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Abstract

In this article we provide hardness results and approximation algorithms for the follow-
ing three natural degree-constrained subgraph problems, which take as input an undirected
graph G = (V, E). Let d ≥ 2 be a fixed integer. The Maximum d-degree-bounded Connected
Subgraph (MDBCSd) problem takes as additional input a weight function ω : E → R+,
and asks for a subset E′ ⊆ E such that the subgraph induced by E′ is connected, has maxi-
mum degree at most d, and

∑
e∈E′ ω(e) is maximized. The Minimum Subgraph ofMinimum

Degree ≥ d (MSMDd) problem involves finding a smallest subgraph of G with minimum
degree at least d. Finally, the DualDegree-dense k-Subgraph (DDDkS) problem consists in
finding a subgraph H of G such that |V(H)| ≤ k and the minimum degree in H is maximized.

Key words: degree-constrained subgraph, approximation algorithms, hardness of
approximation.

Preprint submitted to Discrete Applied Mathematics 11 October 2011



1 Introduction

In this article, we consider three natural degree-constrained subgraph problems and study
them in terms of approximation algorithms. A general instance of a degree-constrained
subgraph problem [1, 6, 35] consists of an edge-weighted or vertex-weighted graph and
the objective is to find an optimal weighted subgraph, subject to certain degree constraints
on the vertices of the subgraph. The degree of a vertex v in a graph G, denoted degG(v), is
the number of edges incident to v in G. We denote the maximum (respectively, minimum)
vertex degree in the graph G by ∆G (resp., δG).

Degree-constrained subgraph problems have attracted a lot of attention in the last decades
and have resulted in a large body of literature [1, 6, 16, 19–21, 24, 28, 32, 34, 35]. The
most well-studied ones are probably the Minimum-Degree Spanning Tree [19] and the
Minimum-Degree Steiner Tree [20] problems. Beyond the esthetic and theoretical appeal
of degree-constrained subgraph problems, the reasons for such intensive study are rooted
in their wide applicability in the areas of interconnection networks and routing algorithms,
among others. For instance, given an interconnection network modeled by an undirected
graph, one may be interested in finding a small subset of nodes having a high degree
of connectivity with the other nodes. This translates into finding a small subgraph with
a lower bound on the degree of its vertices, i.e., to the MSMDd problem, to be defined
shortly. Note that if the input graph is bipartite, these problems are equivalent to classical
transportation and assignment problems in operations research.

The first problem studied in the paper is a classical NP-hard problem listed in [23] (cf. Prob-
lem [GT26] for the unweighted version). Let d ≥ 2 be a fixed integer.

Maximum d-degree-Bounded Connected Subgraph (MDBCSd)
Input: A graph G = (V, E) and a weight function ω : E → R+.
Output: A subset E′ ⊆ E such that the subgraph G′ = (V, E′) is connected

(except, possibly, for isolated vertices), has maximum degree at most d,
and

∑
e∈E′ ω(e) is maximized.

For d = 2, the unweighted MDBCSd problem corresponds to the Longest Path problem.
Indeed, given the input graph G (which can be assumed to be connected), let P and G′

be optimal solutions of Longest Path and MDBCS2 in G, respectively. Then observe that
|E(G′)| = |E(P)| unless G is Hamiltonian, in which case |E(G′)| = |E(P)| + 1. One could
also ask the question: what happens when G′ is not required to be connected in the def-
inition of MDBCSd? It turns out that without the connectivity constraint, both the edge
version and the vertex version (where the goal is to maximize the total weight of the ver-
tices of a subgraph satisfying the degree constraints) of the MDBCSd problem are known
to be solvable in polynomial time using matching techniques [11, 23, 27]. In fact, without
connectivity constraints, even a more general version where the input contains an interval

? An extended abstract containing some of the results of this paper appeared in the Proceedings
of WAOA 2008, volume 5426 of LNCS, pages 29–42.
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of allowed degrees for each node is known to be solvable in polynomial time.

For a finite, simple, and undirected graph G = (V, E) and d ∈ N, the d-girth of G is the
minimum number of vertices of an induced subgraph of G of minimum degree at least
d. The notion of d-girth was proposed and studied by Erdős et al. [15, 16] and Bollobás
and Brightwell [10]. It generalizes the usual girth, the length of a shortest cycle, which
coincides with the 2-girth. (This is indeed true because every subgraph of minimum degree
at least two contains a cycle.) Combinatorial bounds on the d-girth can also be found in [7,
25]. We are unaware of complexity results of the corresponding optimization problem. In
an attempt to fill this void in the literature, we define the following problem for d ≥ 2
being a fixed integer. (For a graph G = (V, E) and S ⊆ V , we denote by G[S ] the induced
subgraph of G with vertex set S .)

Minimum Subgraph ofMinimum Degree ≥ d (MSMDd)
Input: An undirected graph G = (V, E).
Output: A subset S ⊆ V such that for H = G[S ], δH ≥ d and |S | is minimized.

Note that the MSMDd problem is in P for d = 2, as it is exactly the Girth problem. We
shall see that the situation is quite different for d ≥ 3. Note also that MSMDd can be
viewed as a dual (unweighted) node-minimization version of MDBCSd. Another moti-
vation for studying MSMDd is its close relation to the well studied Dense k-Subgraph
(DkS) [8, 18, 26] and Traffic Grooming [4] problems. See [4, 5] for further details. Re-
cently, Amini et al. [5] studied the MSMDd problem in the realm of parameterized com-
plexity. The authors provided W[1]-hardness results for general graphs and explicit fixed-
parameter tractable (FPT) algorithms for the class of graphs excluding a fixed graph as
a minor and for graphs of bounded local tree-width. We note that if in the definition of
MSMDd we replace “minimized” with “maximized”, then the objective subset S is known
as a d-core, and can be easily found by recursively removing vertices of degree less than
d.

The last problem studied in this paper is a natural variation of the MSMDd problem, in
which instead of minimizing the size of a subgraph for a given minimum degree, we aim
at maximizing the minimum degree of a subgraph of a given size.

Dual Degree-dense k-Subgraph (DDDkS)
Input: An undirected graph G = (V, E) and a positive integer k.
Output: An induced subgraph H of size |V(H)| ≤ k, such that δH is maximized.

Note that the NP-hardness of DDDkS easily follows from Maximum Clique. Indeed, the
optimal to the DDDkS problem is k − 1 if and only if G has a clique of size k.

The above discussion illustrates that the study of these problems is very natural and that
the results obtained for them can reverberate in several other important optimization prob-
lems, coming from both theoretical and practical domains.
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Our results. In this paper we obtain both approximation algorithms and results on hard-
ness of approximation. All of our hardness results are based on the hypothesis that P ,
NP. More precisely, our results are the following:

• We prove that the MDBCSd problem is not in Apx for any d ≥ 2, and that if there is
a polynomial-time algorithm for MDBCSd, d ≥ 2, with approximation ratio 2O(

√
log n),

then NP ⊆ DTIME(2O(log5 n)). These hardness results hold also for unweighted graphs.
On the other hand, we give an approximation algorithm for general unweighted graphs
with ratio min{m/ log n, nd/(2 log n)}, and an approximation algorithm for general
weighted graphs with ratio min{n/2, m/d}. The first algorithm uses an algorithm intro-
duced in [3], which is based on the color-coding method. We also present a constant-
factor approximation when the input graph has a low-degree spanning tree, in terms of
the integer d.

• We prove that the MSMDd problem is not in Apx for any d ≥ 3. The proof is obtained
by the following two steps. First, by a reduction from Vertex Cover in regular graphs,
we prove that MSMDd does not admit a PTAS. In particular, this implies that MSMDd

is NP-hard for any d ≥ 3. Then, we use the error amplification technique to prove
that MSMDd is not in Apx for any d ≥ 3. On the positive side, we give an (n/ log n)-
approximation algorithm for the class of graphs excluding a fixed graph H as a minor,
using a known structural result on graph minors and dynamic programming over graphs
of bounded tree-width. In particular, this gives an (n/ log n)-approximation algorithm
for planar graphs and graphs of bounded genus.

• We observe that an α-approximation algorithm for the Dense k-Subgraph problem can
be turned into a 2α-approximation algorithm for the DDDkS problem. This fact implies,
according to a recent result of Chlamtac and Feige [8], the existence of an algorithm
that for every ε > 0 approximates the DDDkS problem within a ratio of n1/4+ε in time
nO(1/ε). We also provide a simple randomized O(

√
n log n)-approximation algorithm,

which does not use any “black-box” as subroutine.

Finally, we would like to point out the large gap between the hardness results and the ap-
proximation ratios of the algorithms presented in this article. Although it may be possible
to obtain better approximation ratios for the above three problems, we suspect most of the
approximation ratios to be not far from the optimal.

Organization of the paper. Section 2 provides some basic definitions required in the
paper. In Section 3 we establish inapproximability results for MDBCSd for any d ≥ 2,
and in Section 4 we present two approximation algorithms for unweighted and weighted
general graphs, respectively. The constant-factor approximation for MDBCSd when the
input graph has a low-degree spanning tree is provided in Section 4.2. In Section 5 we
prove that MSMDd is not in Apx for any d ≥ 3, and in Section 6 we give an (n/ log n)-
approximation algorithm for the class of graphs excluding a fixed graph H as a minor.
In Section 7 we focus on approximation algorithms for the DDDkS problem. Finally, we
conclude with some remarks and open problems in Section 8.
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2 Basic Definitions

For the sake of completeness, we provide in this section some basic definitions to be freely
used throughout the paper. For additional background material, the reader is referred, for
example, to [36]. Unless explicitly stated otherwise, log denotes logarithm to the base
two.

Given an NP-hard minimization (resp. maximization) problem Π and a polynomial-time
algorithm A, let OPTΠ(I) be the optimal value of the problem Π for the instance I, and
let ALG(I) be the value given by algorithm A for the instance I. We say that A is an
α-approximation algorithm (or an approximation algorithm with ratio α) for Π if for any
instance I of Π, ALG(I)/OPTΠ(I) ≤ α (resp. OPTΠ(I)/ALG(I) ≤ α). Note that α ≥ 1.

