
Minimizing the number of ADMs in WDM
Optical Rings with Traffic Grooming

PROJECTE FI DE CARRERA
ETSETB

Ignasi Sau Valls

Director: Xavier Muñoz López

Departament de Matemàtica Aplicada IV
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Resum

El ”traffic grooming” en xarxes òptiques es refereix a agrupar tràfic de baixa velocitats
dintre de streams de tràfic més ràpids. Fent servir ”traffic grooming” es pot prescindir
d’equipament electrònic als nodes de la xarxa on no comença ni acaba tràfic, i per tant
es pot reduir el cost de la xarxa. T́ıpicament, en una xarxa WDM (Wavelength Di-
vision Multiplexing), enlloc de tenir un SONET Add-Drop Multiplexer (ADM) a cada
longitud d’ona i a cada node, és possible tenir ADMs només per les longituds d’ona utilit-
zades a cada node (la resta de longituds d’ona són enrutades òpticament sense conversió
electrònica). Hi ha moltes variants segons el tipus de xarxa (anell, arbre, camı́...), les
restriccions que es tenen i els paràmetres que es volen optimitzar.

L’objectiu és minimitzar el cost d’equipament de la xarxa, i concretament el número
d’ADMs. Aquest problema ha estat àmpliament estudiat durant els últims anys. A grans
trets, hi ha dues ĺınies d’atac. D’una banda, hi ha el camp de les heuŕıstiques i els al-
gorismes aproximatius. D’altra banda, es poden aplicar mètodes més teòrics de la teoria
de grafs per trobar solucions òptimes amb el mı́nim número d’ADMs. Aquest últim és el
nostre mètode. Hi ha una àmplia varietat de topologies a considerar. S’han fet heuŕıstiques
i algorismes per gairebé tots els tipus de xarxa, però en canvi només s’han trobat solu-
cions òptimes per l’anell unidireccional i el camı́.

El problema de ”traffic grooming” es pot traduir a un problema de descomposició de
grafs, on s’apliquen eines de teoria de dissenys i de teoria de grafs. Una lleugera variació
en l’enrutament pot canviar completament el problema, i hi ha un constant compromı́s
entre la simplicitat de tractament i el valor pràctic de cada tipus d’enrutament (simètric,
camı́ més curt...).

A la primera part d’aquest Projecte Fi de Carrera, estudiem la minimització d’ADMs
en anells òptics WDM bidireccionals amb enrutament simètric pel camı́ més curt i amb
requeriments de tràfics unitaris i tots-amb-tots. Insistim en el plantejament del problema,
que no havia estat plantejat amb rigor en el cas bidireccional. Encara no s’havien tro-
bat solucions òptimes. Nosaltres, en particular estudiem els casos C=2 i C=3 (sent C
el ”grooming factor”) trobant construccions òptimes o quasi-òptimes. També estudiem
el cas C=k(k+1)/2 trobant descomposicions òptimes per famı́lies infinites de valors de
N (número de nodes de la xarxa). Establim una fita inferior general, i la millorem per
C=2,3. També incloem algun resultat per valors grans de C i comentaris sobre la for-
mulació del problema en termes de Programació Lineal. Al final d’aquesta primera part
donem alguns resultats quan el graf de requeriments és circulant.
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A la segona part d’aquest treball en concentrem en variants del problema a l’anell
unidireccional. Primer considerem el problema clàssic però canviant el conjunt de re-
queriments. Concretament, trobem solucions òptimes per a alguns casos quan el graf de
requeriments té grau màxim fitat. Finalment, considerem una modificació del problema
que és una primera aproximació al grooming dinàmic des d’un punt de vista purament
teòric. Extenem les idees d’un article que està a punt de publicar-se, i trobem noves
solucions òptimes.



Abstract

Traffic Grooming in optical networks refers to group low rate traffic into higher speed
streams. By using traffic grooming one can bypass the electronics in the nodes for which
there is no traffic sourced or destinated to it and therefore reduce the cost of the network.
Typically, in a WDM (Wavelength Division Multiplexing) network, instead of having one
SONET Add-Drop Multiplexer (ADM) on every wavelength at every node, it may be
possible to have ADMs only for the wavelength used at that node (the other wavelengths
being optically routed without electronic switching). There are many variants according
to the type of network considered (for example, path, ring or tree), the constraints used
and the parameters one wants to optimize which give rise to a lot of interesting design
problems (graph decomposition).

The objective is to minimize the equipment cost of the network, and specifically the
number of ADMs. This problem has been widely studied by many researchers in the last
few years. Roughly, there are two lines of attack. On the one hand, there is the field of
heuristics and approximation algorithms. On the other hand, more theoretical methods
from graph theory can be applied to find optimal solutions with the minimum number of
ADMs. This last one is our approach. There is a wide variety of topologies to be consi-
dered. Heuristics and algorithms have been found for almost all type of networks, but it
is not the case of exact solutions at all, where only the unidirectional ring and the path
have been properly studied. The problem of traffic grooming can be translated to a pro-
blem of graph partitioning, where tools from graph theory and design theory are strongly
needed. A slight variation on the routing may completely change the problem, and there
is a constant trade-off between the simplicity of the formulation and the practical value
of each type of routing (symmetric, shortest path...).

In the first part of this Master Thesis, we study the minimization of ADMs in Op-
tical WDM Networks with Bidirectional Ring topology considering symmetric shortest
path routing and all-to-all unitary requests. We insist on the statement of the problem,
which had not been clearly stated before in the bidirectional case. Furthermore, optimal
solutions had not been found up to date.
The grooming factor es denoted by C. In particular, we study the case C = 2 and C=3 (gi-
ving either optimal constructions or near-optimal solutions) and the case C = k(k+1)/2
(giving optimal decompositions for specific congruence classes of N). We state a general
Lower Bound for all the values of C and N, and we improve this Lower Bound for C=2
and C=3 (when N=4t+3). We also include approaches to large values of C and some
comments about the formulation of the problem using Linear Programming.
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At the end of this first part we give some results when the set of requests consists in a
circulant graph.

In the second part of this dissertation we focus on variants of the problem in the
unidirectional ring. First of all, we consider the classical problem but changing the set
of requests (optimal solutions had been found in the all-to-all case). Specifically, we find
optimal solutions for some cases when the set of requests consists of graphs with bounded
degree.
Finally, we consider a modification of the problem that is a first approach to the dynamic
grooming from a purely theoretical point of view. We extend the ideas from an article
that is going to appear soon, and we find new optimal solutions.
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Nomenclature

In the next pages we list the notation that we will refer along the Master Thesis. The
list is done following the order of appearance, and not taking into account the Section of
preliminary notions.
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Nomenclature xiv

G Network or physical graph.

V(G) Vertex set of graph G.

E(G) Edge set of graph G.

N Number of nodes of the network.
−→
C N Unidirectional ring on N nodes.

C∗
N Bidirectional ring on N nodes.

I Request or logical graph.

KN Complete graph on N nodes.

P(r) Path assigned to request r.

(i, j) Request between nodes i and j.

{i, j} Request between nodes i and j.

C Grooming factor or grooming ratio.

Bω Set of requests on wavelength ω.

L(Bω, e) Load at edge e on wavelength ω.

Ar Set of allowed paths in G for request r.

A
⋃
r∈I

Ar.

A(G, I,A,C) Optimal solution of the Traffic Grooming problem,

given G, I, A and C.

TN Tournament graph on N nodes.

A(C,N) Optimal solution of the Traffic Grooming problem,

given C and N , and assuming symmetric shortest

path routing and all-to-all unitary requests.

G− e Graph obtained from G by deleting an edge.

ap Number of graphs with p vertices.

A Number of ADMs in a generic solution.

W Number of wavelengths in a generic solution.

Vω E(Vω).

Eω E(Bω).

γ(C,p) Maximum number of edges of any graph H = (V, E)

with |V | = p, such that L(H, e) ≤ C, ∀e ∈ E(H).

lG Length of a request in the graph G.

lI Length of a request in a subgraph Bω of I.

ρ(Bω)
|V (Bω)|
|E(Bω)|

.

ρmin(C) min{ρ(Bω)|L(Bω, e) ≤ C ∀e ∈ E(Bω)}.
R Number of requests in a generic solution.



Nomenclature xv

djk Amount of traffic demands from node i to node j.

L̂(r,Bω) max
e∈G

L(e,Bω − r).

c(v, l, t) Minimum number of blocks in any t− (v, l, λ) covering.

ρ(n) Minimum number of cycles in a DRC-covering of Kn.

PN Path on N nodes.

Ks×r Complete r -partite graph Kn1 ∗ . . . ∗Knr ,

with n1 = . . . = nr =: s.

BIBD Balanced Incomplete Block Design.

δ Average degree of a graph.

∆ Maximum degree of a graph.

δ Minimum degree of a graph.

In Grooming for Two-Period Optical Networks (Chapter 4) :

C Grooming factor for the first period.

C′ Grooming factor for the second period.

X Set of nodes of the ring. |V | = n.

V Subset of V for which C ′ applies.|V ′| = v.

W X \ V .

N(n,C) Grooming in a ring on n vertices and grooming ratio C.

ON (n,C) Optimal N(n,C).

cost N(n,C) Drop cost of N(n, C).

cost ON (n,C) Drop cost of ON (n, C).

N(n,v;C,C′) Grooming in a two-period network.

ON (n,v;C,C′) Optical grooming in a two-period network.

cost N(n,v;C,C′) Drop cost of N(n, v; C, C ′).

cost ON (n,v;C,C′) Drop cost of ON (n, v; C, C ′).

ℵ(n,C,C′) Set of integers for wich cost ON (n, v; C, C ′) = cost ON (n, C).



Motivation

What is traffic grooming ?

Traffic grooming in WDM networks is defined as the allocation of sub-wavelength
traffic tributaries onto full wavelengths channels in order to achieve efficient utilization
of network resources, such that some cost function be minimized. This is usually im-
plemented according to a strategy that optimizes a certain objective function, such as
minimizing cost or blocking probability, or maximizing revenue.

Realization that most of the applications’ bandwidth requirements are sub-wavelength
has put the traffic grooming under the spotlight, and increased its importance. In the
beginning, the motivation for traffic grooming was merely reducing the total number of
required wavelengths, such that, given limited number of wavelengths, maximum amount
of traffic can be accommodated.

However, the understanding that traffic grooming can significantly reduce the number
of higher layer components, and thus network cost, has created an enormous interest in
this area. Starting with the consideration of regular topologies and specific static traffic
patterns, this area has seen many advances in just the last few years.

Outline of this Master Thesis

This Master Thesis is structured as follows. In Chapter 1 we sum all the preliminary
concepts needed for reading this work, and we present the problem of Traffic Grooming.
We state the general version of the problem and we describe briefly the situation of the
state-of-the-art. Finally, we talk a bit about the complexity of the problem.

Chapter 2 is the core of this dissertation. We focus on the Bidirectional Ring Grooming
Problem with all-to-all unitary requests and shortest path symmetric routing. Although
it may seem a very restricted case, its applications in real networks make it really inter-
esting. We found new results that yield some optimal solutions and approximations.

In Chapter 3 we study other particular cases of the general Traffic Grooming Problem.
First of all, we consider the unidirectional ring with a set of requests made up of graphs
with a bounded degree. It is natural to study this scenario because the amount of traffic
generated at each node cannot be arbitrarily large in real networks.
In the second part we focus on the bidirectional ring case, with circulant graphs as set of

xvi
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requests. This is also a natural case to be considered, because frequently a node only has
traffic requirements with its nearest nodes of the network, due to distance or reachability
constraints, for example.

In Chapter 4 we deal with a variation of the Traffic Grooming Problem : the Groo-
ming for Two-Period Optical Networks. In this case there are two possible values of the
grooming factor, that affect different subsets of the node set of the network.
It is a first approach to the dynamic grooming using graph partitioning tools.

Finally, we give general conclusions and future work to be done in this area.

Research Contributions

Fruit of the work carried out doing this Master Thesis, we have already presented a
poster and a paper, and we are still finishing two other articles :

• Poster :

Traffic Grooming in Optical Networks.
ADONET/COST293 Spring School on Combinatorial Optimization and Commu-
nication Networks, Budapest University of Technology and Economics 20th-24th
3-2006.

• Paper :

Jean-Claude Bermond, David Coudert, Xavier Muñoz and Ignasi Sau. Traffic
Grooming in Bidirectional WDM Ring Networks. In IEEE/LEOS/COST
293 annual conference of GRAAL, which forms part of 8th ICTON, Nottingham,
UK, June 2006.

• 2 articles in preparation.

The poster is provided in Appendix B, and the paper in Appendix C.



Chapter 1

Introduction

Abstract

In this Chapter we provide all the necessary concepts that will be used
along this Master Thesis. We will not pretend that the reader reads all the
definitions carefully, this Chapter is conceived as being only for consulting.
In the second part we formally state the Traffic Grooming problem and we
make a fast overview of the state-of-the-art.

1



1.1. Preliminary notions 2

1.1 Preliminary notions

Some information of all this Section has been taken in part from [1, 2]. Other sources
of information will be specified in each case.

1.1.1 Optical Networks : SONET/SDH

SONET and SDH are a set of related standards for synchronous data transmission
over fiber optic networks. SONET is short for Synchronous Optical NETwork and SDH
is an acronym for Synchronous Digital Hierarchy. SONET is the United States version of
the standard published by the American National Standards Institute (ANSI). SDH is the
international version of the standard published by the International Telecommunications
Union (ITU).

The SONET/SDH Digital Hierarchy

Table 1.1 lists the hierarchy of the most common SONET/SDH data rates.

