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Abstract

In a graph G = (V,E), a vertex v ∈ V monitors an edge {u, u′} ∈ E if {v, u} ∈ E and {v, u′} ∈ E. Given
an n-vertex graph G = (V,E), in which each edge is contained in at least one triangle, and an integer k, the
Edge Monitoring problem consists in �nding a set S ⊆ V of size at most k such that each edge of the
graph is monitored by at least one element of S. This problem is known to be NP-hard. We prove that it
is also W [2]-hard when parameterized by k. Using Bidimensionality Theory, we provide an FPT algorithm

running in time 2
O(
√
k·log(max

e∈E
ω(e)))

·n for the weighted version of Edge Monitoring when the input graph
is restricted to be apex-minor-free, in particular, it applies to planar graphs, and where we additionally
impose each edge e to be monitored at least ω(e) times, and the solution to be contained in a set of selected
vertices.

Keywords: Edge Monitoring, parameterized complexity, FPT algorithm, apex-minor-free graph,
treewidth, dynamic programming, Bidimensionality Theory.

1. Introduction1

Sensor networks are increasingly used in the environment and industry thanks notably to the latest2

developments in the �eld of wireless sensor networks in the last few years [1]. The need to observe, analyse3

and control such type of area is essential to many environmental and scienti�c applications (e.g. measuring4

pollution levels, detecting earthquake activity, military surveillance, home health care or assisted living...).5

Anticipating security problems allows to protect the network from a variety of attacks. Many approachs have6

been proposed to protect sensor networks [2, 3, 4]. In this paper we are interested in the Edge Monitoring7

mechanism for the security of wireless sensor networks. The basic idea of the Edge Monitoring problem (or8

watchdog technique) [5, 6, 7] is to select some nodes as monitors in a given sensor network. These monitors9

are employed for carrying out monitoring operations by listening promiscuously to the transmission of two10

nodes. They can also perform basic operations of communication and sensing in the network.11

The idea is illustrated in Figure 1. Each node in the network has a transmission range. The monitors12

(or watchdogs) are placed in the intersection of the transmission ranges of the sending (S) and the receiving13

(R) nodes. They monitor nodes by listening promiscuously to the transmissions of both nodes. When node14

S forwards a message to R, the watchdog of this link veri�es that node R also forwards the message. If R15

does not forward the message, then it is misbehaving. Similar to this, monitoring nodes are able to detect16

any malicious actions such as delaying, dropping, modifying, or even fabricated packets.17

The Edge Monitoring problem was introduced in sensor networks [7, 8] as self-monitoring. Self-18

monitoring is an e�ective mechanism for the security of wireless sensor networks. Dong et al. studied19
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Figure 1: An example to illustrate the Edge monitoring problem.

the problem by modeling the communication network as a unit disk graph (UDG) [9]. They propose a20

polynomial-time approximation scheme for the problem in UDG graphs with a geometric representation [8].21

In [10, 11, 12], the authors concentrated on the system-level fault diagnosis of the network, especially22

detecting node failures as self-protection. The authors of [7, 8] focused on the fundamental issue of designing23

an edge self-monitoring topology, where every transmission link can be monitored by nodes within the24

network. The problem of Edge Monitoring can be de�ned from a graph-theoretical point of view as25

follows. Let G = (V,E) be a graph, with |V | = n and |E| = m, and ω : E → N a weight function on the26

edges. We call ω(e) the weight of the edge e. A node v ∈ V can monitor an edge e ∈ E if both end-nodes27

of e are neighbors of v, i.e., e together with v form a triangle in the graph G. An edge monitoring of G28

with weight function ω is a set of vertices such that each edge e of the graph is monitored by at least ω(e)29

vertices of the set. The size of an edge monitoring is the number of monitors in the set.30

In this paper, we study the Edge Monitoring problem from the perspective of parameterized complex-31

ity; see [13, 14, 15]. Parameterized complexity can be seen as a re�nement of classical complexity theory in32

which one takes into account not only the total input size n, but also other aspects of the problem encoded33

in a parameter k. It is studied as an approach to the exact resolution of NP-complete problems. Fixed-34