The class Apx consists of all NP-hard optimization problems that can be approximated
within a constant factor. The subclass PTAS (standing for Polynomial Time Approxima-
tion Scheme) contains the problems that can be approximated in polynomial time within
a ratio 1 + ε for any constant ε > 0. Assuming P , NP, there is a strict inclusion of PTAS
in Apx (for instance, Vertex Cover is in Apx \ PTAS), hence an Apx-hardness result for a
problem implies the non-existence of a PTAS. Let us recall the definitions of the Minimum
Vertex Cover problem (from which we obtain the hardness reduction of Section 5) and
the Dense k-Subgraph problem.

Vertex Cover (VC)
Input: An undirected graph G = (V, E).
Output: A subset S ⊆ V of the minimum size such that for each edge {u, v} ∈ E,

at least one of u and v belongs to S .

Dense k-Subgraph (DkS)
Input: An undirected graph G = (V, E) and a positive integer k.
Output: A subset S ⊆ V , with |S | = k, such that |E(G[S ])| is maximized.

Definition 2.1 (Tree-decomposition, tree-width) A tree-decomposition of a graph G =

(V, E) is a pair (T,X), where T = (I, F) is a tree, and X = {Xi | i ∈ I} is a family of subsets
of V(G), called bags and indexed by the nodes of T , such that

(1) each vertex v ∈ V appears in at least one bag, i.e.,
⋃

i∈I Xi = V ;
(2) for each v ∈ V the set of nodes indexed by {i | i ∈ I, v ∈ Xi} forms a subtree of T ;
(3) For each edge e = {x, y} ∈ E, there is an i ∈ I such that x, y ∈ Xi.

The width of a tree-decomposition is defined as maxi∈I{|Xi| − 1}. The tree-width of G,
denoted by tw(G), is the minimum width of a tree-decomposition of G.
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3 Hardness of Approximating MDBCSd

As mentioned in Section 1, MDBCS2 corresponds basically to the Longest Path problem,
which is known to not admit any constant-factor approximation [24], unless P = NP.
In this section we extend this result and prove that, under the assumption that P , NP,
MDBCSd is not in Apx for any d ≥ 2, proving first that MDBCSd is not in PTAS for
any d ≥ 2. Finally, we also prove in Theorem 3.4 that if there is a polynomial time
algorithm for MDBCSd, d ≥ 2, with an approximation ratio of 2O(

√
log n), then NP ⊆

DTIME(2O(log5 n)). In the remainder of this section we focus on the cases d ≥ 3, as the case
d = 2 follows from [24]. We note that our hardness results hold even when all edges have
unitary weight, as it is the case for the Longest Path problem.

Theorem 3.1 MDBCSd does not admit a PTAS for any d ≥ 3, unless P = NP.

Proof: We give our reduction from the Traveling Salesman problem with two distinct
weights on the edges, namely TSP(1, 2), which does not admit a PTAS unless P = NP [31].
An instance of TSP(1, 2) consists of a complete graph G = (V, E) on n vertices and a
weight function f : E → {1, 2} on its edges, and the objective is to find a traveling
salesman tour of minimum weight in G.

We show that if there is a PTAS for MDBCSd, for a fixed d ≥ 3, then one can construct a
PTAS for TSP(1, 2). Towards this, we transform the graph G into a new augmented graph
G′ with a modified weight function g on its edges. For every vertex v ∈ V we add to G′

d − 2 new vertices {v1, . . . , vd−2} and an edge from v to every vertex vi, 1 ≤ i ≤ d − 2.
Thus G′ = (V ∪ V ′, E ∪ E′), where V ′ =

⋃
v∈V{v1, . . . , vd−2} is the set of new vertices and

E′ = {{vi, v} | 1 ≤ i ≤ d − 2, v ∈ V} is the set of new edges. We define the weight function
g on the edges of G′ as:

g(e) =

 3 − f (e), e ∈ E, (weights of original edges get flipped)

3, e ∈ E′.

See Fig. 1(a) for an example of the constructed graph G′ and the weight function g with
n = d = 4. Next we prove a claim characterizing the structure of the maximal solutions of
MDBCSd in G′. Essentially, it shows that any given solution G1 of MDBCSd in G′ with
value W can be transformed into another solution G2 of MDBCSd in G′ with value at least
W, such that G2 contains all the newly added edges and induces a Hamiltonian cycle in G.

Claim 3.1 Any given solution G1 = (V ∪ V ′, E1) of MDBCSd in G′ can be transformed
in polynomial time into a solution G2 = (V ∪ V ′, E2) of MDBCSd in G′ such that (i)
G3 = (V, E ∩ E2) is a Hamiltonian cycle in G, and (ii)

∑
e∈E2

g(e) ≥
∑

e′∈E1
g(e′).

Proof: We prove the claim by describing a series of transformations, applied in order of
appearance, successively improving the solution, and eventually yielding the desired G2.
For a given edge set F, let X(F) be the set of vertices containing the end-vertices of the
edges in F.
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(a) Suppose E1∩E′ = ∅. Then H = (X(E1), E1) is connected and every vertex v ∈ X(E1)
has degree at most d in H. If H has some vertex v of degree strictly less than d,
we can add to the solution the edge {v1, v}. Otherwise, all vertices in H have degree
exactly d. In particular, H contains a cycle, so removing any edge from this cycle
will not break the connectivity of the solution. So we can remove any edge {u, v}
from this cycle and add the edges {u1, u} and {v1, v}, obtaining a solution of larger
weight. Therefore, we assume henceforth that E1 ∩ E′ , ∅.

(b) Suppose V \ X(E1) , ∅, that is, there is a vertex v ∈ V which is not contained in
X(E1). In this case, by case (a) there exists a vertex u ∈ X(E1) such that one of the
edges {ui, u}, 1 ≤ i ≤ d − 2, is in E1. We then set E1 ← E1 − {{ui, u}} ∪ {{u, v}, {v, vi} |

1 ≤ i ≤ d − 2}. Clearly, connectivity is maintained (as removing edges from E′

does not break connectivity) and the weight of solution increases by at least 1. This
procedure is repeated until the current solution contains all the vertices of G.

(c) Suppose H′ = (V, E ∩ E1) is neither a spanning tree nor a Hamiltonian cycle. Notice
that H′ is connected, as removing degree 1 vertices of V ′ does not break connectivity.
This implies that there is a cycle C in H′ and a vertex v on it such that degH′(v) ≥ 3
(otherwise, H′ would be disconnected). This implies that there exists an edge e =

{v, vi} such that e < E1. Let {u, v} be an edge on C. We then set E1 ← E1 − {{u, v}} ∪
{{v, vi}}. Again, connectivity is clearly maintained (as removing an edge from a cycle
does not break connectivity) and the weight of the solution increases by at least 1.
This procedure is repeated until H′ is either a spanning tree or a Hamiltonian cycle.

(d) Suppose H′ = (V, E ∩ E1) is a spanning tree. We take any two leaves u and v of H′

and add the edge {u, v}, obtaining a solution of greater weight. If the obtained graph
is a Hamiltonian cycle, we are done, otherwise we go back to case (c).

The above transformation rules can be applied in polynomial time to obtain a graph G3

that is a solution of MDBCSd in G′ and satisfies the conditions described in the statement
of the claim. �

Suppose that there exists a PTAS for MDBCSd realized by an approximation schemeAδ.
This family of algorithms takes as input a graph G′ and a parameter δ > 0, and returns
a solution of MDBCSd of weight at least (1 − δ)OPTG′ , where OPTG′ is the value of an
optimal solution of MDBCSd in G′.

Using this scheme, we now proceed to construct a PTAS for TSP(1, 2). Given a graph G,
an instance of TSP(1, 2), and a real number ε > 0, do the following:

(1) Apply the transformation described before Claim 3.1 to G and obtain the graph G′.
(2) Fix δ = h(ε, d) (to be specified later) and run Aδ on G′. Let G′′ be the resulting

solution.
(3) Apply the polynomial-time transformation described in Claim 3.1 on G′′, the solu-

tion obtained byAδ on G′. Let the new solution be G∗ = (V ∪ V1, E∗).
(4) Return E∗ ∩ E as the computed solution of TSP(1, 2).

Now we prove that the solution returned by our algorithm satisfies
∑

e∈E∗∩E f (e) ≤ (1 +

ε)OT , where OT is the weight of an optimal tour in G. Let such an optimal tour contain a
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edges of weight 1 and b edges of weight 2. Then OT = a + 2b and a + b = n. Equivalently
a = 2n − OT and b = OT − n. Let OD be the value of an optimal solution of MDBCSd in
G′. Then by Claim 3.1 and the flipping nature of the function g, we have that

OD = (d − 2)3n + 2a + b. (1)

Let 3(d − 2)n + O∗D be the value of the solution returned by Aδ, where O∗D is the sum of
the edge weights of the Hamiltonian cycle in G∗, that is, O∗D =

∑
e∈E∗∩E g(e). SinceAδ is a

PTAS,
3(d − 2)n + O∗D ≥ (1 − δ)OD. (2)

Combining Equation (1) and Inequality (2) gives

O∗D ≥ (1 − δ)OD − 3(d − 2)n = 3n − OT + δOT − n(3d − 3)δ. (3)

On the other hand, the value of the solution returned by our algorithm for TSP(1, 2) is
O∗T = 3n − O∗D (since if O∗D = 2x + y, x being the number of edges of weight 2 and y
being the number of edges of weight 1, with x + y = n, then the value of the solution of
TSP(1, 2) is x + 2y). Substituting O∗D = 3n − O∗T in Inequality (3) and using the fact that
OT ≥ n yields

O∗T ≤ OT − δOT + n(3d − 3)δ ≤ OT − δOT + OT (3d − 3)δ = OT + (3d − 4)δOT . (4)

To show that O∗T ≤ (1 + ε)OT , by Equation (4) it is enough to set δ = h(ε, d) = ε
3d−4 ,

yielding a PTAS for TSP(1, 2). Since TSP(1, 2) does not admit a PTAS [31], the last as-
sertion also rules out the existence of a PTAS for MDBCSd for any d ≥ 3, unless P = NP.�

We need some extra notation for the remainder of this section. By subdividing an edge
e = {u, v} of a graph we denote the operation of deleting the edge {u, v}, and adding a new
vertex z together with the edges {u, z} and {z, v}. There is a natural (maybe not unique)
bipartition of the vertices of a subdivided graph G into original and inner vertices, where
the original vertices are the vertices of the graph from which G has been obtained.

Corollary 3.1 For any fixed integer d ≥ 3, MDBCSd does not admit a PTAS even if all
edges have unitary weight, unless P = NP.