Optical Level Electrical Level Line Rate Payload R. Overhead R. SDH
OC − 1 STS − 1 51.840 50.112 1.728 −
OC − 3 STS − 3 155.520 150.336 5.184 STM − 1
OC − 12 STS − 12 622.080 601.344 20.736 STM − 4
OC − 48 STS − 48 2488.320 2405.376 82.944 STM − 16
OC − 192 STS − 192 9953.280 9621.504 331.776 STM − 64
OC − 768 STS − 768 39813.120 38486.016 1327.104 STM − 256

Tab. 1.1 – Hierarchy of the most common SONET/SDH data rates (in Mbps)

Other rates (OC-9, OC-18, OC-24, OC-36, OC-96) are referenced in some of the stan-
dards documents but were never widely implemented. It is possible that other higher
rates (e.g. OC-3072) may be defined in in the future. We can see an scheme of SONET
signal mappings in Figure 1.1.
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Fig. 1.1 – SONET Signal Mappings

The ”line rate” refers to the raw bit rate carried over the optical fiber. A portion
of the bits transferred over the line are designated as ”overhead”. The overhead car-
ries information that provides OAM&P (Operations, Administration, Maintenance, and
Provisioning) capabilities such as framing, multiplexing, status, trace, and performance
monitoring. The ”line rate” minus the ”overhead rate” yields the ”payload rate” which
is the bandwidth available for transferring user data such as packets or ATM cells.

The SONET/SDH level designations sometimes include a ”c” suffix (such as ”OC-
48c”). The ”c” suffix indicates a ”concatenated” or ”clear” channel. This implies that the
entire payload rate is available as a single channel of communications (i.e. the entire pay-
load rate may be used by a single flow of cells or packets). The opposite of concatenated
or clear channel is ”channelized”. In a channelized link the payload rate is subdivided
into multiple fixed rate channels. For example, the payload of an OC-48 link may be
subdivided into four OC-12 channels. In this case the data rate of a single cell or packet
flow is limited by the bandwidth of an individual channel.

SONET/SDH Digital Standards

The American National Standards Institute (ANSI) coordinates and approves SONET
standards. The standards are actually developed by Committee T1 which is sponsored by
the Alliance for Telecommunications Industry Solutions (ATIS) and accredited by ANSI
to create network interconnection and interoperability standards for the United States.
T1X1 and T1M1 are the primary T1 Technical Subcommittees responsible for SONET.
T1X1 deals with ”digital hierarchy and synchronization”. T1M1 deals with ”internetwor-
king operations, administration, maintenance, and provisioning” (OAM&P). Refer to the
ANSI web site at http ://www.ansi.org for a complete list of SONET standards.

The International Telecommunications Union (ITU) coordinates the development of
SDH standards. ITU was formerly known as the CCITT. It is sponsored by the United
Nations and coordinates the development of telecommunications standards for the entire
world. Refer to the ITU web site at http ://www.itu.int for a complete list of SDH stan-
dards.
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Brief SONET Glossary

• WDM - Wavelength Division Multiplexing. WDM takes optical signals (each
carrying information at a certain bit rate), gives them a color (a wavelength or
specific frequency), and then sends them down the same fiber (see Figure 1.2).
Several wavelengths are multiplexed in the same fiber. Typically, each wavelength
uses 40Gbps, and the fiber capacity is in the Tbps, so hundreds of wavelengths can
be multiplexed in each fiber.

Fig. 1.2 – Multiplexing Optical Signals (WDM)

• TDM - Time Division Multiplexing. At each wavelength of each fiber, time
division multiplexing of the STM-n signals is done. OC −N means that we put N
STM signals in a single wavelength. That’s the idea of grooming. For example, if
the electrical signals are OC−12 and a wavelength can carry an OC−48, then the
grooming factor is 4 (see Figure 1.3).
Thus, TDM is done first, and then WDM, increasing in this way the capacity of the
network. We can see a scheme of the relation between WDM and TDM in Figure
1.4.
More precisely, SONET TDM takes synchronous and asynchronous signals and
multiplexes them to a single higher bit rate for transmission at a single wavelength
over fiber. Source signals may have to be converted from electrical to optical, or
from optical to electrical and back to optical before being multiplexed. WDM takes
multiple optical signals, maps them to individual wavelengths, and multiplexes the
wavelengths over a single fiber. Another fundamental difference between the two
technologies is that WDM can carry multiple protocols without a common signal
format, while SONET cannot. Some of the key differences between TDM and WDM
are graphically illustrated in Figure 1.5.

Fig. 1.3 – SONET TDM with grooming ratio 4
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Fig. 1.4 – Relation between TDM and WDM

Fig. 1.5 – TDM and WDM Interfaces

• F-OXC - Fiber Optical CrossConnect. It does fiber switching with λ (wave-
length) adding and dropping. An OADM is needed for each fiber from which λ
adding and dropping is done. If there exists B-OXC, then F-OXC does band adding
and dropping. We can see a scheme of a F-OXC in Figure 1.6.

Fig. 1.6 – Scheme of a F-OXC

• B-OXC - Band Optical CrossConnect. It does band switching with λ adding
and dropping. As before, an OADM is needed for each fiber from which λ adding
and dropping is done. We can see a scheme of optical wavebands in Figure 1.7.

• W-OXC - Wavelength Optical CrossConnect. It does wavelength switching
with (WT-OXC) or without (WR-OXC) λ conversion, and with STM electrical si-
gnals adding and dropping. Typically, the electrical signals are STM-1 (155.52Mbps).
An ADM is needed for each wavelength from which STM adding and dropping is
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Waveband 2

Waveband 1

Fig. 1.7 – Scheme of wavebands

done. We can see a block scheme of a typical optical network in Figure 1.8.

F−OXC

B−OXC

W−OXC
band band

bandfiber band fiber

Input fibers Output fibers

drop add

demux mux

drop add

demux mux

drop add

Fig. 1.8 – Blocks of a typical optical fiber architecture

• OADM - Optical Add-Drop Multiplexer. It does λ adding and dropping from
a fiber. We can see a scheme of an Optical Add-Drop Multiplexer in Figure 1.9.

• ADM - Add-Drop Multiplexer. It does electrical signals adding and dropping
from a wavelength. This is one of SONET’s claim to fame. The tributaries of a
SONET transport stream, are synchronously multiplexed to the line rate, i.e. there
are no stuff bits or stuff opportunity bits as is the case in the plesiochronous hie-
rarchy. As such an ADM can insert or extract lower rate tributary data without
demultiplexing the aggregate line rate. We can see a block scheme of an Add-Drop
Multiplexer in Figure 1.10, and both ADM/OADM in Figure 1.11.
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Fig. 1.9 – Scheme of an OADM

Fig. 1.10 – Block Scheme of an Add-Drop Multiplexer

1.1.2 Graph Theory

Additional references for this Section can be found in [19, 23].

Definition 1.1.1 (Digraph) A directed graph, or, simply, a digraph is a pair G =
(V, E) of sets V (G) and E(G), such that E(G) ⊆ V (G)× V (G). The elements of V are
called vertices (or nodes, or points) of the graph G, the elements of E are its arcs. An
arc of G or the form (x, x) is called a loop. If e = (x, y) is an arc then x is its initial
vertex and y its end vertex.

Definition 1.1.2 (Symmetric digraph) A directed graph is symmetric if (x, y) is an
arc whenever (y, x) is.

In many cases the distinction between initial and end vertices is irrelevant. Thus, the
notion of undirected graph is introduced :

ADM ADM ADM

OADMOADM OADM

Fig. 1.11 – Block Scheme of both OADM and ADM
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Definition 1.1.3 (Undirected Graph) Compared to a digraph, in an undirected graph
(or simply, graph) an arc (x,y) is replaced by the set consisting of the two vertices x and
y, called and edge of the graph and denoted by [x, y].

A variation on the definition of digraph (or directed graph) is the oriented graph,
which is a graph (or multigraph) with an orientation or direction assigned to each of

its edges. For example (see Definition 1.1.15), by ~C we mean than only one direction is
allowed for the arcs of the cycle.

A distinction between a directed graph and an oriented simple graph is that if x and
y are vertices, a directed graph allows both (x, y) and (y, x) as edges, while only one is
permitted in an oriented graph. Nevertheless, both concepts are used almost indistinctly.

Definition 1.1.4 (Multigraph) When considering several edges with the same extre-
mities we speak of a multiple edge and of a multigraph. If the (multi)graph has neither
multiple edges nor loops it is called simple. By G∗ we will denote the directed symmetric
graph obtained from the graph G by replacing each edge [x, y] by two arcs (x, y) and (y, x).

The usual way to picture a graph is by drawing a dot for each vertex and joining
two of these dots by a line (or a directed line if G is a digraph) if the corresponding two
vertices form an edge (just how these dots and lines are drawn is considered irrelevant).
We can see examples of graphs in Figure 1.12.

Fig. 1.12 – Examples of undirected and directed graphs

A graph with vertex set V is said to be a graph on V . Is is usual to speak of a vertex
v ∈ G (rather than v ∈ V (G)), an edge e ∈ G, and so on.

Definition 1.1.5 (Order) The number of vertices of a graph G is its order, written as
|G|.

Graphs are finite, infinite, countable and so on according to their order. In all this work,
we will deal with finite graphs.
For the empty graph (∅, ∅) we simply write ∅. A graph of order 0 or 1 is called trivial.

Definition 1.1.6 (Incidency) A vertex v is incident with an edge e if v ∈ e ; then e is
an edge at v.
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The two vertices incident with and edge are its endvertices or ends, and an edge joins its
ends. An edge {x, y} is usually written as xy (or yx).
If x ∈ X and y ∈ Y , than xy is an X − Y edge. The set of all the edges in E at a vertex
v is denoted by E(v).

Definition 1.1.7 (Adjacency) Two vertices x, y of G are adjacent, or neighbours, if
xy is an edge of G. Two edges e 6= f are adjacent if they have and end in common.

Definition 1.1.8 (Complete graph) If all the vertices of G are pairwise adjacent, then
G is complete. A complete graph on n vertices is a Kn ; a K3 is called a triangle.

We can see in Figure 1.13 the complete graphs on 2, 3, 4, 5, 6 and 7 vertices.

Fig. 1.13 – Some complete graphs

Definition 1.1.9 (Independence) Pairwise non-adjacent vertices are called independent.
More formally, a set of vertices or of edges is independent (or stable) if no two of its
elements are adjacent.

Definition 1.1.10 (Isomorphism) Let G = (V, E) and G′ = (V ′, E ′) be two graphs.
We call G and G′ isomorphic, and write G ' G′, if there exists a bijection ϕ : V → V ′

with xy ∈ E ⇔ ϕ(x)ϕ(y) ∈ E ′ for all x, y ∈ V . Such a map ϕ is called an isomorphism ;
if G = G′, it is called an automorphism.

We do not normally distinguish between isomorphic graphs. Thus, we usually write G =
G′ rather than G ' G′.
Let G = (V, E) be a (non-empty) graph. The set of neighbours of a vertex v in G is
denoted by NG(v), or briefly by N(v). More generally for U ⊆ V , the neighbours in V \U
of vertices in U are called neighbours of U ; their set is denoted by N(U).
We set G ∪G′ := (V ∪ V ′, E ∪ E ′) and G ∩G′ := (V ∩ V ′, E ∩ E ′).

Definition 1.1.11 (Subgraph) If G ∩ G′ = ∅, then G and G′ are disjoint. If V ′ ⊆ V
and E ′ ⊆ E, then G′ is a subgraph of G (and G a supergraph of G′), written as G′ ⊆ G.
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Less formally, we say that G contains G′. If G′ ⊇ G and G′ 6= G, then G′ is a proper
subgraph of G.
If G′ ⊆ G and G′ and G′ contains all the edges xy ∈ V ′ with x, y ∈ V ′, then G′ is an
induced subgraph of G ; we say that V ′ induces or spans G′ in G, and write G′ =: G[V ′].

Definition 1.1.12 (Spanning subgraph) G′ = (V ′, E ′) ⊆ G = (V, E) is a spanning
subgraph of G if V ′ spans all of G, i.e. if V ′ = V .

Definition 1.1.13 (Degree) The degree (or valency) dG(v) = d(v) of a vertex v is the
number |E(v)| of edges at v ; this is equal to the number of neighbours of v. A vertex of
degree 0 is isolated. The number δ(G) := min{d(v)|v ∈ V } is the minimum degree of G,
the number ∆(G) := max{d(v)|v ∈ V } its maximum degree.

If all the vertices of G have the same degree k, then G is k-regular, or simply regular. A
3-regular graph is called cubic.

The number

d(G) :=
1

|V |
∑
v∈V

d(v)

is the average degree of G. Clearly,

δ(G) ≤ d(G) ≤ ∆(G)

From these definitions the following properties are straightforward.

Proposition 1.1.1 For all graph G = (V, E),∑
v∈V

d(v) = 2|E|

Proposition 1.1.2 The number of vertices of odd degree in a graph is always even.

Definition 1.1.14 (Path) A path is a non-empty graph P = (V, E) of the form

V = {x0, x1, . . . , xk} E = {x0x1, x1x2, . . . , xk−1xk}

where the xi are all distinct. The vertices x0 and xk are linked by P and are called its
ends ; the vertices x1, . . . , xk−1 are the inner vertices of P . The number of edges of a path
is its length, and the path of length k is denoted by P k.

Note that k is allowed to be zero ; thus P 0 = K1. We can see an example of a path in
Figure 1.14.

