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Abstract. We study grooming for two-period optical networks, a variation of the traffic groom-
ing problem for WDM ring networks introduced by Colbourn, Quattrocchi, and Syrotiuk. In the
two-period grooming problem, during the first period of time there is all-to-all uniform traffic among
n nodes, each request using 1/C of the bandwidth; and during the second period, there is all-to-all
uniform traffic only among a subset V of v nodes, each request now being allowed to use 1/C′ of the
bandwidth, where C′ < C. We determine the minimum drop cost (minimum number of ADMs) for
any n, v and C = 4 and C′ ∈ {1, 2, 3}. To do this, we use tools of graph decompositions. Indeed the
two-period grooming problem corresponds to minimizing the total number of vertices in a partition
of the edges of the complete graph Kn into subgraphs, where each subgraph has at most C edges
and where furthermore it contains at most C′ edges of the complete graph on v specified vertices.
Subject to the condition that the two-period grooming has the least drop cost, the minimum number
of wavelengths required is also determined in each case.
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1. Introduction. Traffic grooming is the generic term for packing low rate sig-
nals into higher speed streams (see the surveys [5, 19, 23, 28, 30]). By using traffic
grooming, one can bypass the electronics in the nodes which are not sources or des-
tinations of traffic, and therefore reduce the cost of the network. Here we consider
unidirectional SONET/WDM ring networks. In that case, the routing is unique and
we have to assign to each request between two nodes a wavelength and some band-
width on this wavelength. If the traffic is uniform and if a given wavelength has
capacity for at least C requests, we can assign to each request at most 1

C of the band-
width. C is known as the grooming ratio or the grooming factor. Furthermore if the
traffic requirement is symmetric, it can be easily shown (by exchanging wavelengths)
that there always exists an optimal solution in which the same wavelength is given
to each pair of symmetric requests. Thus without loss of generality we assign to each
pair of symmetric requests, called a circle, the same wavelength. Then each circle uses
1
C of the bandwidth in the whole ring. If the two end-nodes of a circle are i and j, we
need one ADM at node i and one at node j. The main point is that if two requests
have a common end-node, they can share an ADM if they are assigned the same
wavelength. For example, suppose that we have symmetric requests between nodes 1
and 2, and also between 2 and 3. If they are assigned two different wavelengths, then
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we need 4 ADMs, whereas if they are assigned the same wavelength we need only 3
ADMs.

The so called traffic grooming problem consists of minimizing the total number
of ADMs to be used, in order to reduce the overall cost of the network.

Suppose we have a ring with 4 nodes {0, 1, 2, 3} and all-to-all uniform traffic.
There are therefore 6 circles (pairs of symmetric requests) {i, j} for 0 ≤ i < j ≤ 3.
If there is no grooming (i.e. C = 1) we need 6 wavelengths (one per circle) and a
total of 12 ADMs. For grooming factor C = 2, we can put two circles on the same
wavelength, using 3 or 4 ADMs according to whether they share a node or not. For
example we can put {1, 2} and {2, 3} together on one wavelength; {1, 3} and {3, 4}
on a second wavelength, and {1, 4} and {2, 4} on a third one, for a total of 9 ADMs.
For grooming factor C = 3, we can use only 2 wavelengths. If we put {1, 2}, {2, 3},
and {3, 4} together on one wavelength and {1, 3}, {2, 4}, and {1, 4} on the other one,
we need 8 ADMs (solution a); but we can do better by putting {1, 2}, {2, 3}, and
{1, 3} on the first wavelength and {1, 4}, {2, 4}, and {3, 4} on the second one, using
7 ADMs (solution b).

Here we study the problem for a unidirectional SONET ring with n nodes, groom-
ing ratio C, and all-to-all uniform unitary traffic. This problem has been modelled
as a graph partition problem in both [4] and [21]. In the all-to-all case the set of
requests is modelled by the complete graph Kn. To a wavelength k is associated a
subgraph Bk in which each edge corresponds to a pair of symmetric requests (that
is, a circle) and each node to an ADM. The grooming constraint, i.e. the fact that a
wavelength can carry at most C requests, corresponds to the fact that the number of
edges |E(Bk)| of each subgraph Bk is at most C. The cost corresponds to the total
number of vertices used in the subgraphs, and the objective is therefore to minimize
this number.
Traffic Grooming in the Ring

Input: Two integers n and C.
Output: Partition E(Kn) into subgraphs Bk, 1 ≤ k ≤ Λ, s.t. |E(Bk)| ≤ C
for all k.
Objective: Minimize

∑Λ
k=1 |V (Bk)|.

In the example above with n = 4 and C = 3, solution a consists of a decomposition
of K4 into two paths with four vertices [1, 2, 3, 4] and [2, 4, 1, 3], while solution b
corresponds to a decomposition into a triangle (1, 2, 3) and a star with the edges
{1, 4}, {2, 4}, and {3, 4}.

With the all-to-all set of requests, optimal constructions for a given grooming
ratio C have been obtained using tools of graph and design theory [10], in particular
for grooming ratio C = 3 [1], C = 4 [4, 22], C = 5 [3], C = 6 [2], C = 7 [11],
C = 8 [12], and C ≥ N(N − 1)/6 [6].

Graph decompositions have been extensively studied for other reasons as well.
See [8] for an excellent survey, [17] for relevant material on designs with blocksize
three, and [10] for terminology in design theory.

Most of the papers on grooming deal with a single (static) traffic matrix. Some
articles consider variable (dynamic) traffic, such as finding a solution which works for
the maximum traffic demand [7, 31] or for all request graphs with a given maximum
degree [24], but all keep a fixed grooming factor. In [14] an interesting variation of
the traffic grooming problem, grooming for two-period optical networks, has been
introduced in order to capture some dynamic nature of the traffic. Informally, in the
two-period grooming problem each time period supports different traffic requirements.
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During the first period of time there is all-to-all uniform traffic among n nodes, each
request using 1/C of the bandwidth; but during the second period there is all-to-all
traffic only among a subset V of v nodes, each request now being allowed to use a
larger fraction of the bandwidth, namely 1/C ′ where C ′ < C.

Denote by X the subset of n nodes. Therefore the two-period grooming problem
can be expressed as follows:
Two-Period Grooming in the Ring

Input: Four integers n, v, C, and C ′.
Output: A partition N(n, v;C,C ′) of E(Kn) into subgraphs Bk, 1 ≤ k ≤ Λ,
such that for all k, |E(Bk)| ≤ C, and |E(Bk) ∩ (V × V )| ≤ C ′, with V ⊆ X,
|V | = v.
Objective: Minimize

∑Λ
k=1 |V (Bk)|.

Following [14], a grooming is denoted by N(n,C). When the grooming N(n,C)
is optimal, i.e. minimizes the total ADM cost, then the grooming is denoted by
ON (n,C). Whether general or optimal, the drop cost of a grooming is denoted by
cost N(n,C) or cost ON (n,C), respectively.

A grooming of a two-period network N(n, v;C,C ′) with grooming ratios (C,C ′)
coincides with a graph decomposition (X,B) of Kn (using standard design theory
terminology, B is the set of all the blocks of the decomposition) such that (X,B) is
a grooming N(n,C) in the first time period, and (X,B) faithfully embeds a graph
decomposition ofKv such that (V,D) is a groomingN(v, C ′) in the second time period.
Let V ⊆ X. The graph decomposition (X,B) embeds the graph decomposition (V,D)
if there is a mapping f : D → B such that D is a subgraph of f(D) for every D ∈ D.
If f is injective (i.e., one-to-one), then (X,B) faithfully embeds (V,D). This concept
of faithful embedding has been explored in [13, 26].

We use ON (n, v;C,C ′) to denote an optimal grooming N(n, v;C,C ′).
As it turns out, an ON (n, v;C,C ′) does not always coincide with an ON (n,C).

Generally we have cost ON (n, v;C,C ′) ≥ cost ON (n,C) (see Examples 1.2 and
1.3). Of particular interest is the case when cost ON (n, v;C,C ′) = cost ON (n,C)
(see Example 1.1).

Example 1.1. Let n = 7, v = 4, C = 4. Let V = {0, 1, 2, 3} and W =
{a0, a1, a2}. An optimal decomposition is given by three triangles (a0, 0, 1), (a1, 1, 2),
and (a2, 2, 3), and three 4-cycles (0, 2, a0, a1), (0, 3, a0, a2), and (1, 3, a1, a2), giving a
total cost of 21 ADMs.

This solution is valid and optimal for both C ′ = 1 and C ′ = 2, and it is optimal
for the classical Traffic Grooming in the Ring problem when n = 7 and C = 4.
Therefore, cost ON (7, 4; 4, 1) = cost ON (7, 4; 4, 2) = cost ON (7, 4) = 21.

Example 1.2. Let n = 7, v = 5, C = 4, and C ′ = 2. Let V = {0, 1, 2, 3, 4}
and W = {a0, a1}. We see later that an optimal decomposition is given by the five
kites (a0, 1, 2; 0), (a0, 3, 4; 1), (a1, 1, 3; 2), (a1, 2, 4; 0) and (a0, a1, 0; 1), plus the edge
{0, 3}, giving a total cost of 22 ADMs. So cost ON (7, 5; 4, 2) = 22. Note that this
decomposition is not a valid solution for C ′ = 1, since there are subgraphs containing
more than one edge with both end-vertices in V .