Proof: For any fixed integer d ≥ 3, we slightly modify the reduction from TSP(1, 2) pre-
sented in the proof of Theorem 3.1 . We transform the constructed graph G′, with weight
function g : E(G′) → {1, 2, 3}, into a graph G′′ with unitary weights obtained from G′ by
subdividing each edge e ∈ E(G′) exactly g(e) − 1 times; see Fig. 1(a) and Fig. 1(b) for an
example with n = d = 4. It can then be routinely checked that the arguments of the proof
of Theorem 3.1 carry over to G′′, just by replacing the role of each edge e ∈ E(G′) with
weight g(e) by the corresponding induced path in G′′ with g(e) edges. (It is safely under-
stood that the notions of spanning tree and Hamiltonian cycle in the graph G translate into
a tree and a cycle in G′′, respectively, visiting all the original vertices of G.) �
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From now on we will only deal with graphs with unitary edge weights. Given a subdivided
graph G as defined in the proof of Corollary 3.1, each induced path of G with 3 edges
obtained from an edge of weight 3 is called a pendant path, and the vertex of degree more
than 2 to which this path is attached is called the root of the pendant path. Let u and
v be two arbitrary (but fixed) end-vertices of two pendant paths with distinct roots (see
Fig. 1(b) for an example with d = 4). We further modify G by adding the edge {u, v},
which we call a ribbon edge. For simplicity, in the notation we omit the choice of the
vertices u, v.

Let G be the class of (unweighted) subdivided graphs defined in the proof of Corollary 3.1
by adding the corresponding ribbon edges, that is, the graphs obtained from instances
of TSP(1, 2) by applying the transformations described above. The following fact is an
immediate consequence of Corollary 3.1, by observing that ribbon edges do not alter the
structure of the solutions of MDBCSd for d ≥ 3, as we may assume that any solution
contains all the roots and pendant paths, and therefore also the ribbon edge.

Corollary 3.2 For any fixed integer d ≥ 3, MDBCSd does not admit a PTAS in the class
of graphs G, unless P = NP.

To show the non-existence of a constant-factor approximation for a fixed integer d ≥ 3,
we also need to introduce an edge squaring operation, starting from graphs in the class G.
We define G2 as the graph obtained from G ∈ G by replacing every edge e = {x, y} ∈ E,
except for the ribbon edge {u, v}, with a copy Ge of G, and adding the two edges {x, u}
and {y, v}; see Fig. 1(c) for an example with d = 4, where the white circles represent
other copies of G. For better visibility, ribbon edges have been omitted in the figure.
The vertices x and y are referred to as the contact vertices of Ge, and the edges {x, u}
and {y, v} as the contact edges of Ge. The two contact edges corresponding to the same
copy of G are called twins. When applying this operation iteratively to obtain graphs
G4,G8, . . . ,G2p

, we do not replace the contact edges and the ribbon edges with a copy of
the current graph. That is, a contact or ribbon edge that has appeared at some stage of
the edge squaring operation remains unchanged when further squaring the graph. A p-
contact edge is a contact edge that has appeared when constructing G2p

from G2p−1
. Also,

the contact edges corresponding to a copy of the current graph always contain one of the
two original vertices u and v of G. For instance, in order to obtain G4 from the graph G2

of Fig. 1(d), each copy of G2 is attached to the rest of the graph through either u or v. We
denote by G∗ the class of graphs that can be obtained from some graph in G by repeatedly
applying the edge squaring operation.

Observe that this edge squaring differs from the one introduced in [24] to prove the hard-
ness of Longest Path, in which for every edge e = {x, y} ∈ E, the vertices x and y are
joined to every vertex in Ge. We need this new definition for technical reasons, as the
structure of the solutions of MDBCSd for d = 2 and for d ≥ 3 differs considerably.

The squared graphs G2p
are important because of the following facts.

Lemma 3.1 Let d ≥ 3 and p ≥ 1 be two integers. Let G ∈ G be a graph in which an
optimal solution of MDBCSd has x edges. Then an optimal solution of MDBCSd in G2p

9
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Fig. 1. Example of the transformations for d = 4. (a) Graph obtained from an instance of TSP(1, 2)
with n = d = 4. The integers correspond to the weight function g. (b) Subdivided graph G ∈ G
obtained from the instance of TSP(1, 2). The ribbon edge {u, v} has been omitted in the figure. (c)
Graph G2 obtained from G, where for better visualization each circle corresponds to a copy of G.
(d) Graph Ḡ obtained from G2. (e) The thick edges define a solution H in Ḡ. (f) The thick edges
define a solution H1 in Ḡ obtained from H.

has at least x2p
− yp edges, where yp = O(x2p−1).

Proof: For simplicity, let xi be the number of edges of an optimal solution of MDBCSd in
G2i

, so x0 = x. We prove the following stronger claim by induction on i: for every integer
i ≥ 1, there exists a solution in G2i

with at least x2i
−yi edges, and having at most zi contact

or ribbon edges, with yi = O(x2i−1) and zi = O(x2i−1). For i = 1, let S 0 be a solution in G
with x0 = x edges, and note that by the proof of Claim 3.1, we can assume that all pendant
paths of G, as well as the ribbon edge {u, v}, belong to S . Let S 1 be the solution in G2

containing a copy of S for each edge of S which is not a contact or a ribbon edge, plus
the corresponding contact vertices and paths. As all pendant paths belong to S and d ≥ 3,
the graph S 1 is well-defined. As all edges of S get squared, except for the ribbon edge, it
holds that |E(S 1)| = 1 + (x − 1)(x + 2) = x2 + x − 1 = x2 − y1. Clearly, y1 = O(x). The
number of contact or ribbon edges of S 1 is z1 = 1 + (x − 1)(1 + 2) = 3x − 2 = O(x).

Suppose now by induction that the claim is true for i, that is, there exists a solution S i in
G2i

with x2i
− yi edges having at most zi contact or ribbon edges, with yi = O(x2i−1) and

zi = O(x2i−1). Analogously to the case i = 1, when we square the edges belonging to S i,
except for contact and ribbon edges, replacing each of them with a copy of S i, we obtain
a solution S i+1 in G2i+1

satisfying
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|E(S i+1)| = zi + (x2i
− yi − zi)(x2i

− yi + 2)

= x2i+1
− x2i

(yi − 2) − (yi + zi)(x2i
− yi + 2) + zi. (5)

As by the induction hypothesis it holds that yi = O(x2i−1) and zi = O(x2i−1), it follows from
Equation (5) that xi+1 ≥ x2i+1

− yi+1, with yi+1 = O(x2i+1−1).

On the other hand, the number of contact or ribbon edges of S i+1 is

zi+1 = zi + (x2i
− yi − zi)(zi + 2). (6)

Again, using that yi = O(x2i−1) and zi = O(x2i−1), it follows from Equation (6) that
zi+1 = O(x2i+1−1), as we wanted to prove. �

The following lemma will play a fundamental role in the proof of Lemma 3.3.

Lemma 3.2 Let d ≥ 3 and p ≥ 1 be two fixed integers, and let G ∈ G. Given a solution
S of MDBCSd in G2p

with ` edges, we can transform it in polynomial time into another
solution S ′ with `−o(`) edges such that a contact edge belongs to S ′ if and only if its twin
contact edge does.

Proof: Let S be a solution of MDBCSd in G2p
with ` edges. For i = 1, . . . , p, we will

sequentially transform S in polynomial time into a solution S i of MDBCSd in G2p
with

the following property: |E(S i)| = ` − o(`), and in S i all j-contact edges with j ≤ i come
in pairs, that is, a j-contact edge, with j ≤ i, belongs to S i if and only if its twin contact
edge does. By letting S ′ := S p we obtain a solution with the claimed property. We now
proceed to describe the transformation for i = 1.

For each pair of twin 1-contact edges e1 and e2 of G2p
, the smallest connected component

of G2p
\ {e1, e2} is called a piece of G2p

. For instance, each circle of the graph depicted in
Fig. 1(c) is a piece of G2. Note that, in particular, by construction each piece is connected.
Let Ḡ be the graph obtained from G2p

by contracting each piece to a single vertex. Note
that Ḡ is the graph obtained from G by subdividing each edge exactly once; see Fig. 1(d)
for an example with d = 4. For simplicity, the vertices of Ḡ that correspond to pieces
will be called white vertices. Also, an induced path in Ḡ between two original vertices not
visiting any other original vertex is called a direct path.

Let X be the edges of Ḡ that belong to S , and let H = Ḡ[X], that is, the subgraph of Ḡ
induced by the edges and vertices in X. Note that the edges in X are contact edges of G2p

,
and that by construction H is a solution of MDBCSd in Ḡ; see Fig. 1(e) for an example
with d = 4, where the subgraph H is defined by the thick edges. We now proceed to
modify H into another solution H1 of MDBCSd in Ḡ in which twin contact edges come in
pairs. Finally, we will obtain from H1 the desired solution S 1 of MDBCSd in G2p

.

In the same spirit of the proof of Claim 3.1, we describe a series of transformations, ap-
plied to H in order of appearance, which eventually yield the desired solution H1. During
these transformations, we will make sure that the number of edges and white vertices of
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H does not decrease too much. Let E′ be the set of edges of Ḡ that arose from subdividing
an edge from a pendant path of G, let Vo be the set of original vertices of G contained in
H, let w(H) be the number of white vertices in H, and let Ĥ be the graph obtained from
H be removing the vertices and edges belonging to pendant paths.

(a) Suppose E(H)∩ E′ = ∅. If H is a tree (note that H is necessarily connected), let x be
a leaf of H, and let y be the original vertex of Ḡ closest to x in H (it may be x itself).
We remove from H the (possibly empty) path from y to x, and add to H a pendant
path rooted at y. Clearly, connectivity and maximum degree are preserved, and both
|E(H)| and w(H) strictly increase. Otherwise, if H contains a cycle C, let x and y be
two consecutive original vertices in C (note that each cycle in H contains at least 3
original vertices). In this case, we remove from H the direct path from x to y (note
that connectivity is preserved), and add two pendant paths rooted at x and y. After
this transformation, |E(H)| and w(H) have increased by at least 8 and 4, respectively.
We can assume henceforth that H contains at least an entire pendant path.

