
Faster Parameterized Algorithms for Minor Containment?

Isolde Adler1??, Frederic Dorn2??, Fedor V. Fomin2??,

Ignasi Sau3? ? ?, and Dimitrios M. Thilikos4†

1 Institut für Informatik, Goethe-Universität, Frankfurt, Germany. E-mail:

iadler@informatik.uni-frankfurt.de
2 Department of Informatics, University of Bergen, Norway. E-mail:

{frederic.dorn,fedor.fomin}@ii.uib.no
3 AlGCo project-team, CNRS, LIRMM, Montpellier, France. E-mail: ignasi.sau@lirmm.fr

4 Department of Mathematics, National and Kapodistrian University of Athens, Greece. E-mail:

sedthilk@math.uoa.gr

Abstract. The H-Minor containment problem asks whether a graph G contains some

fixed graph H as a minor, that is, whether H can be obtained by some subgraph of G

after contracting edges. The derivation of a polynomial-time algorithm for H-Minor con-

tainment is one of the most important and technical parts of the Graph Minors Theory of

Robertson and Seymour and it is a cornerstone for most of the algorithmic application of this

theory. H-Minor containment for graphs of bounded branchwidth is a basic ingredient of

this algorithm. The currently fastest solution to this problem, based on the ideas introduced

by Robertson and Seymour, was given by Hicks in [Networks, 43(1):1–9, 2004], providing

an algorithm that in time O(3k2

· (h + k − 1)! ·m) decides if a graph G with m edges and

branchwidth k, contains a fixed graph H on h vertices as a minor. In this work we improve

the dependence on k of Hicks’ result by showing that checking if H is a minor of G can be

done in time O(2(2k+1)·log k ·h2k · 22h2

·m). We set up an approach based on a combinatorial

object called rooted packing, which captures the properties of the subgraphs of H that we

seek in our dynamic programming algorithm. This formulation with rooted packings allows

us to speed up the algorithm when G is embedded in a fixed surface, obtaining the first al-

gorithm for minor containment testing with single-exponential dependence on branchwidth.

Namely, it runs in time 2O(k) · h2k · 2O(h) · n, with n = |V (G)|. Finally, we show that slight

modifications of our algorithm permit to solve some related problems within the same time

bounds, like induced minor or contraction containment.

Keywords: graph minors, branchwidth, graph minor containment, parameterized complex-

ity, dynamic programming, graphs on surfaces.

? An extended abstract of this work appeared in the Proc. of the 12th Scandinavian Symposium and

Workshops on Algorithm Theory (SWAT), volume 6139 of LNCS, pages 322-333, Bergen, Norway, June

2010.
?? Supported by the Norwegian Research Council.

? ? ? Supported by AGAPE (ANR-09-BLAN-0159) and GRATOS (ANR-09-JCJC-0041-01) French projects.
† Supported by the project “Kapodistrias” (AΠ 02839/28.07.2008) of the National and Kapodistrian

University of Athens (project code: 70/4/8757).

2 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

1 Introduction

Robertson and Seymour asserted Wagner’s conjecture by showing that each minor-closed graph

property can be characterized by a finite set of forbidden minors [26, 28]. Suppose that P is a

property on graphs that is minor-closed, that is, if a graph has this property then all its minors

have it too. Graph Minors Theory implies that there is a finite set F of forbidden minors such that a

graph G has property P if and only if G does not have any of the graphs in F as a minor. This result

also has a strong impact on algorithms, since it implies that testing for minor closed properties can

be done in polynomial time, namely by finitely many calls to an O(n3)-time algorithm (introduced

in [26]) checking whether the input graph G contains some graph H (called the pattern) as a minor.

(Recently, Kawarabayashi et al. have presented a quadratic algorithm for this problem [21].) As a

consequence, several graph problems have been shown to have polynomial-time algorithms, some

of which were previously not even known to be decidable [16]. However, these algorithmic results

are non-constructive. This triggered an ongoing quest in the Theory of Algorithms since then,

next to the simplification of the the 23-papers proof of the Graph Minors Theorem, for extracting

constructive algorithmic results out of Graph Minors (e.g., [2,4,7,22]) and for making its algorithmic

proofs practical. Minor containment is one of the important steps in the technique of minor-closed

property testing. Unfortunately the hidden constants in the polynomial-time algorithm of [26] are

immense even for very simple patterns, which makes the algorithm absolutely impractical.

A basic algorithmic tool introduced in the Graph Minors series is branchwidth, which serves

(together with its twin parameter of treewidth) as a measure of the topological resemblance of a

graph to the structure of a tree. The algorithmic importance of branchwidth resides in Courcelle’s

theorem [3], stating that all graph problems expressible by some Monadic Second Order Logic

(MSOL) formula φ can be solved in f(bw(G), φ) · n steps (we denote by bw(G) the branchwidth

of the graph G). As minor checking (for fixed patterns) can be expressed in MSOL, we obtain the

existence of a f(k, h) · |V (G)| step algorithm for the following (parameterized) problem (throughout

the paper, we let n = |V (G)|, m = |E(G)|, and h = |V (H)|):

H-Minor Containment

Input: A graph G (the host graph).

Parameter: k = bw(G).

Question: Does G contain a minor isomorphic to H (the pattern graph)?

Such an algorithm is one of the basic subroutines required by the algorithm in [26] (that is, for the

non-parameterized version of minor containment), and every attempt to improve its practicability

requires the improvement of the parameter dependence f(k, h). A significant step in this direction

was done by Hicks [20], who provided an O(3k
2 · (h + k − 1)! · m) step algorithm for H-Minor

Containment, exploiting the ideas sketched by Robertson and Seymour in [26]. Note that when H

is not fixed, determining whether G contains H as a minor is NP-complete even if G has bounded

branchwidth [24].

The objective of this paper is to provide parameterized algorithms for the H-Minor Contain-

ment problem with better parameter dependence.

Faster Parameterized Algorithms for Minor Containment 3

Our results. We present an algorithm forH-Minor Containment with running timeO(2(2k+1)·log k·
h2k · 22h2 ·m), where k is the branchwidth of G, which improves the bound that follows from [26]

(explicitly described in [20]). When we restrict the host graph to be embeddable in a fixed surface,

we provide an algorithm with running time 2O(k) · h2k · 2O(h) · n. This is the first algorithm for

H-Minor Containment with single-exponential dependence on branchwidth. Finally, we show

how to modify our algorithm to explicitly find, within the same time bounds, a minor of H in G,

as well as for solving some related problems, like induced minor or contraction containment.

Our techniques. We introduce a dynamic programming technique based on a combinatorial

object called rooted packing (defined in Subsection 3.1). Rooted packings capture how potential

models of H (defined in Section 2) are intersecting the separators that the algorithm is processing.