Parameterized Tractable (FPT for short) algorithms are used to solve combinatorial optimization problems,35

including graph algorithms. A problem de�ned on an n-vertex graph is �xed-parameter tractable with re-36

spect to a parameter k if it can be solved in FPT-time, i.e., in time f(k) ·nO(1), for some computable function37

f . To the best of our knowledge, the use of parameterized complexity for solving sensor networks problem38

like Edge Monitoring has never been done before.39

This paper is organized as follows: in Section 2 we introduce some basic de�nitions and recall the40

de�nition of the Edge Monitoring problem. In Section 3 we prove that the Edge Monitoring problem41

is W [2]-hard when parameterized by the size of the solution. In Section 4 we present two algorithms that42

solve a more general problem, namely Weighted Edge Monitoring. The �rst one solves the version43

of the problem parameterized by the treewidth in time 2
O(tw2·log(max

e∈E
ω(e)))

· n where tw is the treewidth44

of the input graph and ω : E → N is a weight function such that each edge e should be monitored ω(e)45

times. The second one solves the version of the problem parameterized by k, the size of the solution, in time46

2
O(
√
k·log(max

e∈E
ω(e)))

· n when the input graph is apex-minor-free, in particular, when it is planar, by using47

Bidimensionality Theory [16, 17, 18]. Section 5 concludes the paper.48

2. Notation and preliminaries49

In this section we introduce some basic de�nitions. All the graphs we consider are undirected and contain50

neither loops nor multiple edges. In this paper, a graph is triangulated if any edge is in at least one triangle.51

We denote by V (G) the set of vertices of a graph G and by E(G) its set of edges. Let G = (V,E) be a graph52

and V ′ ⊆ V . We denote by G[V ′] the subgraph of G induced by the vertices V ′. We de�ne the neighborhood53

of a vertex v as the set N(v) = {c ∈ V |{c, v} ∈ E}. We say that c monitors a vertex v if c ∈ N(v). We54
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de�ne the neighborhood of an edge {a, b} ∈ E as the set N({a, b}) = {c ∈ V |{c, a} ∈ E, {c, b} ∈ E}. We say55

that c monitors an edge {a, b} if c ∈ N({a, b}).56

Figure 2: The triangulated grid Γ5.

Let k be an integer. The triangulated grid of size k is the graph Γk = (Vk, Ek) such that Vk = {`i,j |1 ≤57

i, j ≤ k} and Ek = {{`i,j , `i+1,j}|1 ≤ i ≤ k − 1, 1 ≤ j ≤ k} ∪ {{`i,j , `i,j+1}|1 ≤ i ≤ k, 1 ≤ j ≤ k − 1} ∪58

{{`1,j , `k,k}, {`k,j , `k,k}|1 ≤ j ≤ k} ∪ {{`i,1, `k,k}, {`i,k, `k,k}|1 ≤ i ≤ k}. Note that Γk is triangulated. For59

an illustration, the graph Γ5 is depicted in Figure 2. If i0, j0 ∈ {1, . . . , k − 1}, we call the square (i0, j0) of60

Γk the set {`i0,j0 , `i0+1,j0 , `i0,j0+1, `i0+1,j0+1} and the diagonal (i0, j0) the edge {`i0+1,j0 , `i0,j0+1}.61

Let G = (VG, EG) and H = (VH , EH) be two graphs. We say that H is a contraction of G if we can62

partition VG into |VH | sets (Ru)u∈VH
such that for all u ∈ VH , Ru is not empty and G[Ru] is connected,63

and such that {u1, u2} ∈ EH if and only if there exist v1 ∈ Ru1
and v2 ∈ Ru2

such that {v1, v2} ∈ EG.64

Treewidth. A tree-decomposition of width w of a graph G = (V,E) is a pair (T , σ), where T is a tree and65

σ = {Bt|Bt ⊆ V, t ∈ V (T )} such that:66

�

⋃
t∈V (T )Bt = V ,67

� For every edge {u, v} ∈ E there is a t ∈ V (T ) such that {u, v} ⊆ Bt,68

� Bi ∩Bk ⊆ Bj for all {i, j, k} ⊆ V (T ) such that j lies on the path i . . . k in T , and69

� maxi∈V (T ) |Bt| = w + 1.70

A tree-decomposition rooted at a node tr is nice if the following conditions are ful�lled:71