Example 1.3. Let n = 7, v = 5, C = 4, and C ′ = 1. Let again V = {0, 1, 2, 3, 4}
and W = {a0, a1}. We see later that an optimal decomposition is given by the four
K3s (a0, 1, 2), (a0, 3, 4), (a1, 0, 3), and (a1, 2, 4), the C4 (0, 1, a1, a0), plus the five
edges {0, 4}, {1, 3}, {0, 2}, {1, 4}, and {2, 3}, giving a total cost of 26 ADMs. So
cost ON (7, 5; 4, 1) = 26.

Colbourn, Quattrocchi, and Syrotiuk [14, 15] completely solve the cases when
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C = 2 and C = 3 (C ′ = 1 or 2). In this article we determine the minimum drop cost
of an N(n, v; 4, C ′) for all n ≥ v ≥ 0 and C ′ ∈ {1, 2, 3}.

We are also interested in determining the minimum number of wavelengths, or
wavecost, required in an assignment of wavelengths to a decomposition. Among the
ON (n, 4)s one having the minimum wavecost is denoted by MON (n, 4), and the
corresponding minimum number of wavelengths by wavecostMON (n, 4). We char-
acterize the ON (n, v;C,C ′) whose wavecost is minimum among all ON (n, v;C,C ′)s
and denote one by MON (n, v;C,C ′); then wavecostMON (n, v;C,C ′) denotes its
wavecost.

We deal separately with each value of C ′ ∈ {1, 2, 3}. Table 1.1 summarizes the
cost formulas for n = v + w > 4.

cost ON (v + w, v; 4, 1) =


(
v+w

2

)
if v ≤ w + 1(

v+w
2

)
+
(
v
2

)
−
⌊

vw
2

⌋
if v ≥ w + 1

cost ON (v + w, v; 4, 2) =

(
v+w

2

)
if v ≤ 2w(

v+w
2

)
+
⌈

1
2

(
v
2

)⌉
− vw

2 + δ if v > 2w and v even

where δ =


1 if w = 2, or

if w = 4 and
v ≡ 0 (mod 4)

0 otherwise(
v+w

2

)
+
⌈

1
2

((
v
2

)
− vw −

⌈
w
2

⌉)⌉
+ δ if v > 2w and v odd

where δ =

 1 if w = 3 and
v ≡ 3 (mod 4)

0 otherwise

cost ON (v + w, v; 4, 3) =
(
v+w

2

)
Table 1.1

Cost formulas for n = v + w > 4.

2. Notation and Preliminaries. We establish some graph-theoretic notation
to be used throughout. We denote the edge between u and v by {u, v}. Kn denotes
a complete graph on n vertices and KX represents the complete graph on the vertex
set X. A triangle with edges {{x, y}, {x, z}, {y, z}} is denoted by (x, y, z). A 4-cycle
with edges {{x, y}, {y, z}, {z, u}, {u, x}} is denoted by (x, y, z, u). A kite with edges
{{x, y}, {x, z}, {y, z}, {z, u}} is denoted by (x, y, z;u). The groomings to be produced
also employ paths; the path on k vertices Pk is denoted by [x1, . . . , xk] when it contains
edges {xi, xi+1} for 1 ≤ i < k. Now let G = (X,E) be a graph. If |X| is even, a
set of |X|/2 disjoint edges in E is a 1-factor; a partition of E into 1-factors is a 1-
factorization. Similarly, if |X| is odd, a set of (|X| − 1)/2 disjoint edges in E is a
near 1-factor; a partition of E into near 1-factors is a near 1-factorization. We also
employ well-known results on partial triple systems and group divisible designs with
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block size three; see [17] for background.
The vertices of the set V are the integers modulo v, {0, 1, . . . , v−1}. The vertices

in X \V form the set W of size w = n−v with W = {a0, . . . , aw−1}, the indices being
taken modulo w.

Among graphs with three or fewer edges (i.e., when C = 3),the only graph with
the minimum ratio (number of vertices over the number of edges) is the triangle. For
C = 4 three different such graphs have minimum ratio 1: the triangle, the 4-cycle,
and the kite. This simplifies the problem substantially. Indeed, in contrast to the
lower bounds in [15], in this case the lower bounds arise from easy classification of
the edges on V . We recall the complete characterization for optimal groomings with
a grooming ratio of four:

Theorem 2.1. [4, 22] costON (4, 4) = 7 and, for n ≥ 5, costON (n, 4) =
(
n
2

)
.

Furthermore a MON (4, 4) employs two wavelengths and can be realized by a kite and
a P3 (or a K3 and a star), and a MON (n, 4), n ≥ 5, employs

⌈
n(n−1)

8

⌉
wavelengths

and can be realized by t K3s and
⌈

n(n−1)
8 − t

⌉
4-cycles or kites, where

t =


0 if n ≡ 0, 1 (mod 8)
1 if n ≡ 3, 6 (mod 8)
2 if n ≡ 4, 5 (mod 8)
3 if n ≡ 2, 7 (mod 8)

.

In order to unify the treatment of the lower bounds, in a decomposition N(v +
w, v; 4, C ′) for C ′ ∈ {1, 2}, we call an edge with both ends in V neutral if it appears
in a triangle, 4-cycle, or kite; we call it positive otherwise. An edge with one end in
V and one in W is a cross edge.

Lemma 2.2.

1. In an N(v + w, v; 4, C ′) with C ′ ∈ {1, 2}, the number of neutral edges is at
most 1

2C
′vw.

2. When v is odd and C ′ = 2, the number of neutral edges is at most vw − w
2 .

Proof. Every neutral edge appears in a subgraph having at least two cross edges.
Thus the number of subgraphs containing one or more neutral edges is at most 1

2vw.
Each can contain at most C ′ neutral edges, and hence there are at most 1

2C
′vw neutral

edges. This proves the first statement.
Suppose now that C ′ = 2 and v is odd. Any subgraph containing two neutral

edges employs exactly two cross edges incident to the same vertex in W . Thus the
number α of such subgraphs is at most 1

2w(v−1). Then remaining neutral edges must
arise (if present) in triangles, kites, or 4-cycles that again contain two cross edges but
only one neutral edge; their number, β, must satisfy β ≤ vw

2 − α. Therefore the
number of neutral edges, 2α+ β, satisfies 2α+ β ≤ 1

2w(v − 1) + vw
2 = vw − w

2 .
When C = 3 there are strong interactions among the decompositions placed on V ,

on W , and on the cross edges [14, 15]; fortunately here we shall see that the structure
on V suffices to determine the lower bounds. Because every N(v + w, v; 4, C ′) is an
N(v+w, v; 4, C ′+ 1) for 1 ≤ C ′ ≤ 3, and N(v+w, v; 4, 4) coincides with N(v+w, 4),
cost ON (v + w, v; 4, 1) ≥ cost ON (v + w, v; 4, 2) ≥ cost ON (v + w, v; 4, 3) ≥
cost ON (v + w, 4). We use these obvious facts to establish lower and upper bounds
without further comment.

3. Case C ′ = 1.
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3.1. ON (n, v; 4, 1). Theorem 3.1. Let n = v + w ≥ 5.
1. cost ON (v + w, v; 4, 1) = cost ON (v + w, 4) when v ≤ w + 1.
2. cost ON (v + w, v; 4, 1) =

(
v+w

2

)
+
(
v
2

)
− b vw

2 c when v ≥ w + 1.
Proof. To prove the lower bound, we establish that cost ON (v + w, v; 4, 1) ≥(

v+w
2

)
+
(
v
2

)
− bvw

2 c. It suffices to prove that the number of subgraphs employed in
an N(v+w, v; 4, 1) other than triangles, kites, and 4-cycles is at least d

(
v
2

)
− 1

2vwe =(
v
2

)
− b 1

2vwc. By Lemma 2.2, this is a lower bound on the number of positive edges
in any such decomposition; because each positive edge lies in a different subgraph of
the decomposition, the lower bound follows.

Now we turn to the upper bounds. For the first statement, because an ON (v +
w, v; 4, 1) is also an ON (v+w, v−1; 4, 1), it suffices to consider v ∈ {w,w+1}. When
v = w, write v = 4s+ t with t ∈ {0, 3, 5, 6}. Form on V a complete multipartite graph
with s classes of size four and one class of size t. Replace edge e = {x, y} of this graph
by the 4-cycle (x, y, ax, ay). On {x1, . . . , x`, ax1 , . . . , ax`

} whenever {x1, . . . , x`} forms
a class of the multipartite graph, place a decomposition that is optimal for drop cost
and uses 4, 7, 12, and 17 wavelengths when ` is 3, 4, 5, or 6, respectively. These are
as follows:
MON (3 + 3, 3; 4, 1) {(0, a0, 1; a2), (1, a1, 2; a0), (2, a2, 0; a1), (a0, a1, a2)}
MON (4 + 4, 4; 4, 1) {(1, 2, a3; a0), (0, 3, a2; a1), (a1, 1, 3; a0), (a0, a2, 1; 0),

(a0, a1, 2; 0), (a1, a3, 0; a0), (2, 3, a3, a2)}
MON (5 + 5, 5; 4, 1) {(1, 2, a3; a0), (0, 3, a2; a1), (a1, 1, 3; a0), (a0, a2, 1; 0),

(a0, a1, 2; 0), (a1, a3, 0; a0), (2, a2, 4; a4), (3, a3, 4),
(a2, a3, a4), (2, 3, a4), (0, 4, a0, a4), (1, 4, a1, a4)}

MON (6 + 6, 6; 4, 1) {(1, 2, a3; a0), (0, 3, a2; a1), (a1, 1, 3; a0), (a0, a2, 1; 0),
(a0, a1, 2; 0), (a1, a3, 0; a0), (4, 5, a5; a4), (2, a2, 4; a4),
(2, 3, a4; 5), (3, 4, a3), (a2, a3, a4), (0, 4, a0, a4),
(1, 4, a1, a4), (0, 5, a0, a5), (1, 5, a1, a5), (2, 5, a2, a5),
(3, 5, a3, a5)}.