It is worth mentioning here that the notion of rooted packing is related to the notion of folio

introduced by Robertson and Seymour in [26], see Subsection 3.1 for more details. We present the

algorithm for general host graphs in Subsection 3.2. When the host graphG is embedded in a surface

(see Section 4), this formulation with rooted packings allows us to apply the framework introduced

in [29] to obtain algorithms for H-Minor Containment that are single-exponential in k. In

this framework we use a new type of branch decomposition, called surface cut decomposition (see

Subsection 4.2 and [29]), which generalizes sphere cut decompositions for planar graphs introduced

by Seymour and Thomas [31]. Our algorithms are robust, in the sense that slight variations permit

us to solve several related problems within the same time bounds (see Section 5). Finally, we present

some lines for further research in Section 6.

2 Definitions

Graphs and minors. We use standard graph terminology, see for instance [8]. All the graphs

considered in this article are simple and undirected. Given a graph G, we denote the vertex set of G

by V (G) and the edge set of G by E(G). A graph F is a subgraph of a graph G, denoted by F ⊆ G,

if V (F) ⊆ V (G) and E(F) ⊆ E(G). For a subset X ⊆ V (G), we use G[X] to denote the subgraph

of G induced by X, i.e., V (G[X]) := X and E(G[X]) := {{u, v} ⊆ X | {u, v} ∈ E(G)}. For a

subset Y ⊆ E(G), we let G[Y] be the graph with V (G[Y]) := {v ∈ V (G) | v ∈ e for some e ∈ Y }
and E(G[Y]) := Y . Hypergraphs generalize graphs by allowing edges to be arbitrary subsets of the

vertex set. Let G be a hypergraph. A path in G is a sequence v1, . . . , vn of vertices of G, such that for

every two consecutive vertices there exists a distinct hyperedge of G containing both. In this way,

the notions of connectivity, connected component, etc. are transferred from graphs to hypergraphs.

Given a subset S ⊆ V (G), we define NG[S] to be the set of vertices of V (G) at distance at most

1 from at least one vertex of S. If S = {v}, we simply use the notation NG[v]. We also define

NG(v) = NG[v] \ {v} and EG(v) = {{v, u} | u ∈ NG(v)}. Let e = {x, y} ∈ E(G). Given a graph G

and an edge e ∈ E(G), let G\e := (V (G), E(G) \ {e}) be the graph obtained from G by deleting e,

and let G/e be the graph obtained from G by contracting e, i.e.,

G/e =
(
(V (G) \ {x, y}) ∪̇ {vx,y}, (E(G) \ (EG(x) ∪ EG(y))) ∪ {{vxy, z} | z ∈ NG[{x, y}]}

)
,

4 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

where vxy 6∈ V (G) is a new vertex, not contained in V (G). If H can be obtained from a subgraph

of G by a (possibly empty) sequence of edge contractions, we say that H is a minor of G. If H

can be obtained from an induced subgraph of G (resp. the whole graph G) by a (possibly empty)

sequence of edge contractions, we say that H is an induced minor (resp. a contraction) of G.

Branch decompositions. A branch decomposition (T, µ) of a graph G consists of a ternary tree

T (i.e., all internal vertices are of degree three) and a bijection µ : L → E(G) from the set L of

leaves of T to the edge set of G. We define for every edge e of T the middle set mid(e) ⊆ V (G)

as follows: Let T1 and T2 be the two connected components of T \ {e}. Then let Gi be the graph

induced by the edge set {µ(f) : f ∈ L ∩ V (Ti)} for i ∈ {1, 2}. The middle set is the intersection of

the vertex sets of G1 and G2, i.e., mid(e) = V (G1)∩ V (G2). Note that for each e ∈ E(T), mid(e)

is a separator of G (unless mid(e) = ∅). The width of (T, µ) is the maximum order of the middle

sets over all edges of T , i.e., width(T, µ) := max{|mid(e)| : e ∈ E(T)}. The branchwidth of G is

defined as bw(G) := min{width(T, µ) | (T, µ) branch decomposition of G}. Intuitively, a graph has

small branchwidth if it is close to being a tree.

In our algorithms, we need to root a branch decomposition (T, µ) of G. For this, we pick an

arbitrary edge e∗ ∈ E(T), we subdivide it by adding a new vertex vnew and then add a new vertex

r and make it adjacent to vnew. We extend µ by setting µ(r) = ∅ (thereby slightly extending the

definition of a branch decomposition). Now vertex r is the root. For each e ∈ E(T), let Te be the

tree of the forest T\e that does not contain r as a leaf (i.e., the tree that is “below” e in the rooted

tree T) and let Ee be the edges that are images, via µ, of the leaves of T that are also leaves of Te.

Let Ge := G[Ee]. Observe that, if er = {vnew, r}, then Ger = G unless G has isolated vertices.

Models. A model of H in G [26] is a mapping φ, that assigns to every edge e ∈ E(H) an edge

φ(e) ∈ E(G), and to every vertex v ∈ V (H) a non-empty connected subgraph φ(v) ⊆ G, such that

(i) the graphs {φ(v) | v ∈ V (H)} are mutually vertex-disjoint and the edges {φ(e) | e ∈ E(H)}
are pairwise distinct;

(ii) for e = {u, v} ∈ E(H), φ(e) has one end-vertex in V (φ(u)) and the other in V (φ(v)).

Thus, H is isomorphic to a minor of G if and only if there exists a model of H in G.

Remark 1. We can assume that for each vertex v ∈ V (H), the subgraph φ(v) ⊆ G is a tree. Indeed,

if for some v ∈ V (H), φ(v) is not a tree, then by replacing φ(v) with a spanning tree of φ(v) we

obtain another model with the desired property.

For each v ∈ V (H), we call the graph φ(v) a vertex-model of v. With slight abuse of notation,

the subgraph M ⊆ G defined by the union of {φ(v) | v ∈ V (H)} and {φ(e) | e ∈ E(H)} is also

called a model of H in G. For each edge e ∈ E(H), the edge φ(e) ∈ E(G) is called a realization of

e.

Potential models. In the course of dynamic programming along a branch decomposition, we will

need to search for potential models of subgraphs of H in G, which we proceed to define. For graphs

H̄ and G, a set R ⊆ V (H̄), and a (possibly empty) set X ⊆ E(H̄[R]), an (R,X)-potential model of

Faster Parameterized Algorithms for Minor Containment 5

H̄ in G is a mapping φ, that assigns to every edge e ∈ (E(H̄)\E(H̄[R]))∪X an edge φ(e) ∈ E(G),

and to every vertex v ∈ V (H̄) a non-empty subgraph φ(v) ⊆ G, such that

(i) the graphs {φ(v) | v ∈ V (H̄)} are mutually vertex-disjoint and the edges {φ(e) | e ∈ E(H̄)}
are pairwise distinct;

(ii) for every e = {u, v} ∈ (E(H̄) \E(H̄[R]))∪X, the edge φ(e) has one end-vertex in V (φ(u)) and

the other in V (φ(v));

(iii) for every v ∈ V (H̄) \R the graph φ(v) is connected in G.

