decomposition of width ≤ `, yields an algorithm
to solve Maximum Eulerian Subgraph in time O

(
22` · 52` · ` · n

)
.

7.6.4 Exact algorithms

The subexponential parameterized algorithms we have presented on planar graphs can be
naturally transformed to subexponential exact algorithms by using that for any planar
graph G, bw(G) ≤

√
4.5 · |V(G)| [125].

Indeed, given a planar graph G and a sphere cut decomposition of width ≤
√

4.5 · |V(G)|,
we can compute an optimal solution of MDBCSd in G in O

(
(d + 1)4.24

√
n · 54.24

√
n · n3/2

)
steps (by Proposition 7.1). The same argument applies to all the variants of the problem
discussed above.

In addition, we can derive a subexponential exact algorithm for the following problem
on planar graphs: Minimum Degree Spanning Tree (MDST). The MDST problem
consists in, given an undirected unweighted graph G, finding a spanning tree of G with
minimizes the maximum degree over all the spanning trees of G. This problem has been
widely studied in the literature (cf. for instance [130]), and we are unaware of the existence
of subexponential exact algorithms on planar graphs. Our algorithm works as follows:
given a planar graph G, we find an optimal solution Hd of VMDBCSd in G for d =

2, . . . , n − 1. Let d∗ be the first value of d for which |V(Hd)| = n. Then an optimal solution
of MDST in G is given by any spanning tree of Hd∗ .

A graph is supereulerian if it has a spanning Eulerian subgraph [67]. Combining the
ideas of the algorithm above with the ideas of Section 7.6.3 yields a subexponential exact
algorithm to decide whether a planar graph is supereulerian or not.

7.7 Conclusions

In this chapter we obtained a 2O(
√

k)nO(1) algorithm for k-MDBCSd and related problems
on planar graphs. Several interesting problems remain open. First, it seems natural to
try to improve the worst-case running time of our algorithms. Much more challenging is
to find subexponential parameterized algorithms for the edge- or node-weighted versions
of the problem. Actually, the weighted versions of our parameters remain minor closed
(by an easy modification of Lemma 7.2), however the fundamental difference is that the

182 Degree-constrained Subgraphs

combinatorial bound of Lemma 7.3 does not hold anymore. On the other hand, the natural
extension of this chapter would be to conceive subexponential parameterized algorithms
for k-MDBCSd on other sparse graph classes, like graphs of bounded genus and, more
generally, minor-free families of graphs.

Finally, note that the MDBCSd problem is equivalent to finding a maximum connected
subgraph not containing the star K1,d+1 as a topological minor. Many classical NP-hard
problems can be expressed as finding a maximum subgraph excluding a fixed graph H
as a minor (or induced minor, or subgraph, or induced subgraph, or topological minor),
hence conceiving a general framework to design subexponential parameterized algorithms
for this class of problems would be a celebrated result.

Chapter 8

Dynamic Programming for Graphs
on Surfaces

In this chapter we provide a framework for the design of 2O(k) · n step dynamic
programming algorithms for surface-embedded graphs on n vertices of branchwidth at
most k. Our technique applies to graph problems for which dynamic programming
uses tables encoding set partitions. For general graphs, the best known algorithms for
such problems run in 2O(k·log k) · n steps. That way, we considerably extend the class of
problems that can be solved by algorithms whose running times have a single expo-
nential dependence on branchwidth, and improve the running time of several existing
algorithms. Our approach is based on a new type of branch decomposition called sur-
face cut decomposition, which generalizes sphere cut decompositions for planar graphs
(see page 176), and where dynamic programming should be applied for each particu-
lar problem. The construction of such a decomposition uses a new graph-topological
tool called polyhedral decomposition. The main result is that if dynamic programming
is applied on surface cut decompositions, then the time dependence on branchwidth
is single exponential. This fact is proved by a detailed analysis of how non-crossing
partitions are arranged on surfaces with boundary and uses diverse techniques from
topological graph theory and analytic combinatorics.

Keywords: parameterized algorithms, analytic combinatorics, graphs on surfaces,
branchwidth, dynamic programming, polyhedral embeddings, symbolic method, non-
crossing partitions.

8.1 Introduction

One of the most important parameters in the design and analysis of graph algorithms is the
branchwidth of a graph. Branchwidth, together with its twin parameter of treewidth, can
be seen as a measure of the topological resemblance of a graph to a tree. Its algorithmic
importance has its origins in the celebrated theorem of Courcelle (see e.g. [86]), stating

183

184 Degree-constrained Subgraphs

that graph problems expressible in monadic second-order logic can be solved in f (bw) · n
(here bw is the branchwidth1 and n is the number of vertices of the input graph). Using the
parameterized complexity terminology, this implies that a huge number of graph problems
are fixed-parameter tractable when parameterized by the branchwidth of their input graph.
As the bounds for f (bw) provided by Courcelle’s theorem are huge, the design of tailor-
made dynamic programming algorithms for specific problems, so that f (bw) is a simple
(preferably single exponential) function, became a natural (and unavoidable) ingredient
for many papers on algorithms design (see [39,58,100,199]).

Dynamic programming. Dynamic programming is applied in a bottom-up fashion on
a rooted branch decomposition of the input graph, that roughly is a way to decompose
the graph into a tree structure of edge bipartitions (the formal definition can be found in
page 22). Each bipartition defines a separator of the graph called middle set, of cardinality
bounded by the branchwidth of the input graph. The decomposition is routed in the sense
that one of the parts of each bipartition is the “lower part of the middle set”, i.e., the so-
far processed one. For each graph problem, dynamic programming requires the suitable
definition of tables encoding how potential (global) solutions of the problem are restricted
in the middle set and the corresponding lower part. The size of these tables reflects the
dependence of bw in the running time of the dynamic programming. Defining the tables
is not always an easy task, as they depend on the particularities of each problem (some
typical examples are shown in Section 8.3). In many cases, problems are grouped together
according to the similarities in the way to treat them, and usually this leads to distinct
upper bounds for the function f (bw). We define the following categories of dynamic
programming algorithms (below S denotes a middle set of a branch decomposition):

(A) those where the tables encode a fixed number of vertex subsets of S ;

(B) those where the tables encode a fixed number of connected pairings of vertices of S ;
and

(C) those where the tables encode a fixed number of connected packings of S into sets.

In Categories (B) and (C), by the term connected for the pairings (resp. packings) we mean
that they correspond to a packing of paths (resp. trees) in the lower part of the middle set
S . The above classification also induces a classification of graph problems depending on
whether they can be solved by some algorithm in some of the above categories2. Notice
that the problems in Category (A) belong also to Category (B), and problems in Cate-
gory (B) are also problems in Category (C). Clearly, the size of the tables for problems in
Category (A) is a single exponential function of the middle set size. Therefore, for such
problems we have that f (bw) = 2O(bw). Such problems are, for instance, 3-Coloring,
Vertex Cover, Dominating Set, or Independent Set (see Section I.2.4), whose
common characteristic is that the certificate of the solution is a set (or a fixed number of

1The original statement of Courcelle’s theorem used the parameter of treewidth instead of branch-
width. The two parameters are approximately equivalent, in the sense that the one is a constant factor
approximation of the other (see page 22).

2To facilitate our presentation, we present in Section 8.3 the dynamic programming algorithms for a
problem in Category (A) and a problem in Category (C).

Chapter 8: Dynamic Programming for Graphs on Surfaces 185

sets) of vertices whose choice is not restricted by some global condition. Unfortunately,
when connectivity conditions are applied, the tables of the dynamic programming are of
size 2O(bw·log(bw)) or more. This happens because one needs to encode more information on
the way a possible solution of the problem is situated in the middle set S , which usually
classifies the problems in categories (B) or (C). Typical problems in Category (B) are
Longest Path and Hamiltonian Cycle, where pairings correspond to the connected
portions of a solution to the lower part of the middle set. Typical problems in Cate-
gory (C) are Connected Vertex Cover and Maximum Induced Forest3, where the
connected portions of a solution may be identified by sets of arbitrary cardinality. For
Category (B), the size of the tables is lower-bounded by the number of perfect matchings
of a complete bipartite graph of k vertices, that is by 2Θ(k·log k). For Category (C), the size
of the tables is lower bounded by the k-th Bell number, that is again lower-bounded by
2Θ(k·log k). In both cases, this implies algorithms where f (bw) = 2O(bw·log bw).

Single-exponentiality: results and techniques. The most desired characteristic of
any dynamic programming algorithm is the single exponential dependence on the branch-
width of the input graph (according to the results in [154], this dependence is optimal for
many combinatorial problems). Exponential dependence is trivial for problems in Cate-
gory (A), and may become possible for the other two categories when we take into account
the structural properties of the input graph. For problems in Category (B), the first step
in this direction was done in [102] for planar graphs (see Chapter 7 for extensions of this
technique for problems in Category (C)). The idea in [102] is to use a special type of
branch decomposition called sphere cut decomposition (introduced in [190], see page 176)
that can guarantee that the pairings are non-crossing pairings (because of the connectiv-
ity demand) around a virtual edge-avoiding cycle (called noose) of the plane where G is
embedded. This restricts the number of tables corresponding to a middle set of size k by
the k-th Catalan number, which is single-exponential in k. That way, single-exponential
(in bw) running times can be designed for problems in Category (B). The same approach
was extended for graphs of Euler genus γ in [99]. The idea was to perform a planariza-
tion of the input graph by splitting the potential solution into at most γ pieces and then
applying the sphere cut decomposition technique of [102] to a more general version of the
problem where the number of pairings is still bounded by some Catalan number. This
made it possible to avoid dealing with the combinatorial structures in surfaces, where the
arrangement of the solutions are harder to handle. The same idea was applied in [101] for
H-minor free graphs using much more involved Catalan structures, again for problems in
Category (B).

Our results. In this chapter, we follow a different approach in order to design single
exponential (in bw) algorithms for graphs embedded in surfaces. In particular, we deviate
significantly from the planarization technique of [99]. Instead, we extend the concept of
sphere cut decomposition from planar graphs to surfaces and we exploit directly the com-
binatorial structure of the potential solutions in the topological surface. Our approach

3Notice that the Maximum Induced Forest problem is equivalent to the Feedback Vertex Set
problem. We choose this way to present it in order to make more visible its classification into Category (C).

186 Degree-constrained Subgraphs

permits us to provide combinatorial bounds for problems in Category (C). Apart from
those mentioned above, examples of such problems are Maximum d-Degree-Bounded
Connected Subgraph, Maximum d-Degree-Bounded Connected Induced Sub-
graph and all the variants studied in Chapter 7, Connected Dominating Set, Con-
nected r-Domination, Connected FVS, Maximum Leaf Spanning Tree, Maxi-
mum Full-Degree Spanning Tree, Maximum Eulerian Subgraph, Steiner Tree,
and Maximum Leaf Tree. As Category (C) includes the problems in Category (B), our
results imply all the results in [99], and with running times whose genus dependence is
better than the ones in [99], as discussed in Section 8.14.

Our techniques. Our analysis is based on a special type of branch decomposition of
embedded graphs with nice topological properties, which we call surface cut decomposition
(see Section 8.6). Roughly, the middle sets of such a decomposition are situated along a
bounded (by the genus γ) set of nooses of the surface with few (again bounded by γ) com-
mon points. The construction of such a decomposition is based on the concept of polyhedral
decomposition introduced in Section 8.4. In Section 8.5, we prove some basic properties
of surface cut decompositions that make it possible to bound the sizes of the tables of
the dynamic programming. They correspond to the number of non-crossing partitions of
vertex sets laying in the boundary of a generic surface. To count these partitions, we use
a powerful technique of analytic combinatorics: singularity analysis over expressions ob-
tained by the symbolic method (for more on this technique, see the monograph of Flajolet
and Sedgewick [117]). The symbolic method gives a precise asymptotic enumeration of
the number of non-crossing partitions, that yields the single exponentiality of the table
size (see Section 8.7). To solve a problem in Category (C), our approach resides on a com-
mon preprocessing step that is to construct the surface cut decomposition (Algorithm 2 in
Section 8.6). Then, what remains is just to run the dynamic programming algorithm on
such a surface cut decomposition. The exponential bound on the size of the tables of this
dynamic programming algorithm is provided as a result of our analysis in Theorem 8.4 of
Section 8.14.

Section 8.2 is devoted to provide all the preliminaries to read the sequel of the chapter.

8.2 Background and Notation

Sections 8.2.1, 8.2.2, 8.2.3, and 8.2.4 contain the basic background and the notation we will
use concerning topological surfaces, graphs embedded in surfaces, carving decompositions
and clique sums, and the symbolic method and analytic combinatorics, respectively.

8.2.1 Topological surfaces

In this chapter, we consider compact surfaces with boundary homeomorphic to a finite
set (possibly empty) of disjoint circles. We denote the number of connected components
of the boundary of a surface Σ by β(Σ). The surface classification theorem asserts that a
compact, connected and without boundary surface is determined, up to homeomorphism,

Chapter 8: Dynamic Programming for Graphs on Surfaces 187

by its Euler characteristic χ(Σ) and by whether it is orientable or not. More precisely,
orientable surfaces are obtained by adding g ≥ 0 handles to the sphere S2, obtaining the g-
torus Tg with Euler characteristic χ(Tg) = 2−2g, while non-orientable surfaces are obtained
by adding h > 0 cross-caps to the sphere, hence obtaining a non-orientable surface Ph with
Euler characteristic χ(Ph) = 2 − h. Writing Σ for the surface (without boundary) obtained
from Σ by gluing a disk on each of the β(Σ) components of the boundary, we obtain the
equality χ(Σ) = β(Σ) + χ(Σ). A subset Π of a surface Σ is surface-separating if Σ \ Π has at
least 2 connected components.

As a conclusion, our surfaces are determined, up to homeomorphism, by their orientability,
their Euler characteristic and the number of connected components of their boundary. For
computational simplicity, it is convenient to work with the Euler genus γ(Σ) of a surface
Σ, which is defined as γ(Σ) = 2 − χ(Σ).

8.2.2 Graphs embedded in surfaces

Our main reference for graphs on surfaces is the monograph of Mohar and Thomassen [171].
For a graph G we use the notation (G, τ) to denote that τ is an embedding of G in Σ,
whenever the surface Σ is clear from the context. An embedding has vertices, edges, and
faces, which are 0, 1, and 2 dimensional open sets, and are denoted V(G), E(G), and F(G),
respectively. We use e(G) to denote |E(G)|. In a 2-cell embedding , also called map, each
face is homeomorphic to a disk. The degree d(v) of a vertex v is the number of edges
incident with v, counted with multiplicity (loops are counted twice). An edge of a map
has two ends (also called half-edges), and either one or two sides, depending on the number
of faces which is incident with. A map is rooted if an edge and one of its half-edges and
sides are distinguished as the root-edge, root-end and root-side, respectively. Notice that
the rooting of maps on orientable surfaces usually omits the choice of a root-side because
the underlying surface is oriented and maps are considered up to orientation preserving
homeomorphism. Our choice of a root-side is equivalent in the orientable case to the
choice of an orientation of the surface. The root-end and -sides define the root-vertex and
-face, respectively. The rooted maps are considered up to cell-preserving homeomorphisms
preserving the root-edge, -end, and -side. In figures, the root-edge is indicated as an
oriented edge pointing away from the root-end and crossed by an arrow pointing towards
the root-side (this last, provides the orientation in the surface).

For a graph G, the Euler genus of G, denoted γ(G), is the smallest Euler genus among all
surfaces in which G can be embedded. Determining the Euler genus of a graph is an NP-
hard problem [200], hence we assume throughout the paper that we are given an already
embedded graph. An O-arc is a subset of Σ homeomorphic to S1. A subset of Σ meeting the
drawing only at vertices of G is called G-normal. If an O-arc is G-normal, then we call it a
noose. The length of a noose is the number of its vertices. Many results in topological graph
theory rely on the concept of representativity [184, 190], also called facewidth, which is a
parameter that quantifies local planarity and density of embeddings. The representativity
rep(G, τ) of a graph embedding (G, τ) is the smallest length of a non-contractible (i.e.,
non null-homotopic) noose in Σ. We call an embedding (G, τ) polyhedral [171] if G is 3-
connected and rep(G, τ) ≥ 3, or if G is a clique and 1 ≤ |V(G)| ≤ 3. With abuse of notation,
we also say in that case that the graph G itself is polyhedral.

188 Degree-constrained Subgraphs

For a given embedding (G, τ), we denote by (G∗, τ) its dual embedding. Thus G∗ is the
geometric dual of G. Each vertex v (resp. face r) in (G, τ) corresponds to some face v∗

(resp. vertex r∗) in (G∗, τ). Also, given a set S ⊆ E(G), we denote as S ∗ the set of the
duals of the edges in S . Let (G, τ) be an embedding and let (G∗, τ) be its dual. We define
the radial graph embedding (RG, τ) of (G, τ) (also known as vertex-face graph embedding)
as follows: RG is an embedded bipartite graph with vertex set V(RG) = V(G) ∪ V(G∗). For
each pair e = {v, u}, e∗ = {u∗, v∗} of dual edges in G and G∗, RG contains edges {v, v∗}, {v∗, u},
{u, u∗}, and {u∗, v}. Mohar and Thomassen [171] proved that, if |V(G)| ≥ 4, the following
conditions are equivalent: (i) (G, τ) is a polyhedral embedding; (ii) (G∗, τ) is a polyhedral
embedding; and (iii) (RG, τ) has no multiple edges and every 4-cycle of RG is the border
of some face. The medial graph embedding (MG, τ) of (G, τ) is the dual embedding of the
radial embedding (RG, τ) of (G, τ). Note that (MG, τ) is a Σ-embedded 4-regular graph.

8.2.3 Carving decompositions and clique sums

Recall the definition of branch decompositions and branchwidth from Section I.1.1
(page 22). A carving decomposition (T, µ) is similar to a branch decomposition, only
with the difference that µ is a bijection between the leaves of the tree and the vertex set
of the graph G. For an edge e of T , the counterpart of the middle set, called the cut
set cut(e), contains the edges of G with endvertices in the leaves of both subtrees. The
counterpart of branchwidth is carvingwidth, and is denoted by cw(G).

Let G = (V, E) be a connected graph. For S ⊆ V, we denote by δ(S) the set of all edges
with an end in S and an end in V \ S . Let {V1,V2} be a partition of V. If G[V \ V1] and
G[V \ V2] are both non-null and connected, we call δ(V1) a bond of G [190]. In a bond
carving decomposition, every cut set is a bond of the graph. That is, in a bond carving
decomposition, every cut set separates the graph into two connected components.

We now recall the definition of clique sum (see page 162). Let G1 and G2 be graphs with
disjoint vertex-sets and let k ≥ 0 be an integer. For i = 1, 2, let Wi ⊆ V(Gi) form a clique of
size k and let G′i (i = 1, 2) be obtained from Gi by deleting some (possibly no) edges from
Gi[Wi] with both endpoints in Wi. Consider a bijection h : W1 → W2. We define a clique
sum G of G1 and G2, denoted by G = G1 ⊕k G2, to be the graph obtained from the union
of G′1 and G′2 by identifying w with h(w) for all w ∈ W1. The integer k is called the size of
the clique sum.

8.2.4 The symbolic method and analytic combinatorics

The main reference in enumerative combinatorics is the monograph of Flajolet and
Sedgewick [117]. The framework introduced in this book gives a language to translate
combinatorial conditions between combinatorial classes into equations. This is what is
called the symbolic method in combinatorics. Later, we can treat these equations as re-
lations between analytic functions. This point of view gives us the possibility to use
complex analysis techniques to obtain information about the combinatorial classes. This
is the origin of the term analytic combinatorics.

Chapter 8: Dynamic Programming for Graphs on Surfaces 189

For a set A of objects, let | · | be an application from A to N, which is called the size. A pair
(A, | · |) is called a combinatorial class. Define the formal power series (called the generating
function or GF associated to the class) A(z) =

∑
a∈A z|a| =

∑∞
k=0 akzk. The constructions we

use in this work and their translation into the language of GFs are shown in Table 8.1.

Construction GF
Union A∪B A(z) + B(z)

Product A× B A(z)B(z)
Sequence Seq (A) 1

1−A(z)
Pointing A• z ∂

∂zA(z)

Table 8.1: Constructions and translations
into GF.

The union A ∪ B of A and B refers to the
disjoint union of the classes. The cartesian
product A × B of A and B is the set {(a, b) :
a ∈ A, b ∈ B}. The sequence Seq (A) of a set
A corresponds to the set E∪A∪A×A∪A×
A × A ∪ At last, the pointing operator
A• of a set A consists in pointing one of the
atoms of each element a ∈ A.

The study of the growth of the coefficients of GFs can be obtained by considering GFs
as complex functions which are analytic around z = 0. This is the philosophy of analytic
combinatorics. The growth behavior of the coefficients depends only on the smallest posi-
tive singularity of the GF. Its location provides the exponential growth of the coefficients,
and its behavior gives the subexponential growth of the coefficients.