(b) Suppose Vo \V(H) , ∅, that is, there is an original vertex x which is not contained in
V(H). In this case, by transformation (a) there exists a vertex y ∈ V(H) such that one
pendant path Py rooted at y belongs to H. We remove Py from H, and add the direct
path from x to y (it may happen that part of this path was already in H; in that case
we just make it longer until reaching x), and a pendant path rooted at x. Again, both
|E(H)| and w(H) can only increase, and the connectivity and the maximum degree
of H are preserved. This procedure is repeated until the current solution contains all
the original vertices of G.

From now on, by a “spanning tree” (resp. “Hamiltonian cycle”) we mean, with
abuse of notation, a tree (resp. cycle) in Ḡ containing all original vertices of G.

(c) Suppose Ĥ is neither a spanning tree nor a Hamiltonian cycle. Notice that Ĥ is con-
nected, as removing vertices of degree 1 preserves connectivity. This implies that
there is a cycle C in Ĥ and a vertex x on it such that degĤ(x) ≥ 3 (as otherwise,
Ĥ would be disconnected). This implies that there is a pendant path Px rooted at x
which is not in H. Let y be an original vertex consecutive to x in C. We remove from
H the direct path from x to v, and add the pendant path Px. In this case, both |E(H)|
and w(H) have strictly increased, and the connectivity and the maximum degree of
H are preserved. This procedure is repeated until Ĥ is either a spanning tree or a
Hamiltonian cycle.

(d) Suppose Ĥ is a spanning tree with a vertex x such that degĤ(x) ≥ 3, and let T1, . . . ,T`

be the subtrees of Ĥ rooted at x. As degĤ(x) ≥ 3, there is a pendant path Px rooted
at x which is not in Ĥ. If only one of the trees T1, . . . ,T` contains original vertices
(other than x), then we can exchange each of them for a pendant path rooted at
x, therefore increasing both |E(H)| and w(H). So we can assume that each subtree
rooted at x contains at leat one original vertex. Let y1 and y2 be two leaves of Ĥ in the
subtrees T1 and T2, respectively, and let w1 and w2 be the two original vertices which
are closest in Ĥ to y1 and y2, respectively (it may happen that w1 = y1 or w2 = y2).
We remove from H the paths from y1 to w1 and from y2 to w2, add the direct path
from w1 to w2, remove the edge of T1 incident to x, and add the pendant path Px

rooted at x. In the new solution, the degree of x in Ĥ has decreased by one, H is still
a spanning tree with ∆H ≤ d, and one can check that w(H) has not decreased and
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that |E(H)| has increased by at least 1. This procedure is repeated until Ĥ satisfies
∆Ĥ ≤ 2, that is, until Ĥ is either a spanning path or a Hamiltonian cycle. Note that at
this stage all pendant paths belong to H, and that we can also assume that the ribbon
edge {u, v} belongs to H.

(e) If Ĥ is a Hamiltonian cycle, we are done. Otherwise, Ĥ is a spanning path; see
Fig. 1(e) for an example with d = 4. Let y1 and y2 be the two leaves of Ĥ, and let
w1 and w2 be the two original vertices of Ḡ which are closest in Ĥ to y1 and y2,
respectively (again, it may happen that w1 = y1 or w2 = y2). We remove from H
the paths from y1 to w1 and from y2 to w2, and add the direct path from w1 to w2;
see Fig. 1(f). After this transformation, Ĥ is a Hamiltonian cycle, and |E(G)| (resp.
w(H)) has decreased by at most 4 (resp. 3).

After these transformations, which can clearly be done in polynomial time, we have ob-
tained from the initial solution H another solution H1 such that Ĥ1 is a Hamiltonian cycle
and such that all pendant paths of Ḡ, as well as the ribbon edge {u, v}, belong to H1.
In particular, in Ĥ all twin contact edges come in pairs. In the above transformations,
the only step in which |E(H)| or w(H) may have decreased is the last one. Therefore,
|E(H1)| ≥ |E(H)| − 4 and w(H1) ≥ w(H) − 3.

In order to obtain S 1 from H1, we do the following. Let P be a piece of G2p
for which

|E(S )∩ E(P)| is maximized. We just replace each white vertex in H1 with the piece P. By
construction, S 1 is a solution of MDBCSd in G2p

in which all twin 1-contact edges come
in pairs. Let us now argue about |E(S 1)| with respect to |E(S )|. Let x = |E(S )∩ E(P)|, and
note that w(H) is the number of pieces of G2p

with non-empty intersection with S . For
this analysis, let n be the number of original vertices in Ḡ. From the above definitions and
by construction, it holds that |E(S )| ≤ w(H)(x + 2) and that |E(S 1)| ≥ w(H1)(x + 2), so
|E(S 1)|/|E(S )| ≥ w(H1)/w(H). As Ĥ1 is a Hamiltonian cycle and all pendant paths of Ḡ
belong to H1, we have that w(H1) ≥ (d−2+1)n = (d−1)n, and using that w(H1) ≥ w(H)−3,
we get that

w(H1) ≥ max { (d − 1)n, w(H) − 3 } . (7)

We distinguish two cases according to w(H). First, if w(H) < n, then using Inequality (7)
we get

|E(S 1)|
|E(S )|

≥
(d − 1)n

w(H)
>

(d − 1)n
n

= d − 1.

In particular, in this case we have that |E(S 1)| > |E(S )|. Otherwise, if w(H) ≥ n, using
again Inequality (7) we get

|E(S 1)|
|E(S )|

≥
w(H) − 3

w(H)
≥ 1 −

3
n
,

and therefore
|E(S 1)| ≥ |E(S )| −

3|E(S )|
n

= ` − o(`),

as we wanted to prove.

Let us now explain how the above procedure is iterated for i = 2, . . . , p. We recursively
repeat the transformations describe above in each piece of G2p

intersected by the current
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solution, sequentially modifying it to another one with the desired property. Note that
after each step, all pieces and the intersection of the current solution with them are iden-
tical, so only one transformation is required for each i = 2, . . . , p, and in all pieces the
current solution gets replaced with the same new one. More precisely, in step i the pieces
are naturally defined as the smallest connected components when removing pairs of twin
i-contact edges. Note that as we can assume that for each such piece the ribbon edge be-
tween its contact vertices belongs to the solution, the intersection of the current solution
with each piece is a connected subgraph of maximum degree at most d, and hence a valid
solution of MDBCSd. Therefore, the arguments above can be safely repeated recursively
for i = 2, . . . , p, and in each step i we obtain a solution in which all twin j-contact edges
with j ≤ i come in pairs. At each step, the number of edges of the solution in each piece is
reduced only by a lower order additive factor, and therefore for i = p we obtain a solution
S ′ with `− o(`) edges such that a contact edge belongs to S ′ if and only if its twin contact
edge does, as claimed. Clearly, the overall running time is polynomial in the number of
vertices of G2p

. �

We are now ready to prove the following lemma, which is the main ingredient of the proof
of Theorem 3.2.

Lemma 3.3 Let d ≥ 3 and p ≥ 1 be two fixed integers, and let G ∈ G. Given a solution S
of MDBCSd in G2p

with ` edges, one can find in polynomial time a solution H of MDBCSd

in G2p−1
with

√
` − o(

√
`) edges.

Proof: We will construct from S the desired solution H in G2p−1
. First, we apply Lemma 3.2

and obtain from S in polynomial time a solution S ′ in G2p
with ` − o(`) edges such that

a contact edge belongs to S ′ if and only if its twin contact edge does. Observe that a sub-
graph of G2p

can pass from one copy of G2p−1
corresponding to an edge to another copy of

G2p−1
corresponding to another edge only via contact vertices and edges. Let `′ = |E(S ′)|,

and note that `′ = ` − o(`). In order to define H, we distinguish two cases:

(i) S ′ intersects strictly fewer than
√
`′ copies of G2p−1

in G2p
.

Then let H = S ′ ∩ G2p−1

e , with G2p−1

e being a copy of G2p−1
in G2p

such that |E(S ′) ∩
E(G2p−1

e )| is maximized. As by Lemma 3.2 we can assume that the ribbon edge of the
copy G2p−1

e belongs to S ′, it follows that H is connected. It is also clear that, as ∆S ′ ≤ d,
then ∆H ≤ d as well. Let us now argue about |E(H)|.

Suppose that S ′ intersects c copies of G2p−1
, with c <

√
`′, and for 1 ≤ i ≤ c let ei

be the number of edges of S ′ in the i-th copy of G2p−1
. Note that by definition |E(H)| =

max1≤i≤c ei. As by Lemma 3.2, for each copy of G2p−1
intersected by S ′ both contact

edges belong to S ′, it holds

c∑
i=1

(ei + 2) ≥ `′. (8)

Since by assumption c <
√
`′, it follows from Inequality (8) that

∑c
i=1 ei > `′ − 2

√
`′,
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which in turn implies that

|E(H)| = max
1≤i≤c

ei ≥
`′ − 2

√
`′

√
`′

=
√
`′ − 2 =

√
` − o(

√
`),

as we wanted to prove.
(ii) H intersects at least

√
`′ copies of G2p−1

in G2p
.

By Lemma 3.2, we know that whenever S ′ intersects a copy of G2p−1
, both twin contact

edges of this copy belong to S ′. We define H as the subgraph of G2p−1
induced by the

edges e ∈ E(G2p−1
) such that E(S ′) ∩ E(G2p−1

e ) , ∅, that is, the edges of G2p−1
whose

corresponding copy has a non-empty intersection with S ′, plus the contact and ribbon
edges of G2p

belonging to S ′ which do not correspond to a copy of G2p−1
. This subgraph

H is clearly connected by the connectivity of S ′, and it holds that ∆H ≤ d because
∆S ′ ≤ d and in S ′ all twin contact edges come in pairs. Finally, |E(H)| is bounded below
by the number of intersected copies of G2p−1

, which is at least
√
`′ =

√
` − o(

√
`), as

we wanted to prove.

Since the above operations can clearly be performed in polynomial time and either case (i)
or (ii) must necessarily occur, the lemma follows. �

Using Lemma 3.1 and Lemma 3.3 one can show the following theorem, inspired from [24,
Theorem 8].

Theorem 3.2 If for some fixed integer d ≥ 3, MDBCSd has a polynomial-time algorithm
that achieves a constant-factor approximation in the class of graphs G∗, then it has a
PTAS in the class of graphs G.