For the sake of intuition, we can think of an (R,X)-potential model of H̄ as a candidate of

becoming a model of H̄ in further steps of the dynamic programming, if the missing edges (that is,

those in E(H̄[R]) \X) can be realized, and if the graphs {φ(v) | v ∈ R} get eventually connected.

We say that φ is an R-potential model of H̄ in G, if φ is an (R,X)-potential model of H̄ in G

for some X ⊆ E(H̄[R]), and we say that φ is a potential model of H̄ in G, if φ is an R-potential

model of H̄ in G for some R ⊆ V (H̄). Note that a ∅-potential model of H̄ in G is a model of H̄

in G. Slightly abusing notation, we also say that the subgraph M ⊆ G defined by the union of

{φ(v) | v ∈ V (H̄)} and {φ(e) | e ∈ (E(H̄) \E(H̄[R]))∪X} is an (R,X)-potential model of H̄ in G.

3 Dynamic programming for general graphs

Roughly speaking, in each edge of the branch decomposition, the tables of our dynamic program-

ming algorithm store all the potential models of H in the graph processed so far. While the

vertex-models of H are required to be connected in G, in potential models they may have several

connected components, and we need to keep track of them. In order to do so, we introduce rooted

packings of the middle sets (defined in Subsection 3.1). A rooted packing encodes the trace of the

components of a potential model in the middle set, together with a mapping of the components to

vertices of H. We denote the empty set by ∅ and the empty function by ∅.

3.1 Rooted packings

Let S ⊆ V (H) be a subset of the vertices of the pattern H, and let R ⊆ S. Given a middle

set mid(e) corresponding to an edge e of a branch decomposition (T, µ) of G, we define a rooted

packing of mid(e) as a quintuple rp = (A, S,R, ψ, χ), where A is a (possible empty) collection of

mutually disjoint non-empty subsets of mid(e) (that is, a packing of mid(e)), ψ : A → R is a

surjective mapping (the rooting) assigning vertices of R to the sets in A, and χ : R × R → {0, 1}
is a binary symmetric function between pairs of vertices in R.

The intended meaning of a rooted packing (A, S,R, ψ, χ) is as follows. In a given middle set

mid(e), a packing A represents the intersection of the connected components of the potential

model with mid(e). The subsets R,S ⊆ V (H) and the function χ indicate that we are looking

for an (R, {{u, v} | u, v ∈ R,χ(u, v) = 1})-potential model M of H[S] in Ge. Intuitively, the

function χ captures which edges of H[S] have been realized so far. Since we allow the vertex-models

intersecting mid(e) to be disconnected, we need to keep track of their connected components. The

subset R ⊆ S tells us which vertex-models intersect mid(e), and the function ψ associates the sets

6 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

A1
A2

A3
A4 A5

A6

{u,v}

s
t

ψ u(A)1 ψ(A)2= ψ(A)3= =

{s,t}

{s,u}

{v,w}
{t,v}

wψ(A)4 = vψ(A)5 ψ(A)6= =

M

mid(e)

S={s,t,u,v,w}
R={u,v,w}

s

u w z

H

s

u

t

w

v

Hrp

(u,v)=1χ

(u,w)=0χ
(v,w)=1χ

(a) (b)

{t,u}

t v

Fig. 1. (a) A pattern H and a subgraph Hrp ⊆ H associated with a rooted packing rp = (A, S,R, ψ, χ).

We have V (H) = {s, t, u, v, w, z}, S = {s, t, u, v, w}, and R = {u, v, w}. The function χ is given by

χ(u, v) = χ(v, w) = 1 and χ(u,w) = 0, which defines the edges in Hrp. (b) An R-potential model M ⊆ Ge

corresponding to the rooted packing rp of mid(e). Full dots represent vertices in mid(e), and the ovals

indicate the subsets of the packing A = {A1, A2, A3, A4, A5, A6}. Above the ovals, the coloring ψ is shown.

The thick edges in M correspond to realizations of edges in E(Hrp), which are explicitly labeled in the

figure. Note that the vertex-models in M corresponding to vertices s, t ∈ S \R are connected, as required.

in A with the vertices in R. We can think of ψ as a coloring that colors the subsets in A with

colors given by the vertices in R. Note that several subsets in A can have the same color u ∈ R,

which means that the vertex-model of u in Ge is not connected yet, but it may get connected

in further steps of the dynamic programming, if the necessary edges appear from other branches

of the branch decomposition of G. Note that we distinguish between two types of edges of H[S],

namely those with both end-vertices in R, and the rest. The key observation is that if the desired

R-potential model of H[S] exists, then all the edges in E(H[S]) \ E(H[R]) must have already

been realized in Ge. Indeed, as mid(e) is a separator of G and no vertex-model of a vertex in

S \ R intersects mid(e), the edges in E(H[S]) \ E(H[R]) cannot appear in G \ Ge. Therefore,

we make sure that the edges in E(H[S]) \ E(H[R]) have already been realized, and we only need

to keep track of the edges in E(H[R]). In other words, for two distinct vertices u, v ∈ R, we let

χ(u, v) = 1 if and only if {u, v} ∈ E(H) and there exist two subsets A,B ∈ A, with ψ(A) = u and

ψ(B) = v, such that there is an edge in the potential model M between a vertex in A and a vertex

in B. In that case, it means that we have a realization of the edge {u, v} ∈ E(H) in M ⊆ Ge.

A rooted packing rp = (A, S,R, ψ, χ) defines a unique subgraph Hrp of H, with V (Hrp) = S

and E(Hrp) = E(H[S]) \ E(H[R]) ∪ {{u, v} | u, v ∈ R,χ(u, v) = 1}. An example of the intended

meaning of a rooted packing is illustrated in Fig. 1.

As mentioned in Section 1, the notion of rooted packing is related to the notion of folio intro-

duced by Robertson and Seymour in [26] (see also [21]). More precisely, a graph G together with

r vertices v1, . . . , vr ∈ V (G) is called a rooted graph. The folio of a rooted graph (G, v1, . . . , vr)

Faster Parameterized Algorithms for Minor Containment 7

is the set of all rooted graphs (H,u1, . . . , ur) such that there exists a model φ of H in G with

vi ⊆ V (φ(ui)) for 1 ≤ i ≤ r. Using this terminology, given two rooted graphs (G, v1, . . . , vr) and

(H,u1, . . . , ur), if we set R = {u1, . . . , ur} and we assume that {v1, . . . , vr} ⊆ mid(e) for some

edge e of a branch decomposition (T, µ) of G, a rooted packing (A, S,R, ψ, χ) of mid(e) can be

seen as a refined data structure that can be used to determine whether (H,u1, . . . , ur) belongs to

the folio of (G, v1, . . . , vr). In the remainder of the article we will not use this interpretation.