Definition 1.1.15 (Cycle) A cycle is a non-empty graph P = (V, E) of the form

V = {x0, x1, . . . , xk} E = {x0x1, x1x2, . . . , xk−1xk, xkx0}

where the xi are all distinct.
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Fig. 1.14 – A path P = P 6 in G

C C86

Fig. 1.15 – Examples of undirected and directed cycles

Note that if P = x0x1 . . . xk−1 is a path and k ≥ 3, then the graph C := P + xk−1x0 is
a cycle. As with path, we often denote a cycle by its (cyclic) sequence of vertices. The
length of a cycle is its number of edges (or vertices) ; the cycle of length k is called a
k− cycle and denoted by Ck. A cycle, unlike a path, is not allowed to have length 0. We
can see in Figure 1.15 examples of undirected and directed cycles.

Definition 1.1.16 (r-partite graph) Let r ≥ 2 be an integer. A graph G = (V, E) is
called r-partite if V admits a partition into r classes such that every edge has its ends
in different classes : vertices in the same partition class must not be incident. Instead of
’2-partite’ one usually says bipartite.

We can see an example of a bipartite graph in Figure 1.16. An r -partite graph in which

Fig. 1.16 – A bipartite graph

every two vertices from different partition classes are adjacent is called complete. We
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can see some examples of complete bipartite graphs in Figure 1.17, and a nice K18,18

in Figure 1.18. The complete r -partite graphs for all r together are the complete multi-
partite graphs. The complete r -partite graph Kn1 ∗ . . . ∗ Knr is denoted by Kn1,...,nr ; if
n1 = . . . = nr =: s, we abbreviate this to Kr

s or Ks×r.

Fig. 1.17 – Some complete bipartite graphs

Fig. 1.18 – A nice K18,18

Graphs of the form K1,n are called stars ; the vertex in the singleton partition class
of this is the star’s center.

Clearly, a bipartite graph cannot contain an odd cycle, a cycle of odd length. In fact,
the bipartite graphs are characterized by this property :

Proposition 1.1.3 A graph is bipartite if and only if it contains no odd cycle.

Definition 1.1.17 (Girth, Circumference) The minimum length of a cycle (contai-
ned) in a graph G is the girth g(G) of G ; the maximum length of a cycle in G is its
circumference.

Definition 1.1.18 (Distance) The distance dG(x, y) in G of two vertices x, y is the
length of a shortest x− y path in G ; if no such path exists, we set d(x, y) := ∞.

Definition 1.1.19 (Diameter) The greatest distance between any two vertices in G is
the diameter of G, denoted by diamG.
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Diameter and girth are, of course, related :

Proposition 1.1.4 Every graph G containing a cycle satisfies g(G) ≤ 2diamG + 1.

Definition 1.1.20 (Connected Graph) A non-empty graph G is called connected if
any two vertices are linked by a path in G.

We finish with 2 concepts that become important in graph partitioning.

Definition 1.1.21 (Matching) A set M of independent edges in a graph G = (V, E)
is called a matching. M is a matching of U ⊆ V if every vertex in U is incident with an
edge in M . The vertices in U are then called matched (by M) ; vertices not incident with
any edge of M are unmatched.

Definition 1.1.22 (k-factor) A k-regular spanning subgraph is called a k-factor. Thus,
a subgraph H ⊆ G is a 1-factor of G if and only if E(H) is a matching of V . If |V (G)|
is odd, a 1-factor where one vertex is missing is called near 1-factor.

1.1.3 Computational Complexity and Algorithms

Additional references for this Section can be found in [42, 20].

In computer science, computational complexity theory is the branch of the theory of
computation that studies the resources, or cost, of the computation required to solve a
given computational problem. This cost is usually measured in terms of abstract parame-
ters such as time and space, called computational resources. Time represents the number
of steps it takes to solve a problem and space represents the quantity of information
storage required or how much memory it takes. There are often tradeoffs between time
and space that have to be considered when trying to solve a computational problem. It
often turns out that an alternative algorithm will require less time but more space (or
vice versa) to solve a given problem. Time requirements sometimes must be amortized
to determine the time cost for a well defined average case. Space requirements can be
profiled over time, too, especially in consideration of a multi-user computer system.

Complexity theory differs from computability theory, which deals with whether a pro-
blem can be solved at all, regardless of the resources required.

After the theory explaining which problems can be solved and which cannot be, it
was natural to ask about the relative computational difficulty of computable functions.
This is the subject matter of computational complexity.

The time complexity of a problem is the number of steps that it takes to solve an
instance (i.e., the problem restricted to a particular value of the input) of the problem
as a function of the size of the input (usually measured in bits), using the most efficient
algorithm. Of course, the exact number of steps will depend on exactly what machine
or language is being used. To avoid that problem, we generally use Big-O notation. If
a problem has time complexity O(n2) on one typical computer, then it will also have
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complexity O(n2p(n)) on most other computers for some polynomial p(n), so this notation
allows us to generalize away from the details of a particular computer. Let’s formalize
this idea.

Definition 1.1.23 (Big-O notation) If f, g : R→ R, we say that

f(x) is O(g(x)) as x →∞

if and only if
∃x0,∃M > 0 such that |f(x)| ≤ M |g(x)| ∀x > x0

Let’s talk about another very used notation.

Definition 1.1.24 (Little-o notation) If f, g : R→ R, we say that

f(x) is o(g(x)) as x →∞

if and only if

∀c > 0 ∃k > 0 such that 0 ≤ |f(x)| < c|g(x)| ∀ x ≥ k

The value of k must not depend on x, but may depend on c.

Much of complexity theory deals with decision problems. A decision problem is a pro-
blem where the answer is always YES/NO. A decision problem is equivalent to a language,
which is a set of finite-length strings. For a given decision problem, the equivalent lan-
guage is the set of all strings for which the answer is YES. Decision problems are often
considered because an arbitrary problem can always be reduced to a decision problem.

An important result in complexity theory is the fact that no matter how hard a pro-
blem can get (i.e. how much time and space resources it requires), there will always be
even harder problems. For time complexity, this is determined by the time hierarchy
theorem. A similar space hierarchy theorem can also be derived.

Complexity theory analyzes the difficulty of computational problems in terms of many
different computational resources. The same problem can be described in terms of the
necessary amounts of many different computational resources, including time, space, ran-
domness, alternation, and other less-intuitive measures. A complexity class is the set of
all of the computational problems which can be solved using a certain amount of a certain
computational resource.

Perhaps the most well-studied computational resources are deterministic time (DTIME)
and deterministic space (DSPACE). These resources represent the amount of computa-
tion time and memory space needed on a deterministic computer, like the computers that
actually exist. These resources are of great practical interest, and are well-studied.

Some computational problems are easier to analyze in terms of more unusual resources.
For example, a nondeterministic Turing machine is a computational model that is allowed
to branch out to check many different possibilities at once. The nondeterministic Turing
machine has very little to do with how we physically want to compute algorithms, but its
branching exactly captures many of the mathematical models we want to analyze, so that
nondeterministic time is a very important resource in analyzing computational problems.
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1.1.3.1 Complexity classes

Additional references for this Section can be found in [42].

A complexity class is the set of all of the computational problems which can be solved
using a certain amount of a certain computational resource. The complexity class P is
the set of decision problems that can be solved by a deterministic machine in polynomial
time. This class corresponds to an intuitive idea of the problems which can be effectively
solved in the worst cases.

The complexity class NP is the set of decision problems that can be solved by a non-
deterministic machine in polynomial time. This class contains many problems that people
would like to be able to solve effectively, including the Boolean satisfiability problem, the
Hamiltonian path problem and the Vertex cover problem. All the problems in this class
have the property that their solutions can be checked effectively.

The question of whether P is the same set as NP is the most important open question
in theoretical computer science. There is even a $1, 000, 000 prize for solving it ! ! !

Questions like this motivate the concepts of hard and complete. A set of problems X
is hard for a set of problems Y if every problem in Y can be transformed easily into some
problem in X with the same answer. The definition of ”easily” is different in different
contexts (the most usual is considering a polynomial transformation). The most impor-
tant hard set is NP-hard. Set X is complete for Y if it is hard for Y, and is also a subset
of Y. The most important complete set is NP-complete.

Problems that are solvable in theory, but can’t be solved in practice, are called intrac-
table. What can be solved ”in practice” is open to debate, but in general only problems
that have polynomial-time solutions are solvable for more than the smallest inputs. Pro-
blems that are known to be intractable include those that are EXPTIME-complete. If
NP is not the same as P, then the NP-complete problems are also intractable.
We can see a little diagram of the most important complexity classes in Figure 1.19,
provided that P 6= NP . If P = NP, then all three classes are equal.

Fig. 1.19 – Diagram of complexity classes provided that P 6= NP .

The traditional lines of attack for the NP-hard problems are the following :
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• Devising algorithms for finding exact solutions (they will work reasonably fast only
for relatively small problem sizes).

• Devising ”suboptimal” or heuristic algorithms, i.e., algorithms that deliver either
seemingly or probably good solutions, but which could not be proved to be optimal.

• Finding special cases for the problem (”subproblems”) for which either exact or
better heuristics are possible.

1.1.3.2 Parameterized Complexity

In computer science, parameterized complexity is a measure of complexity of problems
with multiple inputs. It is based on the fact that several such NP-hard are tractable when
one of their input is fixed.

The existence of efficient, exact, and deterministic solving algorithms for NP-complete
problems problems is considered unlikely, if inputs are not fixed ; all known solving algo-
rithms for these problems require time that is exponential in the total size of the inputs.
However, some problems can be solved by algorithms that are exponential in the size
of one input and polynomial in the size of the other inputs. Such an algorithm is called
a fixed-parameter algorithm, because the problem can be solved efficiently by fixing the
”troublesome” input at any one value. A problem that allows for such an algorithm is
called fixed-parameter tractable (FPT for short). Let’s define it a bit more formally.

Definition 1.1.25 Given a finite alphabet
∑∗, a parameterization is a mapping κ :∑∗ → N that can be computed in polynomial time. A parameterized problem (with respect

to
∑

) is a couple (L, κ) where L ⊆
∑∗ and κ is a parameterization of

∑∗.

It is important to remark that there are many possible parameterizations for each pro-
blem, and that the complexity of the corresponding parameterized problems can differ
very much.

Given an alphabet
∑

and a parameterization κ :
∑∗ → N,

Definition 1.1.26 An algorithm A is a FPT-algorithm with respect to κ if there exists
a computable function f : N → N and a polynomial function p : N → N such that for
each x ∈

∑∗, the algorithm A needs ≤ f(κ(x)) · p(|x|) steps.

Definition 1.1.27 A parameterized problem (L, κ) is fixed-parameter tractable is there
exists a FPT-algorithm with respect to κ that decides L. In this case, we say that (L, κ) ∈
FPT .

For example, there is an algorithm which solves the vertex cover problem in O(kn+1.29k)
time, where n is the number of vertices and k is the size of the vertex cover. This proves
that vertex cover is fixed-parameter tractable with respect to this parameter, whereas it
is well known that this problem is NP-complete.

Definition 1.1.28 A parameterized problem (L, κ) is in XP if there exists a computable
function f and an algorithm such that, given x ∈

∑∗, decides if x ∈ L in O(|x|f(κ(x)))
steps. In this case, we say that (L, κ) ∈ XP .

Proposition 1.1.5 FPT  XP
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1.1.4 Combinatorial Optimization

Combinatorial optimization is a branch of optimization in applied mathematics and
computer science, related to operations research, algorithm theory and computational
complexity theory that sits at the intersection of several fields, including artificial intel-
ligence, mathematics and software engineering. Combinatorial optimization algorithms
solve instances of problems that are believed to be hard in general, by exploring the
usually-large solution space of these instances. Combinatorial optimization algorithms
achieve this by reducing the effective size of the space, and by exploring the space effi-
ciently.

A study of computational complexity theory helps to motivate combinatorial opti-
mization. Combinatorial optimization algorithms are typically concerned with problems
that are NP-hard. Such problems are not believed to be efficiently solvable in general.
However, the various approximations of complexity theory suggest that some instances
(e.g. ”small” instances) of these problems could be efficiently solved. This is indeed the
case, and such instances often have important practical ramifications.

The domain of combinatorial optimization is optimization problems where the set of
feasible solutions (i.e., the domain of the objective or cost function) is discrete or can be
reduced to a discrete one, and the goal is to find the best possible solution.
An instance of a combinatorial optimization problem can be described in a formal way
as a tuple (X, P, Y, f, extr) where

• X is the solution space (on which f and P are defined)
• P is the feasibility predicate (a boolean-valued function that determines a subspace

of X where an optimal solution must be found)
• Y is the set of feasible solutions (the elements of X for which P gives 1)
• f is the objective function
• extr is the extreme (usually min or max)

1.1.4.1 Heuristics and approximations

Additional references for this Section can be found in [20].

Two fundamental goals in computer science are finding algorithms with provably
good run times and with provably good or optimal solution quality. A heuristic is an
algorithm that gives up one or both of these goals ; for example, it usually finds pretty
good solutions, but there is no proof the solutions could not get arbitrarily bad ; or it
usually runs reasonably quickly, but there is no argument that this will always be the case.

Often, one can find specially crafted problem instances where the heuristic will in
fact produce very bad results or run very slowly ; however, these instances might never
occur in practice because of their special structure. Therefore, the use of heuristics is very
common in real world implementations. The drawback with heuristic algorithms is that
it is difficult to compare them.
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Let’s introduce now some definitions that will give us the idea of approximations algo-
rithms.

Definition 1.1.29 The performance guarantee of a heuristic algorithm for a minimiza-
tion (maximization) optimization problem is α if the algorithm is guaranteed to deliver a
solution whose value is at most (at least) α times the optimal value.

Definition 1.1.30 An α−approximation algorithm is a polynomial time algorithm with
a performance guarantee of α.

Typically, if we are in front of a combinatorial optimization problem, we do not know
the value of the optimal solution (in that case there would be no such a ”problem” !),
and what we do is compare the solution of the algorithm with a lower bound (resp. upper
bound) of our minimization (resp. maximization) problem. Finding a tight lower/upper
bound is sometimes one of the most difficult steps in solving a problem.