Proof: Let A be an algorithm that achieves a C-approximation for MDBCSd in the class
of graphs G∗, for some fixed constant C > 1. We restrict the input graphs to belong to
the class of graphs G. Given an input graph G = (V, E) belonging to G, we build the
graph G2p

by applying p times the edge squaring operation, where p is an integer to be
specified later. For k = 0, . . . , p, let OPTk be the number of edges of an optimal solution
of MDBCSd in G2k

, and let for simplicity OPT = OPT0. By Lemma 3.1, for p ≥ 1 it holds

OPTp ≥ OPT2p
− o(OPT2p

). (9)

The PTAS is now obtained as follows. We run algorithm A on the graph G2p
, yielding a

solution with at least OPTp/C edges, sinceA is a C-approximation algorithm. Beginning
from this solution, we apply Lemma 3.3 p times to obtain a solution of MDBCSd in G
with weight SOL, such that
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SOL ≥

(
OPTp

C

)1/2p

− o

(OPTp

C

)1/2p
≥

(
OPT2p

− o(OPT2p
)
)1/2p

C1/2p − o

(OPTp

C

)1/2p
=

OPT
C1/2p − o(OPT) , (10)

where we have used Equation (9) in the second inequality, and in the last equality the fact

that, by the definition of the edge squaring operation, OPTp = O(OPT2p
), so o

((
OPTp

C

)1/2p)
=

o(OPT). It is then clear from Equation (10) that for any ε > 0, there exists an integer
p(ε,C) such that for any graph G ∈ G with n = |V(G)| large enough, OPT

SOL ≤ 1 + ε. Since
for any fixed ε > 0, the overall running time of this algorithm is polynomial in n, we have
constructed a polynomial-time (1 + ε)-approximation algorithm for any ε > 0 in the class
of graphs G. In other words, MDBCSd admits a PTAS for any fixed integer d ≥ 3 in the
class of graphs G, as claimed. �

Corollary 3.2 and Theorem 3.2 together yield the following theorem.

Theorem 3.3 The MDBCSd problem does not admit any constant-factor approximation
algorithm for any fixed d ≥ 3, even if the input graph is restricted to belong to the class
of graphs G∗, unless P = NP.

Karger et al. ruled out in [24] the existence of weaker approximation algorithms for find-
ing a longest path in a given graph. In the same spirit we show the following theorem.

Theorem 3.4 If there is a polynomial-time algorithm for MDBCSd for some fixed integer
d ≥ 3, with approximation ratio 2O(

√
log n), then NP ⊆ DTIME(2O(log5 n)). The result also

holds if all edges have unitary weight.

Proof: Let A be an algorithm of approximation ratio g(n) = 2O(
√

log n) for MDBCSd, in
particular in the class of graphs G∗. Let G = (V, E) ∈ G∗ be an instance of MDBCSd with
n vertices and having an optimal solution with ` edges. We choose p to be the smallest
integer such that N = n3p

≥ 2log5 n. Now we generate from G the graph G2p
by applying

p times the edge squaring operation. Note that the number of vertices of G2p
is bounded

above by N. By Lemma 3.1, we know that G2p
has a solution with at least `2p

− o(`2p
)

edges. RunningA on G2p
we obtain a solution H with at least

(
`2p
− o(`2p

)
)
/g(N) edges.

Furthermore, starting with the solution H and repeatedly applying Lemma 3.3, we obtain
a solution of MDBCSd in G with at least (` − o(`)) /h(n) − o(`) edges, where

h(n) = g(N)1/2p
= 2O(

√
log N/2p) = 2O(log2.5 n/2p) = O(1) ,

where the last equality follows because n3p
≥ 2log5 n implies that log5/2 n ≤ (35/8)p < 2p.
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This implies that we can approximate MDBCSd in the class of graphsG∗ within a constant
factor in time polynomial in N, that is, in time 2O(log5 n). But by Theorem 3.3 we know that
finding a constant-factor approximation for MDBCSd in the class of graphsG∗ is NP-hard,
hence we have given a simulation of an NP-hard problem in time 2O(log5 n). The theorem
follows. �

4 Approximating MDBCSd

In this section we focus on approximating MDBCSd. As we have seen in Section 3, MD-
BCSd does not admit any constant-factor approximation algorithm in general graphs.

First, we provide in Section 4.1 approximation algorithms in general graphs for both the
weighted and unweighted versions of the problem. Then, we show in Section 4.2 that
when the input graph has a low-degree spanning tree (in terms of d), the problem becomes
easy to approximate in weighted and unweighted graphs. Specifically, Proposition 4.2
provides a constant-factor approximation for such graphs.

4.1 General graphs

The first non-trivial approximation algorithm for the Longest Path problem (which cor-
responds to the case d = 2 of MDBCSd, as discussed in the introduction) has approxi-
mation ratio O(n/ log n) [3] (see Section 8 for a discussion about the recent advances on
the Longest Path problem). Using the results of [3], we provide in Theorem 4.2 an ap-
proximation algorithm for MDBCSd in general unweighted graphs for any d ≥ 2. We then
turn to weighted graphs and provide an approximation algorithm in Theorem 4.3. Finally
we compare both algorithms for unweighted graphs. These are the first approximation
algorithms for MDBCSd in general graphs for d ≥ 3.

We need a preliminary lemma, that uses the following result.

Proposition 4.1 (Munro and Raman [29]) Any unordered tree on n nodes can be repre-
sented using 2n + o(n) bits with adjacency being supported in O(n) time.

Let Tn,d be the set of non-isomorphic unlabeled trees on n nodes with maximum degree at
most d.

Lemma 4.1 The set Tlog n,d can be generated in polynomial time in n.

Proof: It is well known that |Tn,n−1| ∼ Cαnn−5/2 as n → ∞, for positive constants C
and α, cf. [33]. Hence, the set Tlog n,log n−1 is of size polynomial in n. In addition, one
can efficiently generate all the elements of Tlog n,log n−1. Indeed by Proposition 4.1 any
unlabeled tree on log n nodes can be represented using 2 log n+o(log n) bits with adjacency
being supported in O(log n) time. Finally, the set Tlog n,d is obtained from Tlog n,log n−1 by
removing all the elements T with ∆T > d, where ∆T is the maximum degree of the tree T .
�
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The main ingredient of our first algorithm is the following theorem of Alon et al. [3],
which is based on the color-coding method.

Theorem 4.1 (Alon et al. [3]) If a graph G = (V, E) contains a subgraph isomorphic to
a graph H = (VH, EH) whose tree-width is at most t, then such a subgraph can be found
in 2O(|VH |) · |V |t+1 · log |V | time.

In particular, trees on log |V | vertices can be found in time |V |O(1) · log |V |. We are ready to
describe our algorithm for unweighted graphs.

AlgorithmA:

(1) Generate all the elements of Tlog n,d. Define the set F ← ∅.
(2) For each T ∈ Tlog n,d, test if G contains a subgraph isomorphic to T . If such a subgraph

is found, add it to F .
(3) If F = ∅ or d > log n, output an arbitrary connected subgraph of G with d edges.

Otherwise, output any element in F .

Theorem 4.2 For all d ≥ 2, algorithm A provides a ρ-approximation algorithm for
MDBCSd in unweighted graphs, with ρ = min{m, nd/2}/ log n.

Proof: Let us first observe that the running time of algorithm A is polynomial in n. In-
deed, steps (1) and (2) can be executed in polynomial time by Lemma 4.1 and Theo-
rem 4.1, respectively. Step (3) takes time proportional to the size of the output. Algorithm
A is clearly correct, since by definition of the set Tlog n,d the output graph is a solution of
MDBCSd in G.

Finally, let us consider the approximation ratio of algorithm A. Let OPT be the number
of edges of an optimal solution of MDBCSd in G, and let ALG be the number of edges of
the solution found by algorithmA. We distinguish two cases:

• If OPT ≥ d·log n
2 , then any optimal solution Ĥ has at least log n vertices. In particular, Ĥ

contains a tree on log n vertices with maximum degree at most d, and so does G. Hence,
this tree will be found in step (2), and therefore ALG ≥ log n − 1. (In the sequel we
assume for the sake of simplicity that ALG ≥ log n.) On the other hand, we know that
OPT ≤ min{m, nd/2}.

• Otherwise, if OPT < d·log n
2 , then we use the fact that ALG ≥ d. Note that such a

connected subgraph with d edges can be greedily found starting from any node of G.

In both cases,

OPT
ALG

≤ max

min
{
m, nd

2

}
log n

,
log n

2

 =
min{m, nd/2}

log n
, since log n = O(

√
n).

The theorem follows. �

In particular, for d = 2 AlgorithmA is equivalent to the Longest Path algorithm of [3].
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Theorem 4.3 The MDBCSd problem admits a ρ-approximation algorithm B in weighted
graphs, with ρ = min{n/2,m/d}.

Proof: Let us describe algorithm B. Let F be the set of d heaviest edges in the input graph
G, and let W be the set of endpoints of those edges. We distinguish two cases according
to the connectivity of the subgraph H = (W, F). Let ω(F) denote the total weight of the
edges in F.

If H is connected, the algorithm returns H. We claim that this yields a ρ-approximation.
Indeed, if an optimal solution consists of m∗ edges of total weight ω∗, then ALG = ω(F) ≥
ω∗

m∗ · d, since by the choice of F the average weight of the edges in F cannot be smaller
than the average weight of the edges of an optimal solution. As m∗ ≤ m and m∗ ≤ dn/2,
we get that ALG ≥ ω∗

m · d and ALG ≥ ω∗

dn/2 · d = ω∗

n/2 .

Now suppose H = (W, F) consists of a collection F of k connected components. Then we
glue these components together in k − 1 phases. In each phase, we pick two components
C,C′ ∈ F , and combine them into a new connected component Ĉ by adding a connecting
path, without touching any other connected component of F . We then set F ← F \

{C,C′} ∪ {Ĉ}.

Each phase operates as follows. For every two components C,C′ ∈ F , compute their
distance, defined as d(C,C′) = min{dist(u, u′,G) | u ∈ C, u′ ∈ C′}, where dist(u, u′,G) is
the length of a shortest path in G between u and u′. Take a pair C,C′ ∈ F attaining the
smallest distance d(C,C′). Let u ∈ C and u′ ∈ C′ be two vertices realizing this distance,
i.e., such that dist(u, u′,G) = d(C,C′). Let p(u, u′) be a shortest path between u and u′ in
G. Let Ĉ be the connected component obtained by merging C, C′ and the path p(u, u′).