In the sequel, it will be convenient to think of a packing A of mid(e) as a hypergraph G =

(mid(e),A). Note that, by definition, A is a matching in G. We use the notation
⋃
A :=

⋃
X∈AX.

Operations with rooted packings. Let rp1 = (A1, S1, R1, ψ1, χ1) and rp2 = (A2, S2, R2, ψ2, χ2)

be rooted packings of two middle sets mid(e1) and mid(e2), such that e1 and e2 are the children

edges of an edge e ∈ E(T). We say that rp1 and rp2 are compatible if

(i) E(Hrp1
) ∩ E(Hrp2

) = ∅;
(ii) S1 ∩ S2 = R1 ∩R2;

(iii) for any A1 ∈ A1 and A2 ∈ A2 such that A1 ∩A2 6= ∅, we have ψ1(A1) = ψ2(A2).

In other words, two rooted packings rp1 and rp2 are compatible if the edge-sets of the corresponding

subgraphs Hrp1
and Hrp2

are disjoint, if their intersection is given by the intersection of R1 and

R2, and if their colorings coincide in the common part. Note that whether two rooted packings are

compatible can be easily checked in time linear in the sizes of the middle sets.

Given two hypergraphs H1 and H2 of H, we define H1 ∪ H2 as the graph with vertex set

V (H1) ∪ V (H2) and edge set E(H1) ∪ E(H2). Given two compatible rooted packings rp1 =

(A1, S1, R1, ψ1, χ1) and rp2 = (A2, S2, R2, ψ2, χ2), we define rp1 ⊕ rp2 as the rooted packing

(A, S,R, ψ, χ), where

• A is the packing of mid(e) defined by the connected components of the hypergraph (mid(e1)∪
mid(e2),A1 ∪A2). In other words, the sets of the packing A are the vertex sets corresponding

to the connected components of the hypergraph (mid(e1) ∪mid(e2),A1 ∪ A2);

• S = S1 ∪ S2;

• R = R1 ∪R2;

• for any subset A ∈ A, ψ(A) is defined as

ψ(A) =

{
ψ1(A1), if there exists A1 ∈ A1 such that A ∩A1 6= ∅.
ψ2(A2), if there exists A2 ∈ A2 such that A ∩A2 6= ∅.

Note that the mapping ψ is well-defined. Indeed, if there exist both A1 ∈ A1 and A2 ∈ A2

intersecting a subset A, then by definition of A it holds A1 ∩ A2 6= ∅, and therefore ψ1(A1) =

ψ2(A2) because by assumption the rooted packings rp1 and rp2 are compatible;

• for any two vertices u, v ∈ R, χ(u, v) is defined as

χ(u, v) =

{
1, if either u, v ∈ R1 and χ1(u, v) = 1, or u, v ∈ R2 and χ2(u, v) = 1.

0, otherwise.

8 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

Note that if rp1 and rp2 are two compatible rooted packings, then Hrp1⊕rp2
= Hrp1

∪Hrp2
.

If (A, S,R, ψ, χ) is a rooted packing of a middle set mid(e) and B ⊆ mid(e), we define

(A, S,R, ψ, χ)|B as the rooted packing (A′, S′, R′, ψ′, χ′) of B, where

• A′ = {X ∩B | X ∈ A} \ {∅};
• S′ = S;

• for a set X ∩B ∈ A′ with X ∈ A we let ψ′(X ∩B) = ψ(X);

• R′ is defined as the image of ψ′, that is, R′ = {ψ′(A) | A ∈ A′};
• χ′ is defined at the restriction of χ to R′ × R′, that is, for two vertices u, v ∈ R′, χ′(u, v) =

χ(u, v).

Note that the property of being a rooted packing is closed under the two operations defined

above.

How to encode a potential model. Let Pe be the collection of all rooted packings (A, S,R, ψ, χ)

of mid(e). We use the notation C(F) for the set of connected components of a graph (or hypergraph)

F . Given a rooted packing (A, S,R, ψ, χ) ∈Pe, we define the boolean variable mode(A, S,R, ψ, χ),

encoding whether Ge contains a potential model with the conditions given by the rooted packing.

Namely, the variable is set to true if the required potential model exists, and to false otherwise:

mode(A, S,R, ψ, χ) =



true, if there exist a subgraph M ⊆ Ge and a partition of

V (M) into |S| sets {Vu | u ∈ S} such that

(i) for every u ∈ S \R, |C(M [Vu])| = 1 and Vu ∩mid(e) = ∅;
(ii) for every u ∈ R,

{V (M ′) ∩mid(e) |M ′ ∈ C(M [Vu])} = ψ−1(u);

(iii) for every two vertices u, v ∈ S with {u, v} ∈ E(H)

and such that {u, v} 6⊆ R, there exist u∗ ∈ Vu and

v∗ ∈ Vv such that {u∗, v∗} ∈ E(M);

(iv) for every two vertices u, v ∈ R, χ(u, v) = 1 if

and only if {u, v} ∈ E(H) and there exist

u∗ ∈ Vu and v∗ ∈ Vv such that {u∗, v∗} ∈ E(M).

false, otherwise.

Note that since A does not contain the empty set, in (ii) we implicitly require every connected

component of Vu to have a non-empty intersection with mid(e).

The following lemma follows immediately from the definitions.

Lemma 1. Let G and H be graphs, let e be an edge in a rooted branch decomposition of G.

1. If mode(A, S,R, ψ, χ) = true, then Ge contains an (R, {{u, v} | u, v ∈ R,χ(u, v) = 1})-
potential model of H[S].

2. If Ge contains an R-potential model of H[S], then there exist A, ψ, and χ such that

mode(A, S,R, ψ, χ) = true.

Faster Parameterized Algorithms for Minor Containment 9

3. G contains a minor isomorphic to H if and only if some middle set mid(e) satisfies

mode(∅, V (H), ∅,∅,∅) = true.

3.2 The algorithm

Let us now see how the values of mode(A, S,R, ψ, χ) can be explicitly computed using dynamic

programming over a branch decomposition of G.

First, let e, e1, e2 be three edges of T that are incident to the same vertex and such that e is

closer to the root of T than the other two. The value of mode(A, S,R, ψ, χ) is then given by:

mode(A, S,R, ψ, χ) =



true, if there exist two compatible rooted packings (A1, S1, R1, ψ1, χ1)

and (A2, S2, R2, ψ2, χ2) of mid(e1) and mid(e2), such that

(i) mode1(A1, S1, R1, ψ1, χ1) = mode2(A2, S2, R2, ψ2, χ2) = true;

(ii)
⋃
A1 ∩ (mid(e1) ∩mid(e2)) =

⋃
A2 ∩ (mid(e1) ∩mid(e2)) ;

(iii) (A, S,R, ψ, χ) = (A1, S1, R1, ψ1, χ1)⊕ (A2, S2, R2, ψ2, χ2)|mid(e);

(iv) Let (A′, S,R′, ψ′, χ′) = (A1, S1, R1, ψ1, χ1)⊕ (A2, S2, R2, ψ2, χ2).