� Btr = ∅,72

� each node has at most two children,73

� for each leaf t ∈ V (T ), Bt = ∅,74

� if t ∈ V (T ) has exactly one child t′, then either75

� Bt = Bt′ ∪ {v} for some v 6∈ Bt′ and this node is called an introduce vertex, or76

� Bt = Bt′ \ {v} for some v ∈ Bt′ and this node is called a forget vertex, and77

� if t ∈ V (T ) has exactly two children t′ and t′′, then Bt = Bt′ = Bt′′ . This node is called a join vertex .78
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The sets Bt are called bags. The treewidth of G, denoted by tw(G), is the smallest integer w such that79

there is a tree-decomposition of G of width w. When context is clear we will use the notation tw instead80

of tw(G). An optimal tree-decomposition is a tree-decomposition of width tw(G). Moreover, if we have a81

tree-decomposition, then we can build a nice tree-decomposition of G with the same width in polynomial82

time [19].83

In the paper we are interested in the following problem:84

Edge Monitoring

Input: A triangulated graph G = (V,E) and an integer k.
Output: A set S ⊆ V of size at most k such that ∀e ∈ E, S ∩N(e) 6= ∅.

85

Note that we restrict Edge Monitoring to apply only on triangulated graph. Indeed if the graph is86

not triangulated, then we can directly answer that the problem has no solution. This restriction is no big87

deal because if the graph is not triangulated then, in practice, either we add sensors that cover the edges88

that are not in a triangle or remove the edges by forbidden the communication by these edges.89

3. W [2]-hardness of Edge Monitoring when parameterized by k90

In this section we show that the problem is W [2]-hard when parameterized by the size of the solution.91

In order to prove that, we reduce from Red-Blue Dominating Set, which is known to be W [2]-hard [13].92

Red-Blue Dominating Set

Input: A graph G = (V,E), a partition (Vr, Vb) of V , and an integer k.
Output: A set S ⊆ Vb of size at most k such that ∀v ∈ Vr, S ∩N(v) 6= ∅.

93

Theorem 1. Edge Monitoring is W [2]-hard parameterized by the size of the solution.94

Proof: Let G = (V,E) be a graph, let (Vr, Vb) be a partition of V , and let k be an integer. We want to95

solve Red-Blue Dominating Set on (G,Vr, Vb, k). Without lost of generality, we can assume that there96

is no isolated vertex.97

We construct from (G,Vr, Vb, k) the graph G′ = (V ′, E′) as depicted in Figure 3. Formally, V ′ = V ′b ∪98

V ′e ∪Va where V ′b = {vb|v ∈ Vb}, V ′e = {v1|v ∈ Vr}∪{v2|v ∈ Vr}, Va = {aij , bij , cij |i ∈ {1, 2}, j ∈ {1, 2, 3}}, and99

E′ = {{v1, v2}|v ∈ Vr}∪{{vb, w1}|{v, w} ∈ E}∪{{vb, w2}|{v, w} ∈ E}∪{{aij , vi}|i ∈ {1, 2}, j ∈ {1, 2, 3}}∪100

{{aij , vb}|i ∈ {1, 2}, j ∈ {1, 2, 3}}∪{{aij , aij′}|i ∈ {1, 2}, j, j′ ∈ {1, 2, 3}, j 6= j′}∪{{aij , bij}, {aij , cij}, {bij , cij}|i ∈101

{1, 2}, j ∈ {1, 2, 3}}.102

We now show that solving Red-Blue Dominating Set on (G,Vr, Vb, k) is equivalent to solving Edge103

Monitoring on (G′, k + 18). Let S be a solution of Red-Blue Dominating Set on (G,Vr, Vb, k). Let104

S′ = {vb|v ∈ S} ∪ Va. Then S′ is a solution of Edge Monitoring on (G′, k + 18). Indeed, |S′| ≤ k + 18105

by de�nition of S and Va. Let e ∈ E′. If e = {v1, v2} with v ∈ Vr, then by de�nition of S, there exists106

t ∈ S that is neighbor of v in G, so tb monitors e in G′. If e = {vb, w1} with v ∈ Vb and w ∈ Vr, then a11107

monitors e. The same happens if e = {vb, w2}. If e = {aij , vi} then ai(j mod 3)+1 monitors e. As {ai1, ai2, ai3}108

is a triangle where all the vertices are in S′, all the edges are monitored. The same happens for the triangles109