For the correctness proof, we need the following two observations: First, observe that in
every phase, the path p(u, u′) used to merge the components C and C′ does not go through
any other cluster C′′, since otherwise, d(C,C′′) would be strictly smaller than d(C,C′),
contradicting the choice of the pair (C,C′). Moreover, p(u, u′) does not go through any
other vertex v in the cluster C except for its endpoint u, since otherwise, dist(v, u′,G) <
dist(u, u′,G), contradicting the choice of the pair u, u′. Similarly, p(u, u′) does not go
through any other vertex v′ in C′.

We now claim that after i phases, the maximum degree of H satisfies ∆H ≤ d−k+i+1. This
is proved by induction on i. For i = 0, i.e., for the initial graph H = (W, F), we observe
that as F consists of d edges arranged in k separate components, the largest component
will have no more than d − k + 1 edges, hence ∆H ≤ d − k + 1, as required. Now suppose
the claim holds after i − 1 phases, and consider phase i. All nodes other than those of the
path p(u, u′) maintain their degree from the previous phase. The nodes u and u′ increase
their degree by 1, so by the inductive hypothesis, their new degree is at most (d − k + (i −
1) + 1) + 1 = d − k + i + 1, as required. Finally, the intermediate nodes of p(u, u′) have
degree 2 ≤ d − k + i + 1 (since i ≥ 1 and k ≤ d). It follows that by the end of phase k − 1,
∆H ≤ d− k + k−1 + 1 = d. Also, at that point H is connected. Hence H is a valid solution.

Finally, the approximation ratio of the algorithm is still at most ρ = min{n/2,m/d}, since
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this ratio was guaranteed for the originally selected F, and the final subgraph contains the
set F. �

For unweighted graphs, comparing approximation ratios of AlgorithmA of Theorem 4.2
and Algorithm B of Theorem 4.3, we conclude that Algorithm A performs better when
d < log n, while Algorithm B is better when d ≥ log n. So if we run both the algorithms
and keep the best solution, we obtain the following corollary.

Corollary 4.1 In unweighted graphs, the MDBCSd problem admits a ρ-approximation
algorithm, with ρ = min{n/2, nd/(2 log n), m/d, m/ log n}.

4.2 Graphs with low-degree spanning trees

We first state a simple lemma about the optimal solutions of the polynomially solvable
MDBSd problem, whose definition is the same as the MDBCSd problem, except that the
connectivity of the output subgraph is not required.

Lemma 4.2 Given a graph G, an integer d ≥ 2, and a real number k with 1 < k ≤ d, let
OPTd and OPTd/k be the optimal solutions of MDBSd and MDBSdd/ke in G, respectively.
Then OPTd ≤

d+1
d · k · OPTd/k.

Proof: Let Ĥd be a subgraph of G attaining OPTd. By Vizing’s theorem [14], there exists
a coloring of the edges of Ĥd using at most d + 1 colors. Order these chromatic classes
according to non-increasing total edge-weight, and let Hd/k be the subgraph of G induced
by the first dd/ke classes. Then the maximum degree of Hd/k does not exceed dd/ke, and
the sum of its edge weights is at least d·OPTd

k·(d+1) . Hence

OPTd ≤
d + 1

d
· k · OPTd/k . �

Note that, in particular, OPTd ≤
3k
2 · OPTd/k. For example, if G = C5 and d = k = 2, then

OPT2 = 5 ≤ 3/2 · 2 · OPT1 = 3 · 2 = 6.

We define a k-tree of a connected graph to be a spanning tree with maximum degree at
most k. We are now ready to describe our approximation algorithm.

Proposition 4.2 Given an integer d ≥ 2 and a real number ` with 1 < ` < d, let Gd,` be
the class of graphs that have a (d/` − 1)-tree. Then, for any G ∈ Gd,`, MDBCSd can be
approximated in G within a constant factor d+1

d
`
`−1 .

Proof: Since G has a (d/` − 1)-tree, by [19] one can find in polynomial time a spanning
tree T of G with maximum degree at most d/`. Let k = `

`−1 , and let H be the optimal solu-
tion of MDBSdd/ke in G (recall that MDBSd is in P, but the output graph is not necessarily
connected). Then the graph T ∪ H is a solution of MDBCSd in G, since it is connected
and has maximum degree at most d. By Lemma 4.2 and using the fact that any solution
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of MDBCSd is also a solution of MDBSd, we conclude that T ∪ H provides a d+1
d

`
`−1 -

approximation for MDBCSd in G. �

For example, Proposition 4.2 states that MDBCSd admits a
(
2 · d+1

d

)
-approximation in

graphs with a spanning tree of maximum degree at most d/2 − 1. Note that 2 · d+1
d ≤ 8/3

for any d ≥ 3.

4.2.1 The relation between MDBCSd and graph toughness

Given a graph G, denote by κ(G) the number of connected components of G.

Definition 4.1 (Toughness of a graph [37]) The toughness t(G) of a graph G = (V, E) is
the largest number t such that, for any subset S ⊆ V , |S | ≥ t · κ(G[V \ S ]), provided that
κ(G[V \ S ]) > 1.

It is proved in [37] that if t(G) ≥ 1
k−2 , for k ≥ 3, then G has a k-tree.

Theorem 4.4 (Win [37]) Let G be a graph. If t(G) ≥ 1
k−2 , with k ≥ 3, then G has a k-tree.

Let us relate the above definitions with the MDBCSd problem. If a graph G does not
satisfy the conditions of Proposition 4.2, then G does not have a (d/2 − 1)-tree. In this
case one has some additional knowledge about the structure of G. Namely, Theorem 4.4
states that, provided that d ≥ 8, the toughness t(G) of G satisfies t(G) < 1

d/2−3 , implying
that there exists a subset S ⊆ V(G) such that

κ(G[V \ S ]) > |S | ·
(
d
2
− 3

)
.

It would be interesting to explore the question whether this structural result permits to
approximate MDBCSd efficiently.

5 Hardness of Approximating MSMDd

The main result of this section, Theorem 5.4, states that MSMDd does not admit a constant-
factor approximation in general graphs, for d ≥ 3. We first prove in Section 5.1 that
MSMDd does not admit a PTAS, and then use the error amplification technique to prove
the main result. Our reduction is obtained from the Vertex Cover (VC) problem (see
Section 2).

5.1 MSMDd does not admit a PTAS for any d ≥ 3

The result is first established in Theorem 5.1 for the case d = 3. An easy extension of
Theorem 5.1 allows to prove the result for any d ≥ 3 in Theorem 5.2. For the sake of
completeness, the proof of Theorem 5.2 can be found in Appendix A.
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Fig. 2. An example of the graph G built in the reduction of Theorem 5.1.

Theorem 5.1 The MSMD3 problem does not admit a PTAS, unless P = NP.

Proof: We present a reduction from Vertex Cover, which does not admit a PTAS in
cubic graphs, unless P = NP [2]. Given a cubic graph H as instance of Vertex Cover,
with |V(H)| = n, we construct an instance G = f (H) of MSMD3 as follows. Without loss
of generality, we may assume that |E(H)| = 3n/2 = 3 · 2` for some integer `. Let T be the
rooted tree with root r and height ` + 1 on 3 · 2`+1 − 2 vertices, in which all the internal
vertices have degree three (thus, containing 3 · 2` leaves). We identify the leaves of T
with the elements in E(H), and denote –with slight abuse of notation– this set by E (note
that E ⊆ V(T )). We add another copy of E, called F, and a Hamiltonian cycle on E ∪ F
inducing a bipartite graph with partition classes E and F, as shown in Fig. 2. We also
identify the vertices of F with the elements in E(H). Now we add a set A of |V(H)| new
vertices identified with the elements in V(H), and join them to the vertices in F according
to the incidence relations in H: we add an edge between a vertex in F corresponding to
e ∈ E(H) and a vertex in A corresponding to u ∈ V(H) if and only if e contains u. This
completes the construction of G, which is illustrated in Fig. 2.

We now claim that minimum subgraphs of G of minimum degree at least 3 correspond to
minimum vertex covers of H, and vice-versa. To see this, first note that if such a subgraph
D of G contains a vertex of V(T ) ∪ F, then it should contain all the vertices of V(T ) ∪ F,
because of the construction of G and the degree constraints. On the other hand, D cannot
contain only vertices of A (as they induce an independent set), hence D must contain all
the vertices of V(T ) ∪ F. Note that all the vertices of F have degree two in G[V(T ) ∪ F].
Therefore, the problem reduces to finding a smallest subset of vertices in A covering all
the vertices in F. This is exactly the Vertex Cover problem in H. Thus, we have that

OPTMSMD3(G) = OPTVC(H) + |V(T )| + |F| = OPTVC(H) + 9n/2 − 2 . (11)

(We will omit in the sequel the reference to G and H in OPTMSMD3 and OPTVC, respec-
tively.) Note also that any solution of MSMD3 in G of size SOLMSMD3 defines a solution
of Vertex Cover in H of size SOLVC = SOLMSMD3 − 9n/2 + 2. Assume now for contra-
diction that MSMD3 admits a PTAS, that is, for any ε > 0 we can find in polynomial time
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a solution of MSMD3 in G of size SOLMSMD3 ≤ (1 + ε) · OPTMSMD3 . Therefore, we could
find in polynomial time a solution of Vertex Cover in H of size

SOLVC = SOLMSMD3 − 9n/2 + 2 ≤ (1 + ε) · OPTMSMD3 − 9n/2 + 2 . (12)

Using Equation (11) in Equation (12) we get

SOLVC ≤ (1 + ε) · OPTVC + ε · (9n/2 − 2) . (13)

Note that since H is cubic, any vertex cover of H has size at least |E(H)|/3 = n/2, so in
particular n/2 ≤ OPTVC. Using this inequality in Equation (13) yields

SOLVC ≤ (1 + ε) · OPTVC + ε · (9 · OPTVC − 2) ≤ (1 + 10ε) · OPTVC .

Therefore, the existence of a PTAS for MSMD3 would imply the existence of a PTAS for
Vertex Cover in cubic graphs, which is impossible unless P = NP [2]. �

Theorem 5.2 The MSMDd problem does not admit a PTAS for any fixed d ≥ 3, unless
P = NP.

5.2 MSMDd is not in APX for any d ≥ 3

We are now ready to prove the main result of this section. Again, we focus on the case
d = 3 in Theorem 5.3 and then extend the ideas for any d ≥ 3 in Theorem 5.4, whose
proof can be found in Appendix B.