Then, for each u ∈ (R1 ∪R2) \R, |ψ′−1(u)| = 1.

false, otherwise.

We have shown above how to compute mode(A, S,R, ψ, χ) for e being an internal edge of T . Finally,

suppose that eleaf = {x, y} ∈ E(T) is an edge such that x is a leaf of T . Let µ(x) = {v1, v2} ∈ E(G),

and let u and v be two arbitrary distinct vertices of H. Then

modeleaf(A, S,R, ψ, χ) =



true, if A = {{v1, v2}}, S = R = {u},
ψ({v1, v2}) = u, and χ(u, u) = 0,

or A = {{vi}}, S = {u, v}, R = {u},
ψ({vi}) = u, and χ(u, u) = 0, for i ∈ {1, 2},

or A = {{vi}}, S = R = {u},
ψ({vi}) = u, and χ(u, u) = 0, for i ∈ {1, 2},

or A = {{v1}, {v2}}, S = R = {u, v},
ψ({v1}) = u, ψ({v2}) = v, χ(u, u) = χ(v, v) = 0,

and χ(u, v) = χ(v, u) = 1 only if {u, v} ∈ E(H),

or A = ∅, S = {u, v}, R = ∅ and ψ = χ = ∅,
or A = ∅, S = {u}, R = ∅ and ψ = χ = ∅,
or A = S = R = ∅ and ψ = χ = ∅.

false, otherwise.

Correctness of the algorithm. By Lemma 1, G contains a minor isomorphic to H if and only

if for some middle set mid(e), mode(∅, V (H), ∅,∅,∅) = true. Observe that if er = {vnew, r}, we

can assume that A = R = ∅ and that ψ = χ = ∅.

10 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

Given three edges e, e1, e2 as described above, we shall now see that the formula to compute

mode(A, S,R, ψ, χ) is correct. Indeed, condition (i) guarantees that the required compatible models

in Ge1 and Ge2 exist, while condition (ii) assures that the packings A1 and A2 contain the same

vertices in the intersection of both middle sets. Condition (iii) says that the rooted packing of

mid(e) can be obtained by first merging the two rooted packings of mid(e1) and mid(e2), and

then projecting the obtained rooted packing to mid(e). Finally, condition (iv) imposes that each

of the vertices in R1 ∪R2 that has been forgotten in mid(e) induces a single connected component

in the desired potential model. This is indeed necessary, as the vertex-models of these forgotten

vertices will not be updated anymore, so they need to be already connected. For each such vertex

u ∈ (R1 ∪R2) \R, the connectivity of the vertex-model of u is captured by the number of subsets

colored u in the packing obtained by merging the packings A1 and A2. Indeed, the vertex-model

of u is connected in M if and only if there is a single connected component colored u in the merged

packing.

Suppose now that eleaf = {x, y} ∈ E(T) is a leaf-edge. Then mid(eleaf) ⊆ {v1, v2} and |S| ≤ 2.

Let us discuss the formula to compute modeleaf(A, S,R, ψ, χ). In the first case, A = {{v1, v2}}, so

both v1 and v2 must be mapped to the same vertex in S. The second and third case are similar,

except that one of the two vertices v1, v2 is either not present in mid(e) or we omit it. In the fourth

case we have A = {{v1}, {v2}}, so each vertex in mid(e) corresponds to a distinct vertex of H, say,

to u and v, respectively. We must distinguish two cases. Namely, if {u, v} ∈ E(H), then the edge

{v1, v2} ∈ E(G) is a realization of {u, v} ∈ E(H), so in this case we can set χ(u, v) = χ(v, u) = 1.

Otherwise, we set χ(u, v) = χ(v, u) = 0. Finally, in the cases A = ∅, we omit the whole middle set,

and we set R = ∅.

Running time. The size of the tables of the dynamic programming over a branch decomposition

of the input graph G determines the running time of our algorithms. For e ∈ E(T), let |mid(e)| ≤ k,

and let h = |V (H)|. To bound the size of the tables in e, namely |Pe|, we discuss each element

appearing in a rooted packing (A, S,R, ψ, χ) of mid(e) separately:

• Bound on the number of A’s: The number of ways a set of k elements can be partitioned into

non-empty subsets is well-known as the k-th Bell number [17], and it is denoted by Bk. The

number of packings of a set of k elements can be expressed in terms of the Bell numbers as

k∑
i=0

(
k

i

)
Bk−i = Bk+1 ≤ 2k·log k ,

where the equality is a well-known recursive formula of the Bell numbers, and the inequality

follows from Bk ≤ ek−1
(log k)k

· k! [17].

• Bound on the number of S’s: the number of subsets of V (H) is 2|V (H)| = 2h.

• Bound on the number of R’s: for a fixed S ⊆ V (H), the number of subsets of S is at most 2h.

• Bound on the number of ψ’s: ψ is a mapping from subsets of mid(e) to vertices in R, so the

number of such mappings for a fixed packing of mid(e) is at most hk.

• Bound on the number of χ’s: χ is a symmetric function from R×R to {0, 1}, so for a fixed R

with |R| ≤ h, the number of choices for χ is at most 2h
2/2.

Faster Parameterized Algorithms for Minor Containment 11

Summarizing, for each edge e ∈ E(T), we have that

|Pe| ≤ 2k·log k · hk · 2h
2/2 · 22h ≤ 2k·log k · hk · 2h

2

.

At each edge e of the branch decomposition, in order to compute all the values mode(A, S,R, ψ, χ),

we test all the possibilities of combining compatible rooted packings of the two middle sets mid(e1)

and mid(e2). The operations (A1, S1, R1, ψ1, χ1) ⊕ (A2, S2, R2, ψ2, χ2) and (A, S,R, ψ, χ)|B take

O(|mid(e)|) time, as well as testing whether two rooted packings are compatible. That is, these

operations just incur a multiplicative term O(k) = O(2log k) in the running time. Hence, from the

above discussion we conclude the following theorem.

Theorem 1. Given a general host graph G with |E(G)| = m, a pattern H with |V (H)| = h,

and a branch decomposition of G of width at most k, we can decide whether G contains a minor

isomorphic to H in O(2(2k+1)·log k · h2k · 22h2 ·m) time.

4 Speed up for graphs on surfaces

In this section we present a speed up of the algorithm described in Section 3 when the host graph

G is embedded in a fixed surface Σ. Note that as the genus of a graph can only decrease by taking

minors, we may assume that the pattern H can also be embedded in Σ. Namely, if bw(G) ≤ k, we

improve the running time from 2O(k·log k+h2)+2k·log h ·m (cf. Theorem 1) to 2O(k+h)+2k·log h · n (cf.