The basic results in this area are the so-called Transfer Theorems for singularity analysis.
These results allows us to deduce asymptotic estimates of an analytic function using its
asymptotic expansion near its dominant singularity. The precise statement is claimed
in [117]. We use the following reduced version of the theorem (without taking care of
technical conditions, which are satisfied in all cases): let F(z) be a GF with positive
coefficients, such that ρ is its smallest real singularity. Suppose that F(z) admits a singular
expansion around z = ρ of the form F(z) =z→ρ C(1 − z/ρ)−α + O

(
(1 − z/ρ)−α+1/2

)
, where C

is a constant. Then the Transfer Theorem for singularity analysis states that, for k big
enough, the following estimate holds

[zk]F(z) =k→∞ C
kα−1

Γ(α)
ρ−k

(
1 + O

(
k−1/2

))
. (8.1)

8.3 Examples of Dynamic Programming Algorithms

In this section we present two examples of typical dynamic programming algorithms on
graphs of bounded branchwidth. The first algorithm solves the Vertex Cover problem
and belongs in Category (A) while he second solves the Connected Vertex Cover
problem and belongs in Category (C) but not in (B) (nor in (A)).

The standard dynamic programming approach on branch decompositions requires the
so-called rooted branch decomposition defined as a triple (T, µ, er) where (T, µ) is a branch-
decomposition of G where T is a tree rooted on a leaf vl incident to some edge er of T . We
insist that no edge of G is assigned to vl and thus mid(er) = ∅ (for this, we take any edge of
a branch decomposition, subdivide it and then connect by er the subdivision vertex with a
new leaf tl). The edges of T can be oriented towards the root er and for each edge e ∈ E(T)
we denote by Ee the edges of G that are mapped to leaves of T that are descendants of e.
We also set Ge = G[Ee] and we denote by L(T) the edges of T that are incident to leaves

190 Degree-constrained Subgraphs

of T . Given an edge e heading at a non-leaf vertex v, we denote by e1, e2 ∈ E(T) the two
edges with tail v. As both examples below are variants of the vertex cover problem, we
can also assume that |E(T)| = O(k ·n) as, otherwise, the answer for each problem is trivially
negative.

Dynamic programming for Vertex Cover. Let G be a graph and X, X′ ⊆ V(G)
where X ∩ X′ = ∅. We say that vc(G, X, X′) ≤ k if G contains a vertex cover S where
|S | ≤ k and X ⊆ S ⊆ V(G) \ X′. Let Re = {(X, k) | vc(Ge, X,mid(e) \ X) ≤ k} and observe
that vc(G) ≤ k iff (∅, k) ∈ Rer . For each e ∈ E(T) we can compute Re by using the following
dynamic programming formula:

Re =

{(X, k) | X , ∅ ∧ k ≥ |X|} if e ∈ L(T)
{(X, k) | ∃(X1, k1) ∈ Re1 ,∃(X2, k2) ∈ Re2 :
(X1 ∪ X2) ∩mid(e) = X ∧ k1 + k2 − |X1 ∩ X2| ≤ k} if e < L(T)

Notice that for each e ∈ E(T), |Re| ≤ 2|mid(e)| · k. Therefore, the above algorithm can
check whether vc(G) ≤ k in O(2bw(G) · k · |V(T)|) steps. Clearly, this simple algorithm is
single exponential on bw(G). Moreover the above dynamic programming machinery can
be adapted to many other combinatorial problems where the certificate of the solution is
a (non-restricted) subset of vertices (e.g. Dominating Set, 3-Coloring, Independent
Set, among others).

Dynamic programming for Connected Vertex Cover. Suppose now that we are
looking for a connected vertex cover of size ≤ k. Clearly, the above dynamic programming
formula does not work for this variant as we should book-keep more information on X
towards encoding the connectivity demand.

Let G be a graph, X ⊆ V(G) and H be a (possibly empty) hypergraph whose vertex set is
a subset of X, whose hyperedges are non-empty, pairwise non-intersecting, and such that
each vertex of H belongs to some of its hyperedges (we call such a hypergraph partial
packing of X). Suppose that H is a partial packing on mid(e). We say that cvc(G,H) ≤ k
if G contains a vertex cover S where |S | ≤ k and such that if C is the collection of the
connected components of Ge[S], then either |E(H)| = |C| and (X, {X ∩ V(C) | C ∈ C}) = H

or E(H) = ∅ and |C| = 1.

As before, let Qe = {(H , k) | cvc(G,H) ≤ k} and observe that cvc(G) ≤ k iff ((∅, ∅), k) ∈ Qer .
The dynamic programming formula for computing Qe for each e ∈ E(T) is the following.

Qe =

{(H , k) | min{k, |E(H)| + 1} ≥ |V(H)| ≥ 1 if e ∈ L(T)
{(H , k) | ∃(H1, k1) ∈ Qe1 ,∃(H2, k2) ∈ Qe2 :
V(H1) ∩ (mid(e1) ∩mid(e2)) = V(H2) ∩ (mid(e1) ∩mid(e2)),
(H1 ⊕H2)[mid(e)] = H , k1 + k2 − |V(H1) ∩ V(H2)| ≤ k},
if E(H) = ∅ then |E(H1 ⊕H2)| = 1, and
if E(H) , ∅ then |E(H1 ⊕ H2)| = |E(H)| if e < L(T).

Chapter 8: Dynamic Programming for Graphs on Surfaces 191

In the above formula, H1⊕H2 is the hypergraph with vertex set V(H1)∪V(H2) where each
of its hyperedges contains the vertices of each of the connected components of H1 ∪H2.

Clearly each H corresponds to a collection of subsets of X and the number of such collec-
tions for a given set mid(e) of r elements is given by the r-th Bell number of r, denoted
by Br. By taking the straightforward upper bound |Br | = 2O(r log r), we have that one
can check whether an input graph G has a connected vertex cover of size at most k in
O(2bw(G)·log(bw(G)) · k · |V(T)|) steps.

As the growth of Br is not single exponential, we cannot hope for a single exponential (in
bw(G)) running time for the above dynamic programming procedure and no algorithm is
known for this problem that runs in time that is single exponential in bw(G). The same
problem appears for numerous other problems where further restrictions apply to their so-
lution certificates. Such problems can be connected variants of problems in Category (A)
and others such as Maximum Induced Forest, Maximum d-Degree-Bounded Con-
nected Subgraph, Maximum d-Degree-Bounded Connected Induced Subgraph
and all the variants studied in Chapter 7, Connected Dominating Set, Connected
r-Domination, Connected FVS, Maximum Leaf Spanning Tree, Maximum Full-
Degree Spanning Tree, Maximum Eulerian Subgraph, Steiner Tree, or Maxi-
mum Leaf Tree.

8.4 Polyhedral Decompositions

We introduce in this section polyhedral decompositions of graphs embedded in surfaces.
Let G be an embedded graph, and let N be a noose in the surface. Similarly to [63], we
use the notation GSN for the graph obtained by cutting G along the noose N and gluing
a disk on the obtained boundaries.

Definition 8.1 Given a graph G = (V, E) embedded in a surface of Euler genus γ, a
polyhedral decomposition of G is a set of graphs G = {H1, . . . ,H`} together with a set of
vertices A ⊆ V such that

• |A| = O(γ);

• Hi is a minor of G[V \ A], for i = 1, . . . , `;

• Hi has a polyhedral embedding in a surface of Euler genus at most γ, for i = 1, . . . , `;
and

• G[V \ A] can be constructed by joining the graphs of G applying clique sums of size
0, 1, or 2.

Remark 8.1 Note that an embedded graph H is not polyhedral if and only if there exists
a noose N of length at most 2 in the surface in which H is embedded, such that either N
is non-contractible or V(H) ∩ N separates H. Indeed, if H has representativity at most 2,
then there exists a non-contractible noose N of length at most 2. Otherwise, since H is
not polyhedral, H has a minimal separator S of size at most 2. It is then easy to see that
there exists a noose containing only vertices of S .

192 Degree-constrained Subgraphs

Algorithm 1 Construction of a polyhedral decomposition of an embedded graph G
Input: A graph G embedded in a surface of Euler genus γ.
Output: A polyhedral decomposition of G.

A = ∅, G = {G} (the elements in G, which are embedded graphs, are called components).
while G contains a non-polyhedral component H do

Let N be a noose as described in Observation 8.1 in the surface in which H is embedded,
and let S = V(H) ∩ N.
if N is non-surface-separating then

Add S to A, and replace in G component H with H[V(H) \ S]SN.
end if
if N is surface-separating then

Let H1, H2 be the subgraphs of HSN corresponding to the two surfaces occurring after
splitting H
if S = {u} ∪ {v} and {u, v} < E(H) then

Add the edge {u, v} to Hi, i = 1, 2.
end if
Replace in G component H with the components of HSN containing at least one edge of H.

end if
end while
return {G, A}.

Algorithm 1 provides an efficient way to construct a polyhedral decomposition, as it is
stated in Proposition 8.1.

In the above algorithm, the addition of an edge {u, v} represents the existence of a path in
G between u and v that is not contained in the current component.

Proposition 8.1 Given a graph G on n vertices embedded in a surface, Algorithm 1 con-
structs a polyhedral decomposition of G in O(n3) steps.

Proof : We first prove that the the output {G, A} of Algorithm 1 is indeed a polyhedral
decomposition of G, and then we analyze the running time.

Let us see that each component of G is a minor of G[V \ A]. Indeed, the only edges added
to G by Algorithm 1 are those between two non-adjacent vertices u, v that separate a
component H into several components H1, . . . ,H`. For each component Hi, i = 1, . . . , `,
there exists a path between u and v in H \ Hi (provided that the separators of size 1 have
been already removed, which can we assumed w.l.o.g.), and therefore the graph obtained
from Hi by adding the edge {u, v} is a minor of H, which is inductively a minor of G[V \A].
Also, each component of G is polyhedral by definition of the algorithm.

As a non-separating noose is necessarily non-contractible, each time some vertices are
moved to A the Euler genus of the surfaces strictly decreases [171, Lemma 4.2.4]. Therefore,
|A| = O(γ).

By the construction of the algorithm, it is also clear that each component of G has a
polyhedral embedding in a surface of Euler genus at most γ. Finally, G[V \ A] can be
constructed by joining the graphs of G applying clique sums of size 0, 1, or 2.

Thus, {G, A} is a polyhedral decomposition of G by Definition 8.1.

Chapter 8: Dynamic Programming for Graphs on Surfaces 193

We now analyze the running time of the algorithm. Separators of size at most 2 can be
found in O(n2) steps [148]. A noose with respect to a graph H corresponds to a cycle in
the radial graph of H, hence can also be found4 in O(n2) (using that the number of edges
of a bounded-genus graph is linearly bounded by its number of vertices). Since each time
that we find a small separator we decrease the size of the components, the running time
of the algorithm is O(n3). 2

8.5 Some Topological Lemmata

In this section we state some topological lemmata that are used in Sections 8.6 and 8.7.
In particular, Lemmata 8.1 and 8.2 are used in the proof of Theorem 8.1 (page 197) while
Lemma 8.3 is used in the proof of Theorem 8.2 (page 204).

Given a graph G embedded in a surface of Euler genus γ, its dual G∗ and a spanning tree
C∗ of G∗, we call C = {e ∈ E(G) | e∗ ∈ E(C∗)} a spanning cotree of G. We define a tree-cotree
partition (cf. [109]) of an embedded graph G to be a triple (T,C, X) where T is a spanning
tree of G, C is a spanning cotree of G, X ⊆ E(G), and the three sets E(T), C, and X form
a partition of E(G). Eppstein proved [109, Lemma 3.1] that if T and C∗ are forests such
that E(T) and C are disjoint, we can make T become part of a spanning tree T ′ and C
become part of a spanning cotree disjoint from T ′, extending T and C to a tree-cotree
decomposition. We can now announce the following lemma from [109, Lemma 3.2].

Lemma 8.1 (Eppstein [109]) If (T,C, X) is a tree-cotree decomposition of a graph G
embedded in a surface of Euler genus γ, then |X| = O(γ).

Lemma 8.2 Let Σ be a surface without boundary. Let S be a set of (not necessary disjoint)
O(γ(Σ)) cycles such that Σ\S has 2 connected components. Let H be the graph corresponding
to the union of the cycles in S . Then

∑
v∈V(H)(d(v) − 2) = O(γ(Σ)).

Proof : Let κ be the number of cycles, so by assumption κ = O(γ(σ)). The first step
consists in simplifying the problem. Let H′ be the graph obtained from H by dissolving
vertices of degree 2 (except from the case of isolated cycles, where we obtain a single vertex
of degree 2 and a loop). Each dissolved vertex had degree 2, so the sum

∑
v∈V(H′)(d(v) −

2) coincides with
∑

v∈V(H)(d(v) − 2). Additionally, by assumption H′ separates Σ into 2
connected components Σ′ and Σ′′. Let H′1,H

′
2, . . . ,H

′
r be the maximal connected subgraphs

of H′. In particular, r ≤ κ.

Some of these connected subgraphs may be incident with Σ′ but not with Σ′′, or conversely.
Additionally, there is at least one connected subgraph H′i incident with both connected
components. W.l.o.g. we assume that the subgraphs H′1,H

′
2, . . . ,H

′
p are incident only with

Σ′, H′p+1, . . . ,H
′
q are incident with both components, and H′q+1, . . . ,H

′
r are incident only

with Σ′′. It is obvious that there exists a path joining a vertex of H′i with a vertex of H′i+1
if 1 ≤ i ≤ q − 1 or p + 1 ≤ i ≤ r − 1.

4A shortest non-contractible cycle can be found in O(2O(γ log γ)n4/3) steps [63]. This time improves on
O(n3) for a big range of values of γ.

194 Degree-constrained Subgraphs

From graphs H′1,H
′
2, . . . ,H

′
p, . . . ,H

′
q (the ones which are incident with Σ′) we construct a

new graph G1 in the following inductive way: we start taking H′q and H′q−1, and a path
joining a vertex of H′q to a vertex of H′q−1. This path exists because H′q and H′q−1 are
incident with Σ′. Consider the graph obtained from H′q and H′q−1 by adding an edge that
joins this pair of vertices. Then, delete H′q and H′q−1 from the initial list and add this new
connected graph. This procedure is done q − 1 times. At the end, we obtain a connected
graph G′ incident with both Σ′ and Σ′′ where each vertex has degree at least 3. Finally, we
apply the same procedure with G′,H′q+1, . . . ,H

′
r, obtaining a connected graph G. Observe

also that ∑
v∈V(H)

(d(v) − 2) ≤
∑

v∈V(G)

(d(v) − 2) <
∑

v∈V(G)

d(v) = 2|E(G)|.

In what follows, we obtain upper bounds for 2|E(G)|. Observe that H′ defines a pair of
faces over Σ, not necessarily disks. In the previous construction of G, every time we add
an edge either we subdivide a face into two parts or not. Consequently, the number of
faces that G defines over Σ is at most 2 + κ. The next step consists in reducing the surface
in the following way: let f be a face determined by G over Σ. If f is contractible, we
do nothing. If not, there is a non-contractible cycle S1 contained on f . Consider the
connected component of ΣSS1 which contains G (call it Σ1). It is obvious that G defines a
decomposition of Σ1, γ(Σ1) ≤ γ(Σ), and the number of faces has been increased by at most
one. Observe that for each operation S we reduce the Euler genus and we create at most
one face. As the Euler genus is finite, the number of S operations is also finite. This gives
rise to a surface Σs, where s ≤ γ(Σ), such that all faces determined by G are contractible.
Additionally, the number of faces that G determines over Σs is smaller than 2 + κ + γ(Σ).

G defines a map on Σs (i.e., all faces are contractible), and consequently we can apply
Euler’s formula. Then |F(G)| + |V(G)| = |E(G)| + 2 − γ(Σs). Then, |F(G)| ≤ 2 + κ + γ(Σ), so
|E(G)| + 2 − γ(Σs) = |V(G)| + |F(G)| ≤ |V(G)| + 2 + κ + γ(Σ). The degree of each vertex is at
least 3, thus 3|V(G)| ≤ 2|E(G)|. Substituting this condition in the previous equation, we
obtain

|E(G)| + 2 − γ(Σs) ≤ |V(G)| + 2 + κ + γ(Σ) ≤
2
3
|E(G)| + 2 + κ + γ(Σ).

Isolating |E(G)|, we get that 2|E(G)| ≤ 6κ + 6γ(Σs) + 6γ(Σ) ≤ 6κ + 12γ(Σ). This bound
immediately translates into the statement of Lemma 8.2. 2

We need another topological result, which deals with cycles that separate a given surface,
and whose proof is an immediate consequence of [171, Proposition 4.2.1].

Lemma 8.3 Let Σ be a surface with boundary and let S1 be a separating cycle. Let V1
and V2 be the connected components of ΣSS1. Then γ(Σ) = γ(V1) + γ(V2).

8.6 Surface Cut Decompositions

Sphere cut decompositions [190] (see page 176) have proved to be very useful to analyze the
running time of algorithms based on dynamic programming over branch decompositions
on planar graphs [C20,100–102]. In this section we generalize sphere cut decompositions to

Chapter 8: Dynamic Programming for Graphs on Surfaces 195

graphs on surfaces; we call them surface cut decompositions. First we need a topological
definition. A subset Π of a surface Σ is fat-connected if for every two points p, q ∈ Π,
there exists a path P ⊆ Π such that for every x ∈ P, x , p, q, there exists a subset D
homeomorphic to an open disk such that x ∈ D ⊆ Π. We can now define the notion of
surface cut decomposition.

Definition 8.2 Given a graph G embedded in a surface Σ, a surface cut decomposition of
G is a branch decomposition (T, µ) of G such that, for each edge e ∈ E(T), there is a subset
of vertices Ae ⊆ V(G) with |Ae| = O(γ(Σ)) and either

• |mid(e) \ Ae| ≤ 2, or

• there exists a polyhedral decomposition {G, A} of G and a graph H ∈ G such that
◦ Ae ⊆ A;
◦ mid(e) \ Ae ⊆ V(H);
◦ the vertices in mid(e) \ Ae are contained in a set N of O(γ(Σ)) nooses, such that

the total number of occurrences in N of the vertices in mid(e) \ Ae is |mid(e) \
Ae| + O(γ(Σ)); and

◦ Σ \
⋃

N∈N N contains exactly two connected components, which are both fat-
connected.

Note that a sphere cut decomposition is a particular case of a surface cut decomposition
when γ = 0, by taking Ae = ∅, G containing only the graph itself, and all the vertices of
each middle set contained in a single noose.

We need some definitions and auxiliary results to be applied for building surface cut
decompositions. In the same spirit of [127, Theorem 1] we can prove the following lemma.
We omit the proof here since the details are very similar5 to the proof in [127].

Lemma 8.4 Let (G, τ) and (G∗, τ) be dual polyhedral embeddings in a surface of Euler
genus γ and let (MG, τ) be the medial graph embedding. Then max{bw(G),bw(G∗)} ≤
cw(MG)/2 ≤ 6 · bw(G) + 2γ + O(1). In addition, given a branch decomposition of G of
width at most k, a carving decomposition of MG of width at most 12k can be found in
linear time.

Lemma 8.5 (folklore) The removal of a vertex from a non-acyclic graph decreases its
branchwidth by at most 1.

Lemma 8.6 Let G be a graph and let G be a collection of graphs such that G can
be constructed by joining graphs in G applying clique sums of size 0, 1, or 2. Given
branch decompositions {(TH , µH) | H ∈ G)}, we can compute in linear time a branch de-
composition (T, µ) of G such that w(T, µ) ≤ max{2, {w(TH , µH) | H ∈ G}}. In particular,
bw(G) ≤ max{2, {bw(H) | H ∈ G}}.

Proof : Note that if G1 and G2 are graphs with no vertex (resp. a vertex, an edge) in
common, then G1 ∪ G2 = G1 ⊕0 G2 (resp. G1 ⊕1 G2, G1 ⊕2 G2). To prove Lemma 8.6, we
need the following two lemmata.

5The improvement in the multiplicative factor of the Euler genus is obtained by applying more carefully
Euler’s formula in the proof analogous to that of [127, Lemma 2].

196 Degree-constrained Subgraphs

Lemma 8.7 Let G1 and G2 be graphs with at most one vertex in common. Then bw(G1∪

G2) = max{bw(G1),bw(G2)}.

Proof : Assume first that G1 and G2 share one vertex v. Clearly bw(G1 ∪ G2) ≥
max{bw(G1),bw(G2)}. Conversely, for i = 1, 2, let (Ti, µi) be a branch decomposition of
Gi such that w(Ti, µi) ≤ k. For i = 1, 2, let T v

i be the minimal subtree of Ti containing all
the leaves ui of Ti such that v is an endpoint of µi(ui). For i = 1, 2, we take an arbitrary edge
{ai, bi} of T v

i , we subdivide it by adding a new vertex wi, and then we build a tree T from T1
and T2 by adding the edge {w1,w2}. We claim that (T, µ1∪µ2) is a branch decomposition of
G1 ∪G2 of width at most k. Indeed, let us compare the middle sets of (T, µ1 ∪ µ2) to those
of (T1, µ1) and (T2, µ2). First, it is clear that the vertices of V(G1) ∪ V(G2) − {v} appear in
(T, µ1∪µ2) in the same middle sets as in (T1, µ1) and (T2, µ2). Secondly, mid({w1,w2}) = {v},
since v is a cut-vertex of G1∪G2. Also, for i = 1, 2, mid({ai,wi}) = mid({wi, bi}) = mid({ai, bi}),
and the latter has size at most k as w(Ti, µi) ≤ k. For all other edges e of Ti, i = 1, 2, mid(e)
is exactly the same in T and in Ti, since if e ∈ E(T v

i) then v ∈ mid(e) in both T and Ti, and
if e ∈ E(Ti \ T v

i) then v < mid(e) in both T and Ti.