1.1.5 Linear Programming

In mathematics, linear programming (LP) problems are optimization problems in
which the objective function and the constraints are all linear.

Linear programming is an important field of optimization for several reasons. Many
practical problems in operations research can be expressed as linear programming pro-
blems. Certain special cases of linear programming, such as network flow problems and
multicommodity flow problems are considered important enough to have generated much
research on specialized algorithms for their solution. A number of algorithms for other
types of optimization problems work by solving LP problems as sub-problems. Histo-
rically, ideas from linear programming have inspired many of the central concepts of
optimization theory, such as duality, decomposition, and the importance of convexity
and its generalizations.

Standard form is the usual and most intuitive form of describing a linear programming
problem. It consists of the following three parts :

• A linear function to be maximized. For instance :

Maximize c1x1 + c2x2

• Problem constraints in a standard form. For instance :

a11x1 + a12x2 ≤ b1

a21x1 + a22x2 ≤ b2

a31x1 + a32x2 ≤ b3

• Non-negative variables. For instance :

x1 ≥ 0

x2 ≥ 0
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It is usual to express the problem in matrix form, and then it becomes :

maximize cT x

subject to Ax ≤ b

x ≥ 0

Every linear programming problem, referred to as a primal problem, can be converted
into an equivalent dual problem. In matrix form, we can express the primal problem as :

maximize cT x

subject to Ax ≤ b

x ≥ 0

The equivalent dual problem is :

minimize bT y

subject to AT y ≥ c

y ≥ 0

where y is used instead of x as variable vector.

Geometrically, the linear constraints define a convex polyhedron, which is called the
feasible region. We can see an example of feasible region in Figure 1.20. Since the objec-
tive function is also linear, all local optima are automatically global optima. The linear
objective function also implies that an optimal solution can only occur at a boundary
point of the feasible region.

The simplex algorithm, developed by George Dantzig, solves LP problems by
constructing an admissible solution at a vertex of the polyhedron, and then walking
along edges of the polyhedron to vertices with successively higher values of the objec-
tive function until the optimum is reached. Although this algorithm is quite efficient in
practice (in fact, simplex is the most used algorithm in the world, even more than the
FFT , which is the second), and can be guaranteed to find the global optimum if certain
precautions against cycling are taken, it has poor worst-case behavior : it is possible to
construct a linear programming problem for which the simplex method takes a number
of steps exponential in the problem size. In fact for some time it was not known whether
the linear programming problem was solvable in polynomial time (complexity class P).
The first worst-case polynomial-time algorithm for the linear programming problem was
proposed by Leonid Khachiyan in 1979.

If the unknown variables are all required to be integers, then the problem is called
an integer programming (IP) or integer linear programming (ILP) problem. In
contrast to linear programming, which can be solved efficiently in the worst case, integer
programming problems are in the worst case undecidable, and in many practical situa-
tions (those with bounded variables) NP-hard. 0-1 integer programming is the special
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Fig. 1.20 – A series of linear constraints on two variables produces a region of possible
values for those variables

case of integer programming where variables are required to be 0 or 1 (rather than arbi-
trary integers). This method is also classified as NP-hard.

If only some of the unknown variables are required to be integers, then the problem is
called a mixed integer programming (MIP or MILP) problem. These are generally
also NP-hard.

There are however some important subclasses of IP and MIP problems that are effi-
ciently solvable, most notably problems where the constraint matrix is totally unimodular
and the right-hand sides of the constraints are integer.

1.1.6 Design Theory : combinatorial designs

Additional references for this Section can be found in [15, 39, 45].

Roughly, design theory consists in packing the elements of a given set into blocks
under certain constraints. A particular packing is called a combinatorial design or, more
often, simply design. This area of discrete mathematics has application to many fields,
and it has itself a wide amount of new concepts and important results. Here we will
restrict to the definition of the concepts that we will use in our work. Maybe the most
used handbook in combinatorial designs is [15], by Charles J. Colbourn and Jeffrey H.
Dinitz.

Definition 1.1.31 (t-(v, k, λ) design) A t-(v, k, λ) design is a pair (X,B) where X
is a v-element set of points and B is a collection of k-element subsets of X (blocks)
with the property that every t-element subset of X is contained in exactly λ blocks.
A design is simple if no two blocks are identical.
A t-(v, k, λ) design is also denoted by Sλ(t, k, v). If λ = 1, then it can be omitted.

The following definition is a particular case of the previous one, but that has his own
name because of his great importance in practice. In fact, this is the natural structure
that appears when we have sets of nodes that want to communicate among them (under
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the assumption that each communication takes place between a pair of nodes), as it is
the case in our work.

Definition 1.1.32 (BIBD) A 2-(v, k, λ) design is called a balanced incomplete block
design (BIBD for short). In this case we can extend a bit the usual definition : A balanced
incomplete block design (BIBD) is is a pair (V,B) where V is a v-set and B is a collection
of b k-subsets of V (blocks) such that each element of V is contained in exactly r blocks
and any 2-subset of V is contained in exactly λ blocks. The numbers v, b, r, k, λ are
parameters of the BIBD.

Proposition 1.1.6 Trivial necessary conditions for the existence of a BIBD(v, b, r, k,
λ) are
(1) vr = kb
(2) r(k − 1) = λ(v − 1)
Parameter sets that satisfy (1) and (2) are called admissible.

Other widely used construction is the Steiner triple system, which is also a particular
case of the general definition.

Definition 1.1.33 (Steiner system) Given three integers t, k, v such that 2 ≤ t <
k < v, a Steiner system S(t, k, v) is a v-set together with a family B of k-subsets of
V (blocks) with the property that every t-subset of V is contained in exactly one block.
Equivalently, an S(t, k, v) is a t-(v, k, 1) design.

Definition 1.1.34 (STS) An S(2, 3, v) is a Steiner triple system STS(v). Equivalently,
an STS(v) is a 2-(v, 3, 1) design.

The last ingredient of design theory that we will need is the concept of covering.

Definition 1.1.35 (Covering) A t-(v, k, λ) covering is a pair (X,B) where X is a v-
set of points and B is a collection of k-subsets of X (blocks) with the property that every
t-subset of points occurs in at least λ blocks in B. Repeated blocks in B are permitted.

Definition 1.1.36 (Covering number) The covering number Cλ(v, k, t) is the mini-
mum number of blocks in any t-(v, k, λ) covering.
A t-(v, k, λ) covering (X,B) is optimal if |B| = Cλ(v, k, t).
If λ = 1, then write C(v, k, t) for C1(v, k, t).
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1.2 The Traffic Grooming Problem

1.2.1 Introduction

Traffic grooming in WDM networks is defined as the allocation of sub-wavelength
traffic tributaries onto full wavelengths channels in order to achieve efficient utilization
of network resources, such that some cost function be minimized. This is usually im-
plemented according to a strategy that optimizes a certain objective function, such as
minimizing cost or blocking probability, or maximizing revenue. Realization that most of
the application bandwidth requirements are sub-wavelength has put the traffic grooming
under the spotlight, and increased its importance. In the beginning, the motivation for
traffic grooming was merely reducing the total number of required wavelengths, such that,
given limited number of wavelengths, maximum amount of traffic can be accommodated.
However, the understanding that traffic grooming can significantly reduce the number of
higher layer components, and thus network cost, has created an enormous interest in this
area.

ADMs

A key component in the SONET network is the add-drop multiplexer ADM, which
handles the pass-through traffic, demultiplexes the traffic to destinations (drop), and adds
traffics to the network. The optical add-drop multiplexer (OADM) which works at the
optical domain can handle the pass-through traffics, drop traffics, and add traffics in op-
tical channels. See Section 1.1.1 for a detailed explanation of these components. For each
optical channel dropped (or added), an SONET ADM is needed to convert the optical
signal to electronic ones (electronic signals to optical ones). If a dropped channel and
an added channel at a node are given the same wavelength, the two channels can share
the same ADM at the node. If a channel only optically pass-through a node, there is
no necessary to have an ADM for that channel at the node. Since ADMs are expensive
and major components of the SONET network, minimizing the number of ADMs is an
important research area and the optimization problem is known as traffic grooming. To
realize a given set of traffic demands using the minimum number of ADMs, we should
route the traffics to produce as many pass-through channels as possible.

Routing with protection

Due to the high data rate in the optical networks, a failure may results in a huge
loss of data. To overcome this problem, routing with protection (using additional fibers/-
channels as back-up) is common in the SONET rings. There are two protection switching
technologies. One is the unidirectional protection switching in which the traffic of each
direction is handled independently. If there is a failure on a single fiber, only the traffic on
that fiber (one direction) is switched to the protection fiber and there is no change on the
other direction. The other is the bidirectional protection switching in which the traffics
on both directions are handled together. This means that if there is a failure on one di-
rection of transmission (one fiber) then the traffics on both directions are switched to the
protection fibers. Based on the protection switching technologies, there are two common
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types of SONET rings in practice : the unidirectional path-switched rings (UPSR) and
the bidirectional line-switched rings (BLSR). In addition to the routing and wavelength
assignment problems, the routing algorithms for the SONET ring also need to deal with
the protection problem. This makes the algorithms special.

Traffic grooming on SONET rings

SONET rings with point-to-point wavelength-division multiplexing (WDM) links are
widely used in practice. In such SONET/WDM networks, each optical fiber can support
a number of wavelength channels, and each wavelength channel may have a bandwidth
of a few gigabit per second. In order to make use of the wavelength capacity efficiently,
it is critical to groom the low-rate traffic streams (i.e., multiplex multiple low-rate traffic
streams into a high-speed wavelength channel). The ratio of the wavelength channel rate
to the lowest traffic stream rate is known as the grooming factor. For example, sixteen
OC-3 low-rate traffic streams can be multiplexed into an OC-48 wavelength channel, in
which case the grooming factor is 16. We can see an example of what does the grooming
factor mean in Figure 1.21.

For each wavelenght and each  
 arc between 2 nodes, there can be 

only C requests routed through this arc

C=5
node i node j

requests
in λk

Fig. 1.21 – Illustrating the definition of grooming factor

Traffic grooming is realized by SONET ADMs, which dominate the cost of a SO-
NET/WDM network. With the optical (or wavelength) add-drop multiplexer (OADM),
it is possible for a node to optically bypass the wavelength channels that do not carry
low-rate traffic streams from/to the node. Therefore, due to the deployment of OADMs,
ADMs are needed in each node only for the wavelength channels that carry low rate traf-
fic streams from/to the node. The traffic grooming problem is to find a grooming scheme
for a given traffic pattern with the presence of one OADM at each node, such that the
number of required ADMs is minimized. We will state formally this problem in the next
Section.
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1.2.2 Statement of the Problem

As we have already said, Traffic grooming in networks refers to group low rate traffic
into higher speed streams (see [25, 40, 44, 35, 27] for related surveys). There are many
variants according to the type of network considered (for example, in [4, 9] the Path groo-
ming problem is studied), the constraints used and the parameters one wants to optimize
which give rise to a lot of interesting design problems (graph decomposition).

To fix ideas, suppose that we have an optical network represented by a directed graph
G (in many cases a symmetric one) on N vertices, for example an unidirectional ring ~CN

or a bidirectional ring C∗
N . We are given also a traffic (or instance) matrix, that is a family

of connection requests represented by a multidigraph I (the number of arcs from i to j
corresponding to the number of requests from i to j). An interesting case is when there
is exactly one request from i to j ; then I = K∗

n. It is usual to refer to G as the physical
graph, whereas I is referred as the logical graph (or request graph). Satisfying a request r
from i to j consists in finding a route (path) P (r) in G and assigning it a wavelength ω.

The objective is to minimize the equipment cost. Among possible criteria, one is to mi-
nimize the number of wavelengths used to route all the requests. This leads to the widely
studied loading problem [3, 24]. Another choice, which is in fact a better approximation
of the true equipment cost, is to minimize the number of add/drop locations (namely
ADMs using SONET terminology) instead of the number of wavelengths. This leads to
the grooming problem, that we will state formally later. These two problems are proved
to be different. Indeed, it is known that even for the simpler network (the unidirectional
ring), the number of wavelengths and the number of ADMs cannot be simultaneously
minimized [13, 29].

The grooming factor (or grooming ratio) C (or g depending on the article) means that
a request uses only 1

C
of the bandwith available on a wavelength along its route. Said

otherwise, for each arc e of G and for each wavelength w, there are at most C paths of
wavelength w containing arc e. For each wavelength, an ADM is needed at each node used
in the ends of a lightpath followed by a request. We can formalize this idea by introducing
the load definition :

Definition 1.2.1 For a subgraph Bω of requests of I, we define the load of an edge e of
G, L(Bω, e), as the number of requests which are routed through e. I.e :

L(Bω, e) = |{P (r); r ∈ E(Bω); e ∈ P (r)}|

Minimize the number of ADMs corresponds to minimize the total number of vertices
of all the subgraphs Bω of I. The solutions obtained might differ if we impose restrictions
on the routing. In order to formalize this idea, we introduce the following definition.

Definition 1.2.2 For each request r, note by Ar the set of allowed paths in G for this
request, and let A =

⋃
r∈I Ar.

We can see in Table 1.2 a summary of the translation of the parameters of the Problem
from Telecommunications to Mathematics.
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Optical Network parameters Graph Model

Optical Network topology Digraph G
Traffic Matrix, with Digraph I,

instances of requests (i, j) with arcs (i, j)
Routing a request r Assigning a dipath P (r) in

G and a wavelength ω
Requests on wavelength ω Subgraph Bω of I

Grooming Factor C (a request ∀ arc e ∈ G and ∀ω,∃ at most
uses 1

C
of the available C paths on wavelength ω

bandwidth on a wavelength ω) containing arc e : L(Bω, e) ≤ C
ADM on wavelength ω Vertex in subgraph Bω

Restrictions on the routing Set A of allowed paths
Objective : minimize Objective : minimize

total number of ADMs
∑W

ω=1 |V (Bω)|

Tab. 1.2 – Translation of the Problem from Telecommunications to Mathematics

At this moment we are already able to state the general Traffic Grooming Problem.