{aij , bij , cij}, i ∈ {1, 2}, j ∈ {1, 2, 3}.110

Now let S′ be a solution of Edge Monitoring on (G′, k + 18). For each i ∈ {1, 2} and j ∈ {1, 2, 3},111

the edges {aij , bij}, {aij , cij}, and {bij , cij} can be monitored only by the vertices cij , b
i
j , and a

i
j respectively.112

So they need to be in S′. One can check that the only edges not monitored by Va are the edges of the form113

{v1, v2}, and by construction of G′ the only vertices that can monitor them are vertices from V ′b . It directly114

follows that S = {v ∈ Vb|vb ∈ S′} is a solution of Red-Blue Dominating Set on (G,Vr, Vb, k). �115

4



c

b

c

c

b

c c

2
3

b
3

2
2

2

2

1

2

2

b
1

2c
2

2
b

2

a

1

1

1

1

1

1

1

1

1

1

2

3

3

3

G’
a

a
1

2

3

a

2

1

b2

1

a

a d

Left gadget Right gadget

f

wvub b b

1 1e 1
f

2
d

2 2e

f

e

d u

v

w

bV r V

G

Figure 3: Edge Monitoring gadget. In the �gure, the vertices ub, vb, wb, d1, e1, and f1 are connected to the three vertices
a11, a

1
2, and a13 like ub and d1 are, and the vertices ub, vb, wb, d2, e2, and f2 are connected to the three vertices a21, a

2
2, and a23

like wb and e2 are.

4. Fixed-parameter algorithms for Edge Monitoring116

In the following, we will present algorithms that solve the Edge Monitoring problem. The �rst one117

is parameterized by the treewidth of the input graph and the second one, based on the �rst one, uses118

Bidimensionality to solve Edge Monitoring parameterized by the size of the solution when the input119

graph is apex-minor-free. In order to be as general as possible, we will solve a more general problem, namely120

Weighted Edge Monitoring.121

Weighted Edge Monitoring

Input: A triangulated graph G = (V,E), an integer k, a set M ⊆ V , and a weight
function ω : E → {1, . . . , k}.
Output: A set S ⊆M of size at most k such that ∀e ∈ E, |S ∩N(e)| ≥ ω(e).

122

In this version, we allow only some selected monitors to be in the solution, and we impose that each edge123

is monitored by at least a given number of monitors.124

From Theorem 1, we directly obtain the following.125

Corollary 1. Weighted Edge Monitoring is W [2]-hard parameterized by k.126

We now focus on the algorithms. First we present an FPT algorithm parameterized by the treewidth.127

Lemma 1. Let G = (V,E) be a graph, k be an integer, M be a subset of V , and ω : E → {1, . . . , k} be a128

weight function. Weighted Edge Monitoring on (G, k,M, ω) can be solved in time 2
O(tw2·log(max

e∈E
ω(e)))

·129

n, where tw is the treewidth of G.130

Proof: Let G = (V,E) be a triangulated graph, k be an integer, M be a subset of V , ω : E → {1, . . . , k} be131

a weight function, and (T , µ) be a nice tree-decomposition of G rooted at a node tr of width tw.132
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For each t ∈ V (T ), we denote by Vt the set of vertices of all descendents of t, Gt = G[Vt], and Et =133

E(G[Bt]). Note that this graph may be disconnected.134

We use a dynamic programming approach. The table we store at a node t will contain elements of the135

form (X,Y, p), where X ⊆ Bt is the set of chosen vertices in Bt for this solution, Y ⊆ Et×N is the set of pairs136

(y,m) where the edge y still needs to be monitored m times in Gt, and p is the number of vertices we already137

have chosen. We will keep such an element in the table, if there exists a solution S of our problem of size at138

most k such that S∩Bt = X, |S∩Vt| ≤ p, S∩Vt monitors all the edges of E(Gt)\{y|∃m ∈ N : (y,m) ∈ Y },139

and for each (y,m) ∈ Y , S ∩ Vt monitors ω(y)−m times the edge y. Formally, if H = (Vh, Eh) is a graph,140