Now let v = w+1. Let V = {0, . . . , v−1} and W = {a0, . . . , av−2}. Form triangles
(i, i+1, ai) for 0 ≤ i < v−1. Then form 4-cycles (i, j+1, ai, aj) for 0 ≤ i < j ≤ v−2.

When v ≥ w + 2 and v is even, form a 1-factorization F0, . . . , Fv−2 on V . For
0 ≤ i < w, let {eij : 1 ≤ j ≤ v

2} be the edges of Fi, and form triangles Tij = {ai}∪eij .
Now for 0 ≤ i < w; 1 ≤ j ≤ bw

2 c; and furthermore j 6= w
2 if i ≥ w

2 and w is even, adjoin
edge {ai, ai+j mod w} to Tij to form a kite. All edges of 1-factors {Fi : w ≤ i < v− 1}
are taken as K2s.

When v ≥ w + 2 and v is odd, form a near 1-factorization F0, . . . , Fv−1 on V ,
in which Fv−1 contains the edges {{2h, 2h + 1} : 0 ≤ h < v−1

2 }, and near 1-factor
Fi misses vertex i for 0 ≤ i < v. Then form 4-cycles (2h, 2h + 1, a2h+1, a2h) for
0 ≤ h < bw

2 c. For 0 ≤ i < w, let {eij : 1 ≤ j ≤ v−1
2 } be the edges of Fi, and form

triangles Tij = {ai} ∪ eij . Without loss of generality we assume that w − 1 ∈ e01;
when w is odd, adjoin {w − 1, aw−1} to T01 to form a kite. Now for 0 ≤ i < w;
1 ≤ j ≤ bw

2 c; and furthermore j 6= w
2 if i ≥ w

2 and w is even and j 6= 1 if i = 2h
for 0 ≤ h < bw

2 c, adjoin edge {ai, ai+j mod w} to Tij to form a kite. All edges of near
1-factors {Fi : w ≤ i < v − 1} and the v−1

2 − b
w
2 c remaining edges of Fv−1 are taken

as K2s.
When v ≥ w + 1, each subgraph contains exactly one edge on V and so their

number is
(
v
2

)
. This fact is later used to prove Theorem 3.3.

3.2. MON (n, v; 4, 1). Theorem 3.2. Let v + w ≥ 5. For C ′ = 1 and v ≤ w,

wavecostMON (v + w, v; 4, 1) = wavecostMON (v + w, 4).
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Proof. We need only treat the cases when v ∈ {w,w − 1}; the case with v = w is
handled in the proof of Theorem 3.1. When v = w−1, the argument is identical to that
proof, except that we choose v = 4s+ t with t ∈ {0, 1, 2, 3} and place decompositions
on {x1, . . . , x`, ax1 , . . . , ax`

, av} instead, with 1,3,6,9 wavelengths when ` = 1, 2, 3, 4,
respectively. These are as follows:
MON (1 + 2, 1; 4, 1) {(0, a0, a1)}
MON (2 + 3, 2; 4, 1) {(0, a0, a1), (1, a1, a2), (0, 1, a0, a2)}
MON (3 + 4, 3; 4, 1) {(0, a0, a1), (1, a1, a2), (0, 1, a0, a2), (2, a2, a3), (0, 2, a0, a3),

(1, 2, a1, a3)}
MON (4 + 5, 4; 4, 1) {(0, 1, a0; a3), (0, 2, a1; a3), (0, 3, a2; a3), (2, 3, a0; a4),

(1, 3, a1; a4), (1, 2, a3; 3), (0, a3, a4; 3), (1, a2, a4; 2),
(a0, a1, a2; 2)}

Theorem 3.3. When v > w,

wavecostMON (v + w, v; 4, 1) =
(
v

2

)
.

Proof. Since every edge on V appears on a different wavelength,
(
v
2

)
is a lower

bound. As noted in the proof of Theorem 3.1 the constructions given there meet this
bound.

The solutions used from Theorem 3.1 are (essentially) the only ones to minimize
the number of graphs in an ON (v + w, v; 4, 1) with v > w. However, perhaps sur-
prisingly they are not the only ones to minimize the number of wavelengths. To see
this, consider a ON (v+w, v; 4, 1) with v > w > 2 from Theorem 3.1. Remove edges
{a0, a1}, {a0, a2}, and {a1, a2} from their kites, and form a triangle from them. This
does not change the drop cost, so the result is also an ON (v +w, v; 4, 1). It has one
more graph than the original. Despite this, it does not need an additional wavelength,
since the triangle (a0, a1, a2) can share a wavelength with an edge on V . In this case,
while minimizing the number of connected graphs serves to minimize the number of
wavelengths, it is not the only way to do so.

4. Case C ′ = 2.

4.1. ON (n, v; 4, 2). Theorem 4.1. Let v + w ≥ 5 and v be even.
1. When v ≤ 2w, cost ON (v + w, v; 4, 2) = cost ON (v + w, 4).
2. When v ≥ 2w+ 2, cost ON (v+w, v; 4, 2) =

(
v+w

2

)
+ d 1

2

(
v
2

)
e− vw

2 + δ, where
δ = 1 if w = 4 or if w = 2 and v ≡ 0 (mod 4), and δ = 0 otherwise.

Proof. By Lemma 2.2,
(
v
2

)
− vw is a lower bound on the number of positive edges

in any N(v + w, v; 4, 2); every subgraph of the decomposition containing a positive
edge contains at most two positive edges. So the number of subgraphs employed in
an N(v+w, v; 4, 2) other than triangles, kites, and 4-cycles is at least d 1

2

((
v
2

)
− vw

)
e.

The lower bound follows for w 6= 2, 4.
As in the proof of Lemma 2.2, denote by α (resp. β) the number of subgraphs

containing 2 (resp 1) neutral edges and so at least two cross edges. We have 2α+β ≤
2α + 2β ≤ vw. Equality in the lower bound, when v ≡ 0 (mod 4), arises only when
β = 0 and therefore to meet the bound an ON (w, 4) must be placed on W implying
that δ = 1 if w = 2 or 4. When v ≡ 2 (mod 4), we can have 2α+ β = vw − 1 and so
β = 1. We can use an edge on W in a graph with an edge on V . But when w = 4,
the five edges that would remain on W require drop cost 6, and so δ = 1.
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Now we turn to the upper bounds. If w ≥ v−1, apply Theorem 3.1. Suppose that
w ≤ v − 2. Let V = {0, . . . , 2t− 1} and W = {a0, . . . , aw−1}. Place an ON (w, 4) on
W . Form a 1-factorization on V containing factors {F0, . . . , Fw−1, G0, . . . , G2t−2−w}
in which the last two 1-factors are {{2h, 2h + 1} : 0 ≤ h < t} and {{2h + 1, 2h +
2 mod 2t} : 0 ≤ h < t}, whose union is a Hamilton cycle. For 0 ≤ i < w, form
triangles Tij by adding ai to each edge eij ∈ Fi. For 0 ≤ i < min(w, 2t − 1 − w),
observe that Hi = Fi ∪ Gi is a 2-factor containing even cycles. Hence there is a
bijection σ mapping edges of Fi to edges of Gi so that e and σ(e) share a vertex.
Adjoin edge σ(eij) to the triangle Tij to form a kite. In this way, all edges between
V and W appear in triangles or kites, and all edges on V are employed when v ≤ 2w.
When v ≥ 2w+2, the edges remaining on V are those of the factors Gw, . . . , Gv−2−w.

When v 6= 2w+ 2, the union of these edges is connected because the union of the
last two is connected, and hence it can be partitioned into P3s (and one P2 when v ≡ 2
(mod 4)) [9, 29]. When w = 2 and v ≡ 2 (mod 4), the drop cost can be reduced by 1
as follows. Let {x, y} be the P2 in the decomposition, and let {x, z} ∈ G0. Let T be
the triangle obtained by removing {x, z} from its kite. Add {a0, a1} to T to form a
kite. Add the P3 [y, x, z]. In this way two isolated P2s are replaced by a P3, lowering
the drop cost by 1.

When v = 2w + 2, we use a variant of this construction. Let R be a graph with
vertex set V that is isomorphic to v

4 K4s when v ≡ 0 (mod 4) and to v−6
4 K4s and

one K3,3 when v ≡ 2 (mod 4). Let F1, . . . , Fw−1, G1, . . . , Gw−1 be the 1-factors of a
1-factorization of the complement of R (one always exists [27]). Proceed as above to
form kites using ai for 1 ≤ i < w and the edges of Fi and Gi. For each K4 of R with
vertices {p, q, r, s}, form kites (a0, q, p; r) and (a0, r, s; p). Then add the P3 [r, q, s]. If R
contains a K3,3 with bipartition {{p, q, r}, {s, t, u}}, add kites (a0, s, p; t), (a0, q, t; r),
and (a0, r, u; p). What remains is the P4 [r, s; q, u], which can be partitioned into a
P2 and a P3.

In order to treat the odd case, we establish an easy preliminary result:
Lemma 4.2. Let w > 3 be a positive integer. The graph on w vertices containing

all edges except for bw
2 c disjoint edges (i.e., Kw \ bw

2 cK2) can be partitioned into
1. 4-cycles when w is even;
2. kites and 4-cycles when w ≡ 1 (mod 4); and
3. kites, 4-cycles, and exactly two triangles when w ≡ 3 (mod 4).