Problem 1.2.1 (The Traffic Grooming Problem)
Input : A digraph G (network), a digraph I (set of requests), a set A (allowed paths)

and a grooming factor C
Output : Find for each arc r ∈ I a path P (r) ∈ Ar, and a partition of the arcs of I

into subgraphs Bw, 1 ≤ w ≤ W , such that ∀e ∈ E(G) L(Bω, e) ≤ C
Objective : Minimize

∑W
w=1 |V (Bw)|, and this minimum is denoted A(G, I,A, C)

We will see examples when we focus on a particular case in Chapter 2.
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1.2.3 Relation with the Loading Problem

Our aim in the definition of the grooming problem was to minimize the total number
of ADMs. Another possibility is to minimize the number of wavelengths needed in the
decomposition of the request graph. This leads to the loading problem, widely studied
in the literature ([28, 21, 36, 31, 41, 43]). The ring-grooming problem has the advantage
of being easy to state and amenable to rigorous analysis, but has the drawback that its
cost function gives only an approximation to the true cost of building a SONET ring
network. In some situations, like SONET over WDM which is the case under study here,
a better approximation to the cost may be proportional to the number of its add/drop
points, that is, ADMs. Hence, the grooming problem represents a better approximation
to the true cost of SONET networks, but on the other hand it becomes more difficult to
solve than the loading problem.

In view of the similarity between the loading and the grooming problem, we might
wonder whether both problems are equivalent.

In [13, 36] the authors prove that even in the simplest network (the unidirectional
ring) the number of ADMs and the number of wavelengths cannot be simultaneously
minimized. We should give an example of this. Let N = 9 and C = 1, and consider the
scenario of a unidirectional ring. Let the list of traffic demands be

{1, 2}, {3, 1}, {2, 3}, {4, 5}, {6, 4}, {5, 6}, {7, 8}, {9, 7}, {8, 9}
We can see an illustration in Figure 1.22, where the blue requests are routed via the
longest path, because we are in a unidirectional ring.

1
2

3

4

56

7

8

9

Fig. 1.22 – Example about the relation with the loading problem

If we want to minimize the number of ADMs, since we have requests in all the nodes,
the best we can do is to place a single ADM at each node. Since each of the 3 traffic
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triangles covers the whole load, we must place them in different wavelengths. Thus, the
best grooming solution uses three rings (i.e. 3 wavelengths) : one with ADMs at vertices
{1, 2, 3}, one with ADMs at vertices {4, 5, 6} and another one with ADMs at vertices
{7, 8, 9}. In this way, we use 3 wavelengths and 9 ADMs.

On the other hand, if we want to minimize the number of wavelengths, realize that we
cannot do it with only 1 ring, because there are arcs with load 2. Thus, the best we can
do is to use 2 wavelengths, and this can be done for example with a ring with ADMs at all
the vertices, and another one with ADMs at vertices {1, 3, 4, 6, 7, 9}. From this example
we can conclude that, in general, the number of wavelengths and the number of ADMs
cannot be simultaneously minimized.

We can prove that the problems are not equivalent in a more general and simple way.
We need the notion of traffic splitting, that means that the traffic demand between a given
pair of nodes can be split in both directions of the ring. The ring loading allowing traffic
splitting can be solved in polynomial time [28]. On the other hand, ring grooming with
traffic splitting is NP-complete (Section 1.2.5). Thus, provided that P 6= NP (maybe the
most accepted conjecture in the world !) and because of the collapse of the polynomial
hierarchy (is there exists one problem that belongs to P and NP -complete, then P =
NP ), we conclude that both problems must belong to different complexity classes, and
therefore they are not equivalent.

1.2.4 State-of-the-art

A huge amount of research as been done in this area in the last few years. Here we
will give a brief summary about the current state of the research in this topic, we do not
pretend at all to build an exhaustive survey.

Traffic grooming appears in the context of optical networks. As it is logic, many of
the researches that work in this area have above all a technical background, and thus
most of the tools that have been applied to the problem of traffic grooming are MILP
formulation, heuristics and approximation algorithms. Of course these are extremely use-
ful and efficient tools, but we are interested in developing more theoretical approaches to
the problem.

Let’s focus mainly on the case of the grooming problem in the Ring, which is a really
used topology in optical networks, above all in backbone networks. Unidirectional and
bidirectional case must be handled independently.

1.2.4.1 Unidirectional Ring

In the unidirectional ring grooming problem, Bermond, Coudert and Muñoz
[10] found a translation of the problem that has allowed the publication of further re-
sults. Since good results have been found using this method, we will not deal here with
the other possible approaches to the problem. The idea of this translation that we have



1.2. The Traffic Grooming Problem 28

talked about is the following :

In the unidirectional ring, each pair of requests (i, j), (j, i) induces load 1 in all the
arcs of the ring, because both requests must be routed through disjoint arcs. We can
think of such a pair or requests as an arc between the 2 nodes, as it is shown in Figure
1.23.

(i,j)

(j,i)

i
j

i
j

Fig. 1.23 – Simplification of a pair of requests in the unidirectional case

In this way, the problem can be reformulated as decomposing a complete graph into
subgraphs with at most C edges (this is the load constraint) with the objective of mi-
nimizing the total number of vertices. At this stage, an avid reader could object that
with this simplification we are imposing that the requests (i, j) and (j, i) must be routed
through the same wavelength. It is a logic remark, because we have not imposed this res-
triction a priori in the statement of the general grooming problem. Fortunately, Charles
J. Colbourn has proved (personal communication) that this constraint does not affect the
value of the optimal solution.

Nowadays, the problem has been solved for values of the grooming factor until 6 :

• With this reformulation, the cases C = 1 and C = 2 become trivial, because it it
easy to state when a complete graph can be decomposed into subgraphs with 1 or
2 edges.

• In [5] the case C = 3 is completely solved (2003).

• In [33, 10] the case C = 4 is completely solved (2002, 2003).

• In [7] the case C = 5 is completely solved (2004).

• In [8] the case C = 6 is completely solved (2005).
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• In [10] some particular cases for several values of C are solved using design theory
(2003).

But, as C grows, the constructions are more and more complicated, and consequently
most of the authors that have worked hard in this problem during the last years have
decided to give up the task of finding the optimal solution for greater values of C (7, 8, . . .).

1.2.4.2 Bidirectional Ring

In the bidirectional ring grooming problem the scenario is quite different. There
is still an important lack of a theoretical solution of the problem. In contrast to the uni-
directional case, there is not a similar simplification, and that’s the reason that makes
this problem harder than the other one. Nevertheless, its study has attracted the interest
of numerous researchers :

• In [34] a MILP formulation of the problem can be found.

• There are a lot of articles providing heuristics about the ring grooming. See for
instance [44, 24, 13, 29, 30, 12].

• Up to date, the algorithm with the best approximation ratio for a general instance
of requests has been found by Flammini, Moscardelli, Shalom and Zaks [27] (2006).
Their algorithm has ratio 2 log(C) + o(log(C)) regardless of the routing used in the
ring.

• Colbourn and Wan [18] (2001) applied tools from design theory to the bidirectional
case. Their method is based in the idea of primitive rings. Nevertheless, they don’t
prove lower bounds and they don’t care about the optimality of the solutions that
they obtain.

• Chow and Lin [14] (2004) prove a new lower bound for the bidirectional ring (re-
gardless of routing). We will talk about this lower bound later. They consider the
case when there is a traffic demand between each pair of nodes. This kind of traf-
fic is called K-quasi-uniform, where K is the largest traffic demand divided by
the smallest one. They find a constant-factor approximation algorithm with ratio
max(2K, 12

√
2K) for K-quasi-uniform traffic, which is the best one up to date.

1.2.4.3 Path

Also the path grooming problem has been studied using theoretical approaches,
similar to the ones that have been used for the ring. In [4] the cases C=1 and C=2 are
solved and in [9] the maximum number or requests that can be groomed on the path
(given a grooming factor) is found.
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1.2.5 Complexity of the Problem

Like most of the problems of combinatorial optimization, the traffic grooming problem
has been proved to be NP-complete. Anyway, there are still some open problems about
the complexity of this problem, and this is the topic that we would like to present in this
Section.

Let’s focus in the case where the topology a a ring. In terms of standard complexity,
the ring grooming problem has been proved to be NP-complete, for instance by reducing
the well known NP-complete problem of bin packing to it :

Proposition 1.2.1 ([14]) Ring grooming is NP-complete.

Nevertheless, if the size of the ring is fixed, then the ring grooming problem turns out to
be solvable in polynomial time :

Proposition 1.2.2 ([14]) If N is fixed, then ring grooming is solvable in polynomial
time.

As one can check in the proof of Proposition 1.2.2 the practical problem is that the
degree of the polynomial depends on N . In terms of parameterized complexity, this proves
that the ring grooming problems belongs to XP , but we still don’t know if it belongs to
FPT , because as we know from Proposition 1.1.5, FPT  XP .

If we take the number of ADMs to be the parameter of the problem, then it has been
proved (Michael Fellows, University of Newcastle) that ring grooming is in FPT , but it
is still an open problem if it belongs to FPT if N is the parameter.

1.3 Concluding Remarks

After providing all the necessary concept for understanding this work, we have formu-
lated the Traffic Grooming problem in terms of graph partitioning, and we have realized
that it turns out to be a problem of combinatorial optimization.

We have also talked about the previous work that has been done, and finally we have
seen that the Grooming Problem is NP-complete.



Chapter 2

Approaches to the All-to-all
Bidirectional Ring case

Abstract

In this Chapter we focus on the specific case that we have studied : the
Bidirectional Ring Grooming Problem with all-to-all unitary requests and
shortest path symmetric routing. We make a mathematical formulation and
we find results that allow us to solve the problem for particular cases.

31
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2.1 Statement of the Problem in this case

In Section we have formally stated the general Traffic Grooming Problem. Many ver-
sions of the problem can be considered, according for example to the routing and the
graphs G and I, among others.
If the network topology is a ring, we can mainly distinguish two cases depending on the
type of routing that we use in the optical network under analysis :

• Unidirectional case : we can route the requests only following one direction in the
cycle. See for instance [22, 8, 10, 7, 5].

• Bidirectional case : we can route the requests either clockwise � or counterclockwise
	. This case has been much less studied than the unidirectional one, due to its
higher complexity. See for instance [18, 14].

We will focus here on the Bidirectional Ring Grooming Problem, and specifically
the all-to-all unitary case.

Let’s see now how the restrictions on the routing can affect the solutions. For instance,
consider a symmetric routing, that means that if (i, j) is routed in one direction, then
(j, i) is routed by the symmetric dipath, i.e. in the other direction. In this situation, let
be N = 4 and C = 2. The only way to obtain W = 2 with load 2 is to route each request
(i, i + 1) (resp. (i, i − 1) in the other subgraph) via the arc (i, i + 1) (resp. (i, i − 1) in
the other subgraph), (0, 2) and (2, 0) in the same direction, and (1, 3) and (3, 1) in the
opposite direction (i.e. in the other subgraph). But then the paths associated to (0, 2)
and (2, 0) are not symmetric.
Another example is obtained by considering |V (Bω)| = 3, V (Bω) = {A, B, C} and C=2.
If we have symmetric routing we can have at most 3 requests in a given direction, for
instance ~AB, ~BC and ~CA, or ~AB, ~BC and ~AC, but if we admit not symmetric routing
then we can combine 4 requests in one direction, for example ~AB, ~BC, ~AC and ~CA. In
this case the problem can be reformulated as follows :

Problem 2.1.1 (Form 1 : Symmetric routing)
Input : C∗

N : bidirectional cycle oriented in both directions, and a grooming factor
C. All to all requests, and the requests (i, j) and (j, i) being routed through opposite
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directions
Output : Find for each arc r ∈ K∗

N a path P (r) in C∗
N , and a partition of the arcs

of K∗
N into subgraphs Bw, 1 ≤ w ≤ W , such that ∀e ∈ E(C∗

N) L(Bω, e) ≤ C
Objective : Minimize

∑W
w=1 |V (Bw)|

We can also impose a shortest path routing, but that makes some solutions not

compatible with the load constraint, like for C = 1, and three requests
−→
AB,

−−→
BC,

−→
CA with

d(A, B) + d(B, C) < N
2
.

We can distinguish two cases, depending on the symmetry of the longest requests
when N is even. Of course, we could also not impose any kind of symmetry, but then
the problem becomes slightly different. In the non-symmetric case the problem can be
reformulated as follows.

Problem 2.1.2 (Form 2 : Non-Symmetric Shortest Path routing)
Input : C∗

N : bidirectional cycle oriented in both directions, and a grooming factor
C. A set of requests given by K∗

N , and the request (i, j) being routed by the shortest
path. The shortest path from i to j follows the direction of the cycle.

Output : Find for each arc r ∈ K∗
N a path P (r) in C∗

N , and a partition of the arcs
of K∗

N into subgraphs Bw, 1 ≤ w ≤ W , such that ∀e ∈ E(C∗
N) L(Bω, e) ≤ C

Objective : Minimize
∑W

w=1 |V (Bw)|

It is not difficult to realize that not always neither symmetric routing implies shortest
path routing, nor shortest path routing implies symmetric routing.