Theorem 5.3 The MSMD3 problem does not admit any constant-factor approximation,
unless P = NP.

Proof: The proof is by appropriately applying the standard error amplification technique.
Let G1 = {G} be the family of graphs constructed in Theorem 5.1 (see Fig. 2) from the
instances H of Vertex Cover, G being a typical member of this family, and let α > 1 be
the factor of inapproximability of MSMD3, that exists by Theorem 5.1.

We construct a sequence of families of graphs Gk, such that MSMD3 is hard to approxi-
mate within a factor θ(αk) in the family Gk. This proves that MSMD3 does not have any
constant-factor approximation. In the following, Gk will denote a typical element of Gk

constructed from the element G ∈ G1. We describe the construction of G2, and obtain the
result by repeating the same construction inductively to obtain Gk. For every vertex v in
G, we construct a graph Gv as follows. First, letting dv = degG(v), take a copy of G and
choose dv other arbitrary vertices x1, . . . , xdv of degree three in T ⊂ G. Then, replace each
of these vertices xi with a cycle of length four, and join three of the vertices of the cycle
to the three neighbors of xi, i = 1, . . . , dv. Let Gv be the graph obtained in this way. Note
that Gv contains exactly dv vertices of degree two.

Now take a copy of G, and replace each vertex v with Gv. Then, join the dv edges incident
to v to the dv vertices of degree two in Gv. This completes the construction of the graph
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x1x2

xdv

Gv

Fig. 3. Error amplification in the proof of Theorem 5.3.

G2, which is illustrated in Fig. 3.

We have that |V(G2)| = |V(G)|2 + o(|V(G)|2), because each vertex of G is replaced with a
copy of G where we had replaced some of the vertices with a cycle of length four.

To find a solution of the MSMD3 problem in G2, note that for any v ∈ V(G), once a vertex
in Gv is chosen, we have to solve MSMD3 in G, which is hard up to a constant factor α. But
approximating the number of v’s for which we should touch Gv is also solving MSMD3 in
G, which is hard up to the same factor α. This proves that approximating MSMD3 in G2 is
hard up to a factor α2. The proof of the theorem is completed by repeating this procedure,
applying the same construction to obtain G3, and inductively Gk. More precisely, in order
to build Gk from Gk−1, we replace each vertex v ∈ V(Gk−1) with a copy of Gk−1 in which
degGk−1

(v) arbitrary vertices of degree three have been replaced with a cycle of length four.
�

Theorem 5.4 The MSMDd problem does not admit any constant-factor approximation
for any fixed d ≥ 3, unless P = NP.

6 Approximating MSMDd in Graphs with Excluded Minors

Approximating MSMDd seems to be really hard. Indeed, in contrast to many other prob-
lems for which there exist good approximation algorithms for restricted classes of graphs,
like planar graphs or minor-free graphs, even obtaining an approximation algorithm for
MSMDd restricted to minor-free graphs appears to be challenging. These general frame-
works and meta-theorems developed during the last years to obtain PTAS or constant-
factor approximation algorithms for restricted classes of graphs (e.g., [12, 13]) fail when
applied to MSMDd. For instance, the set of solutions of MSMDd can be easily defined
as a first-order logic formula, but it is unavoidable that the free set variable appears neg-
atively, so the meta-theorem of Dawar et al. [12] cannot be applied. In this section, we
briefly show how to obtain a simple (n/ log n)-approximation algorithm for the problem
in minor-free graphs. We also stress that approximation algorithms for MSMDd in general
graphs are missing (see Section 8).
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Our approximation algorithm for graphs with excluded minors has two main ingredients.
The first one is that the MSMDd problem can be solved in time single exponential on
the tree-width of the input graph, and therefore the problem is in P for graphs whose
tree-width is O(log n). This result is obtained using standard dynamic programming tech-
niques, and can be found in [5]. More precisely, given a tree-decomposition of width t of
an n-vertex graph, the time complexity to solve MSMDd is O((d + 1)t(t + 1)d2

n).

The second ingredient is a recent powerful result of Demaine et al [13]. They show that,
for any fixed graph M, there is a constant cM such that for every integer k ≥ 1 and for
every M-minor-free graph G, the vertices of G can be partitioned into k + 1 sets such that
any k of the sets induce a graph of tree-width at most cMk. Furthermore, such a partition
can be found in polynomial time.

By applying the latter result to an M-minor free graph G on n vertices for k = log n, one
can find a partition of V(G) into log n+1 sets, such that the induced subgraph on any log n
sets is of tree-width at most cM log n. The dynamic programming algorithm of [5] applied
to the induced subgraph on any collection of log n sets permits to conclude whether G
contains a subgraph of minimum degree at least d on at most log n vertices. This algorithm
provides a polynomial-time (n/ log n)-approximation for MSMDd in minor-free graphs.

7 Approximating DDDkS

In this section we provide approximation algorithms for the DDDkS problem. First we
observe that the DDDkS problem is strongly related to the Dense k-Subgraph (DkS) prob-
lem, as stated in Proposition 7.1. The proof of this result is an easy exercise, and can be
found for the sake of completeness in Appendix C.

Proposition 7.1 The existence of an α-approximation algorithm for the Dense k-Subgraph
problem implies the existence of a 2α-approximation algorithm for the DDDkS problem.

For almost a decade, the best approximation ratio for the DkS problem has been O(nδ) for
some universal constant δ < 1/3, given by Feige et al. [18]. This algorithm has been very
recently improved by Chlamtac and Feige [8], which provide an algorithm that for every
ε > 0 approximates the DkS problem within a ratio of n1/4+ε in time nO(1/ε). If allowed to
run in time nO(log n), the algorithm achieves an approximation ratio of O(n1/4). According
to Proposition 7.1, the same approximation ratios (modulo a factor 2) apply to DDDkS.

In the remainder of this section we provide a simple randomizedO(
√

n log n)-approximation
algorithm 1 for the DDDkS problem, which does not use any “black-box” as subroutine
(as it is the case of the algorithms following from Proposition 7.1).

1 In the extended abstract presented in WAOA 2008 we provided an algorithm with ratio
O(
√

n log n). We thank an anonymous referee for suggesting us how to improve the algorithm
to achieve the ratio O(

√
n log n).
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Theorem 7.1 The DDDkS problem admits a randomized O(
√

n log n)-approximation al-
gorithm.

Proof: For every 1 ≤ d ≤ n, let H[d] be the maximum subgraph of G with minimum
degree δH[d] ≥ d, in the sense that H[d] contains any other subgraph H of G of minimum
degree at least d. Also let n[d] = |V(H[d])|. The first stage of the algorithm computes H[d]
for every 1 ≤ d ≤ n. This is easily done by initializing H[1] = G and then successively
removing from H[d] all the vertices of degree at most d to obtain H[d + 1]. Note that n[d]
can be zero, i.e., H[d] can be the empty subgraph. The algorithm stops whenever it finds
n[d] = 0.

Let d̃ be the index such that n[d̃] > 0 and n[d̃ + 1] = 0 (clearly d̃ ≤ n−1). If k ≥ n[d̃], then
H[d̃] is an exact solution of the problem, hence the output to the DDDkS problem is d̃. It
remains to handle the case where k < n[d̃]. In this case, it is also clear that the solution d∗

we are looking for is bounded by d̃, i.e., d∗ ≤ d̃. Two cases may occur.

• Case a : k ≤ 16
√

n log n or d̃ ≤ 16
√

n log n.
In this case any connected subgraph of G of size at most k (for example a connected

subtree of a spanning tree of G of size k, or even just an edge) has minimum degree
at least one, hence it provides a solution that is within a factor 1/(16

√
n log n) of the

optimal solution.
• Case b : Both d̃, k > 16

√
n log n.

Construct a subgraph H of H[d̃] in the following way: select each vertex of H[d̃]
with probability

√
log n/

√
n, and take H to be the induced subgraph of H[d̃] by the set

of selected vertices. Let n0 = |V(H)|.

Claim 7.1 The number of selected vertices satisfies n0 ≤ 2n[d̃]
√

log n/
√

n with probabil-
ity at least 1 − 1/n4. In particular, n0 ≤ k with probability at least 1 − 1/n4.

Proof: Observe that n0 can be expressed as the sum of n[d̃] independent Boolean random
variables B1, . . . , Bn[d̃]. Since E[n0] = n[d̃]

√
log n/

√
n, applying Chernoff’s bound on the

upper tail yields

Prob

B1 + · · · + Bn[d̃] >
2n[d̃]

√
log n

√
n

 < exp

−n[d̃]
√

log n

4
√

n

 .
Therefore, because n[d̃] > k > 16

√
n log n, we have

Prob

n0 >
2n[d̃]

√
log n

√
n

 < exp(−4 log n) =
1
n4 ,

and since n[d̃] ≤ n, with probability at least 1− 1
n4 , n0 ≤ 2n[d̃]

√
log n/

√
n ≤ 2

√
n
√

log n <
16

√
n log n < k. �

Claim 7.2 For every vertex v ∈ V(H), degH(v) ≥
d̃
√

log n

2
√

n with probability at least 1−1/n2.
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Proof: Observe first that degH(v) is a sum of degH[d̃](v) independent Boolean random
variables, and so the expected degree of v in H is degH[d̃](v)

√
log n/

√
n ≥ d̃

√
log n/

√
n.

This is because every vertex of H[d̃] has degree at least d̃. This implies

Prob

degH(v) <
d̃
√

log n

2
√

n

 ≤ Prob

degH(v) <
degH[d̃](v)

√
log n

2
√

n

 .
Applying Chernoff’s bound on the lower tail we have

Prob

degH(v) <
degH[d̃](v)

√
log n

2
√

n

 < exp

−degH[d̃](v)
√

log n

8
√

n

 ≤ exp

− d̃
√

log n

8
√

n

 ,
which in turn implies (because d̃ > 16

√
n log n),

Prob

degH(v) <
d̃
√

log n

2
√

n

 ≤ exp
(
−

16
√

n log n
8
√

n

)
=

1
n2 .

�

Claim 7.3 δH ≥ d̃
√

log n/(2
√

n) with probability at least 1 − 1/n.