Proof. Let W = {a0, . . . , aw−1}. Form 4-cycles {(a2i, a2j , a2i+1, a2j+1) : 0 ≤ i <
j < w

2 } when w is even, leaving uncovered the w
2 edges {a2i, a2i+1}. (This is also a

consequence of a much more general result in [20].)
When w is odd, the proof is by induction on w by adding four new vertices. So

we provide two base cases for the induction to cover all odd values of w.
For w = 5, partition K5 \ {{a0, a1}, {a2, a3}} into two kites (a2, a4, a0; a3) and

(a3, a4, a1; a2).
For w = 7, partition K7 \ {{a0, a1}, {a2, a3}, {a4, a5}} into kites (a3, a6, a0; a5),

(a1, a6, a4; a3) and (a5, a6, a2; a1), and the K3s (a0, a2, a4) and (a1, a3, a5).
By induction form an optimal decomposition of Kw−F , with F = {{a2h, a2h+1} :

0 ≤ h < w−1
2 }. Add four vertices {aw, aw+1, aw+2, aw+3}. For 0 ≤ h < w−1

2 , add
the C4s (a2h, aw, a2h+1, aw+1) and (a2h, aw+2, a2h+1, aw+3). Cover the edges of the
K5 on {aw−1, aw, aw+1, aw+2, aw+3} minus the edges {aw−1, aw} and {aw+1, aw+2},
using two kites as shown for the case when w = 5.

Theorem 4.3. Let v + w ≥ 5 and v be odd.
1. When v ≤ 2w − 1, cost ON (v + w, v; 4, 2) = cost ON (v + w, 4).
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2. When v ≥ 2w+1, cost ON (v+w, v; 4, 2) =
(
v+w

2

)
+d 1

2

((
v
2

)
− vw + dw

2 e
)
e+δ,

where δ = 1 if w = 3 and v ≡ 3 (mod 4), 0 otherwise.
Proof. To prove the lower bound, it suffices to prove that the number of subgraphs

employed in an N(v + w, v; 4, 2) other than triangles, kites, and 4-cycles is at least
d 1

2

((
v
2

)
− vw + dw

2 e
)
e. As in the proof of Theorem 4.1, this follows from Lemma 2.2.

When w = 3 and v ≡ 3 (mod 4), at least
(
v
2

)
− 3v + 2 edges are positive, an even

number. To meet the bound, exactly one cross edge remains and exactly two edges on
W remain. These necessitate a further graph that is not a triangle, kite, or 4-cycle.

Now we turn to the upper bounds. By Theorem 4.1, cost ON ((v + 1) + (w −
1), v + 1; 4, 2) = cost ON (v + w, 4) when v ≤ 2w − 3. So suppose that v ≥ 2w − 1.
Write v = 2t+ 1.

When w = t + 1, form a near 1-factorization on V consisting of 2t + 1 near 1-
factors, F0, . . . , Ft, G0, . . . , Gt−1. Without loss of generality, Fi misses vertex i for
0 ≤ i ≤ t, and Ft contains the edges {{k, t + k + 1} : 0 ≤ k < t}. The union of any
two near 1-factors contains a nonnegative number of even cycles and a path with an
even number of edges. For 0 ≤ i ≤ t, form triangles Tij by adding ai to each edge
eij ∈ Fi. As in the proof of Theorem 4.1, for 0 ≤ i < t, use the edges of Gi to convert
every triangle Tij into a kite. Then add edge {i, ai} to triangle Tti constructed from
edge {i, t+ 1 + i}. What remains is the single edge {t, at} together with all edges on
W .

When w 6∈ {2, 4}, place an ON (w, 4) on W of cost
(
w
2

)
so that at appears in

a triangle in the decomposition, and use the edge {t, at} to convert this to a kite.
We use a decomposition having 1 ≤ δ ≤ 4 triangles, therefore getting a solution
with at most 3 triangles. Such a decomposition exists by Theorem 2.1 if w 6≡ 0, 1
(mod 8). If w ≡ 0, 1 (mod 8) we build a solution using 4 triangles as follows. If
w ≡ 1 (mod 8), form an ON (w − 2, 4) on vertices {0, . . . , w − 3} with 3 triangles.
Add the triangle (w−3, w−2, w−1) and the 4-cycles {(2h,w−2, 2h+1, w−1) : 0 ≤ h <
w−3

2 }. For w = 8 a solution with 4 triangles is given as ON (8, 4): B = {(1, 2, 0; 4),
(0, 3, 6; 7), (0, 7, 5; 2), (4, 5, 3; 1), (1, 4, 7), (1, 5, 6), (2, 3, 7), (2, 4, 6)}. In general, for
w ≡ 0 (mod 8), form an ON (w − 8, 4) on vertices {0, . . . , w − 9} with 4 triangles.
Add the 4-cycles {(2h,w − 2j, 2h + 1, w − 2j + 1) : 0 ≤ h < w−8

2 }; 1 ≤ j ≤ 4 and an
ON (8, 4) without triangles on the 8 vertices {w − 8, . . . , w − 1}.

Two values for w remain. When w = 2, an ON (5, 3; 4, 1) is also an ON (5, 3; 4, 2).
The case when v = 7 and w = 4 is given as MON (7 + 4, 7; 4, 2): B = {(a0, 4, 2; 3),
(a0, 3, 6; 0), (a0, 0, 5; 1), (a1, 5, 3; 4), (a1, 4, 6; 1), (a1, 1, 0; 2), (a2, 0, 4; 5), (a2, 6, 5; a3),
(a2, 1, 2; 5), (0, 3, a3; 2), (1, a0, a2, 3), (a0, a1, a2, a3), (a1, 2, 6, a3), (1, 4, a3)}. The so-
lution given has only 1 triangle.

Henceforth w ≤ t. For t > 2, form {F0, . . . , Fw−1, G0, . . . , G2t−1−w}, a near 1-
factorization of Kv \Ct where Ct is the t-cycle on (0, 1, . . . , t−1); such a factorization
exists [25]. Name the factors so that the missing vertex in Fi is bi/2c for 0 ≤ i < w
(this can be done, as every vertex i satisfying 0 ≤ i < t is the missing vertex in two
of the near 1-factors). Form triangles using F0, . . . , Fw−1 and convert to kites using
G0, . . . , Gw−1 as before. There remain 2(t− w) near 1-factors Gw, . . . , G2t−1−w. For
0 ≤ h < t − w, Gw+2h ∪ Gw+2h+1 contains even cycles and an even path, and so
partitions into P3s. Then the edges remaining are (1) the edges of the t-cycle; (2)
the edges {{bi/2c, ai} : 0 ≤ i < w}; and (3) all edges on W . For 0 ≤ i < bw

2 c,
form triangle (i, a2i, a2i+1) and add edge {i, i + 1} to convert it to a kite. Edges
{{i, i + 1 mod t} : bw

2 c ≤ i < t} of the cycle remain from (1); edge {w−1
2 , aw−1}

remains when w is odd, and no edge remains when w is even, from (2); and all edges
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excepting a set of bw
2 c disjoint edges on W remain.

When w 6= 3, we partition the remaining edges in (1) (which form a path of length
t−bw

2 c), into P3s when t−bw
2 c is even, and into P3s and the P2 {0, t−1} when t−bw

2 c
is odd. We adjoin edge {w−1

2 , aw−1} to the P3 (from the t-cycle) containing the vertex
w−1

2 to form a P4. Finally, we apply Lemma 4.2 to exhaust the remaining edges on
W .

When w = 3, the remaining edges are those of the path [0, t− 1, t− 2, . . . , 2, 1, a2]
and edges {{a2, a0}, {a2, a1}}. Include {{1, 2}, {1, a2}, {a2, a0}, {a2, a1}} in the de-
composition, and partition the remainder into P3s and, when v ≡ 3 (mod 4), one P2

{0, t− 1}.
The case when t = 2 is done in Example 1.2 (the construction is that given above,

except that we start with a near 1-factorization of K5 \ {{0, 1}, {0, 3}}).

4.2. MON (n, v; 4, 2). Theorem 4.4. For C ′ = 2 and v ≤ 2w,

wavecostMON (v + w, v; 4, 2) = wavecostMON (v + w, 4).

Proof. It suffices to prove the statement for v ∈ {2w − 2, 2w − 1, 2w}. When
v = 2w − 1, apply the construction given in the proof of Theorem 4.3, where we
noted that there are at most 3 triangles. The proof of Theorem 4.3 provides explicit
solutions when w ∈ {2, 4}.

Now suppose that v = 2w. In the proof of Theorem 4.1, v
2 = w triangles contain-

ing one edge on V and two edges between a vertex of V and aw−1 remain. Then convert
w− 1 triangles to kites using edges on W incident to aw−1. That leaves one triangle.
When the remaining edges on the w − 1 vertices of W support a MON (w − 1, 4)
that contains at most two triangles, we are done. It remains to treat the cases when
w−1 ≡ 2, 7 (mod 8) or w−1 = 4.For the first case, let x be one vertex of the triangle
left containing aw−1, namely (aw−1, x, y). Consider the pendant edge {x, t} ∈ Gw−2

used in a kite containing aw−2. Delete {x, t} from this kite and adjoin {aw−3, aw−2}
to the unique triangle so formed forming another kite. Finally adjoin {x, t} to the
triangle (aw−1, x, y). Proceed as before, but partition all edges on {a0, . . . , aw−2} ex-
cept edge {aw−3, aw−2} into 4-cycles and kites. The case when w − 1 = 4 is similar,
but we leave three of the triangles arising from Fw−1 and partition K5 \ P3 into two
kites.