If G1 and G2 share no vertices, we can merge two branch decompositions (T1, µ1) and
(T2, µ2) by subdividing a pair of arbitrary edges, without increasing the width. 2

Lemma 8.8 ([126]) Let G1 and G2 be graphs with one edge f in common. Then bw(G1∪

G2) ≤ max{bw(G1),bw(G2), 2}. Moreover, if both endpoints of f have degree at least 2 in at
least one of the graphs, then bw(G1 ∪G2) = max{bw(G1),bw(G2)}.

It remains only to show how to merge the branch decompositions (T1, µ1), (T2, µ2) of two
graphs H1, H2 in G. We distinguish four cases:

(a) H1 and H2 share two vertices v1, v2, and the edge e = {v1, v2} ∈ E(G). We take the
leaves in T1 and T2 corresponding to e, we identify them, and we add a new edge
whose leave corresponds to e (see Figure 8.1(a)).

(b) H1 and H2 share two vertices v1, v2, and the edge e = {v1, v2} < E(G). We take
the leaves in T1 and T2 corresponding to e, we identify them, and we dissolve the
common vertex (see Figure 8.1(b)).

(c) H1 and H2 share one vertex v. We take two edges b, c in T1,T2 whose leaves corre-
spond to edges containing v, we subdivide them and add a new edge between the
newly created vertices (see Figure 8.1(c)).

(d) H1 and H2 share no vertices. We do the construction of case (c) for any two edges
of the two branch decompositions.

The above construction does not increase the branchwidth by Lemmata 8.7 and 8.8. 2

Given an embedded graph G and a carving decomposition (T, µ) of its medial graph MG,
we define a radial decomposition (T ∗, µ∗) of the dual graph RG, where T ∗ = T and µ∗ is a
bijection from the leaves of T to the set of faces of RG defined as follows: for each edge

Chapter 8: Dynamic Programming for Graphs on Surfaces 197

e ea b

bea

T1 T2

e ea b

ba

T1 T2

b ca d

b ca d

T1 T2

(a) (b) (c)

Figure 8.1: Merging branch decompositions (T1, µ1) and (T2, µ2) of two components H1 and
H2 in a polyhedral decomposition {G, A} of G = (V, E). There are three cases: (a) H1 and
H2 share two vertices v1, v2 and the edge e = {v1, v2} is in E; (b) H1 and H2 share two
vertices v1, v2 and e = {v1, v2} is not in E; (c) H1 and H2 share one vertex v.

e ∈ E(T), µ∗(e) = f , where f is the face in RG corresponding to the vertex u f ∈ V(MG) such
that µ(e) = u f . Each edge e ∈ E(T ∗) partitions the faces of RG into two sets F1 and F2. We
define the border set of e, denoted bor(e), as the set of edges of RG that belong to both F1
and F2. Note that F1 and F2 may intersect also in vertices, not only in edges. If (T, µ) is a
bond carving decomposition of MG, then the associated radial decomposition (also called
bond) has nice connectivity properties. Indeed, in a bond carving decomposition, every
cut set partitions the vertices of MG into two subsets V1,V2 such that both MG[V1] and
MG[V2] are non-null and connected. This property, seen in the radial decomposition of
RG, implies that each edge e ∈ E(T ∗) corresponds to a partition of the faces of RG into two
sets F1 and F2, namely black and white faces (naturally partitioning the edges into black,
white, and grey), such that it is possible to reach any black (resp. white) face from any
black (resp. white) face only crossing black (resp. white) edges. In other words, each set
of monochromatic faces is fat-connected.

Remark 8.2 Recall that all the faces of a radial graph RG are tiles, that is, each face has
exactly 4 edges. Also, each one of those tiles corresponds to a pair of dual edges e and e∗

of G and G∗, respectively. Given a carving decomposition (T, µ) of MG (or equivalently, a
radial decomposition (T ∗, µ∗) of RG), one can obtain in a natural way branch decompositions
of G and G∗ by redefining the bijection µ from the leaves of T to the edges of G (or G∗)
that correspond to the faces of RG.

We provide now an algorithm to construct a surface graph decomposition of an embedded
graph. The proof of Theorem 8.1 uses Proposition 8.1, topological Lemmata 8.1 and 8.2,
and the results of the current section.

Theorem 8.1 Given a graph G on n vertices embedded in a surface of Euler genus γ,
with bw(G) ≤ k, Algorithm 2 constructs, in 23k+O(log k)n3 steps, a surface cut decomposition
(T, µ) of G of width at most 27k + O(γ).
Proof : We prove, in this order, that (1) the output (T, µ) of Algorithm 2 is indeed a
surface cut decomposition of G; (2) the width of (T, µ) is at most 27bw(G) +O(γ); and (3)
the claimed running time.

198 Degree-constrained Subgraphs

Algorithm 2 Construction of a surface cut decomposition of an embedded graph G
Input: An embedded graph G.
Output: A surface cut decomposition of G.

Compute a polyhedral decomposition {G, A} of G, using Algorithm 1.
for each component H of G do

1. Compute a branch decomposition (T ′H , µ
′
H) of H, using [36, Theorem 3.8].

2. Transform (T ′H , µ
′
H) to a carving decomposition (T c

H , µ
c
H) of the medial graph MH, using

Lemma 8.4.
3. Transform (T c

H , µ
c
H) to a bond carving decomposition (T b

H , µ
b
H) of MH, using [190].

4. Transform (T b
H , µ

b
H) to a branch decomposition (TH , µH) of H, using Observation 8.2.

end for
Construct a branch decomposition (T, µ) of G by merging, using Lemma 8.6, the branch decom-
positions {(TH , µH) | H ∈ G}, and by adding the set of vertices A to all the middle sets.
return (T, µ).

(1) (T, µ) is a surface cut decomposition of G.

We shall prove that all the properties of Definition 8.2 are fulfilled. For each e ∈ E(T)
we set Ae = A∩mid(e), where A is the set of vertices output by Algorithm 1. Hence,
by Proposition 8.1, |A| = O(γ).

By construction, it is clear that (T, µ) is a branch decomposition of G. In (T, µ), there
are some edges that have been added in the last step of Algorithm 2, in order to
merge branch decompositions of the graphs in G, with the help of Lemma 8.6. Let e
be such an edge. Since {G, A} is a polyhedral decomposition of G, any pair of graphs
in G share at most 2 vertices, hence |mid(e) \ Ae| ≤ 2.

All other edges of (T, µ) correspond to an edge of a branch decomposition of some
polyhedral component H ∈ G. Let henceforth e be such an edge. Therefore, mid(e) \
Ae ⊆ V(H). To complete this part of the proof, we prove in a sequence of three claims
that the remaining conditions of Definition 8.2 hold.

Claim 8.1 The vertices in mid(e) \ Ae are contained in a set N of O(γ) nooses.

Proof : The proof uses the tree-cotree partition defined in Section 8.5.

Recall that e is an edge that corresponds to a branch decomposition (TH , µH) of a
polyhedral component H of G. The branch decomposition (TH , µH) of H has been
built by Algorithm 2 from a bond carving decomposition of its medial graph MH, or
equivalently from a bond radial decomposition of its radial graph RH. Due to the
fact that the carving decomposition of MH is bond, edge e partitions the vertices of
MH into two sets – namely, black and white vertices – each one inducing a connected
subgraph of MH. There are three types of edges: black, white, and grey, according to
whether they belong to faces of the same color (black or white) or not. Therefore,
the corresponding black and white faces also induce connected subgraphs of RH, in
the sense that it is always possible to reach any black (resp. white) face from any
black (resp. white) face only crossing black (resp. white) edges.

Let us now see which is the structure of the subgraph of RH induced by the edges F
belonging to both black and white faces look like. Since each edge of RH contains a

Chapter 8: Dynamic Programming for Graphs on Surfaces 199

vertex of H and another from H∗, the vertices in mid(e) are contained in RH[F], so
it suffices to prove that RH[F] can be partitioned into a set of O(γ) cycles (possibly
sharing some vertices).

To this end, first note that in RH[F] all vertices have even degree. Indeed, let
v ∈ V(RH[F]), and consider a clockwise orientation of the edges incident to v in
RH[F]. Each of such edges alternates from a black to a white face, or viceversa, so
beginning from an arbitrary edge and visiting all others edges in the clockwise order,
we deduce that the number of edges incident to v is necessarily even.

Therefore, RH[F] can be partitioned into a set of cycles. Let us now bound the
number of such cycles. For simplicity, let us identify a pair of dual edges e and e∗

as the same edge. Since the subgraph induced by the black (resp. white) faces is
connected, we can consider a spanning tree T ∗B (resp. T ∗W) of the black (resp. white)
faces. Merge both trees by adding an edge e∗0, and let T ∗ be the resulting tree. Let
T be a spanning tree of the dual graph disjoint from T ∗ (such a spanning tree exists
by [109, Lemma 3.1]). Now consider the tree-cotree partition (T,T ∗, X), where X is
the set of edges of RH that are neither in T nor in T ∗.

The edges of T ∗, except e∗0, separate faces of the same color. Therefore, the set
F ∈ E(RH) of edges separating faces of different color is contained in T ∪ {e0} ∪ X.
Since T is a tree, each cycle of RH[F] uses at least one edge in {e0} ∪ X. Therefore,
RH[F] can be partitioned into at most 1 + |X| cycles. The result follows from the fact
that (T,T ∗, X) is a tree-cotree partition and therefore |X| = O(γ) by Lemma 8.1. 2

Claim 8.2
⋃

N∈N N separates Σ into 2 fat-connected components.

Proof : By Claim 8.1, the vertices in mid(e)\Ae are contained in
⋃

N∈N N. The claim
holds from the fact that for each component H of G, (T b

H , µ
b
H) is a bond carving de-

composition of MH, and by taking into account the discussion before Observation 8.2
in Section 8.6. 2

Claim 8.3 The total number of occurrences in N of the vertices in mid(e) \ Ae is
|mid(e) \ Ae| + O(γ).

Proof : By Claim 8.2,
⋃

N∈N N separates Σ into 2 fat-connected components. Let
H be the graph induced in Σ by the nooses in N . The claim can then be rephrased
as

∑
v∈V(H)(d(v) − 2) = O(γ), which holds by Lemma 8.2 in Section 8.5. 2

(2) The width of (T, µ) is at most 27 · bw(G) + O(γ).

For simplicity, let k = bw(G). By Proposition 8.1, each polyhedral component H
is is a minor of G, hence bw(H) ≤ k for all H ∈ G. In Step 1 of Algorithm 2, we
compute a branch decomposition (T ′H , µ

′
H) of H of width at most k′ = 9

2 k, using
Amir’s algorithm [36, Theorem 3.8]. In Step 2, we transform (T ′H , µ

′
H) to a carving

decomposition (T c
H , µ

c
H) of the medial graph MH of H of width at most 12k′, using

Lemma 8.4. In Step 3, we transform (T c
H , µ

c
H) to a bond carving decomposition

(T b
H , µ

b
H) of MH of width at most 12k′, using the algorithm of [190]. Then, using

200 Degree-constrained Subgraphs

Observation 8.2, we transform in Step 4 (T b
H , µ

b
H) to a branch decomposition (TH , µH)

of H. By the proof of Claim 8.1, the discrepancy between w(TH , µH) and w(T b
H , µ

b
H)/2

is at most the bound provided by Lemma 8.2, i.e., O(γ). Therefore, w(TH , µH) ≤
6k′ + O(γ) = 27k + O(γ), for all H ∈ G.

Finally, we merge the branch decompositions of the polyhedral components to obtain
a branch decomposition (T, µ) of G, by adding the vertices in A to all the middle sets.
Combining the discussion above with Lemmata 8.5 and 8.6, and using that |A| = O(γ),
we get that

w(T, µ) ≤ max{2, {w(TH , µH) | H ∈ G}} + |A|

≤ 27k + O(γ) + |A|

= 27k + O(γ).

(3) Algorithm 2 runs in 23k+O(log k)n3 steps.

We analyze sequentially the running time of each step. First, we compute a polyhe-
dral decomposition of G using Algorithm 1 in O(n3) steps, by Proposition 8.1. Then,
we run Amir’s algorithm in each component in Step 1, which takes O(23kk3/2n2)
steps [36, Theorem 3.8]. Step 2 can be done in linear time by Lemma 8.4. Step 3
can be done in O(n2) time [190]. Step 4 takes linear time by Observation 8.2. Merg-
ing the branch decompositions can clearly be done in linear time. Finally, since any
two elements in G share at most two vertices, the overall running time is the claimed
one.

2

How surface cut decompositions are used for dynamic programming. We shall
now discuss how surface cut decompositions guarantee good upper bounds on the size of
the tables of dynamic programming algorithms for problems in Category (C). The size of
the tables depends on how many ways a partial solution can intersect a middle set during
the dynamic programming algorithm. The interest of a surface cut decomposition is that
the middle sets are placed on the surface in such a way that permits to give a precise
asymptotic enumeration of the size of the tables. Indeed, in a surface cut decomposition,
once we remove a set of vertices whose size is linearly bounded by γ, the middle sets are
either of size at most two (in which case the size of the tables is bounded by a constant)
or are situated around a set of O(γ) nooses, where vertices can be repeated at most O(γ)
times. In such a setting, the number of ways that a partial solution can intersect a middle
set is bounded by the number of non-crossing partitions of the boundary-vertices in a fat-
connected subset of the surface (see Definition 8.2). By splitting the boundary-vertices that
belong to more than one noose, we can assume that these nooses are mutually disjoint.
That way, we reduce the problem to the enumeration of the non-crossing partitions of
O(γ) disjoint nooses containing ` vertices, which are 2O(`) · `O(γ) · γO(γ), as we prove in the
following section (Theorem 8.3). Observe that the splitting operation increases the size of
the middle sets by at most O(γ), therefore ` = k + O(γ) and this yields an upper bound
of 2O(k) · kO(γ) · γO(γ) on the size of the tables of the dynamic programming. In Section 8.7
we use singularity analysis over expressions obtained by the symbolic method to count
the number of such non-crossing partitions. Namely, in Sections 8.7.1 and 8.7.2 we give a

Chapter 8: Dynamic Programming for Graphs on Surfaces 201

precise estimate of the number of non-crossing partitions in surfaces with boundary. Then
we incorporate in Section 8.7.3 two particularities of surface cut decompositions: Firstly,
we deal with the set A of vertices originating from the polyhedral decomposition. These
vertices are not situated around the nooses that disconnect the surface into two connected
components, and this is why they are treated as apices in the enumeration. Secondly,
we take into account that, in fact, we need to count the number of non-crossing packings
rather than the number of non-crossing partitions, as a solution may not intersect all
the vertices of a middle set, but only a subset. The combinatorial results of Section 8.7
are of interest by themselves, as they are a natural extension to higher-genus surfaces of
the classical non-crossing partitions in the plane, which are enumerated by the Catalan
numbers (see e.g. [116]).

8.7 Non-crossing Partitions in Surfaces with Boundary

In this section we obtain upper bounds for non-crossing partitions in surfaces with bound-
ary. The concept of a non-crossing partition in a general surface is not as simple as in the
case of the disk, and must be defined carefully. In Section 8.7.1 we set up our notation. In
Section 8.7.2 we obtain a tree-like structure that provides a way to obtain asymptotic es-
timates. As a main tool we employ map enumeration techniques. To conclude, we extend
in Section 8.7.3 the enumeration to two more general families.

8.7.1 2-zone decompositions and non-crossing partitions

Let Σ be a surface with boundary. A 2-zone decomposition of Σ is a decomposition of Σ

where all vertices lay in the boundary of Σ and there is a coloring of the faces using 2
colors (black and white) such that every vertex is incident (possibly more than once) with
a unique black face. Black faces are also called blocks. A 2-zone decomposition is regular
if every block is contractible. All 2-zone decompositions are rooted : every connected
component of the boundary of Σ is edge-rooted. We denote by SΣ(k),RΣ(k) the set of
general and regular 2-zone decompositions of Σ with k vertices, respectively. A 2-zone
decomposition s over Σ defines a non-crossing partition πΣ(s) over the set of vertices. Let
ΠΣ(k) be the set of non-crossing partitions of Σ with k vertices. The main objective in this
section consists in obtaining bounds for |ΠΣ(k)|. The critical observation is that each non-
crossing partition is defined by a 2-zone decomposition. Consequently, |ΠΣ(k)| ≤ |SΣ(k)|.
The strategy to enumerate this second set consists in reducing the enumeration to simpler
families of 2-zone decompositions. More specifically, the following proposition shows that
it is sufficient to study regular decompositions:

Proposition 8.2 Let s ∈ SΣ be a 2-zone decomposition of Σ and let πΣ(s) be the associated
non-crossing partition. Then there exists a regular 2-zone decomposition m ∈ RΣ such that
πΣ(s) = πΣ(m).

Proof : First we need a definition and a basic topological lemma. Let Σ1 and Σ2 be sur-
faces with boundary, possibly not connected. We write Σ2 ⊂ Σ1 if there exists a continuous
injection i : Σ2 ↪→ Σ1 such that i(Σ2) is homeomorphic to Σ2. If s is a 2-zone decomposition

202 Degree-constrained Subgraphs

of Σ2 and Σ2 ⊂ Σ1, then the injection i induces a 2-zone decomposition i(s) on Σ1 such
that πΣ2(s) = πΣ1(i(s)). In other words, all 2-zone decompositions over Σ2 can be realized
on a surface Σ1 which contains Σ2. Consequently, informally speaking, ΠΣ2(k) ⊆ ΠΣ1(k) if
Σ2 ⊂ Σ1.

Lemma 8.9 Let m∗ be a regular 2-zone decomposition of Σ1. Let Σ1 ⊂ Σ. Then m∗ defines
a regular 2-zone decomposition m over Σ such that πΣ1(m∗) = πΣ(m).

Proof : [of Lemma 8.9] Let i : Σ1 ↪→ Σ be the corresponding injective application, and
consider m = i(m∗). In particular, a block π of m∗ is topologically equivalent to the block
i(π): i is a homeomorphism between Σ and i(Σ). Hence i(π) is an open contractible set and
m is regular. 2

The basic idea to prove Proposition 8.2 is the construction of a finite sequence of 2-zone
decompositions s0 = s, s1, . . . , st = m, such that πΣ(s0) = · · · = πΣ(st) and st = m is regular.
First, consider a non-contractible block f of s. Suppose that the boundary of f consists
of more than one connected component. We define the operation of joining boundaries as
follows: let l be a path that joins a vertex v in one component of the boundary of f with a
vertex u in another component. This path exists because f is a face. Consider also a pair
of paths l1, l2 that joins these two vertices around the initial path l, as illustrated in Figure
8.2. We define the face f ′ as the one obtained from f by deleting the face defined by l1
and l2 which contains l. Let s1 be the resulting 2-zone decomposition. Observe that the
number of connected components of the boundary of f ′ is the same as for f minus one,
and that πΣ(s) = πΣ(s1). We can apply this argument over f as many times as the number
of components of the boundary of f . At the end, we obtain a 2-zone decomposition sp1

such that πΣ(s) = πΣ(s1) = · · · = πΣ(sp1).

Suppose now that the boundary of the block f has one connected component. Additionally,
in this block there are vertices on its boundary which are incident with f more than once.
Let v be a vertex incident r > 1 times with f . In this case we define the operation of
cutting vertices as follows: consider the intersection of a small neighborhood of v with
f , and delete vertex v. This intersection has r connected components. We define a face
by pasting v with only one of these components, and disconnecting the others from v (see
Figure 8.2). Then the resulting 2-zone decomposition has the same associated non-crossing
partition, and v is incident with the corresponding block exactly once.

u

v

l

u

l
l1

v

l2

v v

Figure 8.2: The operations of joining boundaries and cutting vertices.

Summarizing, we construct from s a regular 2-zone decomposition in the following way:
apply the operation of joining boundaries, and then the operation of cutting vertices. After

Chapter 8: Dynamic Programming for Graphs on Surfaces 203

this, every block has one boundary and each vertex is incident with its corresponding block
exactly once. In this case, a block is either contractible or not. If it is not contractible, let
S1 be a non-contractible cycle, which can be cut using the operator S. For all blocks, the
number of times we need to apply this operator is bounded by γ(Σ). At the end, all blocks
are contractible and the resulting surface is Σ1 ⊂ Σ. So, the resulting 2-zone decomposition
m∗ is regular, and then by Lemma 8.9 there exists a regular 2-zone decomposition m over
Σ such that πΣ (m) = πΣ1 (m∗) = πΣ(s), as claimed. 2

In other words, |ΠΣ(k)| ≤ |RΣ(k)| for each value of k. Instead of counting |RΣ(k)|, we reduce
our study to the family of regular 2-zone decompositions where each face (block or white
face) is contractible. The reason is, as we show later, that this subfamily provides the
greatest contribution to the asymptotic enumeration. This set is called the set of irreducible
2-zone decompositions of Σ, and it is denoted by PΣ(k). Equivalently, an irreducible 2-zone
decomposition cannot be realized in a proper surface contained in Σ. The details follow.