Theorem 4). That is, for fixed H, the running time of the algorithm becomes single-exponential

in the branchwidth of the host graph. Let us briefly discuss this improved running time more in

detail. If both G and H are planar, then it is known that if bw(G) > c · h for some small constant

c, then G contains H as a minor [19, 27]. Therefore, we may assume that k = O(h), and in that

case there is no improvement in terms of k in Theorem 4 with respect to Theorem 1 (as we discuss

in Subsection 4.3, the improvement in the term 2O(h2) follows immediately from Euler’s formula).

The real improvement is when the host graph and the pattern are not planar, that is, when Σ 6= S2.

In this case there is no bound on bw(G) to assure the existence of H as a minor, as shown by the

following example. Let G be the disjoint union of an arbitrarily big grid and an arbitrary number of

disjoint K5’s, and let H = K3,3. Then G has arbitrarily big branchwidth and arbitrarily big genus,

but it does not contain H as a minor. That is, even if G has grid-minors of size Ω(bw(G)) [6], a

big grid does not certify a minor isomorphic to H. Therefore, no assumption can be made about k

with respect to h, so the improvement given by Theorem 4 is indeed significant when Σ 6= S2.

We do not modify at all the dynamic programming algorithm presented in Section 3. Instead,

our approach consists in analyzing more carefully its running time when G and H are embedded

in a surface. The key idea is to use a special type of branch decomposition called surface cut

decomposition, which has been recently introduced by Rué et al. [29], generalizing sphere cut de-

compositions of planar graphs (defined by Seymour and Thomas [31] and exploited algorithmically

for doing dynamic programming for the first time in Dorn et al. [14]) to arbitrary surfaces. We

first provide some preliminaries in Subsection 4.1, then we define surface cut decompositions in

Subsection 4.2, and finally we present the improved analysis in Subsection 4.3.

12 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

4.1 Preliminaries

According to the Surface Classification Theorem [25], a compact and connected surface without

boundary is determined, up to homeomorphism, by its Euler characteristic χ(Σ) and by whether it

is orientable or not. More precisely, orientable surfaces are obtained by adding g ≥ 0 handles to the

sphere S2, obtaining the g-torus Tg with Euler characteristic χ(Tg) = 2− 2g, while non-orientable

surfaces are obtained by adding c > 0 cross-caps to the sphere, hence obtaining a non-orientable

surface Pc with Euler characteristic χ(Pc) = 2 − c. For computational simplicity, it is convenient

to work with the Euler genus γ(Σ) of a surface Σ, which is defined as γ(Σ) = 2− χ(Σ).

For a graph G, the Euler genus of G, denoted by γ(G), is the smallest Euler genus among all

surfaces in which G can be embedded (i.e., drawn without edge-crossings). Determining the Euler

genus of a graph is an NP-hard problem [32], hence we assume that we are given a graph G already

embedded in a surface Σ. An O-arc is a subset of Σ homeomorphic to S1. A subset of Σ meeting

the drawing of G only at vertices is called G-normal. If an O-arc is G-normal, then we call it a

noose. The length of a noose is the number of its vertices.

A sphere cut decomposition (T, µ) of a planar graph G is a branch decomposition of G with the

following property: for every edge e of T , there exists a noose Oe meeting every face at most once

and bounding the two open discs ∆1 and ∆2 such that Gi ⊆ ∆i ∪Oe, 1 ≤ i ≤ 2. Thus Oe meets G

only in mid(e) and its length is |mid(e)|. Sphere cut decompositions were defined by Seymour and

Thomas [31], and during the last years they have been exhaustively exploited to obtain algorithms

in planar graphs with single-exponential dependence on branchwidth, which can then be used to

obtain subexponential parameterized algorithms through Bidimensionality Theory [9, 13, 14, 30].

The key observation is that in a planar graph the restriction of a partial solution to a middle set

has a non-crossing structure, and then the size of the tables can be upper-bounded by the Catalan

numbers [17].

4.2 Surface cut decompositions

The approach based on exploiting sphere cut decompositions has been also extended to devise

single-exponential algorithms for graphs of bounded genus and graphs excluding a fixed graph

as a minor [5, 11, 12]. Roughly speaking, the idea for bounded genus graphs was to perform a

planarization of the input graph by splitting the potential solutions into at most γ pieces and

then applying the sphere cut decomposition technique. Two drawbacks of this approach are that

the techniques are problem-dependent and that they are difficult to apply to the general class of

problems in which a solution is encoded by a packing of vertices. Recall that a packing of a set X

is a (possible empty) collection of mutually disjoint non-empty subsets of X.

Very recently, Rué et al. [29] have introduced a framework that allows to obtain single-exponential

algorithms for a broad class of problems in graphs on surfaces. The main ingredient of this frame-

work is a new type of branch decomposition called surface cut decomposition, which we proceed to

define overlooking some technicalities (see [29] for the full definition). A surface cut decomposition

of a graph G embedded in a surface Σ with Euler genus γ is consists of a branch decomposition

(T, µ) of G and a subset A ⊆ V (G), with |A| = O(γ), such that for each e ∈ E(T),

Faster Parameterized Algorithms for Minor Containment 13

• either |mid(e) \A| ≤ 2,

• or

◦ the vertices in mid(e) \A are contained in a set N of O(γ) nooses;

◦ these nooses intersect in O(γ) vertices;

◦ Σ \
⋃
N∈N N contains exactly two connected components.

Note that a sphere cut decomposition is a particular case of a surface cut decomposition when

G is planar, by taking A = ∅ and |N | = 1 for each e ∈ E(T). The importance of surface cut

decompositions follows by the following two theorems, which have been proved using techniques

from topological graph theory and analytic combinatorics.

Theorem 2 (Rué et al. [29]). Given a graph G on n vertices embedded in a surface of Euler

genus γ, with bw(G) ≤ k, a surface cut decomposition (T, µ) of G of width at most 27k + O(γ)

can be constructed in 23k+O(log k) · n3 time.

Theorem 3 (Rué et al. [29]). Given a surface cut decomposition (T, µ) of width at most k of a

graph G on n vertices embedded in a surface of Euler genus γ, for each e ∈ E(T) the number of

non-crossing packings of mid(e) is bounded above by 2O(k) · kO(γ) · γO(γ).

4.3 Improved analysis

When the host graph G is embedded in a surface Σ of Euler genus γ, we apply Theorem 2 to

construct a surface cut decomposition (T, µ) of G of width O(bw + γ), and then we run the

algorithm presented in Section 3.2 on (T, µ). For e ∈ E(T), let |mid(e)| ≤ k, and let h = |V (H)|.
We discuss again each element appearing in a rooted packing (A, S,R, ψ, χ) of mid(e) separately:

• Bound on the number of A’s: since (T, µ) is a surface cut decomposition, by Theorem 3 the

number of packings of mid(e) associated with a potential model is bounded by 2O(k) · kO(γ) ·
γO(γ).