Now suppose that v = 2w − 2. We do a construction similar to that above.
In the proof of Theorem 4.1, there remain 3v

2 = 3(w − 1) triangles joining aw−3

(resp. aw−2, aw−1) to Fw−3 (resp. Fw−2, Fw−1). Then convert the w − 1 triangles
containing aw−1 to kites using edges on W incident to aw−1, w−2 triangles containing
aw−2 to kites using the remaining edges on W incident to aw−2, and w − 3 triangles
containing aw−3 to kites using edges on W incident to aw−3. That leaves three
triangles. So, if w − 3 ≡ 0, 1 (mod 8) we are done. Otherwise, as above, choose in
each of the three remaining triangles vertices x1, x2, x3; consider the edges {x1, t1}
(resp. {x2, t2}) appearing in the kites containing aw−4 and x1 (resp. aw−4 and x2),
and the edge {x3, t3} in the kite containing aw−5 and x3. Delete these edges and
adjoin them to the three remaining triangles. Finally adjoin the edges {aw−4, aw−5}
and {aw−4, aw−6} to the two triangles obtained from the two kites containing aw−4,
and adjoin the edge {aw−5, aw−6} to the triangle obtained from the kite containing
aw−5. Proceed as before, but partition all edges on {a0, . . . , aw−4} except the triangle
(aw−6, aw−5, aw−4) into 4-cycles and kites.
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Theorem 4.5.

1. When v > 2w is even,

wavecostMON (v + w, v; 4, 2) =
⌈(

2
(
v

2

)
+
(
w

2

))
/4
⌉
.

2. When v > 2w is odd,

wavecostMON (v + w, v; 4, 2) =
⌈(

2
(
v

2

)
+

(w − 1)(w + 1)
2

)
/4
⌉
.

Proof. First we treat the case when v is even. Then (by Theorem 4.1) an ON (v+
w, v; 4, 2) must employ vw or vw− 1 neutral edges, using all vw edges between V and
W . Each such graph uses two edges on V and none on W , except that a single graph
may use one on V and one on W . Now the edges of V must appear on d 1

2

(
v
2

)
e different

wavelengths, and these wavelengths use at most one edge on W (when v ≡ 2 (mod 4)).
Thus at least d

(
w
2

)
/4e additional wavelengths are needed when v ≡ 0 (mod 4), for a

total of d
(
v
2

)
/2 +

(
w
2

)
/4e. When v ≡ 2 (mod 4), at least d(

(
w
2

)
− 1)/4e additional

wavelengths are needed; again the total is d
(
v
2

)
/2 +

(
w
2

)
/4e. Theorem 4.1 realizes this

bound.
When v is odd, first suppose that w is even. In order to realize the bound of

Theorem 4.3 for drop cost, by Lemma 2.2, w
2 neutral edges appear in subgraphs with

one neutral edge and all other neutral edges appear in subgraphs with two. In both
cases, two edges between V and W are consumed by such a subgraph. When two
neutral edges are used, no edge on W can be used ; when one neutral edge is used,
one edge on W can also be used. It follows that the number of wavelengths is at
least 1

2 (
(
v
2

)
− w

2 ) + w
2 + 1

4 (
(
w
2

)
− w

2 ). This establishes the lower bound. The case when
w is odd is similar. The proof of Theorem 4.3 gives constructions with at most 3
triangles and so establishes the upper bound except when v ≡ 1 (mod 4) and w ≡ 3
(mod 4), w 6= 3, where the construction employs one more graph than the number of
wavelengths permitted. However, one graph included is the P2 {0, t− 1}, and in the
decomposition on W , there is a triangle. These can be placed on the same wavelength
to realize the bound.

When v ≡ 1 (mod 4) and w ≡ 3 (mod 4), w 6= 3, we place a disconnected
graph, P2 ∪ K3, on one wavelength in order to meet the bound. The construction
of Theorem 4.3 could be modified to avoid this by instead using a decomposition of
Kw \ (K3 ∪ w−3

2 K2) into 4-cycles and kites, and using the strategy used in the case
for w = 3. In this way, one could prove the slightly stronger result that the number
of (connected) subgraphs in the decomposition matches the lower bound on number
of wavelengths needed.

In Theorem 3.3, the number of wavelengths and the drop cost are minimized
simultaneously by the constructions given; each constructed ON (v + w, v; 4, 1) has
not only the minimum drop cost but also the minimum number of wavelengths over
all N(v + w, v; 4, 1)s. This is not the case in Theorem 4.5. For example, when
v > (1 +

√
2)w, it is easy to construct an N(v + w, v; 4, 2) that employs only d

(
v
2

)
/2e

wavelengths, which is often much less than are used in Theorem 4.5. We emphasize
therefore that a MON (v + w, v; 4, 2) minimizes the number of wavelengths over all
ON (v + w, v; 4, 2)s, not necessarily over all N(v + w, v; 4, 2)s.

5. Case C ′ = 3.
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5.1. ON (n, v; 4, 3). Theorem 5.1. Let v + w ≥ 5.
1. When w ≥ 1, cost ON (v + w, v; 4, 3) = cost ON (v + w, 4).
2. cost ON (v + 0, v; 4, 3) = cost ON (v, 3).

Proof. The second statement is trivial. Moreover cost ON (n, 4) = cost ON (n, 3)
when n ≡ 1, 3 (mod 6), and hence the first statement holds when v + w ≡ 1, 3
(mod 6). To complete the proof it suffices to treat the upper bound when w = 1.

When v + 1 ≡ 5 (mod 6), there is a maximal partial triple system (X,B) with
|X| = v + 1 covering all edges except those in the 4-cycle (r, x, y, z). Set W = {r},
V = X \W , and add the 4-cycle to the decomposition to obtain an ON (v+1, v; 4, 3).

When v ≡ 1, 5 (mod 6), set ` = v − 1 and when v ≡ 3 (mod 6) set ` = v − 3.
Then ` is even. Form a maximal partial triple system (V,B), |V | = v, covering all
edges except those in an `-cycle (0, 1, . . . , `− 1) [16]. Add a vertex a0 and form kites
(a0, 2i, 2i + 1; (2i + 2) mod `) for 0 ≤ i < `

2 . For i ∈ {`, . . . , v − 1}, choose a triple
Bi ∈ B so that i ∈ Bi and Bi = Bj only if i = j. Add {a0, i} to Bi to form a kite.
This yields an ON (v + 1, v; 4, 3).

5.2. MON (n, v; 4, 3). We focus first on lower bounds in Section 5.2.1 and then
we provide constructions attaining these lower bounds in Section 5.2.2.

5.2.1. Lower Bounds. When C ′ = 3, Theorem 5.1 makes no attempt to mini-
mize the number of wavelengths. We focus on this case here. Except when n ∈ {2, 4}
or v = n, costON (n, v; 4, 3) =

(
n
2

)
, and every graph in an ON (n, v; 4, 3) is a triangle,

kite, or 4-cycle. Let δ, κ, and γ denote the numbers of triangles, kites, and 4-cycles in
the grooming, respectively. Then 3δ+ 4κ+ 4γ =

(
n
2

)
, and the number of wavelengths

is δ+κ+γ. Thus in order to minimize the number of wavelengths, we must minimize
the number δ of triangles. We focus on this equivalent problem henceforth.

In an ON (n, v; 4, 3), for 0 ≤ i ≤ 3 and 0 ≤ j ≤ 4, let δij , κij , and γij denote the
number of triangles, kites, and 4-cycles, respectively, each having i edges on V and j
edges between V and W . The only counts that can be nonzero are δ00, δ02, δ12, δ30;
κ00, κ01, κ02, κ03, κ12, κ13, κ22, κ31; γ00, γ02, γ04, γ12, γ22. We write σij = κij + γij

when we do not need to distinguish kites and 4-cycles. Our objective is to minimize
δ00 + δ02 + δ12 + δ30 subject to certain constraints; we adopt the strategy of [15] and
treat this as a linear program.

Let ε = 0 when v ≡ 1, 3 (mod 6), ε = 2 when v ≡ 5 (mod 6), and ε = v
2 when

v ≡ 0 (mod 2). We specify the linear program in Figure 5.1. The first row lists
the primal variables. The second lists coefficients of the objective function to be
minimized. The remainder list the coefficients of linear inequalities, with the final
column providing the lower bound on the linear combination specified. The first
inequality states that the number of edges on V used is at least the total number on
V , while the second specifies that the number of edges used between V and W is at
most the total number between V and W . For the third, when v ≡ 5 (mod 6) at least
four edges on V are not in triangles, and so at least two graphs containing edges of
V do not have a triangle on V ; when v ≡ 0 (mod 2) every graph can induce at most
two odd degree vertices on V , yet all are odd in the decomposition.

We do not solve this linear program. Rather we derive lower bounds by con-
sidering its dual. Let y1, y2, and y3 be the dual variables. A dual feasible solu-
tion has y1 = 1

3 , y2 = 1, and y3 = 4
3 , yielding a dual objective function value of

1
6v(v − 1)− vw + 4

3ε. Recall that every dual feasible solution gives a lower bound on
all primal feasible solutions

On the other hand, 3δ ≡
(
n
2

)
(mod 4) and so δ ≡ 9δ ≡ 3

(
n
2

)
(mod 4). The value



TWO-PERIOD GROOMING WITH RATIO 4 13

δ30 δ12 δ02 δ00 κ31 σ22 κ13 σ12 γ04 κ03 σ02 κ01 σ00

1 1 1 1 0 0 0 0 0 0 0 0 0
3 1 0 0 3 2 1 1 0 0 0 0 0

(
v
2

)
0 -2 -2 0 -1 -2 -3 -2 -4 -3 -2 -1 0 −vw
0 1 0 0 0 1 1 1 0 0 0 0 0 ε

Fig. 5.1. The linear program for ON (n, v; 4, 3).

of 3
(
n
2

)
(mod 4) is in fact the value of t given in Theorem 2.1. Therefore if x is a

lower bound on δ in an ON (n, v; 4, 3), so is 〈x〉n, where 〈x〉n denotes the smallest
nonnegative integer x such that x ≥ x and x ≡ 3

(
n
2

)
(mod 4).