A generalization of the notion of irreducibility. We shall provide an equivalent
definition and an additional property of irreducible 2-zone decompositions. We need the
definition stated in the proof of Proposition 8.2 about inclusion of surfaces.

We say that a non-crossing partition πΣ1 is irreducible in Σ1 if there is no realization of πΣ1

in a surface Σ2 such that Σ2 ⊂ Σ1. This definition is compatible with the notion introduced
in Section 8.7.1, as shown in the following lemma:

Lemma 8.10 Let m be an irreducible 2-zone decomposition of Σ. Then the faces of m are
all contractible.

Proof : We only need to deal with white faces. For a white face whose interior is not an
open polygon, there exists a non-contractible cycle S1. Cutting along S1 using the operator
S we obtain a new surface with boundary Σ′ such that Σ′ ⊂ Σ and m is induced in Σ′. As
a conclusion, all faces are contractible. 2

8.7.2 Tree-like structures, enumeration, and asymptotic counting

In this subsection we provide estimates for the number of irreducible 2-zone decomposi-
tions, which are obtained directly for the surface Σ. This approach is novel and gives upper
bounds close to the exact values. The usual technique consists in reducing the enumeration
to surfaces of smaller genus, and returning back to the initial one by topological “pasting”
arguments. The main point consists in exploiting tree-like structures of the dual graph
associated to an irreducible 2-zone decomposition. The main ideas are inspired by [55],
where they are used in the context of map enumeration. For simplicity of the presentation,
the construction is explained on the disk. The dual graph of a non-crossing partition on
the disk is a tree whose internal vertices are bicolored (black color for blocks). An example
of this construction is shown in Figure 8.3.

We use this family of trees (and some related ones) in order to obtain a decomposition
of elements of the set PΣ(k). In Section 8.8 the enumeration of this basic family is done,

204 Degree-constrained Subgraphs

Figure 8.3: A non-crossing partition tree.

as well as the enumeration of the related families. The construction for general surfaces
is a generalization of the previous one. An example is shown in the leftmost picture of
Figure 8.4. For an element m ∈ PΣ(k), denote by M the resulting map on Σ (recall the
definition of Σ in Section 8.2.1). From M we reconstruct the initial 2-zone decomposition
m by pasting vertices of degree 1 which are incident to the same face, and taking the dual
map. From M we define a new rooted map on Σ in the following way: we start deleting
recursively vertices of degree 1 which are not roots. Then we continue dissolving vertices
of degree 2. The resulting map has β(Σ) faces and all vertices have degree at least 3 (apart
from root vertices, which have degree 1). The resulting map is called the scheme associated
to M; we denote it by S M. See Figure 8.4 for an example.

Figure 8.4: The construction of the scheme of an element in PΣ. We consider the dual of
an irreducible 2-zone decomposition (leftmost figure). After deleting vertices of degree 1
recursively and dissolving vertices of degree 2, we obtain the associated scheme (rightmost
figure).

An inverse construction can be done using maps over Σ and families of plane trees. Using
these basic pieces, we can reconstruct all irreducible 2-zone decompositions. The details
of this construction can be found in Section 8.8. Exploiting this decomposition and us-
ing singularity analysis (see Section 8.2.4 for the basic definitions), we get the following
theorem (Γ denotes the classical Gamma function [117]):

Theorem 8.2 Let Σ be a surface with boundary. Then the number |ΠΣ(k)| verifies

|ΠΣ(k)| ≤k→∞
C(Σ)

Γ (3/2γ(Σ) + β(Σ) − 3)
· k3/2γ(Σ)+β(Σ)−4 · 4k, (8.2)

where C(Σ) is a function depending only on Σ that is bounded by γ(Σ)O(γ(Σ)).

Chapter 8: Dynamic Programming for Graphs on Surfaces 205

The steps towards the proof of Theorem 8.2 are included in Sections 8.9, 8.10, and 8.11.
Basically, we start characterizing the combinatorial decomposition in terms of plane trees.
This combinatorial decomposition is exploited in Proposition 8.3 of Section 8.9 in order to
count irreducible 2-zone decompositions. The constant C(Σ) is related to the enumeration
of cubic maps [42, 133]. Bounds for C(Σ) are given in Section 8.10 (see Proposition 8.5).
Finally, we prove in Section 8.11 that the asymptotic of |RΣ(k)| coincides with the one
obtained for irreducible 2-zone decompositions. The argument uses a double induction on
the number of boundaries and the genus of the surface, and Lemma 8.3 of Section 8.5.

8.7.3 Additional constructions

In the previous section, we enumerated families of non-crossing partitions with boundary.
In this section we first deal with a set of additional vertices that play the role of apices (cf.
the last paragraph of Section 8.6). Secondly, we show how to extend the enumeration from
non-crossing partitions to non-crossing packings. In both cases, we show that the modifi-
cation over generating functions (GFs for short) does not depend on the surface Σ where
non-crossing partitions are considered. The analysis consists in symbolic manipulation of
GFs and application of singularity analysis over the resulting expressions.

The first problem can be stated in general as follows: for a sequence of positive numbers
{pk,r}, such that we know the GF

∑
k,r>0 pk,rzkur, we want to estimate the value of

∑k
r=1 rl pk,r

for a fixed value l. This problem arises from the fact that we have a set of vertices (the
apices), such that every vertex of the set can be associated to an arbitrary block of a non-
crossing partition. The details of the analysis of this problem are done in Section 8.12.
Basically, this problem only introduces a variation in the subexponential term of the
asymptotic stated in Theorem 8.2. The second problem consists in generalizing from
non-crossing partitions to non-crossing packings. In other words, for a fixed number of
k vertices, fix an arbitrary subset of i ≤ k vertices, and consider the set of non-crossing
partitions on Σ on this set of i vertices. This value is precisely |ΠΣ(i)|. Among the total set
of k vertices, this set of i vertices can be chosen in

(
k
i

)
ways. Hence, we want to estimate the

sum
∑k

i=0

(
k
i

)
|ΠΣ(i)|. Observe that this construction is quite close to Bell numbers, which

count the number of ways a set of k elements can be partitioned into nonempty subsets.
The details of the analysis can be found in Section 8.13. In this case, a combinatorial trick
(Lemma 8.12) shows that the modification only affects the base of the exponential term.

Combining the univariate asymptotic obtained in Theorem 8.2 with the constructions
described above (the details can be found in Propositions 8.7 and 8.8 in Sections 8.12
and 8.13, respectively) we obtain the following theorem, which gives the bound on the size
of the tables when using surface cut decompositions:

Theorem 8.3 Let ΠΣ,l(k) be the set of non-crossing partitions of Σ with k vertices and a
set of l apices. Then the value

∑k
i=0

(
k
i

) ∣∣∣ΠΣ,l(k)
∣∣∣ is upper-bounded, for large k, by

C(Σ)
22+lΓ (3/2γ(Σ) + β(Σ) − 3)

· k3/2γ(Σ)+β(Σ)−4+l · 5k+1, (8.3)

where C(Σ) is a function depending only on Σ that is bounded by γ(Σ)O(γ(Σ)).

206 Degree-constrained Subgraphs

8.8 Enumeration of Non-crossing Partitions of the Disk and
Related Constructions

In this section we introduce some terminology related to trees that arise as dual graphs
of non-crossing partitions on the disk. Then, we use these concepts to obtain the number
of non-crossing partitions of the disk with n vertices. At last, we introduce some families
of related trees, which are used in the construction of the dual map of a non-crossing
partition in a surface of higher genus.

The dual graph of a non-crossing partition is a tree, which is called the (non-crossing
partition) tree associated to the non-crossing partition. Vertices of degree 1 (that is, the
leafs of the tree) are called danglings. Vertices of the tree are called block vertices if they
are associated to a block of the non-crossing partition. The remaining vertices are either
non-polygon vertices or danglings. By construction, all vertices adjacent to a polygon
vertex are non-polygon vertices. Conversely, each vertex adjacent to a non-polygon vertex
is either a block vertex or a dangling. Graphically, we use the symbols � for block vertices,
� for non-polygon vertices and ◦ for danglings.

Denote by T the set of non-crossing partitions trees, and let T = T(z, u) =
∑

k,n>0 tk,mzkum

be the corresponding GF. The variable z marks danglings and u marks block vertices. We
use also an auxiliary family B, defined as the set of trees which are rooted at a non-polygon
vertex. Let B = B(z, u) =

∑
k,n>0 bk,mzkum be the associated GF. The next lemma gives the

exact enumeration of T and B.

Lemma 8.11 The number of non-crossing trees counted by the number of danglings and
block vertices is enumerated by

T(z, u) =
1 − z(1 − u) −

√
(z(1 − u) − 1)2 − 4zu
2zu

. (8.4)

Furthermore, B(z, u) = zT(z, u).

Proof : We establish combinatorial relations between B and T , from which we deduce the
desired result. First, observe that there is no restriction on the size of the blocks. Hence
the degree of every block vertex is arbitrary. This condition is translated symbolically
via the following relation: T = � × Seq (B). Similarly, B can be written in the form
B = {◦} × Seq (T × {◦}).

These combinatorial conditions translate using Table 8.1 into the system of equations

T =
u

1 − B
, B =

z
1 − zT

.

If we substitute the expression of B in the first equation, one obtains that T satisfies the
equation zT2 + (z(1 − u) − 1)T + u = 0. The valid solution of this equation is (8.4). Solving
the previous system of equations in terms of B, we obtain that B = zT, as claimed. 2

Observe that writing u = 1, we obtain that T(z) = T(z, 1) = 1−
√

1−4z
2z , and B(z) = B(z, 1) =

zT(z), and we recover the GF for Catalan numbers.

Chapter 8: Dynamic Programming for Graphs on Surfaces 207

We need also a set of families of trees that are quite related to the previous ones. We call
them double trees. A double tree is obtained in the following way: consider a path where
we concatenate vertices of type � with vertices of type �. A double tree is a tree obtained
by pasting on every internal vertex of type � a pair of elements of T (one at each side of
the path), and similarly for internal vertices of type �. We say that a double tree is of type
either � − � � − �, or � − � depending on the type of the ends of the path. An example
for a double tree of type � − � is shown in Figure 8.5.

Figure 8.5: A double tree and its decomposition.

We denote these families by T�−�, T�−�, and T�−�, and the corresponding GF by T1(z, u) =

T1, T2(z, u) = T2 and T3(z, u) = T3, respectively. Recall that in all cases z marks danglings
and u marks block vertices. A direct application of the symbolic method provides a way
to obtain explicit expressions for the previous GFs. The decomposition and the GFs of
the three families is summarized in Table 8.2.

Family Developement Compact expression

T�−� 1 + 1
u B2T2 + 1

u2 B4T4 + . . . 1/(1 − T2B2/u)
T�−� B2 + 1

u B4T2 + 1
u2 B6T4 + . . . B2/(1 − T2B2/u)

T�−�
1
u T2 + 1

u2 B2T4 + 1
u3 B4T6 + . . . 1

u T2/(1 − T2B2/u)

Table 8.2: GFs for double trees.

To conclude, the family of pointed non-crossing trees T • is built pointing a dangling over
each tree. In this case, the associated GF is T• = z ∂

∂z T. Similar definitions can be done
for the family B. Pointing a dangling define a unique path between this distinguished
dangling and the root of the tree.

8.9 Combinatorial Decomposition and Enumeration

Throughout this section, we use the notation and definitions introduced in Section 8.8 (i.e.,
families of trees, double trees and pointed trees, and the corresponding GFs). To simplify
the notation, we denote by PΣ(k,m) the set of irreducible 2-zone decompositions of Σ with

208 Degree-constrained Subgraphs

k vertices and m blocks. We write pΣ
k,m for the cardinal of this set. Let pΣ

k =
∑

m>0 pΣ
k,m.

The GF associated to the numbers pΣ
k,m is denoted by PΣ(z, u). We denote by SΣ the set

of rooted maps on Σ with β(Σ) faces, whose vertices are bicolored (either � or �) and have
degree at least 3. In particular, endpoints of a given edge can have the same color. This
notation is used in Sections 8.11, 8.12, and 8.13. Observe that in our framework, each map
has β(Σ) roots, in contrast to the classical theory of enumeration of rooted maps (where a
unique root is considered).

Applying Euler’s formula for maps on Σ imples that |SΣ| is finite, because the number of
faces is fixed. It is also obvious that if S M is the scheme associated to a map M, then
S M ∈ SΣ. These observations provide a way to establish a combinatorial bijection, that
can be exploited to obtain the enumeration of PΣ. More concretely, each element M can
be constructed from an element S of SΣ in the following way:

1. For an edge of S with both end-vertices of type �, we paste a double tree of type
� − � along it. Similar operations can be realized for edges with end-vertices {�,�}
and {�,�}.

2. For a block vertex v of S , not incident with any root, we paste d(v) elements of
T (identifying the roots of trees in T with v), one in each region determined by
consecutive half-edges.

3. For a set of roots with an end-point in the same block vertex v, we paste an element
of T • along each one of the roots (the marked leaf determines which is the dangling
root). Over v we paste trees of T as we have done in the previous case. We do not
paste trees between a root and a half-edge of S . A similar operation is done if the
vertex is of type �.

This construction is shown for a concrete example in Figure 8.6.

Figure 8.6: The decomposition into bicolored trees and the associated scheme.

Let us introduce some notation. Consider an element S of SΣ. Let v1(S), v2(S) be the
set of block vertices and non-polygon vertices of S , respectively. Write B(S),W(S) for
the number of roots which are incident with a vertex of type � and �, respectively. In
particular, B(S) + W(S) = β(Σ). Denote by e1(S) the number of edges in S of type � − �.

Chapter 8: Dynamic Programming for Graphs on Surfaces 209

We similarly define e2(S) and e3(S) for edges of type �−� and �−�, respectively. Observe
that e1(S) + e2(S) + e3(S) + B(S) + W(S) is the number of edges of S , that is e(S) = |E(S)|.
For a vertex x of S , denote by r(x) the number of roots which are incident with it.

The previous decomposition provides a direct way to obtain the desired enumeration.

Proposition 8.3 Let Σ be a surface with boundary. Then the coefficient [zk]PΣ(z, 1) has
an asymptotic expansion of the form

[zk]PΣ(z, 1) = pΣ
k =k→∞

C(Σ)
Γ (−3χ(Σ)/2 + β(Σ))

k−3χ(Σ)/2+β(Σ)−14k(1 + O(k−1/2)), (8.5)

where C(Σ) is a function depending only on Σ.

Proof : According to the previous observations, PΣ(z, u) can be written in the following
form: for each S ∈ SΣ, we replace edges (not roots) with double trees, roots with pointed
trees, and vertices with sets of trees. More concretely, the GF we obtain is∑

S∈SΣ

u|v1(S)|Te1(S)
1 Te2(S)

2 Te3(S)
3

(
T
u

)∑
x∈v1(S)(d(x)−2r(x))

B
∑

y∈v2(S)(d(y)−2r(y))
(
T•

u

)B(S) (
B•

)W(S) . (8.6)

Observe that terms T and T• appear divided by u. The reason is that we paste non-
crossing trees through the root, which is a block vertex. In order to do it, we delete the
corresponding block vertex, we paste the trees identifying their roots without counting
the root, and finally we add the total number of block vertices (thus the term u|v1(S)|).
To obtain the asymptotic behavior in terms of the number of danglings, we write u = 1
in Equation (8.6). To study the resulting GF, we need the expression of each factor of
Equation (8.6) when we write u = 1. In Table 8.3 all the expressions are shown. This table
is built from the expressions for T and B deduced in Lemma 8.11 and the expressions for
double trees in Table 8.2. The GF in Equation (8.6) is a finite sum (a total of |SΣ|

GF Expression

T1(z) 1/16(1 − 4z)−1/2 − 1/8(1 − 4z)1/2 + 1/16(1 − 4z)3/2

T2(z) 1/4(1 − 4z)−1/2 + 1/2 + (1 − 4z)1/2

T3(z) z2
(
1/16(1 − 4z)−1/2 − 1/8(1 − 4z)1/2 + 1/16(1 − 4z)3/2

)
T(z) 1/(2z)(1 − (1 − 4z)1/2)
B(z) 1/2

(
1 − (1 − 4z)1/2

)
T•(z) 1/z(1 − 4z)−1/2 − 1/(2z2)(1 − (1 − 4z)−1/2)
B•(z) (1 − 4z)−1/2

Table 8.3: Univariate GF for all families of trees.

terms), so its singularity is located at z = 1/4 (since each addend has a singularity at this
point). For each choice of S ,

T(z, 1)
∑

x∈v1(S)(d(x)−2r(x))B(z, 1)
∑

y∈v2(S)(d(y)−2r(y)) =

f (S)∑
n=0

fn(z)(1 − 4z)n/2, (8.7)

210 Degree-constrained Subgraphs

where the positive integer f (S) depends only on S , fn(z) are functions analytic at z = 1/4,
and f0(z) , 0 at z = 1/4. For the other multiplicative terms, we obtain

T1(z, 1)e1(S)T2(z, 1)e2(S)T3(z, 1)e3(S)T•(z, 1)B(S)B•(z, 1)W(S) = GS (z)(1 − 4z)−
e(S)

2 + . . . , (8.8)

where GS (z) is an analytic function at z = 1/4. The reason of this fact is that each GF
in the previous formula can be written in the form p(z)(1 − 4z)−1/2 + . . . , where p(z) is a
function analytic at z = 1/4, and e1(S) + e2(S) + e3(S) + B(S) + W(S) is the total number of
edges. Multiplying Equation (8.7) and Expression (8.8) we recover the contribution of a
map S in PΣ(z, 1). More concretely, the contribution of a single map S to Equation (8.6)
can be written in the form

gS (z)(1 − 4z)−e(S)/2 + . . . ,

where gS (z) is an analytic function at z = 1/4. From Equation (8.1), the maps giving the
greatest contribution to the asymptotic of pΣ

k are the ones which maximize the value of
e(S). Applying Euler’s formula (recall that all maps in SΣ have β(Σ) faces) on Σ gives
that these maps are the ones where each vertex have degree 3 (i.e., cubic maps). In
particular, cubic maps with β(Σ) faces and β(Σ) roots have 2β(Σ) − 3χ(Σ) edges. Hence, as
a consequence of the Transfer Theorem for singularity analysis, the singular expansion of
PΣ(z, 1) at z = 1/4 is

PΣ(z, 1) =z→1/4 C(Σ)(1 − 4z)3χ(Σ)/2−β(Σ)
(
1 + O((1 − 4z)1/2)

)
, (8.9)

where C(Σ) =
∑

S∈SΣ
gS (1/4). Applying the Transfer Theorem in this expression yields the

claimed result. 2

8.10 Bounding C(Σ) in Terms of Cubic Maps

In this section we obtain bounds for C(Σ). We use the same notation as in Section 8.9. A
more refined analysis over functions gS (z) provides upper bounds for C(Σ). This is done in
the following proposition:

Proposition 8.4 The function C(Σ) defined in Proposition 8.3 satisfies

C(Σ) ≤ 2β(Σ)|SΣ|. (8.10)

Proof : For each S ∈ SΣ, we obtain bounds for gS (1/4). We use Table 8.4, which is a
simplification of Table 8.3. We are only concerned now about the constant term of each
GF. Table 8.4 brings the following information: the greatest contribution from double
trees, trees, and families of pointed trees comes from T�−�, T , and T •, respectively. The
constants are 1/4, 2, and 4, respectively. Each cubic map has 2β(Σ) − 3χ(Σ) edges (β(Σ) of
them being roots) and β(Σ)− 2χ(Σ) vertices (β(Σ) of them being incident with roots). This
characterization provides the following upper bound for gS (1/4):

gS (1/4) ≤
(
1
4

)2β(Σ)−3χ(Σ)−β(Σ)

2−3·2χ(Σ)+β(Σ)4β(Σ) = 2β(Σ). (8.11)

2

Chapter 8: Dynamic Programming for Graphs on Surfaces 211

GF Expression Developement at z = 1/4

T1(z) 1/16(1 − 4z)−1/2 + . . . 1/16(1 − 4z)−1/2 + . . .

T2(z) 1/4(1 − 4z)−1/2 + . . . 1/4(1 − 4z)−1/2 + . . .

T3(z) z2/16(1 − 4z)−1/2 + . . . 1/256(1 − 4z)−1/2 + . . .

T(z) 1/(2z) + . . . 2 + . . .

B(z) 1/2 + . . . 1/2 + . . .

T•(z) 1/z(1 − 4z)−1/2 + . . . 4(1 − 4z)−1/2 + . . .