• Bound on the number of S’s and R’s: for both sets, the bound 2h still holds.

• Bound on the number of ψ’s: this bound also remains unchanged, that is, hk.

• Bound on the number of χ’s: the number of choices for χ is bounded by the number of subsets

of E(H[R]), and since we can assume that H can also be embedded in Σ, it follows by Euler’s

formula that |E(H[R])| = O(h+ γ), so the number of choices for χ is at most 2O(h+γ).

It also follows from Euler’s formula that |E(G)| = O(n + γ). If we consider that the surface Σ is

fixed, then γ = O(1), and from the above analysis we conclude the following theorem.

Theorem 4. Given a host graph G with |V (G)| = n embedded in a fixed surface, a pattern H with

|V (H)| = h, and a surface cut decomposition of G of width at most k, we can decide whether G

contains a minor isomorphic to H in 2O(k) · h2k · 2O(h) · n time.

5 Variations

In this section we show how to modify the algorithm presented in Section 3 in order to solve several

variants of the H-Minor Containment problem. In all cases, the same times bounds given by

Theorem 1 (general host graph) and Theorem 4 (host graph embedded in a surface) still hold.

14 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

Induced minor. It is natural to ask whether G contains H as an induced minor (see Section 2

for the definition). In contrast to the dynamic programming presented in Section 3.2, now we

must only consider the rooted packings of mid(e) that define an induced potential model in G.

Namely, if two adjacent vertices v1, v2 ∈ V (G) belong to two different potential vertex-models of

two vertices u, v ∈ V (H), then the edge {u, v} must also belong to the partial minor. This property

can be incorporated in the algorithm of Subsection 3.2 by just imposing it in the leaves of the

branch decomposition. Namely, if in a leaf corresponding to an edge {v1, v2} ∈ E(G) we forbid the

rooted packings given by A = {{v1}, {v2}}, S = R = {u, v}, and ψ({v1}) = u, ψ({v2}) = v with

χ(u, v) = χ(v, u) = 0, then all the potential models will correspond to induced minors. Indeed,

since we only merge potential models containing the same vertices in the intersection of two middle

sets (see condition (ii) in the computation of mode(A, S,R, ψ, χ) in Subsection 3.2), the property

of being an induced model propagates to all the edges of the branch decomposition.

Contraction minor. We now consider the problem of deciding whether H can be obtained from

G by just doing edge contractions. That is, we cannot forget any vertex in the middle sets. In other

words, in a rooted packing (A, S,R, ψ, χ) of a middle set mid(e), A is restricted to be a partition

of mid(e). We also have to assure that no edge of G is forgotten. This can be incorporated in the

definition of mode(A, S,R, ψ, χ) in Subection 3.1 by replacing the potential model M with the

graph Ge itself, and by adding a fifth condition:

(v) for every edge {v1, v2} ∈ E(Ge), either both v1, v2 ∈ Vu for some u ∈ V (H), or v1 ∈ Vu and

v2 ∈ Vv with {u, v} ∈ E(H).

Finally, since all vertices and edges and G must be in the model, the value in the leaves is redefined

as

modeleaf(A, S,R, ψ, χ) =



true, if A = {{v1, v2}}, S = R = {u},
ψ({v1, v2}) = u, and χ(u, u) = 0,

or A = {{v1}, {v2}}, S = R = {u, v},
ψ({v1}) = u, ψ({v2}) = v, χ(u, u) = χ(v, v) = 0,

χ(u, v) = χ(v, u) = 1, and {u, v} ∈ E(H).

or A = {{vi}}, S = {u, v}, R = {u},
ψ({vi}) = u, and χ(u, u) = 0, for i ∈ {1, 2},

or A = {{vi}}, S = R = {u},
ψ({vi}) = u, and χ(u, u) = 0, for i ∈ {1, 2},

or A = S = R = ∅ and ψ = χ = ∅.

false, otherwise.

Note that as A is restricted to be a partition of mid(eleaf), the third and fourth (resp. fifth)

case can hold only if |mid(eleaf)| = 1 (resp. mid(eleaf) = ∅).

Explicitly finding a model. In the case where G contains H as a minor, it is also interesting

to explicitly find a model of H in G. The dynamic programming presented in Subsection 3.2 can

Faster Parameterized Algorithms for Minor Containment 15

be easily made constructive using standard techniques: we keep pointers between table entries and

if for some mid(e) ∈ E(T) we have mode(∅, V (H), ∅,∅,∅) = true, we post-process the tree top-

down, marking the vertices that appear in the packings of the middle sets. In the leaves we restore

the edges of G in the model.

It is also possible to count the number of models of H in G by just using a counter without

increasing the running time, and applying the techniques of [15] to avoid double counting.

Finding a model of smallest size. Another natural variation of the H-Minor Containment

problem is to find a model M of H in G, if it exists, of smallest size. The size of M can be taken

as |V (M)| or |E(M)|, but since by Remark 1 we can assume that each vertex-model is a tree, both

versions are equivalent. In order to control the size of the model, we redefine the variable mode(rp)

associated with a middle set mid(e) and a rooted packing rp. Instead of being a boolean variable,

in this case mode(rp) stores the smallest size of a potential model in Ge with the conditions given

by rp, and it is set to −1 if such a model does not exist. When updating the tables in an edge e,

we check all possibilities of merging potential models of the children edges e1 and e2, and we keep

a true option of smallest size. If a model of H is found, we do not stop the algorithm until the

root, as a smaller model may still be found. See [30] for a detailed application of similar techniques

to degree-constrained subgraph problems.

6 Conclusions and further research

In this paper we presented an algorithm to test whether an input host graph G contains a fixed

graph H as a minor. Parameterizing the problem by the branchwidth of G (bw), we improved

the best existing algorithm for general host graphs, and we provided the first algorithm with

running time single-exponential in bw when the host graph can be embedded in a surface. Finally,

we showed how to modify our algorithm to solve some related problems, like induced minor or

contraction containment.

There are a number of interesting lines for further research concerning minor containment prob-

lems. First of all, it may be possible to improve the dependence on h = |V (H)| of our algorithms;

see [1] for recent advances in this direction for the case when the host graph G is planar, using

a different approach. On the other hand, we believe that the dependence on bw of our algorithm

for general host graphs (that is, 2O(bw·logbw)) is best possible. The recent techniques presented by

Lokshtanov et al. [23] may provide an answer to this question.

We also believe that the approach we used in Section 4 to obtain single-exponential algorithms

when G is embedded in a surface can be extended to more general classes of graphs, like apex-

minor-free graphs or general minor-free graphs. In order to do so, a first step could be to generalize

the framework developed in [29] to minor-free graphs, which looks like a promising (but highly

non-trivial) direction.