The discussion above proves the general lower bound on the number of triangles:
Theorem 5.2. Let v + w ≥ 5, and let

L(v, w) =


1
6v(v − 1)− vw if v ≡ 1, 3 (mod 6)

1
6v(v − 1)− vw + 8

3 if v ≡ 5 (mod 6)
1
6v(v + 3)− vw if v ≡ 0 (mod 2)

Then the number of triangles in an ON (v + w, v; 4, 3) is at least

δmin(v, w) = 〈L(v, w)〉v+w

Remark 5.3. In particular, if v is odd and w ≥ d v−1
6 e or if v is even and

w ≥ d v−4
6 e, then L(v, w) ≤ 0 and the minimum number of triangles is δmin(v, w) =

〈0〉v+w ≤ 3.

5.2.2. Upper Bounds. We first state two simple lemmas to be used intensively
in the proof of Theorem 5.7. The following result shows that in fact we do not need
to check exactly that the number of triangles of an optimal construction meets the
bound of Theorem 5.2.

Lemma 5.4. Any ON (v +w, v; 4, 3) is a MON (v +w, v; 4, 3) if the number of
triangles that it contains is at most max(3, dL(v, w)e+ 3).

Proof. In the closed interval [dL(v, w)e, dL(v, w)e+ 3] there is exactly one integer
congruent to 3

(
n
2

)
(mod 4), and so exactly one integer equal to δmin(v, w).

Combining Remark 5.3 and Lemma 5.4 we deduce that when v is odd and w ≥
d v−1

6 e or if v is even and w ≥ d v−4
6 e, to prove the optimality of a construction it is

enough to check that there are at most three triangles.
As a prelude to the constructions, let (V,B) be a partial triple system, V =

{0, . . . , v − 1}, and B = {B1, . . . , Bb}. Let ri be the number of blocks of B that
contain i ∈ V . A headset is a multiset S = {s1, . . . , sb} so that sk ∈ Bk for 1 ≤ k ≤ b,
and for 0 ≤ i ≤ v − 1 the number of occurrences of i in S is b ri

3 c or d ri

3 e.
Lemma 5.5. Every partial triple system has a headset.
Proof. Form a bipartite graph Γ with vertex set V ∪ B, and an edge {v,B} for

v ∈ V and B ∈ B if and only if v ∈ B. The graph Γ admits an equitable 3-edge-
colouring [18]; that is, the edges can be coloured green, white, and red so that every
vertex of degree d is incident with either bd/3c or dd/3e edges of each colour. Then
for 1 ≤ k ≤ b, Bk is incident to exactly three edges, and hence to exactly one edge
{ik, Bk} that is green; set sk = ik. Then (s1, . . . , sb) forms the headset.



14 BERMOND, COLBOURN, GIONFRIDDO, QUATTROCCHI, SAU

Lemma 5.6. There exist a MON (13 + 3, 13; 4, 3), MON (15 + 4, 15; 4, 3),
MON (17 + 3, 17; 4, 3), and MON (17 + 4, 17; 4, 3).

Proof. MON (13 + 3, 13; 4, 3):

B = {(5 + i, 4 + i, 1 + i; a1) | i = 0, 1, . . . , 9}
∪{(1 + i, 5 + i, 4 + i; a0) | i = 10, 11, 12}
∪{(3 + i, 1 + i, 9 + i; a2) | i = 6, 7, . . . , 12}
∪{(9 + i, 1 + i, 3 + i; a0) | i = 1, 2, . . . , 5}
∪{(9, 3, 1; a2), (0, a1, a2; 12), (12, a1, a0; 0),

(a0, 9, a2, 10), (a0, a2, 11; a1), (a0, 9, a2, 10)},

where the sums are computed modulo 13.

MON (15 + 4, 15; 4, 3): B = {

(1, 2, 3) (a0, 4, a1, 5) (a0, 10, a1, 11) (5, 4, 1; a3) (7, 1, 6; a1)
(6, 4, 2; a3) (7, 5, 2; a2) (4, 7, 3; a2) (6, 5, 3; a3) (9, 1, 8; a1)

(10, 1, 14; a0) (11, 1, 0; a2) (13, 1, 12; a2) (10, 2, 8; a2) (11, 2, 9; a0)
(12, 2, 14; a2) (0, 2, 13; a3) (8, 3, 11; a3) (10, 3, 12; a0) (13, 3, 9; a2)
(14, 3, 0; a3) (12, 8, 4; a2) (11, 4, 13; a0) (0, 10, 4; a3) (9, 4, 14; a1)
(8, 5, 13; a2) (0, 5, 12; a3) (14, 11, 5; a3) (10, 9, 5; a2) (8, 6, 0; a0)
(14, 13, 6; a3) (9, 6, 12; a1) (10, 6, 11; a2) (14, 8, 7; a3) (9, 7, 0; a1

(10, 7, 13; a1) (12, 11, 7; a0) (6, a2, a0; 2) (7, a2, a1; 3) (10, a3, a2; 1)
(1, a0, a1; 2) (9, a1, a3; 14) (8, a3, a0; 3)}

MON (17 + 3, 17; 4, 3): B = {

(7, 16, 0) (a0, a2, 0) (a0, 1, 2; 3) (a0, 3, 4; 1) (4, 5, 2; a1)
(1, 3, 5; a0) (16, a0, a1; a2) (6, 10, 1; a1) (9, 14, 1; a2) (15, 1, 7; a2)
(1, 8, 12; a2) (1, 0, 13; a2) (1, 16, 11; a1) (2, 11, 6; a1) (2, 16, 8; a2)
(10, 15, 2; a2) (9, 2, 13; a1) (0, 2, 12; a1) (2, 7, 14; a2) (6, 13, 3; a1)
(11, 3, 7; a1) (12, 3, 16; a2) (9, 0, 3; a2) (3, 10, 14; a1) (8, 3, 15; a1)
(14, 6, 4; a2) (4, 11, 15; a2) (7, 12, 4; a1) (13, 4, 8; a1) (4, 16, 9; a2)
(0, 4, 10; a1) (5, 12, 6; a2) (7, 13, 5; a2) (8, 14, 5; a1) (15, 5, 9; a1)
(5, 16, 10; a2) (5, 0, 11; a2) (9, 7, 6; a0) (10, 8, 7; a0) (11, 9, 8; a0)
(12, 10, 9; a0) (13, 11, 10; a0) (14, 12, 11; a0) (15, 13, 12; a0) (16, 14, 13; a0)
(0, 15, 14; a0) (6, 16, 15; a0) (8, 6, 0; a1)}

MON (17 + 4, 17; 4, 3): B = {

(2, 9, 11) (9, 12, 16) (a0, 13, 14; 15) (a0, 15, 16; 13) (16, 0, 14; a1)
(13, 15, 0; a0) (13, 2, 1; a3) (13, 12, 3; a3) (13, 11, 4; a3) (5, 10, 13; a1)
(6, 9, 13; a2) (7, 8, 13; a3) (14, 4, 2; a3) (14, 12, 5; a3) (11, 14, 6; a3)
(14, 10, 7; a3) (1, 3, 14; a2) (9, 8, 14; a3) (1, 4, 15; a1) (3, 5, 15; a2)
(2, 6, 15; a3) (15, 7, 12; a3) (15, 11, 8; a3) (1, 16, 5; a1) (6, 4, 16; a2)
(3, 7, 16; a3) (2, 8, 16; a1) (10, 16, 11; a3) (1, 6, 0; a1) (4, 8, 0; a2)

(10, 15, 9, ; a3) (2, 10, 0; a3) (5, 0, 7; a1) (3, 0, 9; a1) (12, 0, 11; a1)
(1, a0, 7; 6) (8, 6, a0; a3) (9, a0, 5; 11) (10, a0, 4; 9) (11, a0, 3; 10)
(2, a0, 12; 8) (8, a1, 1; 11) (10, a1, 6; 3) (12, 4, a1; a3) (3, a1, 2; 7)
(1, a2, 9; 7) (10, a2, 8; 3) (11, a2, 7; 4) (12, a2, 6; 5) (2, a2, 5; 8)
(3, a2, 4; 5) (a1, a0, a2; a3) (12, 1, 10; a3)}
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Theorem 5.7. Let v + w ≥ 5. When w ≥ 1,

wavecostMON (v + w, v; 4, 3) =
⌈((

v + w

2

)
+ δmin(v, w)

)
/4
⌉
.

Proof. The lower bound follows from Theorem 5.2, so we focus on the upper
bound.

When w ≥ 1, an ON (v + w, v; 4, 3) of cost
(
v+w

2

)
is an ON (v + w, v − 1; 4, 3).

Let us show that it suffices to prove the statement for w ≤ v+9
6 when v is odd, and

for w ≤ v+4
6 when v is even. Equivalently, we show that if it is true for these values

of w, then it follows for any w. Note that δmin(v, w) ≤ 3 if δmin(v + 1, w − 1) ≤ 3.
Indeed, let v be even. If w = b v+4

6 c+ 1, the result follows from the case for v+ 1
(odd) and w − 1 = b v+4

6 c ≤
v+1+9

6 , in which case δmin(v + 1, w − 1) = 〈0〉v+w. If
w = b v+4

6 c+2 it follows from the case for v+1 (odd) and w−1 = b v+4
6 c+1 ≤ v+1+9

6 ,
and δmin(v + 1, w − 1) = 〈0〉v+w. If w ≥ b v+4

6 c+ 3 it follows from the case for v + 2
(even) and w − 2.