B ⊆ Vh, X ⊆ B, and Y ⊆ E(H[B])× {1, . . . , k}, we de�ne sol(H,B,X, Y, p,M) = true, if and only if there141

exists a set S ⊆ Vh ∩M of size at most p such that for each (e,m) ∈ Y , |S ∩N(e)| = ω(e)−m, and for each142

e ∈ Eh \ {y|∃m ∈ N : (y,m) ∈ Y }, |S ∩N(e)| = ω(e), and S ∩B = X. We de�ne the table we store at each143

node t ∈ V (T ) to be Rt = {(X,Y, p)|X ⊆ Bt, Y ⊆ E(G[Bt]) × {1, . . . , k}, sol(Gt, Bt, X, Y, p,M), p ≤ k}.144

Note that there is a solution of our problem if and only if Rtr 6= ∅. For convenience, if (X,Y, p) ∈ Rt and145

(X,Y, q) ∈ Rt with p < q then our algorithm will keep only (X,Y, p), as the other entry is not relevant. Let146

t ∈ V (T ). We can compute Rt as follows:147

� If t is a leaf then Gt = (∅, ∅) and Rt = {(∅, ∅, 0)}.148

� If t is an introduce vertex v and v ∈ M , let t′ be its child. Then Rt = {(X ∪ {v}, {(y,m − |N(y) ∩149

{v}|)|(y,m) ∈ Y } ∪ {({v, w},m′)|w ∈ Bt, {v, w} ∈ E,m′ = max(ω({v, w}) − |N ′{v, w} ∩X|, 0)}, p +150

1)|(X,Y, p) ∈ Rt′ , p + 1 ≤ k} ∪ {(X,Y ∪ {({v, w},m′)|w ∈ Bt, {v, w} ∈ E,m′ = max(ω({v, w}) −151

|N ′{v, w} ∩X|, 0)}, p)|(X,Y, p) ∈ Rt′}.152

� If t is an introduce vertex v and v 6∈ M , let t′ be its child. Then Rt = {(X,Y ∪ {({v, w},m′)|w ∈153

Bt, {v, w} ∈ E,m′ = max(ω({v, w})− |N ′{v, w} ∩X|, 0)}, p)|(X,Y, p) ∈ Rt′}.154

� If t is a forget vertex v, let t′ be its child. Then Rt = {(X \ {v}, Y \ {({v, w}, 0)|w ∈ Bt, ({v, w}, 0) ∈155

Y }, p)|(X,Y, p) ∈ Rt′ ,∀w ∈ X,m ∈ {1, . . . , k} : ({v, w},m) 6∈ Y }. Note that if v /∈ X then X \ {v} =156

X.157

� If t is a join vertex, let t′ and t′′ be its children. Then Rt = {(X ′ ∪X ′′, {(y,m)|(y,m′) ∈ Y ′, (y,m′′) ∈158

Y ′′,m = m′ +m′′ − ω(y) + |N(y)∩ (X ′ ∩X ′′)|}, p′ + p′′ − |X ′ ∩X ′′|)|(X ′, Y ′, p′) ∈ Rt′ , (X
′′, Y ′′, p′′) ∈159

Rt′′ , p
′ + p′′ − |X ′ ∩X ′′| ≤ k}.160

For all t ∈ V (T ), if (X,Y, p) ∈ Rt then X ⊆ Bt and Y ⊆ Et × {1, . . . ,max
e∈E

ω(e)}. Note that if (y,m) and161

(y,m′) are in Y with m < m′, then we need to keep only (y,m). So we can see Y as a subset of all functions162

Et → {1, . . . ,max
e∈E

ω(e)}. We obtain that |Y | ≤ 2
tw2·log(max

e∈E
ω(e))

. Thus, |Rt| ≤ 2tw · 2
tw2·log(max

e∈E
ω(e))

. So163

we can solve Edge Monitoring on (G, k) in time 2
O(tw2·log(max

e∈E
ω(e))))

· n. �164

165

If G is apex-minor-free, then, there exists a constant a, depending only on the apex-graph, such that166

|E| ≤ a|V | [20]. In particular, it implies that in the previous complexity analysis, if G is apex-minor-free,167

then Y is of size at most a|V | · log(max
e∈E

ω(e)). This directly gives the following lemma.168

Lemma 2. Let G = (V,E) be a apex-minor-free graph, k be an integer, M be a subset of V , and ω :169