B•(z) (1 − 4z)−1/2 (1 − 4z)−1/2

Table 8.4: A simplification of Table 8.3 used in Proposition 8.3.

The value of SΣ can be bounded using the results in [42,133]. Indeed, Gao shows in [133]
that the number of rooted cubic maps with n vertices in an orientable surface of genus6 g
is asymptotically equal to

tg · n5(g−1)/2 · (12
√

3)n,

where the constant tg tends to 0 as g tends to ∞ [42]. A similar result is also stated in [133]
for non-orientable surfaces. By duality, the number of rooted cubic maps in a surface Σ of
genus χ(Σ) with β(Σ) faces is asymptotically equal to tχ(Σ) · β(Σ)5(χ(Σ)−1)/2 · (12

√
3)β(Σ). This

value is clearly bounded by γ(Σ)O(γ(Σ)).

To conclude, we observe that the elements of SΣ are obtained from rooted cubic maps
with β(Σ) faces by adding a root on each face different from the root face. Observe that
each edge is incident with at most two faces, and that the total number of edges is −3χ(Σ).
Consequently, the number of ways of rooting a cubic map with β(Σ) − 1 unrooted faces is
bounded by

(
−6χ(Σ)
β(Σ)−1

)
, which is bounded by γ(Σ)O(γ(Σ)).

By the above discussion, the following proposition holds.

Proposition 8.5 The constant C(Σ) verifies

C(Σ) ≤ tχ(Σ) · β(Σ)5(χ(Σ)−1)/2 · (12
√

3)β(Σ)
(
−6χ(Σ)
β(Σ) − 1

)
2β(Σ).

In particular, C(Σ) = γ(Σ)O(γ(Σ)).

Combining Propositions 8.3 and 8.5, we obtain that

pΣ
k ≤k→∞

C(Σ)
Γ (3/2γ(Σ) + β(Σ) − 3)

· k3/2γ(Σ)+β(Σ)−4 · 4k, (8.12)

where C(Σ) = γ(Σ)O(γ(Σ)) is a function depending only on Σ.
6the genus g(Σ) of an orientable surface Σ is defined as g(Σ) = γ(Σ)/2 (see [171]).

212 Degree-constrained Subgraphs

8.11 Reducibility vs Irreducibility

In this section we use the same notation as in Section 8.8. For conciseness we use the
notation a(Σ) to denote the constant term which appears in all the asymptotic expressions
in Section 8.8.

For a non-irreducible regular element s of RΣ (recall Lemma 8.10) there is a non-
contractible cycle S1 contained in a white 2-dimensional region of s. Additionally, s induces
a regular 2-zone decomposition over the surface ΣSS1 = Σ′, which can be irreducible or not.
By Lemma 8.9, each element of RΣ′ defines an element on RΣ. To prove that irreducible
2-zone decompositions over Σ give the maximal contribution to the asymptotic, we apply
a double induction argument on the pair (γ(Σ), β(Σ)). The critical point is the initial step,
which corresponds to γ(Σ) = 0:

Proposition 8.6 Let Σ be a surface obtained from the sphere deleting β disjoints disks.
Then

|RΣ(k)| ≤k→∞ |PΣ(k)|.

Proof : Induction on β. The case β = 1 corresponds to the disk. We deduced in
Section 8.8 the exact expression for PΣ(z, u) (see Equation (8.4)). In this case the equality
|RΣ(k)| = |PΣ(k)| holds for every value of k. Let us consider now the case β = 2, which
corresponds to the cylinder. From Equation (8.12), the number of irreducible 2-zone
decompositions over the cylinder verifies

|PΣ(k)| =k→∞ a(Σ) · k · 4k(1 + O(k−1/2)). (8.13)

Let us calculate upper bounds for the asymptotic of non-irreducible 2-zone decompositions
on a cylinder. A non-contractible cycle S1 on a cylinder separates it into a pair of cylinders.
In other words Σ′ = ΣSS1 is a pair of disks. The asymptotic in this case is of the form
[zk]T(z, 1)2 =k→∞ O(k−3/24k). The subexponential term in Equation (8.13) is greater, so the
claim of the proposition holds for β = 1.

Let us proceed to apply the inductive step. Let β > 1 be the number of boundaries of Σ.
A non-contractible cycle S1 always separates Σ into two connected components, namely
Σ1 and Σ2. Let β1, β2 < β be the number of boundaries of Σ1 and Σ2, respectively. By
induction hypothesis,

|RΣ j(k)| ≤k→∞ |PΣ j(k)|,

for j = 1, 2. Consequently, we only need to deal with irreducible decompositions of Σ1 and
Σ2. The GF of 2-zone regular decompositions that reduces to decompositions over Σ1 and
Σ2 has the same asymptotic as PΣ1(z, 1) ·PΣ2(z, 1). The estimate of its coefficients is

[zk]PΣ1(z, 1) ·PΣ2(z, 1) ≤ a(Σ1) · a(Σ2)[zk](1 − 4z)−5/2β1+3 · (1 − 4z)−5/2β2+3 =k→∞ O
(
k5/2β−7 · 4k

)
.

Consequently, the above term is smaller than pΣ
k when k is large enough (the value is of

the form
(
k5/2β−44k

)
, and does not depend on how Σ is cut. 2

The next step is to adapt the previous argument to surfaces of genus greater than 0. Let
Σ be a surface with boundary and Euler genus γ(Σ). Consider a non-contractible cycle S1

and the resulting surface Υ = ΣSS1. Two situations can occur:

Chapter 8: Dynamic Programming for Graphs on Surfaces 213

1. Υ is connected and β(Υ) = β(Σ). In this case, the Euler genus has been decreased by
either 1 if the cycle is one-sided or by 2 if the cycle is two-sided. This result appears
as Lemma 4.2.4 in [171].

2. The resulting surface is not connected, Υ = Υ1 t Υ2. In this case, the total number
of boundaries is β(Υ) = β(Υ1) + β(Υ2). By Lemma 8.3, γ(Σ) = γ(Υ1) + γ(Υ2) − 2.

The induction argument distinguishes between these two cases: if Υ = ΣSS1 is connected,
by induction on the genus, |RΥ(k)| ≤k→∞ |PΥ(k)|. Additionally, by Expression (8.12), an
upper bound for |PΥ(k)| is

[zk]PΥ(z, 1) = a(Υ) · k3/2γ(Υ)+β(Υ)−4 · 4k(1 + O(k−1/2)) =k→∞ O
(
k3/2γ(Σ)+β(Σ)−4 · 4k

)
.

If Υ is not connected, then Υ = Υ1 t Υ2, β(Σ) = β(Υ) − 2 = β(Υ1) + β(Υ2), and γ(Σ) =

γ(Υ1)+γ(Υ2). Again, by induction hypothesis we only need to look at the irreducible ones.
Consequently,

[zk]PΥ1(z, 1)PΥ2(z, 1) = a(Υ1) · a(Υ2)[zk](1 − 4z)−3/2(γ(Υ1)+γ(Υ2))−(β(Υ1)+β(Υ2))+6.

The exponent of (1 − 4z) can be written as −3/2γ(Σ) − β(Σ) + 6. Consequently, the value
[zk]PΥ1(z, 1)PΥ2(z, 1) is bounded, for k large enough, by

k3/2γ(Σ)+β(Σ)−6−1 · 4k = k3/2γ(Σ)+β(Σ)−7 · 4k = O
(
k3/2γ(Σ)+β(Σ)−4 · 4k

)
.

Hence the contribution is smaller than the one given by |PΣ(k)|, as claimed.

8.12 Dealing with a Set of Apices

Due to the definition of surface cut decomposition, we need to modify the family PΣ

of irreducible 2-zone decompositions in the following way: consider a set of l vertices
{1, 2, . . . , l} = [l] disjoint from the set of vertices over Σ. This set of vertices is called set of
apices. For every value of k we want to count the number of pairs (sr, f), where sr ∈ PΣ(k)
has r blocks, and f is an arbitrary application f : [l] → [r]. The number of such pairs
is

∑k
r=1 rl pΣ

k,r (recall that the number of irreducible 2-zone decompositions with k vertices
and r blocks is pΣ

k,r, and the associated GF is PΣ(z, u)). The aim of this section is to obtain
estimates for this sum. This problem can be stated in the following equivalent way: let
F(z, u) be a GF with expansion F(z, u) =

∑
k,r≥0 fk,rzkur, such that [zkur]F(z, u) = 0 if r > k.

For a non-negative integer l, we want to estimate the sum

k∑
r=0

rl fk,r = [zk]
∑
k≥0

∞∑
r=0

rl fk,rzkur
∣∣∣
u=1 ,

for k large enough. Let Θ be the pointing operator on the second variable: ΘF(z, u) =

u ∂
∂uF(z, u) = uFu(z, u). Applying l times the operator Θ over F(z, u) gives ΘlF(z, u) =∑∞
k,m≥0 ml fk,rzkum, so our problem consists in estimating [zk]ΘlF(z, u)

∣∣∣
u=1. The strategy

we use to obtain the estimate consists in simplifying this expression up to a function
from which we know to get the asymptotic. Firstly, observe that Θl can be written as∑l

i=1 qi(u) ∂
i

∂ui , where qi(u) is a polynomial on u. For i = l, the value of ql(u) is ul. We

214 Degree-constrained Subgraphs

show that the greatest contribution to the enumeration comes from the term i = l. As
a consequence, we only need to deal with ul ∂l

∂ul F(z, u). To do this, it is also convenient
to observe the following: for b < a positive real numbers, the asymptotic of (1 − 4z)−a is
greater than the one for (1 − 4z)−b: from the Transfer Theorem for singularity analysis
(Equation (8.1)), both GFs have an exponential growth of the form 4k. However, their
asymptotic growth is not the same: while the first one has a subexponential growth of
the form ka−1, the second one is of the form kb−1, which is smaller. Generalizing this to a
linear combination of terms of the form (1 − 4z)−ai , where ai is a positive real number, the
asymptotic of the whole function comes from the value ai with the greatest modulus.

Let us return to study PΣ(u, z). Observe that GFs for double trees can be factorized in
the following way (consult Table 8.2):

G(z, u)
1 − 1

u T2B2/u
=

−2uz2G(z, u)

((u + 1) z − 1)
√

(z(1 − u) − 1)2 − 4zu + z2(u − 1)2 − 2z(u + 1) + 1
,

where G(z, u) is either 1, T2/u or B2. For conciseness, write f = (z(1 − u) − 1)2 − 4zu,
g = ((u + 1) z − 1) and h = z2(u − 1)2 − 2z(u + 1) + 1. The previous formula can be written
in the form −2uz2G(z, u)/(h + g

√
f). Additionally, g(z, 1) = 2z − 1, f(z, 1) = 1 − 4z and

h(z, 1) = 1 − 4z. For u = 1, the smallest singularity of the function is located at z = 1/4,
where function

√
f ceases to be analytic. Consequently, the source of the singularity on

a double tree comes exclusively from the term
√

f. Furthermore, when we write u = 1,
the smallest singularity of every derivative (with respect to u) of −2uz2G(z, u)/(h + g

√
f) is

located at z = 1/4, because the denominator is always the same (possibly with a greater
exponent). A similar argument applies to the families of pointed trees (same behavior,
f−1/2).

Taking into account this, and rationalizing the previous expressions, Expression (8.6) can
be written in the form

PΣ(z, u) =
∑

S∈SΣ

(
gS (z, u)f−e(S)/2 + . . .

)
,

where “ . . . ” means that the exponent of the other terms is smaller in modulus (and they
give smaller contributions to the asymptotic enumeration). Observe that g(z, u) is analytic
at (z, u) = (1/4, 1), and satisfies that gS (z, 1) = gS (z). This presentation for PΣ(z, u) is the
correct one to deal with the operator Θl: observe that the greatest contribution (using the
Transfer Theorem) comes from cubic maps, which are the ones with maximize the number
of edges (i.e., the value e(S) = 3γ(Σ) + 2β(Σ) − 6). For conciseness on the formulas, until
the end of this section we write e = 3γ(Σ) + 2β(Σ) − 6.

We need to study the derivative ∂l

∂ul

(
gS (z, u)f−e/2

)
, which is the main contribution of each

cubic map. When we apply this derivative over gS (z, u)f−e/2, the greatest contribution
comes from gS (z, u)ul ∂

∂ul f
−e/2, because this term maximizes the exponent (in modulus) of

the singular term. In this case, the singular term with greatest exponent corresponds to

ulgS (z, u)
(−1)lΓ(e/2 + l)

Γ(e/2)
(fu(z, u))l

f(z, u)e/2+l ,

Chapter 8: Dynamic Programming for Graphs on Surfaces 215

where fu(z, u) is the derivative of f with respect to u. Writing u = 1, the previous expression
is simplified into

gS (z)
Γ(e/2 + l)

Γ(e/2)
(2z)l

(1 − 4z)e/2+l .

To estimate the value of the k-th coefficient of the previous GF, we apply the Transfer
Theorem for singularity analysis (Equation (8.1)), obtaining

gS (1/4)
1

Γ(e/2)
2−l · ke/2+l−1 · 4k(1 + O(k−1/2)).

To conclude, recall that this above term is the contribution of a single cubic map. Summing
over all cubic maps, we obtain the following proposition:

Proposition 8.7 Let pΣ
k,r be the number of irreducible 2-zone decompositions of Σ. For a

fixed positive integer l, the following asymptotic approximation holds:
k∑

r=1

rl pΣ
k,r =k→∞

C(Σ) · 2−l

Γ(3γ(Σ)/2 + β(Σ) − 3)
· k3γ(Σ)/2+β(Σ)−4+l · 4k(1 + O(k−1/2)), (8.14)

where an upper bound for C(Σ) is stated in Proposition 8.4.

8.13 Bell Structures: from Partitions to Packings

For a fixed number of k vertices, fix an arbitrary subset of i ≤ k vertices, and consider the
set of non-crossing partitions over Σ using this set of i vertices. This value is precisely pΣ

i .
This set of i vertices can be chosen in

(
k
i

)
ways. Consequently, we want to estimate the

sum
∑k

i=0

(
k
i

)
pΣ

i . Observe that this construction is quite close to Bell numbers, which count
the number of ways a set of k elements can be partitioned into nonempty subsets. The
main result of this section uses the following combinatorial trick:

Lemma 8.12 Let A(z) =
∑

n>0 anzn. Then the sum
∑n

i=0

(
n
i

)
ai is [zn] 1

1−zA(z
1−z).

Proof : It is a consequence of the Taylor development of 1
1−zA(z

1−z) and the relation
zn

(1−z)n+1 =
∑∞

i=0

(
n+i

i

)
zn+i, which can be proved by induction. 2

Consequently, PΣ(z, 1) is modified via Lemma 8.12 to obtain the GF for the numbers∑k
i=0

(
k
i

)
pΣ

i . The singularity of PΣ(z, 1) is located at z = 1/4, and therefore the singularity of
1

1−zPΣ(z/(1 − z), 1) is located at z = 1/5. Its singular behavior (i.e., the singular exponent)
is the same as the one for PΣ(z, 1). The modification is made only on the position of the
singularity, and not on its nature.

Summarizing, the estimate of
∑k

i=0

(
k
i

)
pΣ

i for k big enough has exponential term equal to
5k, and subexponential term equal to the one of pΣ

k . In other words, we have proved the
following proposition:

Proposition 8.8 The following estimate holds:∑k
i=0

(
k
i

)
pΣ

i

pΣ
k

=k→→∞

(
5
4

)k+1 (
1 + O(k−1/2)

)
.

216 Degree-constrained Subgraphs

8.14 Conclusions

Our results can be summarized as follows.

Theorem 8.4 Given a problem P belonging to Category (C) in a graph G embedded in a
surface of Euler genus γ, with bw(G) ≤ k, the size of the tables of a dynamic programming
algorithm to solve P on a surface cut decomposition of G is bounded above by 2O(k) · kO(γ) ·

γO(γ).

As we mentioned, the problems tackled in [99] are those in Category (B), which are
included in Category (C). As a result of this, we reproduce all the results of [99]. Moreover,
as our approach does not use planarization, our analysis provides algorithms where the
dependence on the Euler genus γ is better than the one in [99]. In particular, the running
time of the algorithms in [99] is 2O(γ·bw+γ2·log(bw)) · n, while in our case the running time is
2O(bw+γ·log(bw)+γ·log γ) · n.

Dynamic programming is important for the design of subexponential exact or parame-
terized algorithms. Using the fact that bounded-genus graphs have branchwidth at most
O(
√
γ · n) [124], we derive the existence of exact algorithms in O∗(2O(

√
γn+γ·log(γ·n))) steps

for all problems in Category (C). Moreover, using bidimensionality theory (see [94, 96]),
on can derive 2O(γ·

√
k+γ·log(γ·k)) · nO(1) step parameterized algorithms for all bidimensional

problems in Category (C).

A natural extension of our results is to consider more general classes of graphs than
bounded-genus graphs. This has been done in [101] for problems in Category (B), where
the tables of the algorithms encode pairings of the middle set. To extend these results
for problems in Category (C) (where tables encode subsets of the middle set), using the
planarization approach of [101], appears to be a quite complicated task. We believe that
our surface-oriented approach could be more successful in this direction.

Notice that Categories (A), (B), and (C) can be seen as the first levels of a more general
hierarchy of dynamic programming algorithms designed for gradually more complicated
combinatorial problems. For instance, higher level classes of algorithms can be defined for
tables encoding connected pairings (or even connected packings) of subsets of the middle
set. In a sense, what we prove in this chapter is the collapse of the time bounds in
Category (C) to those in Category (A) when inputs are topologically restricted. It seems
to be an interesting task to define such a hierarchy and to check whether this collapse
extends to its higher levels.

Part IV

Conclusions and Further Research

217

219

The conclusions and avenues for further research corresponding to each chapter of this
thesis have been given in page 52 (Chapter 1), page 71 (Chapter 2), page 97 (Chapter 3),
page 119 (Chapter 4), page 151 (Chapter 5), page 170 (Chapter 6), page 181 (Chapter 7),
and page 216 (Chapter 8). From a more global point of view, here we conclude the
thesis and briefly propose possible lines for further research in Sections IV.1 and IV.2,
respectively.

IV.1 Final conclusions

This thesis consisted of two main parts: traffic grooming and degree-constrained sub-
graph problems. Originally motivated by an optimization problem in optical networks
(Chapters 1-4), we got interested in progressively more general problems. Namely, in
Chapters 5-7 we focused on degree-constrained subgraph problems, and in Chapter 8 we
provided a framework to deal with problems whose solutions can be codified by subsets of
vertices. Let us now give some more details about the problems we considered.

Traffic grooming. In Chapter 1 we studied the traffic grooming problem on rings and
paths with a general traffic pattern. We proved hardness results and provided approxi-
mation algorithms. In Chapter 2 we modeled the traffic grooming in unidirectional rings
in the case when the request graph has bounded maximum degree and the objective is
to design a network being able to support any request graph satisfying the degree con-
straints. We were able to settle the (asymptotically) optimal number of ADMs at each
node for almost all values of the grooming factor and the maximum degree. In Chapters 3
and 4 we focused on the ring topology with an all-to-all traffic pattern. Namely, in Chap-
ter 3 we studied the bidirectional ring, providing optimal solutions for infinite families of
values of the size of the network and the grooming factor. In Chapter 4 we dealt with
the unidirectional ring and two grooming factors C and C′ that alternate dynamically.
Using tools from combinatorial designs, we found the optimal switching cost for C = 4
and C′ ∈ {1, 2, 3}, as well as the optimal switching cost under the constraint of using the
minimum number of wavelengths.

In view of our results, we observe that there is a trade-off between the generality of the
considered problem (like the request graph, the topology, or the grooming factor) and the
quality of the solutions that one can expect to obtain in a reasonable computation time.
Namely, the more general the setting is, the further we are from an optimal solution. This
phenomenon is not surprising, as traffic grooming is an NP-hard problem and, unless
P = NP, optimal solutions of an NP-hard problem cannot be found in polynomial time.

Degree-constrained subgraph problems. In the second part of this thesis we applied
a variety of approaches to study degree-constrained subgraph problems. In Chapter 5 we
provided hardness results and approximation algorithms for several such problems, using
for instance the error amplification technique and randomized algorithms. We studied in
Chapter 6 the parameterized complexity of these problems in order the better understand
their apparent hardness. We proved W[1]-hardness results using parameterized reductions

220 Conclusions and Further Research

and provided FPT algorithms using refined dynamic programming and structural results
from graph minors theory. In Chapters 7 and 8 we focused on the case when the input
is topologically restricted. Namely, in Chapter 7 we obtained subexponential parameter-
ized and exact algorithms for a family of degree-constrained subgraph problems on planar
graphs, using bidimensionality theory combined with novel dynamic programming tech-
niques. Finally, we provided in Chapter 8 a framework for the design of algorithms with
single-exponential dependence on branchwidth for a broad class of problems on graphs
embedded in surfaces. This framework introduces a new type of branch decomposition,
called surface cut decomposition, and uses tools from topological graph theory together
with the symbolic method and singularity analysis from analytic combinatorics.