Let v be odd. If w = b v+9
6 c + 1 it follows from the case for v + 1 (even) and

w − 1, which has been already proved (in this case also δmin(v + 1, w − 1) = 〈0〉v+w).
If w ≥ bv+9

6 c+ 2 it follows from the case for v + 2 (odd) and w − 2.
In each case, we use the same general prescription. Given a partial triple system

(V,B), a headset S = {s1, . . . , sb} is formed using Lemma 5.5. Add vertices W =
{a0, . . . , aw−1}, a set disjoint from V of size w ≥ 1. For each i let Di be a subset
of {0, . . . , w − 1}, which is specified for each subcase, and that satisfies the following
property: |Di| is at most the number of occurrences of i in the headset S. Among the
blocks Bk such that sk = i, we choose |Di| of them, namely the subset {Bj

k : j ∈ Di},
and form |Di| kites by adding for each j ∈ Di the edge {aj , i} to the block Bj

k.
The idea behind the construction is that if we can choose |Di| = w, we use all

the edges between V and W leaving a minimum number of triangles in the partition
of V (see Case O1a). Unfortunately it is not always possible to choose |Di| = w, in
particular when w is greater than the number of occurrences of i in the headset. So
we distinguish different cases:

Case O1a. v = 6t+ 1 or 6t+ 3 and w ≤ v−1
6 . Let (V,B) be a Steiner triple system.

For 0 ≤ i < v, let Di = {0, . . . , w − 1}. Apply the general prescription. If v = 6t+ 1,
i appears t times in S and w ≤ v−1

6 = t. If v = 6t + 3, i appears t or t + 1 times
in S and w ≤ t. In both cases |Di| is at most the number of occurrences of i in S,
so the construction applies and all the edges between V and W are used in the kites.
All the edges on V are used and v(v−1)

6 − vw triangles remain. Finally, it remains to
partition the edges of W . When w 6∈ {2, 4}, form a MON (w, 4) on W , and doing so
we have at most δmin triangles. If w = 2 or w = 4 remove edges {a0, 0} and {a1, 0}
from their kites and partition KW together with these edges into a triangle (w = 2)
or two kites (w = 4).

Case O1b. v = 6t + 5 and w ≤ v−1
6 . Form a partial triple system (V,B) covering

all edges except those in the C4 (0, 1, 2, 3). For 0 ≤ i ≤ 3, let Di = {0, . . . , w − 2}
and for 4 ≤ i < v Di = {0, . . . , w − 1}. Apply the general prescription. Add the
kites (aw−1, 1, 2; 3) and (aw−1, 3, 0; 1). Here again i appears at least t times in S and
w ≤ t. So Di is at most the number of occurrences of i in S. Again we have used all
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the edges on V and all the edges between V and W . It remains to partition the edges
of W , and this can be done as in the Case O1a.

Case O2. v = 6t + 3 and w = t + 1, v > 3. Form a partial triple system cover-
ing all edges except those on the v-cycle {{i, (i + 1) mod v} : 0 ≤ i < v} [16]. Set
Di = {1, . . . , w − 1} for all i. Apply the general prescription. Adjoin edges from a0

to a partition of the cycle, minus edge {0, v − 1}, into P3s. The only edge between
V and W that remains is {a0, v − 1}. When an ON (w, 4) exists having 1, 2, 3, or
4 triangles, this edge is used to convert a triangle to a kite. This handles all cases
except when w ∈ {2, 4}. In these cases, remove the pendant edge {a1, v − 1} from its
kite. When w = 2, {a0, a1, v − 1} forms a triangle. When w = 4, partition the edges
on W together with {a0, v − 1} and {a1, v − 1} into two kites.

Case O3. v = 6t+ 1 and w = t+ 1.
When t = 1, a MON (7+2, 7; 4, 3) has B = {(0, a1, a0; 6), (2, 0, 6; a1), (3, 0, 4; a1),

(1, 0, 5; a1), (3, 6, 5; a0), (4, 6, 1; a1), (3, 2, 1; a0), (5, 2, 4; a0), (a0, 2, a1, 3)}.
A solution with t = 2 is given in Lemma 5.6.
When t ≥ 3, form a 3-GDD of type 6t with groups {{6p + q : 0 ≤ q < 6} : 0 ≤

p < t}. Let D6p+q = {0, . . . , w − 2} \ {p} for 0 ≤ p < t and 0 ≤ q < 6. Apply the
general prescription. For 0 ≤ p < t, on {6p + q : 0 ≤ q < 6} ∪ {v − 1} ∪ {aw−1, ap}
place a MON (7 + 2, 7; 4, 3) obtained from the solution B for t = 1, by replacing
q by 6p + q : 0 ≤ q < 6, 6 by v − 1 a0 by aw−1 and a1 by ap; then omit the kite
(ap, 6p, aw−1; v−1). All edges on W remain; the edges {aw−1, 6p} and {ap, 6p} remain
for 0 ≤ p < t, and the edge {aw−1, v − 1} remains.

Add the kites (aw−2, 6(w − 2), aw−1; v − 1) and for 0 ≤ j < w − 2 = t − 1
(6j, aw−1, aj ; aw−2). If w − 2 6∈ {2, 4}, that is t 6∈ {3, 5}, place a MON (w − 2, 4) on
W −aw−2−aw−1. Note that, as 3

(
w−2

2

)
≡ 3
(
v+w

2

)
(mod 4), we have the right number

of triangles (at most 3). If w − 2 ∈ {2, 4} remove edges {a0, w − 2} and {a1, w − 2}
from their kites, and partition Kw together with these edges.

Case O4. v = 6t+ 5 and w = t+ 1.
For t = 0, a MON (5 + 1, 5; 4, 3) has kites (3, a0, 0; 1), (1, a0, 2; 3), (1, 3, 4; a0),

and triangle (0, 2, 4).
For t = 1, let V = {0, . . . , 10} and W = {a0, a1}. A MON (11 + 2, 11; 4, 3) is

formed by using an MON (5+1, 5; 4, 3) on {0, 1, 2, 3, 4}∪{a0}, and a partition of the
remaining edges, denoted by Q, into 15 kites and a triangle. So we have two triangles,
attaining δmin(11, 2) as 13 ≡ 5 (mod 8). The partition of Q is as follows: the triangle
(a0, a1, 10) and the kites (0, 6, 5; a0), (1, 8, 6; a0), (2, 9, 7; a0), (3, 10, 8; a0), (4, 6, 9; a0),
(8, 9, 0; a1), (5, 7, 1; a1), (5, 8, 2; a1), (6, 7, 3; a1), (5, 10, 4; a1), (3, 9, 5; a1), (2, 10, 6; a1),
(0, 10, 7; a1), (4, 7, 8; a1), and (1, 10, 9; a1).

For t = 2, a MON (17 + 3, 17; 4, 3) is given in Lemma 5.6.
For t ≥ 3, form a 3-GDD of type 6t with groups {{6p+q : 0 ≤ q < 6} : 0 ≤ p < t}.

Let D6p+q = {0, . . . , w − 2} \ {p} for 0 ≤ p < t and 0 ≤ q < 6. Apply the general
prescription. There remain uncovered for each p the edges of the set Qp obtained from
the complete graph on the set of vertices {6p+q : 0 ≤ q < 6}∪{v−5, v−4, v−3, v−2, v−
1}∪{aw−1, ap} minus the complete graph on {v−5, v−4, v−3, v−2, v−1}∪{aw−1}.

To deal with the edges of Qp, we start from a partition of Q, where we replace
pendant edges in kites as follows: Replace {a1, 4} by {a1, 10}, {a0, 8} by {a0, 10},
and {a1, 2} by {a0, 8}. We delete the triangle (a0, a1, 10), resulting in a new partition
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of Q into 15 kites and the 3 edges {a0, a1}, {a1, 2}, and {a1, 4}. Then we obtain a
partition of Qp by replacing {0, 1, 2, 3, 4} by {v− 5, v− 4, v− 3, v− 2, v− 1}, q+ 5 by
6p+ q for 0 ≤ q < 6, a0 by aw−1, and a1 by ap. At the end we get a partition of Qp

into 15 kites plus the 3 edges {aw−1, ap}, {ap, v − 3}, and {ap, v − 1}.
Now the 3t edges {{aw−1, ap}, {ap, v − 3}, {ap, v − 1} : 0 ≤ p < t} plus the

uncovered edges of KW form a Kt+3 missing a triangle on {aw−1, v − 3, v − 1}. If
t+3 ≡ 2, 3, 4, 5, 6, 7 (mod 8), use Theorem 2.1 to form a ON (t+3, 4) having a triangle
(v−3, v−1, aw−1) and 0, 1, or 2 other triangles; remove the triangle (v−3, v−1, aw−1)
to complete the solution with 1, 2, or 3 triangles (the triangle (v − 5, v − 3, v − 1) is
still present). A variant is needed when t + 3 ≡ 0, 1 (mod 8). In these cases, form a
ON (t+ 3, 4) (having no triangles) in which (v− 3, aw−1, v− 1; a1) is a kite. Remove
all edges of this kite, and use edge {a1, v − 1} to convert triangle (v − 5, v − 3, v − 1)
to a kite.

Finally, place a MON (5 + 1, 5; 4, 3) on {v − 5, v − 4, v − 3, v − 2, v − 1} ∪ {a0}.
Altogether we have a partition of all the edges using at most 3 triangles.