If we impose both shortest routing and symmetric routing, the problem is equivalent
to consider G = ~CN and I = TN , where TN is a tournament formed by all the arcs
(i, i+ q), i = 0, . . . , N −1, q = 1, . . . ,

⌊
N
2

⌋
(plus N

2
arcs of the form (i, i+ N

2
), if N is even.

Pairs of the form (i, i + N
2
), (i + N

2
, i) are not allowed).

We will focus on the Bidirectional Ring Grooming Problem with symmetric
shortest path routing, and specifically the all-to-all unitary case.

Remark 2.1.1 In this case, we minimize the number of ADMs used by the requests fol-
lowing one direction in the cycle, and then double the number of ADMs and the number
of wavelengths to compute the total number of ADMs used by the whole set of requests.
However, all the results that we will show take into account only half of the total number
of ADMs. Unless necessary, we will not remind that the total needed number of ADMs is
twice the number of ADMs of our results.
In this way, we can get rid of the orientation of the requests, because all of them have the
same direction. This is the main reason for choosing this routing, besides of its common
use in real optical networks.

I.e., from now on :
G = ~CN and I = TN .

Finally, our problem can be reformulated as follows.
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Problem 2.1.3 (Form 3 : Symmetric Shortest Path routing)

Input : ~CN : unidirectional cycle, and a grooming factor C. A set of requests given by
a tournament TN formed by all the arcs (i, i + q), i = 0, . . . , N − 1, q = 1, . . . ,

⌊
N
2

⌋
(plus N

2
arcs of the form (i, i + N

2
), if N is even. Pairs of the form (i, i + N

2
),

(i + N
2
, i) are not allowed). The request (i, j) being routed by the shortest path, and

the requests (i, j) and (j, i) being routed through opposite directions

Output : Find for each arc r ∈ TN a path P (r) in ~CN , and a partition of the arcs

of KN into subgraphs Bw, 1 ≤ w ≤ W , such that ∀e ∈ E(~CN) L(Bω, e) ≤ C
Objective : Minimize

∑W
w=1 |V (Bw)|

Thus, in the whole work we will deal with the formulation of Problem 2.1.3.

Definition 2.1.1 Given a bidirectional ring on N nodes with symmetric shortest path
routing and a grooming factor C, the optimal solution of the Traffic Grooming problem
is noted by A(C, N).

In the following remarks we can see that Problem 2.1.2 and Problem 2.1.3 are not
always equivalent.

Remark 2.1.2 If N is odd, Problem 2.1.2 and Problem 2.1.3 are equivalent.

Proof: Let N = 2q + 1. The only requests that may be routed differently according
to the two Problems are the ”diameters” in the even case. Exactly, if the length of the
request is smaller than

⌈
N
2

⌉
, then the shortest path is unique and thus Problem 2.1.3 and

Problem 2.1.2 give the same routing. In the odd case, the longest request has length q,
which is smaller than

⌈
N
2

⌉
= q + 1. 2

Remark 2.1.3 If N is even, Problem 2.1.2 and Problem 2.1.3 are not equivalent.

Proof: Let N = 2q. The difference resides in the fact that the routing is different for the
requests of length q. Following the formulation of Problem 2.1.3, the requests (i, i + q)
and (i + q, i) are routed via the same edges of the cycle, in opposite directions. On the
other hand, following the formulation of Problem 2.1.2, the requests (i, i+q) and (i+q, i)
are routed via disjoint edges of the cycle, both in the same direction.
For instance, let N = 4 and C = 2. Let the vertices be ABCD.
Using Form 1, the best we can do is to use one graph on 4 vertices with the requests
AB BC CD DA AC, and another one only with the request BD. Using the same graphs
inverting the directions of the requests, we obtain 12 ADMs.
Using Form 2, the best we can do is to use one graph on 4 vertices with the requests AB
BC CD DA AC CA, and another one in the opposite direction with the requests BA AD
DC CB BD DB, obtaining in this way 8 ADMs. 2

It is time now to give some examples.



2.1. Statement of the Problem in this case 35

Example 2.1.1 C = 1, N = 5 (10 requests).
The 3 graphs :
013 with arc 01 13 and 30 ;
124 with arcs 12, 24 and 41 ;
0234 with arcs 02 23 34 and 40
form optimal solution with 10 ADMs

Example 2.1.2 N=13 C= 3 an optimal solution with 39 ADMs is obtained with :
The three K5 : 0 1 4 7 10 ; 0 2 5 8 11 ; 0 3 6 9 12 ;
and the 4 K6 − 3e : 1 2 3 7 8 9 ; 1 5 6 7 11 12 ; 2 4 6 8 10 12 ; 3 4 5 9 10 11.
In a K5 ABCDE we take the arcs AB BC CD DE EA AC BD CE DA EB, and in a

K6 − 3e ABCDEF we take the arcs AB BC CD DE EF FA AC BD CE DF EA FB.
One can check that all the 78 requests appear exactly once.

In Figure 2.1 we decompose T7 using 2 wavelengths and 14 ADMs when C = 3.

Fig. 2.1 – Example of a decomposition with grooming factor 3

In Figure 2.2 we decompose T5 in two different ways when C = 2, using in both
decompositions 2 wavelengths, but different number of ADMs.
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23

4

10 ADMS

0

1

23

4

9 ADMS

Fig. 2.2 – Decomposing T5 in two different ways

2.1.1 Mathematical formulation

Let’s introduce some notation :

Consider a valid construction for the Problem and let ap denote the number of sub-
graphs of the partition with exactly p nodes, A the number of ADMs, and W the number
of subgraphs of the partition.

We have the following equalities :

A =
N∑

p=2

pap (2.1)

N∑
p=2

ap = W (2.2)

W∑
w=1

|Ew| = |E| (2.3)

In the particular case where I = TN , we have |E| = N(N−1)
2

, and we know that,

W ≥
⌈

N2 − ε

8C

⌉
, where ε =

{
0, if N even
1, if N odd

Let’s recall the proof :
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If N = 2q +1, then the load of each arc is 1+2+ . . .+ q = N2−1
8

. Dividing these value
by C we obtain the minimum number of subgraphs.

If N = 2q, then the total load in all the arcs is N +2N +3N +. . .+(q−1)N +qN
2

= N3

8
.

Since there are N arcs, dividing this value by N and by C we obtain that we need at
least N2

8C
subgraphs.

2.1.2 About the length of the requests

Before defining and finding the value of γ(C, p) (in Proposition 2.2.1) it is convenient
to clarify what we mean by the length of a request. Note that the subgraphs for which we
will define γ(C, p) are inside the ring. But, unless we say it explicitly, the distance we will
consider is the distance inside the subgraph, not the actual distance in the ring. Anyway,
let’s formalize these ideas with the following definitions, that deal with a physical graph
G and a graph of requests I.

2.1.2.1 Defining an orientation

In the case when G = ~CN , although we have said that we get rid of the orientation
of the arcs because of the symmetry, it will be necessary to define an orientation of the
requests in a subgraph Bω, to have no ambiguity in the definition of lG and lI . Let Bω be
a subgraph on vertices a1, a2, . . . , a|Bω |.

Suppose that |Bω| = 2q + 1 is odd. Wlog, consider the vertex a1. Relabeling the
vertices, we can suppose that a1 < a2 < . . . < a|Bω |. Then, partition the remaining
vertices into 3 sets :

R = {a2, . . . , aq}, M = {aq+1, aq+2}, L = {aq+3, . . . , a2q+1}

We can see an example in Figure 2.3.

Now define the following orientation for a general request between a pair of vertices i
and j :

• If i = a1 and j ∈ R, orient the request (a1, j)
• If i = a1 and j = aq+1, orient the request (a1, aq+1)
• If i = a1 and j = aq+2, orient the request (aq+2, a1)
• If i = a1 and j ∈ L, orient the request (j, a1)
• If i ∈ R and j ∈M, orient the request (i, j)
• If i ∈ L and j ∈M, orient the request (j, i)
• If i ∈ R and j ∈ R (and thus, i < j), distinguish two cases :
• if j − i ≤ q, orient the request (i, j)
• if j − i > q, orient the request (j, i)

• If i = aq+1 and j = aq+2, orient the request (aq+1, aq+2)
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a

aa

1

q+1q+2

L R

M

Fig. 2.3 – Partitioning the vertex set

Suppose now that |Bω| = 2q is even. As before, consider a1 and partition the remaining
vertices into 3 sets :

R = {a2, . . . , aq}, M = {aq+1}, L = {aq+2, . . . , a2q}

Now define the following orientation for a general request between a pair of vertices i
and j :

• If i = a1 and j ∈ R, orient the request (a1, j)
• If i = a1 and j = aq+1, orient the request (a1, aq+1) or (aq+1, a1). Remark that it

will be no always possible to choose between both orientations, as we can see in
Figure 2.4 where, provided that C = 3, we are forced to orient the request (aq+1, a1)
because the edges of R are already saturated

• If i = a1 and j ∈ L, orient the request (j, a1)
• If i ∈ R and j ∈M, orient the request (i, j)
• If i ∈ L and j ∈M, orient the request (j, i)
• If i ∈ R and j ∈ R (and thus, i < j), distinguish three cases :
• if j − i < q, orient the request (i, j)
• if j − i > q, orient the request (j, i)
• if j − i = q, orient the request (i, j) or (j, i)

Remark 2.1.4 If G = ~CN we can give the explicit formula of l ~CN
. Indeed, if we consider

i, j ∈ IN :

l ~CN
((i, j)) =

{
j − i, if j > i

N + i− j, if j < i

Although the previous formulation is correct and rigorous, it might be interesting to
define an orientation (that will turn out to be the same) in a more easy an intuitive way.
First of all, let’s define a (non transitive) order in the vertex set of a graph.
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a1

aq+1

Fig. 2.4 – Giving an orientation to the requests

Definition 2.1.2 Given a graph G with vertex set V (G) = {0, ..., N−1} we will say that
i <G j if j − i ≡ x (mod N) with x ∈ (0,

⌊
N
2

⌋
). If N is and j − i ≡ N

2
(mod N), then

the order can be any of both possibilities (i <G j or i >G j).

And with this order we can define the following orientation :

Assign direction to the edges (i, j) if i <G j.

2.1.2.2 Defining the lengths

Let’s begin by defining the length lG.

Definition 2.1.3 Given a request (i, j), let lG be the length of the request in the graph
G, that is, the length of the shortest path going from i to j in G.

Recall that in the case when G is a bidirectional ring, if we consider only one direction
of the ring then we have to be careful with lG (l ~CN

in this case). For instance, if we deal
with a ring on 9 nodes oriented clockwise, then the request (4, 2) has length 7 rather than
2, since the shortest (and unique, in this case) path from 4 to 2 has length 7.

To properly define lI the notion of graph embedding is needed.

Definition 2.1.4 (Graph embedding) A graph embedding is a map from one graph
(the guest graph) into another (the host graph), such that a guest graph node is assigned
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to a host graph node and a guest graph edge is assigned to a host graph path.
Three parameters are defined in a embedding :

• Node load : maximum number of guest graph nodes mapped to the same host
graph node. It is usually referred as load, but we are using this new notation to
avoid confusion with the load defined before in this work.

• Dilation : length of the longest path in the host graph mapped by an edge in the
guest graph edge.

• Load : maximum number of host graph path mapped by an edge in the guest graph
edge that go through the same host graph edge. It is usually referred as congestion,
but we have used this notation because it is exactly the same as the load defined
before.

Now we are able to define lI :

Definition 2.1.5 Given a request (i, j) in a subgraph Bω of I, embed Bω on a cycle with

the same order
−→
C |Bω |. Now, let lI (or lBω if it is necessary to specify to which subgraph

we refer) be the length of the shortest path going from i to j in
−→
C |Bω |.

For instance, consider Figure 2.5, where a ring on 15 nodes is depicted. The full dots
represent the vertices inside a certain subgraph, labeled as A, B, C,D, E, F, G. The other
8 nodes are in the ring but not in the subgraph. Thus, in this example, the request (B, C)
has length lI 1, while lG is 3, and the request (F, A) has length lI 2, while lG is 6. Finally,
the request (C, F ) has length lI 3, while lG is 5.

A

B

C

D

E

F
G

Fig. 2.5 – About the length of the requests in the ring
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2.1.3 About embedding the subgraphs in the Ring

To understand to problem that we will study in this section, let’s begin with an
example. Let C = 2, and we all agree that the graph of Figure 2.6 is a priori a valid
graph with grooming factor 2.

A B

CD

Fig. 2.6 – Example of a valid graph with grooming factor 2

Now let N = 15, and we have to embed this graph in the ring, i.e., we have to choose
4 of the 15 vertices to be A, B, C,D. Suppose that we embed the graph like it is shown
in Figure 2.7, where the center of the ring is represented by a full blue dot. But here we
see that we have load 3 in 4 arcs of the ring (those going from A until C), hence it is not
a valid embedding with this grooming factor !

A

B

C
D

Fig. 2.7 – Example of a bad embedding with grooming factor 2

With this example we can see that it is a problem that we cannot stand in the way.
Moreover, it might be possible than we could not choose any labeling of the vertices of
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the subgraphs in order to ensure the validity of the embedding. To convince ourselves
that it can really occur in explicit decompositions, see in Remark 2.1.5 and Remark 2.1.6
that it is not always possible to do such an embedding.

Remark 2.1.5 If C=1, and we partition K9 into the C4’s (i, 1 + i, 5 + i, 3 + i, i), for
i = 0, . . . , 8, then there exists no possible permutation of the labels of the vertices respecting
the grooming factor.