IV.2 Further Research

Concerning traffic grooming, we have mentioned along the thesis that the unidirectional
ring with all-to-all traffic in an important special case. So far, the formulas of the minimum
number of ADMs as a function of the network size have been found for values of the
grooming factor up to seven (see page 36). Finding the optimal cost for each value of the
grooming factor involves complicated tailor-made constructions. Although finding these
formulas may yield new combinatorial designs and interesting insights, it does not make
sense to aim at solving all the (infinite) cases of the grooming factor one by one. It would
be more relevant to conceive a machinery (probably, with the help of a computer) able to
generate the cost formulas in reasonable time for each fixed value of the grooming factor.

In this thesis we moved towards more and more general problems. How far can one go in
this direction? The answer probably lies on the so-called algorithmic meta-theorems. One
of the most notorious such theorems, the fundamental theorem of Courcelle [86], states
that graph properties definable in monadic second-order logic can be decided in linear time
on graphs of bounded treewidth (or equivalently, bounded branchwidth, see page 22). This
was the first in a series of algorithmic meta-theorems. More recent examples of such meta-
theorems state that all first-order definable properties of planar graphs can be decided
in linear time [128] and that all first-order definable optimization problems on classes
of graphs with excluded minors can be approximated in polynomial time to any given
approximation ratio [90]. The term “meta-theorem” refers to the fact that these results do
not describe algorithms for specific problems, but for whole families of problems, whose
definition typically has a logical and a structural (usually graph-theoretical) component.
For example, Courcelle’s theorem [86] is about monadic second-order logic on graphs of
bounded treewidth. The general form of algorithmic meta-theorems is: “All problems
definable in a certain logic on a certain class of structures can be solved efficiently”. We
refer the reader to the excellent survey of Grohe [142].

Many of the meta-theorems are tightly linked with graph minor theory. Recently, results
from graph minor theory have been combined with algorithmic techniques that had origi-
nally been developed for planar graphs to obtain polynomial time approximation schemes
and FPT algorithms for many standard optimization problems on families of graphs with
excluded minors. The fascinating topic of algorithmic meta-theorems is receiving increas-
ing attention during the last years and seems to be a promising research field.

Appendix A

Permutation Routing and
(`, k)-routing on Plane Grids

The packet routing problem plays an essential role in communication networks and
has been extensively studied during the last decades. It involves how to transfer data
from some origins to some destinations within a reasonable amount of time. In the
(`, k)-routing problem, each node can send at most ` packets and receive at most k
packets. Permutation routing is the particular case ` = k = 1. In the r-central routing
problem, all nodes at distance at most r from a fixed node v want to send a packet to v.
The goal is to minimize the number of time steps required to route all packets to their
respective destinations, under the constraint that each link can be crossed simultaneously
by no more than one packet.

Keywords: Packet routing, distributed algorithm, permutation routing, (`, k)-routing,
plane grids, communication networks, shortest path, oblivious algorithm.

221

222 Appendix A: Permutation Routing and (`, k)-routing on Plane Grids

A.1 Permutation Routing on Triangular Grids

To measure the routing capability of an interconnection network, the permutation routing
problem is usually used as the metric. This problem has been studied in a wide diversity
of scenarios, such as mobile ad hoc networks, cube-connected cycle networks, wireless and
radio networks, all-optical networks, reconfigurable meshes, or circulant graphs.

In [J5, C21] we study this problem in hexagonal networks, i.e., finite subgraphs of a
triangular grid, which is a widely used network in practical applications. We present the
first optimal permutation routing algorithm on full-duplex hexagonal networks, using the
addressing scheme described by Nocetti, Stojmenović, and Zhang in [175]. Our algorithm
is fully distributed and surprisingly simple. Furthermore, we prove that the algorithm is
oblivious and translation invariant.

A.2 (`, k)-routing on Plane Grids

In [J3,B7] we study the permutation routing, the r-central routing, and the general (`, k)-
routing problems on plane grids (that is, square, triangular, and hexagonal grids). We use
the store-and-forward ∆-port model, and we consider both full- and half-duplex networks.
We first survey the existing results in the literature about packet routing, with special
emphasis on (`, k)-routing on plane grids. Our main contributions are the following:

1. Tight permutation routing algorithms on full-duplex hexagonal grids, and half duplex
triangular and hexagonal grids.

2. Tight r-central routing algorithms on triangular and hexagonal grids.

3. Tight (k, k)-routing algorithms on square, triangular and hexagonal grids.

4. Good approximation algorithms (in terms of the running time) for (`, k)-routing on
square, triangular and hexagonal grids, together with new lower bounds on the running
time of any algorithm using shortest path routing.

All these algorithms are completely distributed, i.e., can be implemented independently
at each node. Finally, we also formulate the (`, k)-routing problem as a Weighted Edge
Coloring problem on bipartite graphs.

Appendix B

Label Space Minimization in
GMPLS Networks

All-Optical Label Switching (AOLS) is an approach to transparently route packets
all-optically, allowing a speed-up of the forwarding. This very promising technology
for the future Internet applications also brings new constraints and, consequently, new
problems have to be addressed. Indeed, as the forwarding functions are implemented
directly at the optical domain, a specific correlator is needed for each optical label
processed in the node. Therefore, it is of major importance to reduce the number of
employed correlators in every node, hence reducing the number of labels (as referred in
the literature). The most promising scheme to manage the control plane of these optical
networks is Generic MultiProtocol Label Switching (GMPLS). Therefore, for reducing the
total number of labels in routers, solutions deployed by GMPLS for reducing the number
of labels, such as label merging or label stacking, have to be studied.

Keywords: GMPLS, label stacking, dynamic programming, approximation algorithms,
hardness of approximation, hypergraph.

223

224 Appendix B: Label Space Minimization in GMPLS Networks

B.1 GMPLS Label Stacking on the Path

In [C11] we study the problem of routing a set of requests in AOLS networks with the aim
of minimizing the number of labels required to ensure the forwarding. In order to spare
the label space, we consider label stacking, allowing the configuration of tunnels. We
study particularly this network design problem when the network is a line. We provide an
exact algorithm (based on a dynamic programming approach) for the case in which all the
requests have a common source and present some approximation algorithms and heuristics
when an arbitrary number of sources are distributed over the line. We analyze by simu-
lations the performance of our proposed algorithms and compare them with previous ones.

B.2 Designing Hypergraphs Layouts to GMPLS Routing
Strategies

In [C12] we continue the work initiated in [C11] and study the problem of routing a set
of requests in AOLS networks using GMPLS technology, with the aim of minimizing the
number of labels required to ensure the forwarding. We first formalize the problem by
associating to each routing strategy a logical hypergraph whose hyperarcs are dipaths of
the physical graph, called tunnels in GMPLS terminology. Such a hypergraph is called
a hypergraph layout, to which we assign a cost function given by its physical length plus
the total number of hops traveled by the traffic. Minimizing the cost of the design of an
AOLS network can then be expressed as finding a minimum cost hypergraph layout.

We prove hardness results for the problem, namely for general directed networks we prove
that it is NP-hard to find a C log n-approximation, where C is a a positive constant and n
is the number of nodes of the network. For symmetric directed networks, we prove that
the problem is APX-hard. These hardness results hold even is the traffic instance is a
partial broadcast. On the other hand, we provide an O(log n)-approximation algorithm to
the problem for a general symmetric network. Finally, we focus on the case where the
physical network is a path, providing a polynomial-time dynamic programming algorithm
for a bounded number of sources, thus extending the algorithm given in [C11] for a single
source.

Appendix C

Tolerance Graphs

A graph G = (V, E) on n vertices is a tolerance graph if there is a set I = {Ii | i = 1, . . . , n} of
closed intervals on the real line and a set T = {ti | i = 1, . . . , n} of positive real numbers, called
tolerances, such that for any two vertices vi, v j ∈ V, viv j ∈ E if and only if |Ii∩ I j| ≥ min{ti, t j}.
These sets of intervals and tolerances form a tolerance representation of G. If G has a
tolerance representation such that ti ≤ |Ii| for i = 1, . . . , n, then G is called a bounded
tolerance graph and its representation is a bounded tolerance representation.

Tolerance graphs were introduced by Golumbic and Monma in [139], mainly motivated
by the need to solve scheduling problems in which resources that would be normally used
exclusively, like rooms or vehicles, can tolerate some sharing among users. Since then,
tolerance graphs have been widely studied in the literature, as they naturally generalize
both interval graphs (when all tolerances are equal) and permutation graphs (when |Ii| = ti
for i = 1, . . . , n), see [139]. For more details, see the book of Golumbic and Trenk [140].

Keywords: Tolerance graphs, parallelogram graphs, intersection model, minimum color-
ing, maximum clique, weighted independent set.

225

226 Appendix C: Tolerance Graphs

C.1 A New Intersection Model and Improved Algorithms

In [J4,C16] we propose the first non-trivial intersection model for general tolerance graphs,
given by three-dimensional parallelepipeds, which extends the widely known intersection
model of parallelograms in the plane that characterizes the class of bounded tolerance
graphs. Apart from being important on its own, this new representation also enables us to
improve the time complexity of three problems on tolerance graphs. Namely, we present
optimal O(n log n) algorithms for computing a minimum coloring and a maximum clique,
and an O(n2) algorithm for computing a maximum weight independent set in a tolerance
graph with n vertices, thus improving the best known running times O(n2) and O(n3) for
these problems, respectively.

C.2 The Recognition of Tolerance and Bounded Tolerance
Graphs is NP-complete

Several efficient algorithms for optimization problems that are NP-hard in general graphs
have been designed for tolerance graphs. In spite of this, the complexity of the recognition
of tolerance graphs – namely, the problem of deciding whether a given graph is a tolerance
graph – as well as the complexity of the recognition of their main subclass of bounded
tolerance graphs, have been the most fundamental open problems on this class of graphs
(cf. the book on tolerance graphs [140]) since their introduction in 1982 [139]. Therefore,
all existing algorithms assume that, along with the input tolerance graph, a tolerance
representation of it is given. The only result about the complexity of recognizing tolerance
and bounded tolerance graphs is that they have a (non-trivial) polynomial sized tolerance
representation, hence the problems of recognizing tolerance and bounded tolerance graphs
are in the class NP [147].

If we replace in the definition of tolerance graphs the operator min by the operator max, we
obtain the class of max-tolerance graphs, which also finds natural applications in several
contexts. The recognition of max-tolerance graphs is known to be NP-hard [157]. Unfor-
tunately, the structure of max-tolerance graphs differs significantly from that of tolerance
graphs (max-tolerance graphs are not even perfect as it is the case of tolerance graphs,
since they can contain induced C5’s [157]), so the technique used in [157] does not carry
over to tolerance graphs.

In [C17]1 we prove that both recognition problems are NP-complete, even in the case where
the input graph is a trapezoid graph. The presented results are surprising because, on the
one hand, most subclasses of perfect graphs admit polynomial recognition algorithms and,
on the other hand, bounded tolerance graphs were believed to be efficiently recognizable as
they are a natural special case of trapezoid graphs, which can be recognized in polynomial
time [69]. For our reduction we extend the notion of an acyclic orientation of permutation
and trapezoid graphs. Our main tool is a new algorithm that transforms a given trapezoid
graph into a permutation graph, while preserving this new acyclic orientation property.

1Full version available at http://sunsite.informatik.rwth-aachen.de/Publications/AIB/2009/2009-
06.pdf.

Appendix D

Miscellaneous

D.1 Edge-simple Circuits Through 10 Ordered Vertices in
Square Grids

A circuit in a simple undirected graph G = (V, E) is a sequence of vertices {v1, v2, . . . , vk+1}

such that v1 = vk+1 and {vi, vi+i} ∈ E for i = 1, . . . , k. A circuit C is said to be edge-simple
if no edge of G is used twice in C. An edge-simple circuit is also called closed trail in the
literature. The existence of a circuit through a prescribed set of vertices or edges has been
an important graph-theoretical question for many years.

In [C14] we study the following problem: which is the largest integer k such that, given
any subset of k ordered vertices of an infinite square grid, there exists an edge-simple
circuit visiting the k vertices in the prescribed order? We prove that k = 10. To this
end, we first provide a counterexample implying that k < 11. To show that k ≥ 10, we
introduce a methodology, based on the notion of core graph, to reduce drastically the
number of possible vertex configurations, and then we test each one of the resulting
configurations with an ILP solver.

Keywords: Square grid, edge-simple circuit, prescribed vertices, ILP solver.

227

228 Appendix D: Miscellaneous

D.2 Self-duality of Branchwidth in Graphs of Bounded
Genus

A surface is a connected compact 2-manifold without boundaries. A surface Σ can be
obtained, up to homeomorphism, by adding eg(Σ) crosscaps to the sphere. eg(Σ) is called
the Euler genus of Σ.

A graph parameter is self-dual in some class of graphs embeddable in some surface if its
value does not change in the dual graph more than a constant factor. Self-duality has been
examined for several width-parameters, such as branchwidth, pathwidth, and treewidth.

In [C19] we give a direct proof of the self-duality of branchwidth (denoted bw) in graphs
embedded in some surface. In this direction, we prove that bw(G∗) ≤ 6 · bw(G) + 2g− 4 for
any graph G embedded in a surface of Euler genus g.

Keywords: Graphs on surfaces, branchwidth, duality, polyhedral embedding.

D.3 7-[3]coloring Algorithm for Triangle-free Hexagonal
Graphs

Given a graph G and a demand function p : V(G)→ N, a proper n-[p]coloring is a mapping
f : V(G)→ {1, . . . , n} such that | f (v)| ≥ p(v) for any vertex v ∈ V(G) and f (v) ∩ f (u) = ∅ for
any pair of adjacent vertices u and v. The least integer n for which a proper n-[p]coloring
exists, χ(G), is called the multichromatic number of G. Finding the multichromatic number
of induced subgraphs of the triangular lattice (called hexagonal graphs) has important
applications in cellular networks. The weighted clique number of a graph G, ω(G), is
the maximum weight of a clique in G, where the weight of a clique is the total demand
of its vertices. McDiarmid and Reed [169] conjectured that χ(G) ≤ (9/8)ω(G) + o(1) for
triangle-free hexagonal graphs.

In [S29]1 we provide an algorithm to find a 7-[3]coloring of triangle-free hexagonal graphs,
which implies that χ(G) ≤ (7/6)ω(G) + o(1). Our result constitutes a much shorter
alternative to the inductive proof of Havet [146] and improves the short proof of Sudeep
and Vishwanathan [197], who proved the existence of a 14-[6]coloring.

Keywords: Graph algorithm, approximation algorithm, graph coloring, frequency plan-
ning, cellular networks.

1Available until acceptance at http://www-sop.inria.fr/members/Ignasi.Sauvalls/multicoloring.pdf.

List of Figures

II.1 Placement of ADMs in the network: one ADM for each wavelength used in
a node. 30

II.2 Traffic grooming for a unidirectional ring with 4 nodes, grooming factor
C = 3, and all-to-all unitary traffic. The above solution uses 4+4 = 8 ADMs,
whereas the second one uses 3 + 4 = 7 ADMs. Below, the corresponding
partitions of K4 are illustrated. 33

II.3 On the left, a K∗5. In the middle and on the right, two valid partitions of
K∗5 when C = 2 using 10 and 9 ADMs, respectively. Symmetric requests are
routed counterclockwise and partitioned similarly, hence using 20 and 18
ADMs, respectively. 34

1.1 Two valid partitions of K5 when C = 2, using different number of ADMs. . . 40

1.2 Gadget Gi used in the reduction of the proof of Theorem 1.1. 43

1.3 Adding C − 1 inner points (depicted as © in the figure) to prove the Apx-
completeness of finding edge-disjoint C2C+1’s. 44

1.4 Tripartite request graphs used in Lemma 1.2: (a) in the ring for c = 1; (b)
in the path for C = 2. 46

1.5 Request graphs used in the proof of Theorem 1.3: (a) gadget Gi correspond-
ing to the set ci = {x, y, z}. The labels of the vertices indicate the tripartition;
(b) partition into 9 K3’s and 4 P4’s with the edges x, y, z ; (c) partition into
8 K3’s and 4 P4’s without the edges x, y, z. 47

2.1 Cubic graph with girth 4, which is a counterexample showing that M(3, 3) =

3. 62

2.2 (a) A bridge e = {u, v} in an almost 3-regular graph G with components
U and V of G − {e}. (b) Graphs smaller than G from which we obtain a
partition into trails Wu and Wv. 65

2.3 (a) A 3-regular graph G′ with no bridges. (b) A matching M of G′ (shown
in dashed lines) and an orientation of the cycles of G′ − M. (c) A partition
of the edges of G′ into trails of length 3 using M and the orientation of the
cycle of G′ − M in (b). 66

229

230

3.1 (a) Digraph Bλ admissible for n = 8 and C = 2; (b) Its associated digraph
B4
λ; (c) Non-admissible digraph B′λ that has also B4

λ as associated digraph. . 77

3.2 (a) Digraph Bλ admissible for n = 7 and C = 2; (b) Its associated digraph B5
λ. 77

3.3 Some admissible digraphs for C = 2. 83

3.4 Digraphs G5 and G6 used in the 34/33-approximation for C = 2, and digraph
G7 suitable for C = 3 referred in the proof of Proposition 3.6. 86

3.5 (a) Digraph ~K2,2,2 obtained from K3 (i, j, k), with i < j < k; (b) digraph T5
obtained from a K3 of the form (∞, i, j). 89

3.6 (a) Digraph associated to a C4 (∞, i, j, k). Digraphs associated to stars
(K1,3’s), with ∞ < i < j < k < `: (b) star of the form (i;∞, j, k); (c) star of
the form (i; j, k, `). 91

3.7 Comparison of lower bounds for unidirectional and bidirectional rings. . . . 97

4.1 The linear program for ON (n, v; 4, 3). 111

5.1 An example of the graph G built in the reduction of Theorem 5.9. 143

5.2 Error amplification in the proof of Theorem 5.11. 146

6.1 Gadgets used in the reduction of the proof of Theorem 6.1 (we suppose i < p).159

6.2 Tree-decomposition of a minor-free graph. The vertices in Xt (i.e., the
apices) are depicted by ◦. Note that Bs1 and Bs2 could have non-empty
intersection (in Bt). 166

7.1 Connected subgraphs with maximum degree 3 on (4×4), (5×5), and (6×6)-
grids respectively, used in the proof of Lemma 7.3. 174

7.2 Join/forget operations in the dynamic programming over a branch decom-
position. The dark regions represent an optimal subgraph in each case.
Case (1): A , ∅; (1.1) A1 , ∅,A2 , ∅; (1.2) A1 , ∅,A2 = ∅. Case (2):
A = ∅; (2.1) A1 = ∅,A2 = ∅; (2.2) A1 = ∅,A2 , ∅; (2.3) A1 , ∅,A2 , ∅. . . 177

7.3 Catalan structures in the middle set of a sphere cut decomposition. 178

8.1 Merging branch decompositions (T1, µ1) and (T2, µ2) of two components H1
and H2 in a polyhedral decomposition {G, A} of G = (V, E). There are three
cases: (a) H1 and H2 share two vertices v1, v2 and the edge e = {v1, v2} is in
E; (b) H1 and H2 share two vertices v1, v2 and e = {v1, v2} is not in E; (c)
H1 and H2 share one vertex v. 197

8.2 The operations of joining boundaries and cutting vertices. 202

8.3 A non-crossing partition tree. 204

231

8.4 The construction of the scheme of an element in PΣ. We consider the dual
of an irreducible 2-zone decomposition (leftmost figure). After deleting
vertices of degree 1 recursively and dissolving vertices of degree 2, we obtain
the associated scheme (rightmost figure). 204

8.5 A double tree and its decomposition. 207

8.6 The decomposition into bicolored trees and the associated scheme. 208

Index

W[1], 15, 24, 131, 153, 154, 157, 219
d-girth, 155
k-tree, 141
r-neighborhood, 162
NP-hard, 123
Apx, 23, 35, 40, 42, 45, 129, 137, 145, 146
NP-hard, 13, 23, 29, 39, 42, 125, 137, 154,

155, 171, 187, 219
PTAS, 23, 35, 39, 45, 48, 132, 136, 142, 144

Add-Drop Multiplexer (ADM), 29, 31, 39,
40, 53, 55, 56, 99, 101

adjacent, 21, 88, 168, 174, 206
apex, 163, 166, 205
approximation algorithm, 23, 35, 49, 51,

139–141, 148

bond, 188, 197
branch decomposition, 22
branchwidth, 22

carving decomposition, 188, 188, 197, 198
carvingwidth, 188
Catalan structure, 178, 185, 206
clique decomposition, 157, 163, 166
clique sum, 163, 166, 188

size, 188
complexity

computational complexity, 23
parameterized complexity, 24, 156

cycle, 21, 40, 42, 57, 76, 131, 133, 173, 193
Hamiltonian, 106, 133, 185

degree, 21
maximum degree, 21, 39, 55, 56, 100,

125, 129, 131, 138, 153, 172
minimum degree, 21, 124, 129, 131, 155,

164
degree-constrained subgraph, 123

density, 14, 21, 45, 50, 124, 172
digon, 57
distance, 76, 162, 169
dynamic programming, 147, 166, 174, 184,

189

edge, 21
edge contraction, 22, 173
edge removal, 22, 57, 135

embedding, 187
2-cell, 187
polyhedral, 187

error amplification, 142, 146
Euler characteristic, 187
Euler genus, 185, 187

of a graph, 185, 187
of a surface, 187, 191

facewidth, 187
fixed-parameter tractable (FPT), 24, 42,

131, 153, 156, 162

gap-preserving reduction, 23, 142
girth, 39, 59, 66, 131, 155
graph, 21, 21

d-degenerate, 147
k-partite, 21
bipartite, 21
complete, 21
nearly embeddable, 163
sparse, 126

inapproximability, 23, 35, 145
incident, 21, 57, 70, 103, 125, 145, 201
induced subgraph, 17, 21, 49, 131, 154, 155,

180, 186

kernel, 25, 42, 154

light termination equipment, 31

233

234

medial graph, 188
meta-theorems, 184, 220
middle set, 22, 175, 184, 216
minor, 22, 36, 156, 172, 191

graph minors theorem, 22, 25
minor-free, 22, 41, 126, 129, 147, 148,

166, 170, 185
minor-free graphs, 148, 165
monadic second-order logic (MSOL), 184,

220

neighborhood, 21, 69, 202
closed neighborhood, 21

noose, 177, 178, 185, 187, 191, 195

parameter, 24
bidimensional, 172
minor closed, 25, 127, 172, 173

parameterized problem, 24
parameterized reduction, 24
path, 21
path decomposition, 22, 22
pathwidth, 22
polyhedral decomposition, 191

radial graph, 188
representativity, 187, 191

self-dual, 16
set cover, 36
spanning tree, 131, 133, 141
sphere cut decomposition, 177, 185, 195
subexponential algorithm, 171, 179, 181,

216
surface, 186

non-orientable, 187
orientable, 187

symbolic method, 186, 188, 204, 205, 207

traffic grooming, 29–31, 39, 56, 73, 99, 219
trail, 57, 64
tree decomposition, 21

bag, 21
nice, 163

treewidth, 22, 220
bounded local treewidth, 126, 162, 163
local treewidth, 162

triangle, 17, 21, 39, 42, 75, 101, 103

vertex cover, 25, 26, 132, 142

Bibliography

Personal Bibliography

International Journals

[J1] O. Amini, S. Pérennes, and I. Sau. Hardness and Approximation of Traffic Groom-
ing. Theoretical Computer Science, 410(38-40):3751–3760, 2009.