Case O5. v = 6t+ 5 and w = t+ 2.
When t = 0, partition all edges on {0, 1, 2, 3, 4}∪{a0, a1} except {a0, a1} into kites

(3, 1, a0; 0), (3, 2, a1; 0), (a1, 1, 4; 2), (0, 1, 2; a0), and (3, 0, 4; a0). Then a MON (5 +
2, 5; 4, 3) is obtained by removing pendant edges {a0, 0} and {a1, 0} and adding tri-
angle (a0, a1, 0).

When t = 1, a MON (11 + 3, 11; 4, 3) on {0, . . . , 10} ∪ {a0, a1, a2} is obtained by
taking the above partition on {0, 1, 2, 3, 4} ∪ {a0, a1}, the triangle (a0, a1, a2), and a
partition of the remaining edges (which form a graph called Q) into 11 kites and 6 4-
cycles as follows: kites (2, 9, 7; a0), (4, 5, 10; a0), (2, 10, 6; a1), (4, 6, 9; a2), (7, 10, 0; a2),
(6, 8, 1; a2), (5, 8, 2; a2), (5, 9, 3; a2), (7, 8, 4; a2), (6, 7, 5; a2), and (9, 10, 8; a1); and 4-
cycles (0, 6, a0, 5), (0, 8, a0, 9), (1, 5, a1, 7), (1, 9, a1, 10), (3, 6, a2, 7), and (3, 8, a2, 10).

A solution with t = 2 is given in Lemma 5.6.
When t ≥ 3, form a 3-GDD of type 6t with groups {{6p + q : 0 ≤ q <

6} : 0 ≤ p < t}. Let D6p+q = {0, . . . , w − 3} \ {p} for 0 ≤ p < t and 0 ≤
q < 6. Apply the general prescription. Add a partition of the complete graph on
{v− 5, v− 4, v− 3, v− 2, v− 1} ∪ {aw−2, aw−1} as in the case when t = 0. It remains
to partition, for each p, 0 ≤ p < t, the graph Qp is obtained from the complete graph
on {6p+ q : 0 ≤ q < 6}∪{v− 5, v− 4, v− 3, v− 2, v− 1}∪{aw−2, aw−1, ap} minus the
complete graph on {v − 5, v − 4, v − 3, v − 2, v − 1} ∪ {aw−2, aw−1}. This partition is
obtained from that of Q by replacing {0, 1, 2, 3, 4} by {v− 5, v− 4, v− 3, v− 2, v− 1},
a0 by aw−2, a1 by aw−1, and a2 by ap. What remains is precisely the edges on W , so
place a MON (w, 4) on W to complete the construction.

Case O6. v = 6t+ 3 and w = t+ 2.
When t = 0, a MON (3 + 2, 3; 4, 3) has triangles (a0, 0, 1) and {a1, 1, 2} and

4-cycle (0, 2, a0, a1).
When t = 1, on {0, . . . , 8} ∪ {a0, a1, a2}, place kites (2, 6, 4; a0), (0, 8, 4; a1),

(0, 5, 7; a1), (3, 6, 0; a2), (1, 7, 4; a2), (5, 8, 2; a2), (1, 6, 5; a2), (2, 7, 3; a2), (3, 8, 1; a2),
(3, 5, a0; a2), (7, a0, 6; a2), (6, 8, a1; a2), (7, a2, 8; a0), and 4-cycle (3, 4, 5, a1). Adding
the blocks of a MON (3 + 2, 3; 4, 3) forms a MON (9 + 3, 9; 4, 3).

A solution with t = 2 is given in Lemma 5.6.
When t ≥ 3, form a 3-GDD of type 6t with groups {{6p + j : 0 ≤ q < 6} :

0 ≤ p < t}. Let D6p+q = {0, . . . , w − 3} \ {p} for 0 ≤ p < t and 0 ≤ q < 6.
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Apply the general prescription. For 0 ≤ p < t, on {6p + q : 0 ≤ q < 6} ∪
{v − 3, v − 2, v − 1} ∪ {aw−2, aw−1, ap} place a MON (9 + 3, 9; 4, 3), omitting a
MON (3+2, 2; 4, 3) on {aw−2, aw−1, v−3, v−2, v−1}. Place a MON (3+2, 2; 4, 3)
on {aw−2, aw−1, v − 3, v − 2, v − 1}. Remove edges {a0, aw−2} and {a1, aw−1} from
their kites, and convert the two triangles in the MON (3 + 2, 2; 4, 3) to kites using
these. What remains is all edges on {a0, . . . , aw−3} and everything is in kites or 4-
cycles excepting one triangle involving a0 and one involving a1. If w − 2 ≡ 0, 1, 3, 6
(mod 8), place a MON (w − 2, 4) on {a0, . . . , aw−3}. Otherwise partition all edges
on {a0, . . . , aw−3} except {a0, a2} and {a1, a2} into kites, 4-cycles, and at most one
triangle, and use the last two edges to form kites with the excess triangles involving
a0 and a1. The partition needed is easily produced for w − 2 ∈ {4, 5, 7, 9} and hence
by induction for all the required orders.

Case E1. v ≡ 0 (mod 2) and w ≤ v+2
6 . Write v = 6t + s for s ∈ {0, 2, 4}. Let

L = (V,E) be a graph with edges

{{3i, 3i+ 1}, {3i, 3i+ 2}, {3i+ 1, 3i+ 2} : 0 ≤ i < t} ∪ {{i, 3t+ i} : 0 ≤ i < 3t},

together with {6t, 6t+ 1} when s = 2 and with {{6t, 6t+ 1}, {6t, 6t+ 2}, {6t, 6t+ 3}}
when s = 4. Let (V,B) be a partial triple system covering all edges except those
in L (this is easily produced). Let Di = {0, . . . , w − 2} for 0 ≤ i < v. Apply the
general prescription. For 0 ≤ i < t and j ∈ {0, 1, 2}, form the 4-cycle (aw−1, 3i +
((j+ 1) mod 3), 3i+ j, 3t+ 3i+ j). When s = 4, form 4-cycle (aw−1, 6t+ 2, 6t, 6t+ 3).
When s ∈ {2, 4}, form a triangle (aw−1, 6t, 6t + 1). All edges on V are used and all
edges on W remain. All edges between V and W are used. Except when w ∈ {2, 4},
or w ≡ 2, 7 (mod 8) and v ≡ 2, 4 (mod 6) form a MON (w, 4) on W to complete
the proof. When w ≡ 2, 7 (mod 8) and v ≡ 2, 4 (mod 6), convert {aw−1, 6t, 6t + 1}
to a kite using an edge of the Kw, and partition the Kw \K2 into kites and 4-cycles.
When w ∈ {2, 4}, remove edges {a0, 0} and {a1, 0} from their kites, and partition Kw

together with these edges.

Case E2. v ≡ 2 (mod 6) and w = v+4
6 . Choose m as large as possible so that

m ≤ v
2 , m ≤

(
w
2

)
, and

(
w
2

)
− m ≡ 0 (mod 4). Partition the

(
w
2

)
edges on W into

sets Ec and Eo with |Ec| = m, so that the edges on Eo can be partitioned into kites
and 4-cycles; this is easily done. Place these kites and 4-cycles on W . Then let
{ei : 0 ≤ i < m} be the edges in Ec; let afi

∈ ei when 0 ≤ i < m; fi = 0 when
m ≤ i < v−2

2 ; and f(v−2)/2 = 1 if m < v
2 . Next form a 3-GDD of type 2v/2 on V

so that {{2i, 2i + 1} : 0 ≤ i < v
2} forms the groups, and B forms the blocks. For

0 ≤ i < v
2 , let D2i = D2i+1 = {0, . . . , w − 1} \ {fi}. Apply the general prescription.

Now for 0 ≤ i < v
2 , form the triangle (afi

, 2i, 2i + 1) and for 0 ≤ i < m add edge ei

to form a kite. At most three triangles remain except when v ∈ {14, 20}, where four
triangles remain. To treat these cases, we reduce the number of triangles; without
loss of generality, the 3-GDD contains a triple {v− 8, v− 6, v− 4} in a kite with edge
{a1, v−8}. Remove this kite, and form kites (a0, v−7, v−8; v−6), (a0, v−5, v−6; v−4),
(a0, v − 3, v − 4; v − 8), and (v − 2, v − 1, a1; v − 8).

Corollary 5.8. Let v ≥ 4 and µ3(v) be defined by: µ3(4) = µ3(6) = µ3(9) = 1,
µ3(10) = 2, and otherwise

v 6t, t ≥ 2 1 + 6t 2 + 6t 3 + 6t, t ≥ 2 4 + 6t, t ≥ 2 5 + 6t
µ3(v) 1 + t t 1 + t 1 + t 2 + t 1 + t
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Then wavecostMON (v + w, v; 4, 3) =
⌈

(v+w)(v+w−1)
8

⌉
if and only if w ≥ µ3(v).

6. Conclusions. The determination of costON (n, v;C,C ′) appears to be easier
when C ′ = 4 than the case for C ′ = 3 settled in [14, 15]. Nevertheless the very flexi-
bility in choosing kites, 4-cycles, or triangles also results in a wide range of numbers
of wavelengths among decompositions with optimal drop cost. This leads naturally to
the question of minimizing the drop cost and the number of wavelengths simultane-
ously. In many cases, the minima for both can be realized by a single decomposition.
However, it may happen that the two minimization criteria compete. Therefore we
have determined the minimum number of wavelengths among all decompositions of
lowest drop cost for the specified values of n, v, and C ′.
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