Proof: By Claim 7.2, the probability that any node v of H has degH(v) < d̃
√

log n/(2
√

n)
is at most 1

n2 · |H| ≤ 1/n. �

Claim 7.1 and Claim 7.3 together show that with probability at least 1− 1
n −

1
n4 ≥ 1− 2

n , H
has at most k vertices and has minimum degree at least d̃

√
log n/(2

√
n). Therefore, with

high probability, H provides a solution of DDDkS which is within a factor
√

log n/(2
√

n)
of the optimal solution. This concludes the proof of the theorem. �

8 Conclusions

This paper considered three degree-constrained subgraph problems and studied their be-
havior in terms of approximation algorithms and hardness of approximation. Our main
results and several interesting questions that remain open are discussed below.

We proved that the MDBCSd problem is not in Apx for any d ≥ 2, and that if there
is a polynomial-time algorithm for MDBCSd, d ≥ 2, with an approximation ratio of
2O(
√

log n), then NP ⊆ DTIME(2O(log5 n)). We provided a deterministic approximation algo-
rithm with ratio min{m/ log n, nd/(2 log n)} (resp. min{n/2, m/d}) for general unweighted
(resp. weighted) graphs. Finally, we gave a constant-factor approximation when the input
graph has a low-degree spanning tree. It would be interesting to close the huge gap be-
tween the hardness bound and the approximation ratio of our algorithms.
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It is worth mentioning that during the last years a remarkable progress has been made
on the Longest Path problem. Alon, Yuster, and Zwick showed in their seminal pa-
per [3] how to find in polynomial time paths of length Ω(log n) in a general graph (if
they exist). One decade later, Björklund and Husfeldt showed in [9] how to find paths
of superlogarithmic length, namely Ω((log n)2/ log log n). The best current result is by
Gabow [22], who managed to find paths of length exp(Ω(

√
log n/ log log n)). Feder and

Motwani improved this latter result in Hamiltonian graphs [17], showing how to find paths
of length exp(Ω(log n/ log log n)). It would be interesting to see whether these results can
be adapted to the MDBCSd problem for d > 2.

We proved that the MSMDd problem is not in Apx for any d ≥ 3. We suspect that this inap-
proximability result can be further improved. On the positive side, we gave an (n/ log n)-
approximation algorithm for the class of graphs excluding a fixed graph H as a minor.
Finding an approximation algorithm for MSMDd in general graphs appears to be a chal-
lenging open problem. It seems that MSMDd remains hard to approximate even for proper
minor-closed classes of graphs.

We observed that an α-approximation algorithm for the Dense k-Subgraph problem can
be turned into a 2α-approximation algorithm for the DDDkS problem. We also provided a
simple randomized O(

√
n log n)-approximation algorithm, which does not use any “black-

box” as subroutine. It would be interesting to provide inapproximability results comple-
menting these approximation algorithms.

Another avenue for further research could be to consider a mixed version between DDDkS
and MSMDd, that would result in a two-criteria optimization problem. Namely, given a
graph G, the goal would be to maximize the minimum degree while minimizing the size of
the subgraph, both parameters being subject to a lower and an upper bound, respectively.

Acknowledgement. The authors would like to thank the anonymous referees for valuable
comments that helped to substantially improve the presentation of the paper.
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[15] P. Erdős, R. J. Faudree, A. Gyárfás, and R. H. Schelp. Cycles in Graphs Without Proper
Subgraphs of Minimum Degree 3. Ars Combinatorica, 25(B):195–201, 1988.
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A Proof of Theorem 5.2

The proof consists in a generalization of the reduction presented in Theorem 5.1 for d = 3.
Let d ≥ 3 be a fixed integer. We present a reduction from Vertex Cover, which does not
admit a PTAS in d-regular graphs, unless P = NP [2, 30]. Given a d-regular graph H
as instance of Vertex Cover, with |V(H)| = n, we construct an instance G = f (H) of
MSMDd as follows. Without loss of generality, we may assume that |E(H)| = nd/2 =

d · (d − 1)`, for some integer `. Let T be the rooted tree with root r and height ` + 1 on
1 + d · (d−1)`+1−1

d−2 vertices, in which all the internal vertices have degree d (thus, containing
d · (d − 1)` leaves). We identify the leaves of T with the elements in E(H), and denote
–with slight abuse of notation– this set by E (note that E ⊆ V(T )). We add another copy
of E, called F, and the following edges (assuming that ` is big enough) according to the
parity of d:
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• if d ≥ 3 is odd: d−1
2 Hamiltonian cycles on E ∪ F, each inducing a bipartite graph with

partition classes E and F.
• if d ≥ 4 is even: d−2

2 Hamiltonian cycles on E ∪ F, each inducing a bipartite graph with
partition classes E and F, plus one perfect matching between E and F.

We also identify the vertices of F with the elements in E(H). Now we add a set A of
|V(H)| new vertices identified with the elements in V(H), and join them to the vertices
in F according to the incidence relations in H: we add an edge between a vertex in F
corresponding to e ∈ E(H) and a vertex in A corresponding to u ∈ V(H) if and only if e
contains u. This completes the construction of G. Note that the vertices in E have regular
degree d, and those in F have regular degree d + 1.

As in the case d = 3, minimum subgraphs of G of minimum degree at least d correspond
to minimum vertex covers of H, and vice-versa. Thus, we have that

OPTMSMDd (G) = OPTVC(H)+|V(T )|+|E(H)| = OPTVC(H)+
nd
2
·
2d − 3
d − 2

−
2

d − 2
, (A.1)

where we have used that |V(T )| = 1+d · (d−1)`+1−1
d−2 and |E(H)| = nd/2 = d ·(d−1)`. (We will

omit in the sequel the reference to G and H in OPTMSMDd and OPTVC, respectively.) Note
also that any solution of MSMDd in G of size SOLMSMDd defines a solution of Vertex
Cover in H of size SOLVC = SOLMSMDd −

nd
2 ·

2d−3
d−2 + 2

d−2 . Assume now for contradiction
that MSMDd admits a PTAS, that is, for any ε > 0 we can find in polynomial time a
solution of MSMDd in G of size SOLMSMDd ≤ (1 + ε) · OPTMSMDd . Therefore, we could
find in polynomial time a solution of Vertex Cover in H of size

SOLVC ≤ (1 + ε) · OPTMSMDd −
nd
2
·

2d − 3
d − 2

+
2

d − 2
. (A.2)

Using Equation (A.1) in Equation (A.2) we get

SOLVC ≤ (1 + ε) · OPTVC + ε ·

(
nd
2
·

2d − 3
d − 2

−
2

d − 2

)
. (A.3)

Note that since H is d-regular, any vertex cover of H has size at least |E(H)|/d = n/2, so
in particular n/2 ≤ OPTVC. Using this inequality in Equation (A.3) yields

SOLVC ≤ (1 + ε) · OPTVC + ε ·

(
d ·

2d − 3
d − 2

· OPTVC

)
−

2ε
d − 2

≤

(
1 +

(
1 + d ·

2d − 3
d − 2

)
· ε

)
· OPTVC .

Therefore, the existence of a PTAS for MSMDd would imply the existence of a PTAS for
Vertex Cover in d-regular graphs, which is impossible unless P = NP [2, 30].
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B Proof of Theorem 5.4

The proof is based on applying the error amplification technique, generalizing the proof
of Theorem 5.3. Let d ≥ 3 be a fixed integer, let G1 = G be the graph constructed in
Theorem 5.2, and let α > 1 be the factor of inapproximability of MSMDd, that exists
by Theorem 5.2. We construct a sequence of graphs Gk, such that MSMDd is hard to
approximate within a factor θ(αk) in Gk. This proves that MSMDd does not have any
constant-factor approximation. Indeed, suppose that MSMDd admits a C-approximation
for some constant C > 0. Then we can choose k such that αk > C, and then MSMDd is
hard to approximate in Gk within a factor αk > C, a contradiction.

We describe the construction of G2, and obtain the result by repeating the same construc-
tion inductively to create Gk, a typical element of Gk. For every vertex v in G, construct
a graph Gv as follows: first, take a copy of G, and choose dv = degG(v) other arbitrary
vertices x1, . . . , xdv of degree d in T ⊂ G. Then, replace each of these vertices xi with the
following:

• if d ≥ 3 is odd: a graph on d + 1 vertices with regular degree d − 1.
• if d ≥ 4 is even: a graph on d + 2 vertices having one vertex v∗ of degree d + 1, and all

the others of degree d − 1.

Next, join d of the vertices of this new graph (different from v∗) to the d neighbors of
xi, i = 1, . . . , dv. Let Gv be the graph obtained in this way. Note that we have exactly dv

vertices of degree d − 1 in Gv.

Now, take a copy of G, and replace each vertex v with Gv. Then, join the dv edges incident
to v to the dv vertices of degree d − 1 in Gv. This completes the construction of the graph
G2.

We have that |V(G2)| = |V(G)|2 + o(|V(G)|2), because each vertex of G is replaced with a
copy of G where we had replaced some of the vertices with a graph of size d + 1 or d + 2.
The same idea of the proof of Theorem 5.3 applies to this case, proving the Apx-hardness
of MSMDd for d ≥ 3.

C Proof of Proposition 7.1

Given a graph F, let ρF denote the average degree of F. Let G be the input graph to
the DDDkS problem, let ρOPT

k be the maximum average degree of a subgraph of G on
exactly k vertices (i.e., the optimal to the DkS problem in G), and let δOPT

k be the maximum
minimum degree of a subgraph of G with at most k vertices (i.e., the optimal to the DDDkS
problem in G).

Assume there exists an algorithm for DkS with approximation ratio α. That is, we can
find a subgraph Hk of G on k vertices such that ρHk ≥ ρ

OPT
k /α. Removing recursively the
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vertices of Hk with degree strictly smaller that ρHk/2, we obtain a subgraph H′k of Hk on
at most k vertices such that δH′k

≥ ρHk/2 ≥ ρ
OPT
k /(2α).

Let us now see that there exists an integer k0, 1 ≤ k0 ≤ k, such that ρOPT
k0
≥ δOPT

k , so
we can run the DkS algorithm for each k′ ≤ k, remove low-degree vertices each time, and
take the best solution of DDDkS among H′2,H

′
3, . . . ,H

′
k−1,H

′
k. Indeed, let H be the optimal

solution of DDDkS, δH = δOPT
k . Let k0 = |V(H)| (k0 ≤ k). This is the k0 we are looking for,

as ρOPT
k0
≥ ρH ≥ δH = δOPT

k .
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