[J2] J.-C. Bermond, C. J. Colbourn, L. Gionfriddo, G. Quattrocchi, and I. Sau. Drop
Cost and Wavelength Optimal Two-Period Grooming with Ratio 4. SIAM Journal
on Discrete Mathematics, 2010. To appear.

[J3] F. Huc, I. Sau, and J. Žerovnik. (`, k)-Routing on Plane Grids. Journal of
Interconnection Networks, 10(1-2):27–57, 2009.

[J4] G. B. Mertzios, I. Sau, and S. Zaks. A New Intersection Model and Improved Algo-
rithms for Tolerance Graphs. SIAM Journal on Discrete Mathematics, 23(4):1800–
1813, 2009.

[J5] I. Sau and J. Žerovnik. An Optimal Permutation Routing Algorithm on Full-
Duplex Hexagonal Networks. Discrete Mathematics and Theoretical Computer
Science, 10(3):49–62, 2008.

Book Chapters

[B6] T. Cinkler, D. Coudert, M. Flammini, G. Monaco, L. Moscardelli, X. Muñoz,
I. Sau, M. Shalom, and S. Zaks. Studies in Broadband, Optical, Wireless, and
Ad Hoc Networks, chapter Traffic Grooming: Combinatorial Results and Practical
Resolutions. EATCS Texts in Theoretical Computer Science. Springer, 2009.

[B7] I. Sau and J. Žerovnik. Studies in Broadband, Optical, Wireless, and Ad Hoc Net-
works, chapter Permutation Routing and (`, k)-Routing on Plane Grids. EATCS
Texts in Theoretical Computer Science. Springer, 2009.

235

236

International Conferences

[C8] O. Amini, D. Peleg, S. Pérennes, I. Sau, and S. Saurabh. Degree-Constrained
Subgraph Problems: Hardness and Approximation Results. In Proceedings of
Workshop on Approximation and On-line Algorithms (ALGO/WAOA), pages 29–
42, volume 5426 of LNCS, 2008.

[C9] O. Amini, S. Pérennes, and I. Sau. Hardness and Approximation of Traffic Groom-
ing. In Proceedings of the 18th International Symposium on Algorithms and Com-
putation (ISAAC), pages 561–573, volume 4835 of LNCS, 2007.

[C10] O. Amini, I. Sau, and S. Saurabh. Parameterized Complexity of the Smallest
Degree-Constrained Subgraph Problem. In Proceedings of International Workshop
on Parameterized and Exact Computation (IWPEC), pages 13–29, volume 5008 of
LNCS, 2008.

[C11] J.-C. Bermond, D. Coudert, J. Moulierac, S. Pérennes, H. Rivano, I. Sau, and
F. Solano Donado. MPLS label stacking on the line network. In Proceedings of
IFIP Networking, volume 5550 of LNCS, pages 809–820, 2009.

[C12] J.-C. Bermond, D. Coudert, J. Moulierac, S. Perennes, I. Sau, and F. Solano
Donado. Designing Hypergraph Layouts to GMPLS Routing Strategies. In
Proceedings of the 16th International Colloquium on Structural Information and
Communication Complexity (SIROCCO), LNCS, 2009.

[C13] J.-C. Bermond, D. Coudert, X. Muñoz, and I. Sau. Traffic Grooming in Bidirec-
tional WDM Ring Networks. In Proceedings of IEEE-LEOS ICTON, volume 3,
pages 19–22, 2006.

[C14] D. Coudert, F. Giroire, and I. Sau. Edge-Simple Circuits Through 10 Ordered
Vertices in Square Grids. In Proceedings of the 20th International Workshop on
Combinatorial Algorithms (IWOCA), pages 134–145, volume 5874 of LNCS, 2009.

[C15] Z. Li and I. Sau. Graph Partitioning and Traffic Grooming with Bounded Degree
Request Graph. In Proceedings of the 35th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG), 2009. To appear. Best student
paper award.

[C16] G. B. Mertzios, I. Sau, and S. Zaks. A New Intersection Model and Improved Al-
gorithms for Tolerance Graphs. In Proceedings of the 35th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG), 2009. To appear.

[C17] G. B. Mertzios, I. Sau, and S. Zaks. The Recognition of Tolerance and Bounded
Tolerance Graphs. In Proceedings of the 27th International Symposium on Theo-
retical Aspects of Computer Science (STACS), 2010. To appear.

[C18] X. Muñoz and I. Sau. Traffic Grooming in Unidirectional WDM Rings with
Bounded Degree Request Graph. In Proceedings of the 34th International Work-
shop on Graph-Theoretic Concepts in Computer Science (WG), pages 300–311,
volume 5344 of LNCS, 2008.

237

[C19] I. Sau and D. M. Thilikos. On Self-Duality of Branchwidth in Graphs of Bounded
Genus. In Proceedings of the 8th Cologne Twente Workshop on Graphs and Com-
binatorial Optimization (CTW), pages 19–22, 2009.

[C20] I. Sau and D. M. Thilikos. Subexponential Parameterized Algorithms for Bounded-
Degree Connected Subgraph Problems on Planar Graphs. In Proceedings of
DIMAP workshop on Algorithmic Graph Theory (AGT), volume 32 of Electronic
Notes in Discrete Mathematics, pages 59–66, 2009.

[C21] I. Sau and J. Žerovnik. Optimal permutation routing on mesh networks. In
Proceedings of International Network Optimization Conference (INOC), 2007. 6
pages.

National Conferences

[N22] O. Amini, S. Pérennes, and I. Sau. Hardness of approximating the traffic groom-
ing problem. In Proceedings of 9ème Rencontres Francophones sur les Aspects
Algorithmiques des Télécommunications (AlgoTel), pages 45–48, 2007.

Submitted for Publication

[S23] O. Amini, D. Peleg, S. Pérennes, I. Sau, and S. Saurabh. On the Approximability
of some Degree-constrained Subgraph Problems. Manuscript submitted to journal,
2009.

[S24] O. Amini, I. Sau, and S. Saurabh. Parameterized Complexity of Finding Small
Degree-constrained Subgraphs. Manuscript submitted to journal, 2009.

[S25] J.-C. Bermond, X. Muñoz, and I. Sau. Traffic Grooming in Bidirectional WDM
Ring Networks. Manuscript submitted to journal, 2009.

[S26] X. Muñoz, Z. Li, and I. Sau. Edge-partitioning Regular Graphs for Ring Traffic
Grooming with a Priori Placement of the ADMs. Manuscript submitted to journal,
2009.

[S27] J. Rué, I. Sau, and D. M. Thilikos. Dynamic Programming for Graphs on Surfaces.
Manuscript submitted to conference, 2009.

[S28] I. Sau and D. M. Thilikos. Subexponential Parameterized Algorithms for Degree-
Constrained Subgraph Problems on Planar Graphs. Manuscript submitted to
journal, 2009.

[S29] I. Sau, P. Šparl, and J. Žerovnik. 7-[3]coloring Algorithm for Triangle-free Hexag-
onal Graphs. Manuscript submitted to journal, 2009.

238

General Bibliography

[30] L. Addario-Berry, K. Dalal, and B. Reed. Degree constrained subgraphs. Discrete
Applied Mathematics, 156(7):1168–1174, 2008.

[31] P. Alimonti and V. Kann. Hardness of Approximating Problems on Cubic
Graphs. In Proceedings of the 3rd Italian Conference on Algorithms and Com-
plexity (CIAC), volume 1203 of LNCS, pages 288–298, 1997.

[32] N. Alon, S. Friedland, and G. Kalai. Every 4-regular graph plus an edge contains
a 3-regular subgraph. Journal of Combinatorial Theory Series B, 37:92–93, 1984.

[33] N. Alon, S. Friedland, and G. Kalai. Regular subgraphs of almost regular graphs.
Journal of Combinatorial Theory Series B, 37:79–91, 1984.

[34] N. Alon, V. Teague, and N. C. Wormald. Linear Arboricity and Linear k-Arboricity
of Regular Graphs. Graphs and Combinatorics, 17(1):11–16, 2001.

[35] N. Alon, R. Yuster, and U. Zwick. Color-coding: a new method for finding simple
paths, cycles and other small subgraphs within large graphs. In Proceedings of the
26th annual ACM symposium on Theory of Computing (STOC), pages 326–335,
1994.

[36] E. Amir. Efficient approximation for triangulation of minimum treewidth. In
Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence (UAI),
pages 7–15, 2001.

[37] R. Andersen and K. Chellapilla. Finding Dense Subgraphs with Size Bounds. In
Proceedings of the 6th International Workshop on Algorithms and Models for the
Web-Graph (WAW), pages 25–37, volume 5427 of LNCS, 2009.

[38] R. P. Anstee. Minimum vertex weighted deficiency of (g, f)-factors: a greedy
algorithm. Discrete Applied Mathemathics, 44(1-3):247–260, 1993.

[39] S. Arnborg. Efficient algorithms for combinatorial problems on graphs with
bounded decomposability – a survey. BIT, 25(1):2–23, 1985.

[40] V. Bafna and P. A. Pevzner. Genome rearrangements and sorting by reversals.
SIAM Journal on Computing, 25:272–289, 1996.

[41] B. Beauquier, J.-C. Bermond, L. Gargano, P. Hell, S. Perennes, and U. Vaccaro.
Graph problems arising from Wavelength–Routing in All–Optical Networks. In
Proceedings of Workshop on Optics and Computer Science (WOCS), 1997.

[42] E. A. Bender, Z. Gao, and L. B. Richmond. The map asymptotics constant tg.
Electronic Journal of Combinatorics, 15(1):R51, 8 psges, 2008.

[43] C. Berge. Graphs and Hypergraphs. North-Holland, 1973.

239

[44] J.-C. Bermond, L. Braud, and D. Coudert. Traffic Grooming on the Path. Theo-
retical Computer Science, 384(2-3):139–151, 2007.

[45] J.-C. Bermond and S. Ceroi. Minimizing SONET ADMs in unidirectional WDM
rings with grooming ratio 3. Networks, 41(2):83–86, 2003.

[46] J.-C. Bermond, C. J. Colbourn, D. Coudert, G. Ge, A. C. H. Ling, and X. Muñoz.
Traffic grooming in unidirectional WDM rings with grooming ratio C = 6. SIAM
Journal on Discrete Mathematics, 19(2):523–542, 2005.

[47] J.-C. Bermond, C. J. Colbourn, A. C. H. Ling, and M. L. Yu. Grooming in
unidirectional rings: K4 − e designs. Discrete Mathematics, 284:67–72, 2004.

[48] J.-C. Bermond and D. Coudert. Traffic Grooming in Unidirectional WDM Ring
Networks using Design Theory. In Proceedings of IEEE International Conference
on Communications (ICC), volume 2, pages 1402–1406, 2003.

[49] J.-C. Bermond and D. Coudert. The CRC Handbook of Combinatorial Designs
(2nd edition), volume 42 of Discrete Mathematics and Its Applications, chapter
VI.27, Grooming, pages 493–496. CRC Press, C.J. Colbourn and J.H. Dinitz
edition, 2006.

[50] J.-C. Bermond, D. Coudert, and B. Lévêque. Approximations for All-to-all Uni-
form Traffic Grooming on Unidirectional Rings. Journal of Interconnection Net-
works, 9(4):471–486, 2008.

[51] J.-C. Bermond, D. Coudert, and X. Muñoz. Traffic Grooming in Unidirectional
WDM Ring Networks: the all-to-all unitary case. In Proceedings of the 7th IFIP
Working Conference on Optical Network Design and Modelling, pages 1135–1153,
2003.

[52] J.-C. Bermond, D. Coudert, and M.-L. Yu. On DRC-Covering of Kn by cycles.
Journal of Combinatorial Designs, 11(2):100–112, 2003.

[53] J.-C. Bermond, J.-L. Fouquet, M. Habib, and B. Péroche. On linear k-arboricity.
Discrete Mathematics, 52(2-3):123–132, 1984.

[54] J.-C. Bermond and C. Peyrat. Induced Subgraphs of the Power of a Cycle. SIAM
Journal on Discrete Mathematics, 2(4):452–455, 1989.

[55] O. Bernardi and J. Rué. Counting simplicial decompositions in surfaces with
boundaries. Manuscript available at http://lanl.arxiv.org/abs/0901.1608.

[56] R. Berry and E. Modiano. Reducing electronic multiplexing costs in
SONET/WDM rings with dynamically changing traffic. IEEE Journal on Se-
lected Areas in Communications, 18:1961–1971, 2000.

[57] A. Björklund and T. Husfeldt. Finding a Path of Superlogarithmic Length. SIAM
Journal on Computing, 32(6):1395–1402, 2003.

240

[58] H. L. Bodlaender. Dynamic Programming on Graphs with Bounded Treewidth.
In Proceedings of the 15th International Colloquium on Automata, Languages and
Programming (ICALP), pages 105–118, volume 317 of LNCS, 1988.

[59] H. L. Bodlaender. A Tourist Guide through Treewidth. Acta Cybernetica, 11(1-
2):1–22, 1993.

[60] B. Bollobás and G. Brightwell. Long Cycles in Graphs with no Subgraphs of
Minimal Degree 3. Discrete Mathematics, 75:47–53, 1989.

[61] V. Bonifaci, U. D. Iorio, and L. Laura. The complexity of uniform Nash equilibria
and related regular subgraph problems. Theoretical Computer Science, 401(1-
3):144–152, 2008.

[62] D. Bryant, P. Adams, and M. Buchanan. A survey on the existence of G-designs.
Journal of Combinatorial Designs, 16:373–410, 2008.

[63] S. Cabello and B. Mohar. Finding shortest non-separating and non-contractible
cycles for topologically embedded graphs. Discrete and Computational Geometry,
37(2):213–235, 2007.

[64] A. Caprara and R. Rizzi. Packing triangles in bounded degree graphs. Information
Processing Letters, 84(4):175–180, 2002.

[65] D. M. Cardoso, M. Kamiński, and V. Lozin. Maximum k-regular induced sub-
graphs. Journal of Combinatorial Optimization, 14(4):455–463, 2007.

[66] Y. Caro and J. Schönheim. Decompositions of trees into isomorphic subtrees. Ars
Combininatorica, 9:119–130, 1980.

[67] P. A. Catlin. Supereulerian graphs: a survey. Journal of Graph Theory, 16(2):177–
196, 1992.

[68] L. S. Chandran. A high girth graph construction. SIAM Journal on Discrete
Mathematics, 16(3):366–370, 2003.

[69] F. Cheah and D. Corneil. On the structure of trapezoid graphs. Discrete Applied
Mathematics, 66(2):109–133, 1996.

[70] F. Cheah and D. G. Corneil. The Complexity of Regular Subgraph Recognition.
Discrete Applied Mathematics, 27:59–68, 1990.

[71] A. L. Chiu and E. H. Modiano. Traffic grooming algorithms for reducing electronic
multiplexing costs in WDM ring networks. IEEE/OSA Journal of Lightwave
Technology, 18(1):2–12, 2000.

[72] B. Chor, M. Fellows, M. A. Ragan, I. Razgon, F. Rosamond, and S. Snir. Con-
nected Coloring Completion for General Graphs: Algorithms and Complexity. In
Proceedings of the 13th Annual International Computing and Combinatorics Con-
ference (COCOON), pages 75–85, volume 4598 of LNCS, 2007.

241

[73] T. Chow and P. Lin. Private communication.

[74] T. Chow and P. Lin. The ring grooming problem. Networks, 44(3):194–202, 2004.

[75] V. Chvátal, H. Fleischner, J. Sheehan, and C. Thomassen. Three-regular Sub-
graphs of Four Regular Graphs. Journal of Graph Theory, 3:371–386, 1979.

[76] T. Cinkler. Traffic- and λ-grooming. IEEE Network, 17(2):16–21, 2003.

[77] C. Colbourn and J. Dinitz, editors. Handbook of Combinatorial Designs. Num-
ber 0. Chapman & Hall/CRC, 2nd edition, 2006.

[78] C. J. Colbourn, H.-L. Fu, G. Ge, A. C. H. Ling, and H.-C. Lu. Minimizing SONET
ADMs in Unidirectional WDM Rings with Grooming Ratio Seven. SIAM Journal
on Discrete Mathematics, 23(1):109–122, 2008.

[79] C. J. Colbourn, A. C. H. Ling, and G. Quattrocchi. Minimum embedding of
P3-designs into (K4 − e)-designs. Journal of Combinatorial Designs, 11:352–366,
2003.

[80] C. J. Colbourn, G. Quattrocchi, and V. R. Syrotiuk. Grooming for two-period
optical networks. Networks, 52(4):307–324, 2008.

[81] C. J. Colbourn, G. Quattrocchi, and V. R. Syrotiuk. Lower bounds for two-period
grooming via linear programming duality. Networks, 52(4):299–306, 2008.

[82] C. J. Colbourn and A. Rosa. Quadratic leaves of maximal partial triple systems.
Graphs and Combinatorics, 2:317–337, 1986.

[83] C. J. Colbourn and A. Rosa. Triple systems. Oxford University Press, Oxford
and New York, 1999.

[84] C. J. Colbourn and P.-J. Wan. Minimizing Drop Cost for SONET/WDM Networks
with 1/8 Wavelength Requirements. Networks, 37(2):107–116, 2001.

[85] W. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver. Combinatorial
Optimization. John Wiley and Sons, New York, 1998.

[86] B. Courcelle. The Monadic Second-Order Logic of Graphs: Definable Sets of
Finite Graphs. In Proceedings of the 14th International Workshop on Graph-
theoretic Concepts in Computer Science (WG), volume 344 of LNCS, pages 30–53,
1988.

[87] P. Crescenzi and V. Kann. A compendium of NP optimization problems. Acces-
sible at http://www.nada.kth.se/∼viggo/wwwcompendium.

[88] G. Călinescu, O. Frieder, and P.-J. Wan. Minimizing electronic line terminals for
automatic ring protection in general WDM optical networks. IEEE Journal of
Selected Areas on Communications, 20(1):183–189, 2002.

242

[89] A. Dawar, M. Grohe, and S. Kreutzer. Locally Excluding a Minor. In Proceedings
of the 22nd Annual IEEE Symposium on Logic in Computer Science (LICS), pages
270–279, 2007.

[90] A. Dawar, M. Grohe, S. Kreutzer, and N. Schweikardt. Approximation schemes
for first-order definable optimisation problems. In Proceedings of the 21st IEEE
Symposium on Logic in Computer Science (LICS), pages 411–420, 2006.

[91] D. de Werra. Equitable colorations of graphs. RAIRO R-3, pages 3–8, 1971.