It makes sense to consider other parameters, like the size of the desired model of H in G, or

the number of vertices one has to remove from G such that the resulting graph does not contain

H as a minor. A more ambitious optimization version is to find a subgraph F ⊆ G of the largest

size such that F does not contain H as a minor. The dynamic programming approach that we

presented seems to get considerably more involved in this case.

16 I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos

Recently, the first steps have been made towards an analog of Bidimensionality Theory for

directed graphs [10]. It would be interesting to see whether our dynamic programming algorithms

can be adapted to find directed minors in directed graphs.

Finally, a challenging problem concerning minor containment is to provide explicit and hope-

fully not too big constants depending on h in the polynomial-time algorithm of Robertson and

Seymour [26]. Of course, these constants must be superpolynomial in h unless P = NP, as when

H is not fixed the problem of deciding whether G contains H as a minor is NP-complete [18].

References

1. I. Adler, F. Dorn, F. V. Fomin, I. Sau, and D. M. Thilikos. Fast Minor Testing in Planar Graphs. In

Proc. of the 18th Annual European Symposium on Algorithms (ESA), 2010. To appear.

2. I. Adler, M. Grohe, and S. Kreutzer. Computing excluded minors. In Proc. of the 19th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 641–650, 2008.

3. B. Courcelle. Graph rewriting: An algebraic and logic approach. In Handbook of Theoretical Computer

Science, Volume B: Formal Models and Semantics (B), pages 193–242. 1990.

4. A. Dawar, M. Grohe, and S. Kreutzer. Locally Excluding a Minor. In Proc. of the 22nd IEEE

Symposium on Logic in Computer Science (LICS), pages 270–279, 2007.

5. E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos. Subexponential parameterized

algorithms on graphs of bounded genus and H-minor-free graphs. Journal of the ACM, 52(6):866–893,

2005.

6. E. D. Demaine and M. T. Hajiaghayi. Graphs excluding a fixed minor have grids as large as treewidth,

with combinatorial and algorithmic applications through bidimensionality. In Proc. of the 16th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 682–689, 2005.

7. E. D. Demaine, M. T. Hajiaghayi, and K.-i. Kawarabayashi. Algorithmic Graph Minor Theory: Decom-

position, Approximation, and Coloring. In Proc. of the 46th Annual IEEE Symposium on Foundations

of Computer Science (FOCS), pages 637–646, 2005.

8. R. Diestel. Graph Theory, volume 173. Springer-Verlag, 2005.

9. F. Dorn. Planar Subgraph Isomorphism Revisited. In Proc. of the 27th International Symposium on

Theoretical Aspects of Computer Science (STACS), pages 263–274, 2010.

10. F. Dorn, F. V. Fomin, D. Lokshtanov, V. Raman, and S. Saurabh. Beyond Bidimensionality: Parame-

terized Subexponential Algorithms on Directed Graphs. In Proc. of the 27th International Symposium

on Theoretical Aspects of Computer Science (STACS), pages 251–262, 2010.

11. F. Dorn, F. V. Fomin, and D. M. Thilikos. Fast Subexponential Algorithm for Non-local Problems

on Graphs of Bounded Genus. In Proc. of the 10th Scandinavian Workshop on Algorithm Theory

(SWAT), volume 4059 of LNCS, pages 172–183, 2006.

12. F. Dorn, F. V. Fomin, and D. M. Thilikos. Catalan structures and dynamic programming in H-minor-

free graphs. In Proc. of the 19th annual ACM-SIAM Symposium on Discrete algorithms (SODA),

pages 631–640, 2008.

13. F. Dorn, F. V. Fomin, and D. M. Thilikos. Subexponential parameterized algorithms. Computer

Science Review, 2(1):29–39, 2008.

14. F. Dorn, E. Penninkx, H. L. Bodlaender, and F. V. Fomin. Efficient exact algorithms on planar graphs:

Exploiting sphere cut branch decompositions. Algorithmica, 58(3):790–810, 2010.

15. D. Eppstein. Subgraph isomorphism in planar graphs and related problems. Journal of Graph Algo-

rithms and Applications, 3(3):1–27, 1999.

Faster Parameterized Algorithms for Minor Containment 17

16. M. R. Fellows and M. A. Langston. Nonconstructive tools for proving polynomial-time decidability.

Journal of the ACM, 35(3):727–739, 1988.

17. P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2008.

18. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, 1979.

19. Q. P. Gu and H. Tamaki. Improved bound on the planar branchwidth with respect to the largest grid

minor size. Technical Report SFU-CMPT-TR 2009-17, Simon Fraiser University, 2009.

20. I. V. Hicks. Branch decompositions and minor containment. Networks, 43(1):1–9, 2004.

21. K.-i. Kawarabayashi, Y. Kobayashi, and B. A. Reed. The disjoint paths problem in quadratic time.

Submitted for publication, available at http://research.nii.ac.jp/∼k keniti/quaddp1.pdf, 2010.

22. K.-i. Kawarabayashi and B. A. Reed. Hadwiger’s conjecture is decidable. In Proc. of the 41st Annual

ACM Symposium on Theory of Computing (STOC), pages 445–454, 2009.

23. D. Lokshtanov, D. Marx, and S. Saurabh. Slightly Superexponential Parameterized Problems. In Proc.

of the 22nd annual ACM-SIAM Symposium on Discrete algorithms (SODA), pages 760–776, 2011.

24. J. Matoušek and R. Thomas. On the complexity of finding iso- and other morphisms for partial k-trees.

Discrete Mathematics, 108:143–364, 1992.

25. B. Mohar and C. Thomassen. Graphs on surfaces. John Hopkins University Press, 2001.

26. N. Robertson and P. Seymour. Graph Minors. XIII. The Disjoint Paths Problem. Journal of Combi-

natorial Theory, Series B, 63(1):65–110, 1995.

27. N. Robertson, P. Seymour, and R. Thomas. Quickly excluding a planar graph. Journal of Combinatorial

Theory, Series B, 62(2):323–348, 1994.

28. N. Robertson and P. D. Seymour. Graph Minors. XX. Wagner’s conjecture. Journal of Combinatorial

Theory, Series B, 92(2):325–357, 2004.

29. J. Rué, I. Sau, and D. M. Thilikos. Dynamic Programming for Graphs on Surfaces. In Proc. of the

37th International Colloquium on Automata, Languages and Programming (ICALP), volume 6198 of

LNCS, pages 372–383, 2010.

30. I. Sau and D. M. Thilikos. Subexponential Parameterized Algorithms for Degree-constrained Subgraph

Problems on Planar Graphs. Journal of Discrete Algorithms, 8(3):330–338, 2010.

31. P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217–241, 1994.

32. C. Thomassen. The graph genus problem is NP-complete. Journal of Algorithms, 10(4):568–576, 1989.