Proof: Let’s suppose that there exists such a permutation. To ensure the embedding,
the vertices of all the cycles must be ordered cyclically modulo N. In general, this per-
mutation will be : 0 → a, 1 → b, 2 → c, 3 → d, 4 → e, 5 → f , 6 → g, 7 → h, 8 → i.
Note than we can do the permutations j → (j + 1) until we can choose 3 couples of ver-
tices in the cycles (x1, x2) with x1 < x2 (i.e. without taking into account the congruence).
It is because each cycle (after the permutation) has 4 couples of vertices, and in each
cycle there is as much 1 couple of the form (x1, x2) with x1 > x2 (we can only ”cross 0”
as much once). Now, if all works we can choose the 3 couples and we have :

f < a, because we have the cycle (4,5,0,7,4)
a < h, because we have the cycle (4,5,0,7,4)
h < f , because we have the cycle (2,3,7,5,2)

But we have obtained f < a < h < f ⇒ f < f , that is a contradiction, and then we
conclude that there exists no permutation. 2

Remark 2.1.6 If C=1, and we partition K7 into the C3’s (i, 1 + i, 3 + i, i), for i =
0, . . . , 6, then there exists no possible permutation of the labels of the vertices respecting
the grooming factor.

Proof: It is similar to the previous proof. 2

Given an explicit decomposition of a complete graph into subgraphs, how can we
know if it is possible to embed each subgraph into the original graph respecting the load
constraint given by the grooming factor ?

The basic idea is to ensure that the ”hole” of the subgraph coincides with the ”big
hole” of the ring. Defining the length always following the same direction in the ring
(either clockwise or counterclockwise), a sufficient condition is that there are no requests
of length lG greater or equal than

⌊
N
2

⌋
, as we prove in Proposition 2.1.1. Recall that now

by length of a request we mean the actual length in the ring l ~CN
, not inside the subgraph.

Proposition 2.1.1 Suppose that we have a decomposition of TN into subgraphs, where
each subgraph satisfies the load constraint, and that we have a labeling of the vertices such
that with this labeling there are no requests of length l ~CN

greater or equal than
⌊

N
2

⌋
.

Then, the embedding of the subgraphs in the ring satisfies the load constraint, and hence
this is a valid solution of the problem.
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Proof: Wlog, suppose that the ring is oriented clockwise, and that the requests are orien-
ted as it is described above. Then, think up that from the center of the circumference
defined by the ring, we push all the requests of each subgraph until the circumference.
For each request, two things can happen : either its direction is the same as the direction
of the ring, or it is not. If all the directions of all the requests of a subgraph agree with
the direction of the ring, then we will have the same load that we had in the subgraph.
Given a request (i, j), the directions will coincide if j < i +

⌊
N
2

⌋
(mod N). But, if there

are no requests of length greater or equal than
⌊

N
2

⌋
, all the directions will coincide, and

then by embedding the subgraphs in the ring we cannot increase the load more than C,
because we are supposing that in the subgraphs the load constraint is satisfied. Hence,
this is a valid solution. 2

The same idea can be expressed in a much more useful way by using the definition of
the orientation based on the order relation.

Proposition 2.1.2 Suppose that we have a decomposition of TN into subgraphs Bω,
where each subgraph satisfies the load constraint. Suppose also that for every request
(ai, aj) ∈ E(Bw),

i <Bw j ⇒ ai <G aj

Then, the embedding of the subgraphs in the ring satisfies the load constraint, and hence
this is a valid solution of the problem.

Proof: If the orientations coincide for each request in each subgraph, we will have the
same load in the ring than there was in the subgraphs, and thus the load constraint will
be satisfied. 2

Now look again at Figure 2.7, but now suppose that the grooming factor is 3. In this
case this is indeed a good embedding !
Let’s try to capture this phenomenon, and with this aim the following definition arises.

Definition 2.1.6 Given a request r on a subgraph Bω, let

L̂(r, Bω) := max
e∈G

L(e, Bω − r),

where Bω − r is the graph obtained from Bω by deleting the edge r.

This is, L̂(r, Bω) is the maximum load in the arcs of G induced by all the requests of
Bω except r. Although usually the subgraphs that we will use to partition the request
set will have the arcs saturated, it can be useful to allow some relaxation on the routing
of the requests, and this is the idea of Proposition 2.1.3, that softens a bit the sufficient
conditions of Proposition 2.1.1.

Proposition 2.1.3 Suppose that we have a decomposition of TN into subgraphs, where
each subgraph Bω satisfies :

1) L(e,Bω) ≤ C, ∀e ∈ G
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2) ∀r ∈ E(Bω) such that lG(r) ≥
⌊

N
2

⌋
⇒ L̂(r, Bω) < C

Then, the embedding of the subgraphs in the ring satisfies the load constraint, and hence
this is a valid solution of the problem.

Proof: The first condition is just the load constraint in each subgraph. In the second
condition we are allowing requests of lG greater or equal than

⌊
N
2

⌋
. But what this condi-

tion guarantees is that, for each request r such that lG(r) ≥
⌊

N
2

⌋
, then L̂(r, Bω) is strictly

lower than C, and thus we will not surpass the load by routing this request r. For all the
other requests, Proposition 2.1.1 holds. 2

2.2 Lower Bounds

2.2.1 γ(C, p)

To obtain accurate lower bounds we need to bound the value of |Ew| for a graph with
|Vw| = p vertices, satisfying the load constraint.

Definition 2.2.1 Let γ(C, p) be the maximum number of edges of any graph H = (V, E)
with |V | = p, such that L(H, e) ≤ C, ∀e ∈ E(H). Recall that the load constraint is always
assumed to be defined in the ring.

The determination of γ(C, p) was a challenging problem. We have solved it in Proposition
2.2.1 of Section 2.1.2.

Equations (2.2) and (2.3) become

A =
N∑

p=2

pap (2.4)

N∑
p=2

ap ≥
⌈

N2 − ε

8C

⌉
, where ε =

{
0, if N even
1, if N odd

(2.5)

N∑
p=2

apγ(C, p) ≥ N(N − 1)

2
(2.6)

We will see in this section that, in a Ring topology, the best we can do to groom the
maximum number of requests in a graph with a given number of vertices (respecting the
load constraint given by the grooming factor, of course) is to use the requests of minimum
length lI (1, 2, 3...) until we use all the requests, or until we exceed the load constraint.
This property may seem very intuitive, but it needs to be proved, because in a Path
topology it is not true, as we can see in the counterexample given in [4] and illustrated
in Figure 2.8. In this example, N = 11 and C = 10. The nodes are numbered from 0 till
10. If we use all the requests of lengths 1, 2, 3 and 4, we obtain 34 requests, but if we
replace the request (3, 7) by the longer requests (0, 5) and (5, 10) we obtain 35 requests.
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Fig. 2.8 – Counterexample on the Path

Happily, it doesn’t happen in our case, as we will see below. In Proposition 2.2.1 (after
stating a simple remark) we establish the value of γ(C, N) for any value of C and N.

Remark 2.2.1 For all C ∈ INr {0}, there exist k ∈ INr {0} and r ∈ IN, 0 ≤ r < k +1,
such that

C =
k(k + 1)

2
+ r

Proof: We only have to begin to do 1 + 2 + 3 + . . . until we surpass (strictly) C. Let L
be the last value in the addition, therefore 1 + 2 + 3 + . . . + L− 1 + L > C. Trivially, we
have k = L− 1, and r = N − k(k+1)

2
. Or, even faster, we can solve directly the equation

in k and find k =
⌊
−1+

√
1+8C

2

⌋
and then find r as before. 2

Proposition 2.2.1 (Requests of Shortest Length) γ(C, p) is achieved by using the
requests of shortest length lI , until covering all the load. Moreover, if we write C in the
form C = k(k+1)

2
+ r, with 0 ≤ r ≤ k, then

γ(C, p) =


p(p−1)

2
, if p ≤ 2k + 1 + ε, with ε = 1 if r ≥ k+2

2

kp +
⌊

rp
k+1

⌋
, otherwise

Proof: If p ≤ 2k + 1 + ε, with ε = 1 if r ≥ k+2
2

, we can put all the requests without

overloading the arcs, and therefore γ(C, p) = p(p−1)
2

.
If p ≥ 2k +2+ε, with ε = 1 if r ≥ k+2

2
, we can have a solution by taking all the requests

of length 1, 2, . . . , k plus
⌊

rp
k+1

⌋
requests of length k + 1, giving

γ(C, p) ≥ kp +

⌊
rp

k + 1

⌋
(2.7)
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Let us show that this is the best solution. Wlog, take the requests clockwise. Suppose
that we have any other solution with γ requests, γi being of length i. Then each request
of length i loads exactly i arcs, and we have :

Cp ≥
∞∑
i=1

iγi, but
∞∑
i=1

iγi ≥
k∑

i=1

iγi + (k + 1)

(
γ −

k∑
i=1

γi

)
=

=
k∑

i=1

ip + (k + 1)(γ − kp) +
k∑

i=1

(k + 1− i)(p− γi)︸ ︷︷ ︸
≥0

≥ k(k + 1)

2
p + (k + 1)(γ − kp)

Since Cp = k(k+1)
2

p + rp, we obtain rp ≥ (k + 1)(γ − kp), and therefore

γ ≤ kp +
rp

k + 1
(2.8)

Combining (2.7) and (2.8), and taking into account that γ(C, p) ∈ IN, we obtain the
result. 2

We shall give an alternative proof of Proposition 2.2.1.

Proof: [Alternative proof] We will suppose in the whole proof that p is large enough,
to be able to use the longest requests. First of all, we will use that the result is true if
C is of the form C = 1 + 2 + . . . + k = k(k+1)

2
. In this case, if we use all the requests of

shortest length (from 1 till k) we have all the arcs with maximum load, and we cannot
do it better because if we want to add 1 longer request we would have to remove at least
2 requests. So the property is easily true for these values of C.

C =
k(k + 1)

2
⇒ k · p requests ⇒ γ

(
C,

k(k + 1)

2

)
= k · p

C =
(k + 1)(k + 2)

2
⇒ (k + 1) · p requests ⇒ γ

(
C,

(k + 1)(k + 2)

2

)
= (k + 1) · p

Now let’s see what happens for intermediate values of C. So let C = k(k+1)
2

+ r, with
r ≤ k + 1.
Turning around, we have a solution, using all the requests of length ≤ k and as many
requests of length (k+1) as we can, until covering the load, with

γ̃ = kp +

⌊
rp

k + 1

⌋
requests

To prove that this solution is the best, consider any other solution with γ requests. In
this new solution, we will have :

requests of length 1 ⇒ at most p
requests of length 2 ⇒ at most p
requests of length 3 ⇒ at most p

...
requests of length k ⇒ at most p

requests of length k+1 ⇒ at least (γ − kp)
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Let´s add up all the lengths of all the requests. Note that the minimum total length will
be achieved by taking as many requests as we can of lengths from 1 till k, i.e. p. So we
have : ∑

length of all requests ≥ p(1 + 2 + . . . + k) + (γ −Kp)(k + 1)

Now suppose that the new solution γ is better than our solution γ̃, for example γ = γ̃+1,
therefore ∑

length of all requests ≥ N
k(k + 1)

2
+

(⌊
rp

k + 1

⌋
+ 1

)
(k + 1)

If we divide this value by p, we will obtain the average load of the arcs :

average load ≥ k(k + 1)

2
+

(⌊
rp

k + 1

⌋
+ 1

)
(k + 1)

p

We can write
⌊

rp
k+1

⌋
= rp−ε

k+1
, with ε < k + 1, and taking into account that C = k(k+1)

2
+ r

and that k+1−ε
p

> 0 we conclude that

average load ≥ k(k + 1)

2
+ r︸ ︷︷ ︸

C

+
k + 1− ε

p︸ ︷︷ ︸
>0

> C

that is a contradiction because we cannot have a load strictly greater than the grooming
factor, and we conclude that there cannot exist any valid solution better than γ̃, so we
have finished.

2

2.2.2 ρ(C)

We will begin by defining a parameter, ρmin(C), that is strongly related to γ(C, p),
but that we will see that is helpful in some cases (see Section 2.7).

Definition 2.2.2 Given a subgraph Bω of I, we define ρ(Bω) = |V (Bω)|
|E(Bω)| . We can define

the minimum ratio depending on grooming factor C.

ρmin(C) = min{ρ(Bω)|L(Bω, e) ≤ C ∀e ∈ E(Bω)}

Lemma 2.2.1
1

ρmin(C)
= max

p

(
γ(C, p)

p

)
(2.9)

Proof: By definition, maxp

(
γ(C,p)

p

)
= maxp

(
|E|
p

)
⇒ 1

ρmin(C)
= maxp

(
|E|
p

)
= maxp

(
γ(C,p)

p

)
2

Proposition 2.2.2 If C = k(k+1)
2

, ρmin(C) is achieved by the complete graph K2k+1 and

by the complete multipartite graph K2x(k+1) and then ρmin(k(k+1)
2

) = 2k+1
2k(2k+1)

2

= 1
k
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Proof: If C = k(k+1)
2

then, applying Theorem 2.2.1 we deduce that γ(k(k+1)
2

, p) = k · p.

Now, using (2.9) we have that 1

ρmin(
k(k+1)

2
)

= maxp

(
γ(

k(k+1)
2

,p)

p

)
= k.

Using Proposition 2.2.1 it is easy to deduce that the complete graph K2k+1 and the
complete multipartite graph K2x(k+1) achieve the ρmin(C), because both of them use the
requests of shortest length. 2

We can generalize the previous result to any value of C, as we will see in the next
proposition.