[92] E. Demaine, M. Hajiaghayi, and K. C. Kawarabayashi. Algorithmic Graph Minor
Theory: Decomposition, Approximation and Coloring. In Proceedings of the 46th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
637–646, 2005.

[93] E. Demaine and M. T. Hajiaghayi. Equivalence of Local Treewidth and Linear
Local Treewidth and its Algorithmic Applications. In Proceedings of the 15th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 840–849,
2004.

[94] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Subexpo-
nential parameterized algorithms on graphs of bounded genus and H-minor-free
graphs. Journal of the ACM, 52(6):866–893, 2005.

[95] E. D. Demaine and M. Hajiaghayi. Bidimensionality: New Connections between
FPT Algorithms and PTASs. In Proceedings of the 16th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 590–601, 2005.

[96] E. D. Demaine, M. Hajiaghayi, and D. M. Thilikos. The Bidimensional Theory of
Bounded-Genus Graphs. SIAM Journal on Discrete Mathematics, 20(2):357–371,
2006.

[97] R. Diestel. Graph Theory. Springer-Verlag, 2005.

[98] F. Dorn. Designing Subexponential Algorithms: Problems, Techniques and Struc-
tures. PhD thesis, University of Bergen, 2007.

[99] F. Dorn, F. V. Fomin, and D. M. Thilikos. Fast Subexponential Algorithm for
Non-local Problems on Graphs of Bounded Genus. In Proceedings of the 10th
Scandinavian Workshop on Algorithm Theory (SWAT), volume 4059 of LNCS,
pages 172–183, 2006.

[100] F. Dorn, F. V. Fomin, and D. M. Thilikos. Subexponential parameterized al-
gorithms. In Proceedings of the 34th International Colloquium on Automata,
Languages and Programming (ICALP), pages 15–27, volume 4596 of LNCS, 2007.

[101] F. Dorn, F. V. Fomin, and D. M. Thilikos. Catalan structures and dynamic
programming in H-minor-free graphs. In Proceedings of the 19th annual ACM-
SIAM Symposium on Discrete algorithms (SODA), pages 631–640, 2008.

243

[102] F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin. Efficient Exact Al-
gorithms on Planar Graphs: Exploiting Sphere Cut Branch Decompositions. In
Proceedings of the 13th Annual European Symposium on Algorithms (ESA), pages
95–106, volume 3669 of LNCS, 2005.

[103] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-Verlag,
New York, 1999.

[104] R. Dutta, A. E. Kamal, and G. N. Rouskas, editors. Traffic Grooming for Optical
Networks: Foundations, Techniques and Frontiers. Optical Networks. Springer,
2008.

[105] R. Dutta and N. Rouskas. A survey of virtual topology design algorithms for
wavelength routed optical networks. Optical Networks, 1(1):73–89, 2000.

[106] R. Dutta and N. Rouskas. Traffic Grooming in WDM Networks: Past and Future.
IEEE Network, 16(6):46–56, 2002.

[107] T. Eilam, S. Moran, and S. Zaks. Lightpath arrangement in survivable rings to
minimize the switching cost. IEEE Journal of Selected Areas on Communications,
20(1):172–182, 2002.

[108] D. Eppstein. Diameter and Tree-width in Minor-closed Graph Families. Algorith-
mica, 27(3-4):275–291, 200.

[109] D. Eppstein. Dynamic Generators of Topologically Embedded Graphs. In Proceed-
ings of the 14th annual ACM-SIAM Symposium on Discrete algorithms (SODA),
pages 599–608, 2003.

[110] L. Epstein and A. Levin. Better Bounds for Minimizing SONET ADMs. In
Proceedings of the Workshop on Approximation and On-line Algorithms (WAOA),
pages 281–294, volume 3351 of LNCS, 2004.

[111] P. Erdős, R. J. Faudree, A. Gyárfás, and R. H. Schelp. Cycles in Graphs Without
Proper Subgraphs of Minimum Degree 3. Ars Combinatorica, 25(B):195–201,
1988.

[112] P. Erdős, R. J. Faudree, C. C. Rousseau, and R. H. Schelp. Subgraphs of Minimal
Degree k. Discrete Mathematics, 85(1):53–58, 1990.

[113] P. Erdös and H. Sachs. Reguläre graphe gegebener taillenweite mit minimaler
knotenzahl. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe,
12:251–257, 1963.

[114] U. Feige, G. Kortsarz, and D. Peleg. The Dense k-Subgraph Problem. Algorith-
mica, 29(3):410–421, 2001.

[115] M. Fellows, D. Hermelin, F. Rosamond, and S. Vialette. On the Parameterized
Complexity of Multiple-Interval Graph Problems. Theoretical Computer Science,
410(1):53–61, 2009.

244

[116] P. Flajolet and M. Noy. Analytic combinatorics of non-crossing configurations.
Discrete Mathematics, 204(1-3):203–229, 1999.

[117] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2008.

[118] M. Flammini, G. Monaco, L. Moscardelli, M. Shalom, and S. Zaks. Approximating
the traffic grooming problem in tree and star networks. Journal of Parallel and
Distributed Computing, 68(7):939–948, 2008.

[119] M. Flammini, G. Monaco, L. Moscardelli, M. Shalom, and S. Zaks. Approximating
the Traffic Grooming Problem with Respect to ADMs and OADMs. In Proceedings
of the 14th International Conference on Parallel and Distributed Computing (Euro-
Par), pages 920–929, 2008.

[120] M. Flammini, L. Moscardelli, M. Shalom, and S. Zaks. Approximating the traffic
grooming problem. Journal of Discrete Algorithms, 6(3):472–479, 2008.

[121] M. Flammini, M. Shalom, and S. Zaks. On minimizing the number of adms
in a general topology optical network. In Proceedings of the 20th International
Workshop on Distributed Algorithms (DISC), 2006.

[122] M. Flammini, M. Shalom, and S. Zaks. On minimizing the number of adms -
tight bounds for an algorithm without preprocessing. Journal of Parallel and
Distributed Computing, 67(4):448–455, 2007.

[123] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer Verlag, 2006.

[124] F. V. Fomin and D. M. Thilikos. Fast Parameterized Algorithms for Graphs on
Surfaces: Linear Kernel and Exponential Speed-Up . In Proceedings of the 31st
International Colloquium on Automata, Languages and Programming (ICALP),
volume 3142 of LNCS, pages 581–592, 2004.

[125] F. V. Fomin and D. M. Thilikos. New upper bounds on the decomposability of
planar graphs. Journal of Graph Theory, 51(1):53–81, 2005.

[126] F. V. Fomin and D. M. Thilikos. Dominating Sets in Planar Graphs: Branch-
Width and Exponential Speed-Up. SIAM Journal on Computing, 36(2):281–309,
2006.

[127] F. V. Fomin and D. M. Thilikos. On Self Duality of Pathwidth in Polyhedral
Graph Embeddings. Journal of Graph Theory, 55(42-54), 2007.

[128] M. Frick and M. Grohe. Deciding First-Order Properties of Locally Tree-
Decomposable Structures. Journal of the ACM, 48(6):1184–1206, 2001.

[129] H. L. Fu and C. A. Rodger. Forest leaves and 4-cycles. Journal of Graph Theory,
33:161–166, 2000.

[130] M. Fürer and B. Raghavachari. Approximating the minimum-degree spanning
tree to within one from the optimal degree. In Proceedings of the 3rd annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 317–324, 1992.

245

[131] M. Fürer and B. Raghavachari. Approximating the minimum-degree steiner tree
to within one of optimal. Journal of Algorithms, 17(3):409–423, 1994.

[132] H. Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In Proceedings of the 15th annual ACM sympo-
sium on Theory of Computing (STOC), pages 448–456, 1983.

[133] Z. Gao. The number of rooted triangular maps on a surface. Journal of Combi-
natorial Theory, Series B, 52(2):236–249, 1991.

[134] M. Garey and D. Johnson. Computers and Intractability. W.H. Freeman, 1979.

[135] O. Gerstel, P. Lin, and G. Sasaki. Wavelength assignment in a WDM ring to
minimize cost of embedded SONET rings. In IEEE INFOCOM, pages 94–101,
1998.

[136] O. Gerstel, R. Ramaswami, and G. Sasaki. Cost Effective Traffic Grooming in
WDM Rings. In Proceedings of IEEE INFOCOM, pages 69–77, 1998.

[137] M. X. Goemans. Minimum Bounded-Degree Spanning Trees. In Proceedings of
the 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 273–282, 2006.

[138] O. Goldschmidt, D. Hochbaum, A. Levin, and E. Olinick. The SONET edge-
partition problem. Networks, 41(1):13–23, 2003.

[139] M. Golumbic and C. Monma. A generalization of interval graphs with toler-
ances. In Proceedings of the 13th Southeastern Conference on Combinatorics,
Graph Theory and Computing (SCCGTC), Congressus Numerantium 35, pages
321–331, 1982.

[140] M. Golumbic and A. Trenk. Tolerance Graphs. Cambridge Studies in Advanced
Mathematics, 2004.

[141] M. Grohe. Local Tree-width, Excluded Minors and Approximation Algorithms.
Combinatorica, 23(4):613–632, 2003.

[142] M. Grohe. Logic, graphs, and algorithms. Electronic Colloquium on Computa-
tional Complexity (ECCC), 14(091), 2007.

[143] Q.-P. Gu and H. Tamaki. Optimal branch-decomposition of planar graphs in O(n3)
time. ACM Transactions on Algorithms, 4(3), 2008.

[144] M. Hajiaghayi. The bidimensionality theory and its algorithmic applications. PhD
thesis, Massachusetts Institute of Technology, Cambridge, USA, 2005.

[145] J. H̊astad. Some optimal inapproximability results. Journal of the ACM,
48(4):798–859, 2001.

[146] F. Havet. Channel Assignment and Multicoloring of the Induced Subgraphs of the
Triangular Lattice. Discrete Mathematics, 233(1-3):219–231, 2001.

246

[147] R. B. Hayward and R. Shamir. A note on tolerance graph recognition. Discrete
Applied Mathematics, 143(1-3):307–311, 2004.

[148] M. R. Henzinger, S. Rao, and H. N. Gabow. Computing Vertex Connectivity:
New Bounds from Old Techniques. Journal of Algorithms, 34(2):222–250, 2000.

[149] I. Holyer. The NP-Completeness of Some Edge-Partition Problems. SIAM Journal
on Computing, 10(4):713–717, 1981.

[150] Y. Hong-Hsu, S. Lee, and B. Mukherjee. Traffic grooming and delay constrained
multicast routing in IP over WDM networks. In Proceedings of IEEE International
Conference on Communications (ICC), pages 5246–5251, 2008.

[151] J. Hu. Traffic Grooming in WDM Ring Networks: A Linear Programming Solu-
tion. OSA Journal of Optical Networks, 1(11):397–408, 2002.

[152] S. Huang, R. Dutta, and G. Rouskas. Traffic Grooming in Path, Star, and Tree
Networks: Complexity, Bounds, and Algorithms. IEEE Journal on Selected Areas
in Communications, 24(4):66–82, 2006.

[153] C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which
have an sdr, with an application to the worst-case ratio of heuristics for packing
problems. SIAM Journal on Discrete Mathematics, 2(1):68–72, 1989.

[154] R. Impagliazzo, R. Paturi, and F. Zane. Which Problems Have Strongly Expo-
nential Complexity? Journal of Computer and System Sciences, 63(4):512–530,
2001. Special issue of FOCS 1998.

[155] V. Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete.
Information Processing Letters, 37:27–35, 1991.

[156] D. Karger, R. Motwani, and G. Ramkumar. On approximating the longest path
in a graph. Algorithmica, 18(1):82–98, 1997.

[157] M. Kaufmann, J. Kratochv́ıl, K. A. Lehmann, and A. R. Subramanian. Max-
tolerance graphs as intersection graphs: cliques, cycles, and recognition. In
Proceedings of the 17th annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 832–841, 2006.

[158] A. Kézdy. Studies in Connectivity. PhD thesis, University of Illinois at Urbana-
Champaign, 1991.

[159] S. Khot. Ruling Out PTAS for Graph Min-Bisection, Dense k-Subgraph, and
Bipartite Clique. SIAM Journal on Computing, 36(4):1025–1071, 2006.

[160] P. N. Klein, R. Krishnan, B. Raghavachari, and R. Ravi. Approximation Algo-
rithms for Finding Low-Degree Subgraphs. Networks, 44(3):203–215, 2004.

[161] M. Köhn. A New Efficient Online-Optimization Approach for SDH/SONET-WDM
Multi Layer Networks. In Proceedings of Optical Fiber Communication Conference
(OFC), 2006.

247

[162] G. Kreweras. Sur les partitions non croisées d’un cercle. Discrete Mathematics,
1:333–350, 1972.

[163] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Oxford
University Press, 1976.

[164] L. Liu, X. Li, P.-J. Wan, and O. Frieder. Wavelength Assignment in WDM Rings
to Minimize SONET ADMs. In Proceedings of IEEE INFOCOM, pages 1020–1025,
2000.

[165] L. Lovász and M. Plummer. Matching Theory. Annals of Discrete Mathematics
29, North-Holland, 1986.

[166] C. Lund and M. Yannakakis. The Approximation of Maximum Subgraph Prob-
lems. Proceedings of the 20th International Colloquium on Automata, Languages,
and Programming (ICALP), pages 40–51, volume 700 of LNCS, 1993.

[167] L. Mathieson, E. Prieto, and P. Shaw. Packing edge disjoint triangles: A parame-
terized view. In Proceedings of the International Workshop on Parameterized and
Exact Computation (IWPEC), pages 127–137, volume 3162 of LNCS, 2004.

[168] L. Mathieson and S. Szeider. The Parameterized Complexity of Regular Sub-
graph Problems and Generalizations. In Proceedings of the 14th Computing: The
Australasian Theory Symposium (CATS), pages 79–86, volume 77 of CRPIT, 2008.

[169] C. McDiarmid and B. Reed. Channel Assignment and Weighted Colouring. Net-
works, 36(2):114–117, 2000.

[170] E. Modiano and P. Lin. Traffic grooming in WDM networks. IEEE Communica-
tions Magazine, 39(7):124–129, 2001.

[171] B. Mohar and C. Thomassen. Graphs on surfaces. John Hopkins University Press,
2001.

[172] H. Moser and D. M. Thilikos. Parameterized Complexity of Finding Regular
Induced Subgraphs. Journal of Discrete Algorithms, 7(2):181–190, 2009.

[173] J. Munro and V. Raman. Succinct Representation of Balanced Parentheses and
Static Trees. SIAM Journal on Computing, 31(3):762–776, 2001.

[174] R. Niedermeier. Invitation to Fixed Parameter Algorithms. Oxford University
Press, 2006.

[175] F. G. Nocetti, I. Stojmenović, and J. Zhang. Addressing and Routing in Hexagonal
Networks with Applications for Tracking Mobile Users and Connection Rerouting
in Cellular Networks. IEEE Transactions on Parallel and Distributed Systems,
13(9):963–971, 2002.

[176] C. Papadimitriou and M. Yannakakis. The traveling salesman problem with dis-
tances one and two. Mathematics of Operations Research, 18(1):1–11, 1993.

248

[177] C. H. Papadimitriou and M. Yannakakis. Optimization, Approximation, and
Complexity Classes. Journal of Computer and System Sciences, 43(3):425–440,
1991.

[178] J. P. Petersen. Die Theorie der Regulären Graphs. Acta Mathematica, 15:193–220,
1891.

[179] M. Plantholt. The chromatic index of graphs with a spanning star. Journal of
Graph Theory, 5:45–53, 1981.

[180] G. Quattrocchi. Embedding path designs in 4-cycle systems. Discrete Mathemat-
ics, 255:349–356, 2002.

[181] R. Ravi, M. Marathe, S. Ravi, D. Rosenkrantz, and H. Hunt III. Approximation
Algorithms for Degree-Constrained Minimum-Cost Network-Design Problems. Al-
gorithmica, 31(1):58–78, 2001.

[182] O. Richard. The Number of Trees. Annals of Mathematics, Second Series
49(3):583–599, 1948.

[183] N. Robertson and P. Seymour. Graph Minors X. Obstructions to Tree-
decomposition. Journal of Combinatorial Theory, Series B, 52(2):153–190, 1991.

[184] N. Robertson and P. Seymour. Graph Minors XII. Distance on a Surface. Journal
of Combinatorial Theory, Series B, 64:240–272, 1995.

[185] N. Robertson, P. Seymour, and R. Thomas. Quickly excluding a planar graph.
Journal of Combinatorial Theory, Series B, 62(2):323–348, 1994.

[186] N. Robertson and P. D. Seymour. Graph Minors XIII. The Disjoint Paths Problem.
Journal of Combinatorial Theory, Series B, 63(1):65–110, 1995.

[187] N. Robertson and P. D. Seymour. Graph Minors XVI. Excluding a Non-Planar
Graph. Journal of Combinatorial Theory, Series B, 89(1):43–76, 2003.

[188] N. Robertson and P. D. Seymour. Graph Minors XX. Wagner’s conjecture. Jour-
nal of Combinatorial Theory, Series B, 92(2):325–357, 2004.

[189] A. Rosa and W. D. Wallis. Premature sets of 1-factors, or, how not to schedule
round-robin tournaments. Discrete Applied Mathematics, 4:291–297, 1982.

[190] P. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994.

[191] M. Shalom, W. Unger, and S. Zaks. On the Complexity of the Traffic Grooming
Problem in Optical Networks. In Proceedings of the 4th International Conference
on Fun with Algorithms, pages 262–271, volume 4475 of LNCS, 2007.

[192] M. Shalom and S. Zaks. A 10/7 + ε approximation scheme for minimizing the
number of ADMs in SONET rings. In Proceedings of BROADNETS, pages 254–
262, 2004.

249

[193] Y. Shiloach. Another look at the degree constrained subgraph problem. Informa-
tion Processing Letters, 12(2):89–92, 1981.

[194] A. Somani. Survivability & Traffic Grooming in WDM Optical Networks. Cam-
bridge Press, 2006.

[195] I. A. Stewart. Finding Regular Subgraphs in Both Arbitrary and Planar Graphs.
Discrete Applied Mathematics, 68(3):223–235, 1996.

[196] D. H. Su and D. W. Griffith. Standards activities for MPLS over WDM networks.
Optical Networks Magazine, 1(3), 2000.

[197] K. S. Sudeep and S. Vishwanathan. A technique for multicoloring triangle-free
hexagonal graphs. Discrete Mathematics, 300(1-3):256–259, 2005.

[198] A. Suzuki and T. Tokuyama. Dense subgraph problem revisited. In Proceedings
of the Joint Workshop “New Horizons in Computing” and “Statistical Mechanical
Approach to Probabilistic Information Processing”, 2005.

[199] J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning problems on
partial k-trees. SIAM Journal on Discrete Mathematics, 10(4):529–550, 1997.

[200] C. Thomassen. The graph genus problem is NP-complete. Journal of Algorithms,
10(4):568–576, 1989.

[201] C. Thomassen. Two-coloring the edges of a cubic graph such that each monochro-
matic component is a path of length at most 5. Journal of Combinatorial Theory,
Series B, 75(1):100–109, 1999.

[202] V. Vazirani. Approximation Algorithms. Springer-Verlag, 2003.

[203] P.-J. Wan, G. Calinescu, L. Liu, and O. Frieder. Grooming of arbitrary traffic
in SONET/WDM BLSRs. IEEE Journal of Selected Areas in Communications,
18(10):1995–2003, 2000.

[204] J. Wang, W. Cho, V. R. Vemuri, and B. Mukherjee. Improved approaches for cost-
effective traffic grooming in WDM ring networks: ILP formulations and single-
hop and multihop connections. IEEE/OSA Journal of Lightwave Technology,
19(11):1645–1653, 2001.

[205] R. M. Wilson. Decomposition of complete graphs into subgraphs isomorphic to a
given graph. Congressus numerantium, 15:647–659, 1976.

[206] S. Win. On a Connection Between the Existence of k-Trees and the Toughness of
a Graph. Graphs and Combinatorics, 5(1):201–205, 1989.

[207] E. B. Yavorskii. Representations of directed graphs and ψ-transformations. Theo-
retical and Applied Questions of Differential Equations and Algebra, pages 247–250,
1978. A. N. Sharkovskii (Editor).

250

[208] X. Zhang and C. Qiao. An effective and comprehensive approach for traffic groom-
ing and wavelength assignment in SONET/WDM rings. IEEE/ACM Transactions
on Networking, 8(5):608–617, 2000.

[209] K. Zhu and B. Mukherjee. A review of traffic grooming in WDM optical networks:
Architectures and challenges. Optical Networks Magazine, 4(2):55–64, 2003.

[210] K. Zhu, H. Zhu, and B. Mukherjee. Traffic engineering in multigranularity hetero-
geneous optical WDM mesh networks through dynamic traffic grooming. IEEE
Network, 17(2):8–15, 2003.

[211] K. Zhu, H. Zhu, and B. Mukherjee. Traffic Grooming in Optical WDM Mesh
Networks. Springer, 2005.