E → {1, . . . , k} be a weight function. Weighted Edge Monitoring on (G, k,M, ω) can be solved in time170

2
O(tw·log(max

e∈E
ω(e)))

· n.171

Theorem 2 ([21]). There exists a constant c such that for every apex-minor-free graph G and every integer172

k such that k ≤ tw(G)
c , the triangulated grid Γk is a contraction of G.173

Theorem 3. Let G = (V,E) be a apex-minor-free graph, k be an integer, ω be a weight function ω : E →174

{1, . . . , k}, and M be a subset of V . Weighted Edge Monitoring on (G, k), can be solved in time175

2
O(
√
k·log(max

e∈E
ω(e)))

· n.176
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Figure 4: The considered squares in Γ5 and their diagonals.

Proof: LetG = (V,E) be a apex-minor-free graph and k be an integer. Assume �rst that tw > c(2d
√

(k + 1)e+177

2). By Theorem 2, Γ
(2d
√

(k+1)e+2)
is a contraction of G. Let L = {`i,j |i, j ∈ N, 1 ≤ i, j ≤ (2d

√
(k + 1)e+2)}178

be the vertex set of Γ
(2d
√

(k+1)e+2)
, and let M be its edge set. Let (Ru)u∈L be a partition of V such that179

for all u ∈ L, Ru is not empty, G[Ru] is connected, and such that {u1, u2} ∈ E(Γ
(2d
√

(k+1)e+2)
) if and only180

if there exist v1 ∈ Ru1
and v2 ∈ Ru2

such that {v1, v2} ∈ E.181

Consider the d
√
k + 1e2 squares (2i, 2j), for 1 ≤ i ≤ d

√
k + 1e and 1 ≤ j ≤ d

√
k + 1e. For simplicity we182

denote by Qi,j the square (2i, 2j). The selected squares are illustrated in Figure 4. By construction, the183

squares Qi,j are pairwise vertex-disjoint. For each i, j, we arbitrarily choose ei,j = {ai,j , bi,j} ∈ E such that184

ai,j ∈ R2i+1,2j and bi,j ∈ R2i,2j+1. We denote by ei,j the representative edge of Qi,j . The edge ei,j can be185

monitored only by an element of R`2i,2j ∪ R`2i,2j+1
∪ R`2i+1,2j

∪ R`2i+1,2j+1
, because the other `i′,j′ are not186

connected to both `2i+1,2j and `2i,2j+1. Thus, there are no two distinct representative edges in G that can187

be monitored by the same vertex of G. This means that the solution should be of size at least k + 1, that188

is the number of squares we had consider. As we ask for a solution of size at most k, then we can safely189

answer that there is no such a solution.190

Now assume that tw(G) ≤ c(2d
√

(k + 1)e+2). By Lemma 2, we know that there is an algorithm in time191

2
O(tw)·log(max

e∈E
ω(e)))

·n to solve the problem. In particular, this algorithm runs in time 2
O(
√
k·log(max

e∈E
ω(e)))

·n.192

�193

5. Conclusion and further research194

In this paper we studied the Edge Monitoring problem under the approach of parameterized com-195

plexity. We showed that, in general graphs, we are unlikely to be able to solve our problem in FPT time196

when parameterized by the size of the solution. We used Bidimensionality to show that if the input graph197

has the topological restriction to be apex-minor-free, then our problem can be solved in time 2O(
√
k) · n.198

We even show that the weighted version of the problem, Weighted Edge Monitoring, can be solved199

in a similar time, i.e., in time 2
O(
√
k·log(max

e∈E
ω(e)))

· n, when the input graph is apex-minor-free. A natural200

extension is to consider H-minor-free graphs for a general graph H, not necessarily an apex graph, and even201

the larger classes of H-topological-minor-free graphs".202

Sensor networks can be modeled by many classes of graphs. Some of them can be modeled by planar203

graphs, that are also apex-minor-free, but there are other interesting classes of graphs that correspond to204

real sensor networks. For instance, unit disk graphs constitute a model for wireless sensor networks [9, 22].205

It is currently not known whether FPT algorithms exist for this class of graphs.206
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