Proposition 2.2.3 Writing C in the form C = k(k+1)
2

+ r, with r ≤ k + 1, then

ρmin(C) =
k + 1

k(k + 1) + r
(2.10)

Proof: From Theorem 2.2.1 we know that γ(C,p)
p

= k + 1
p

⌊
rp

k+1

⌋
, therefore

max
p

(
γ(C, p)

p

)
= k +

r

k + 1
=

1

ρmin(C)
⇒ ρmin(C) =

k + 1

k(k + 1) + r

2

2.2.3 General Lower Bounds

Theorem 2.2.1 (General Lower Bound) The number of ADMs required in a bidirec-
tional ring with N nodes and grooming factor C is lower bounded by the expression

A(C, N) ≥
⌈

N(N − 1)

2

k + 1

k(k + 1) + r

⌉
(2.11)

Where we have written C = 1 + 2 + . . . + (k − 1) + k + r = k(k+1)
2

+ r, with r < k + 1.

Proof: As we have seen in Proposition 2.2.1, γ(C, p) = kp +
⌊

rp
k+1

⌋
, and using this in

(2.6) we can write :

N(N − 1)

2
≤

N∑
p=2

apγ(C, p) =
N∑

p=2

ap

(
kp +

⌊
rp

k + 1

⌋)
= {using (2.4)} =

= k · A(C, N) +
N∑

p=2

ap

⌊
rp

k + 1

⌋
⇒

⇒ N(N − 1)

2
− k · A(C, N) ≤

N∑
p=2

ap

⌊
rp

k + 1

⌋
≤

N∑
p=2

ap
rp

k + 1
=

r

k + 1
A(C, N) ⇒

⇒ A(C, N) · (k +
r

k + 1
) ≥ N(N − 1)

2
⇒
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⇒ A(C, N) ≥ N(N − 1)

2

1

k + r
k+1

=
N(N − 1)

2

k + 1

k(k + 1) + r
,

as claimed. 2

Examples

• C = 1 ⇒ k = 1, r = 0 ⇒ A(1, N) ≥ N(N−1)
2

2
2

= N(N−1)
2

• C = 2 = 1 + 1 ⇒ k = 1, r = 1 ⇒ A(2, N) ≥ N(N−1)
2

2
2+1

= N(N−1)
3

• C = 3 = 1 + 2 ⇒ k = 2, r = 0 ⇒ A(3, N) ≥ N(N−1)
2

3
2·3 = N(N−1)

4

We will obtain these values later looking directly at the equations, and trying to improve
them. We will also see that sometimes it is possible to attain these lower bounds for
specific values of C and N, and sometimes it is not.

In terms of the parameter ρ(C), we have the next result that also determines us a
lower bound of our problem :

Proposition 2.2.4 Any grooming of R requests with grooming factor C needs at least
R · ρmin(C) ADMs and then A(C, N) ≥ N(N−1)

2
ρmin(C).

Proof: We have

R =
W∑

ω=1

|E(Bω)| ≤ 1

ρmin(C)

W∑
ω=1

|V (Bω)|

Then, A(C, N) =
∑W

ω=1 |V (Bω)| ≥ R · ρmin(C) = N(N−1)
2

ρmin(C) 2

Since ρmin(C) = k+1
k(k+1)+r

, note that we have given here in Proposition 2.2.4 an alternative

(and easier) proof of Theorem 2.2.1.

One can thing in trying to improve a bit the previous lower bound, in the following
way :
First, remember that

⌊
rp

k+1

⌋
= rp−εp

k+1
(with ε < k + 1), were we have remarked that ε

depends on p (in fact εp = rp (mod k + 1)). Then, doing the same that we have done in
the proof, we obtain :

A(C, N) ≥ k + 1

k(k + 1) + r

N(N − 1)

2
+

1

k + 1

N∑
p=2

εpap︸ ︷︷ ︸
>0 ?

 (2.12)

At first sight (2.12) seems to be an improved lower bound, but the problem is that we
cannot ensure that the second term of the equation is strictly greater than zero. In fact,
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we can only ensure that
∑N

p=2 εpap ≥ 0, so we cannot say anything better than (2.11) at
this moment.
For instance, it is possible that, for a given solution, ∃j such that ε(j) = 0 (i.e., such that
rj ≡ 0 (mod k + 1)), that ai = 0 ∀i 6= j, and that aj = N2−1

8C
. In this situation we would

have that
∑N

p=2 εpap = 0.

2.2.3.1 Comparison of existing lower bounds

In [14] the Ring Grooming Problem in the bidirectional case is studied, without res-
trictions on the routing. In this article the authors state a new lower bound (regardless
of the routing) and give a general constant factor 12

√
2-approximation algorithm for a

general set of requests.
First of all, we shall remember the previous lower bound which had been stated before
[14]. Consider a general set of requests, and let djk be the amount of traffic demands from

node j to node k. Note by Ã(C, N) the optimal number of ADMs used in the bidirectional
ring on N nodes and grooming factor C, without restrictions on the routing. The very
first lower bound is obtained directly from the LP formulation of the problem. We give
to this lower bound the same name than it is given in [14].

Theorem 2.2.2 (Add/drop lower bound, [14])

Ã(C, N) ≥
N∑

j=1

⌈
N∑

k=1

djk

2C

⌉

In [30] the authors give another lower bound which is sometimes better that the add/drop
lower bound. Some additional notation is needed, following the same useful notation. Let
qjk and rjk be the quotient and remainder when djk is divided by C, that is :

djk = Cqjk + rjk, with 0 ≤ rjk < C

Order the djk with j < k in such a way that their corresponding remainders rjk decrease
monotonically. We write Dp, Qp and Rp, respectively, for djk, qjk and rjk, where p runs

from 1 to N(N−1)
2

and the labeling is chosen so that Rp ≥ Rp′ , whenever p < p′. Now we
are able to state the next lower bound.

Theorem 2.2.3 ([30]) Suppose we are given an instance of the ring grooming problem.
With the notation above, let P be the smallest integer such thatN(N−1)

2∑
p=1

CQp

+

(
P∑

p=1

Rp + C

2

)
≥

N(N−1)
2∑

p=1

Dp.

Then, regardless of the routing, the minimum number of ADMs must satisfy

Ã(C, N) ≥ P +

N(N−1)
2∑

p=1

Qp
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In [14] another lower bound is stated, when djk 6= 0 for all j 6= k. In this case we have
that djk/dj′k′ ≤ K for all j 6= k, j′ 6= k′. This kind of traffic is called K-quasi-uniform.
We set d := maxj,k{djk}, and we have that d > 0. Uniform traffic corresponds to the case
K = 1, and then we can set d = djk, for any j 6= k, because all of them are equal.

Theorem 2.2.4 ([14]) If traffic instance of ring grooming is K-quasi-uniform then, re-
gardless of routing,

Ã(C, N) ≥ (N2 − 1)

4

√
d

2CK

In [14], at the end of Section 6, the authors talk about an improvement of this lower
bound in the all-to-all unitary case, that is, d = 1, which is the case that we have studied.
We would like to thank the authors for sending us by e-mail the details of the ”factor-of-
2 improvement” proof, which is only sketched in their article. We write this proof here
in detail, but we recall that the arguments have been completely given by T.Chow and
P.Lin.

Theorem 2.2.5 (T.Chow and P.Lin, by personal communication) If a traffic ins-
tance of ring grooming is uniform and unitary, then, regardless of routing,

Ã(C, N) ≥ 1

2
√

C

√
N2(N − 1)2

2
−N(N − 1)

Proof: The main idea of the proof is to lower bound the ”wasted capacity” of the ADMs
that are used in any solution. Note by A the number of ADMs used in this considered
generic solution. Let’s go now through the details.
If an ADM is supporting (in a generic solution) the termination of t traffic connec-
tions, that means that there must be t other ADMs on the same ring (i.e., on the same
wavelength). Of those t connections, at most 2 of them are direct (to the ADMs be-
side it), and the other connections must pass through at least one other ADM. This is
the idea of ”wasted capacity”. In fact, we can lower bound this waste : the next two
shortest connections must pass through at least 1 ADM, the next 2 must pass through
at least 2 ADMs, . . . . Summing all this, we obtain (wlog, suppose that t is even) :
2(1 + 2 + . . . + t

2
− 1) = 2( t

2
− 1)( t

2
)/2 = t2

4
− t

2
, which is the total wasted capacity

contributed by this one ADM. The total waste is obtained just by summing this over
all ADMs and divided by two (because each connection is counted twice, once at each
termination). Thus, the total waste is given by

1

2

A∑
i=1

(
t2i
4
− ti

2

)
The choice of ti for each ADM will determine the total waste, but there is a constraint
on the ti’s based on the total number of terminations :

∑A
i=1 ti = N(N − 1). We want

to minimize the total waste under this constraint, and it is known that the best way to
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minimize the sum of the squares is to divide the sum into each component. This yields
ti := N(N−1)

A
. Consequently, the minimum total waste is

1

2

A∑
i=1


(

N(N−1)
A

)2

4
−

N(N−1)
A

2

 =
N2(N − 1)2

8A
− N(N − 1)

4A

Since the capacity of an ADM is C (C through connections, but up to 2C terminations),
the total capacity of all ADMs is C ·A, which must necessarily be greater than the total
waste. Therefore, we have

C · A ≥ N2(N − 1)2

8A
− N(N − 1)

4A
=⇒ A ≥ 1

2
√

C

√
N2(N − 1)2

2
−N(N − 1) ,

as claimed. 2

Observe that, asymptotically :

1

2
√

C

√
N2(N − 1)2

2
−N(N − 1) ≈ N2

2

1√
2C

Therefore, as it was said in [27], this indeed means a factor-of-2 improvement with respect
to the general lower bound stated in Theorem 2.2.4, which yields in this case N2−1

4
1√
2C

.

Note by LB1 the lower bound of Theorem 2.2.1 and by LB2 the lower bound of
Theorem 2.2.5. In order to simplify the computations, we compare them when C = k(k+1)

2
:

LB1

LB2

=
N(N − 1)

2k

√
2k(k + 1)√

N2(N−1)2

2
−N(N − 1)

>
N(N − 1)

2k

√
2k2√

N2(N−1)2

2
−N(N − 1)

=

=
N(N − 1)√

2

1√
N2(N−1)2

2
−N(N − 1)

>
N(N − 1)√

2

1√
N2(N−1)2

2

= 1 ⇒ LB1 > LB2

Thus, we conclude that, in the case of shortest path symmetric routing, LB1 > LB2.
Hence, we have improved the lower bound.
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2.3 Upper Bounds and Approximations

The main result that we will use to state our upper bound is this Erdös’ theorem in
the context of combinatorial designs, which is an upper bound for the covering number
c(v, l, t), this is, the minimum number of blocks in any t− (v, l, λ) covering.

Theorem 2.3.1 (P. Erdös and J. Spencer, [26])

c(v, l, t) ≤

[(
v
t

)(
l
t

) ] [1 + log

(
l

t

)]

Conjecture 2.3.1 (Upper Bound) If N is odd and C = k(k+1)
2

+ r, with r ≤ k, the
number of ADMs required in a bidirectional ring with symmetric shortest path routing is
upper bounded by the expression

A(C, N) ≤ N(N − 1)

2

1 + log [k(2k + 1)]

k

Thus, we have an approximation with factor(
1 +

1√
C

)
(1 + log(4C))

Proof: Let N = 2q + 1 and write C in the usual form C = k(k+1)
2

+ r. It is not difficult
to see that a complete subgraph K2k+1 with all the consecutive vertices in the subgraph
verifying dist(i, i+1) ≤ q satisfies the load constraint. Thus, a possible upper bound can
be found by decomposing the edges of a K2q+1 into K2k+1’s. In this situation the result
of Theorem 2.3.1 is extremely useful. In our problem we have that v = N = 2q + 1,
l = 2k + 1 and t = 2. In this case, the upper bound says that

c(N, 2k + 1, 2) ≤ N(N − 1)

(2k + 1)2k

[
1 + log

(
(2k + 1)(2k)

2

)]
Hence, we can upper bound the number of ADM’s just by counting the number of vertices
of each graph and the number of graphs :

A(C, N) ≤ (2k+1)
N(N − 1)

(2k + 1)2k

[
1 + log

(
(2k + 1)(2k)

2

)]
=

N(N − 1)

2

1 + log [k(2k + 1)]

k

Now we can compare this value with the lower bound of Theorem 2.2.1, obtaining in this
value the claimed approximation ratio :

Upper Bound

Lower Bound
=

N(N−1)
2

1+log[k(2k+1)]
k⌈

N(N−1)
2

k+1
k(k+1)+r

⌉ ≤
N(N−1)

2
1+log[k(2k+1)]

k
N(N−1)

2
k+1

k(k+1)+r

=

=
(k(k + 1) + r) (1 + log [k(2k + 1)])

k(k + 1)
=

(
1 +

r

k(k + 1)

)
(1 + log [k(2k + 1)]) ≤
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≤
(

1 +
1

k

)
(1 + log(4C)) ≤

(
1 +

1√
C

)
(1 + log(4C)) ,

recalling that we have used in the last step that k ≥
√

C, provided that k ≥ 4.
In the case when N is even, we have to take care about the longest requests, but a similar
result can be obtained with slight changes.
The only thing that remains to be checked is that there exists a covering such that the
load constraint is satisfied. It seems to be a difficult but solvable problem.

2

2.4 Case C=1

For C = 1, γ(1, p) = p if p ≥ 2.

Using a result of the article written by J-C. Bermond, L. Chacon, D. Coudert and F.
Tillerot [6] we get the optimal solution for C = 1 where the number of ADMS is N(N−1)

2
.

Let’s recall this results and some previous necessary definitions.
Given any pair of requests of a subgraph Ik of the covering of the logical graph I, we
require that there should exist edge disjoint routing in G i.e. the paths associated in G
to any pair of requests in the same subgraph must be edge disjoint. We call this property
the disjoint routing constraint (DRC). Such a covering will be called DRC-covering of
Kn.
Denote by ρ(n) the minimum number of cycles needed in a DRC-covering of Kn.

Theorem 2.4.1 ([6]) When n = 2p + 1, ρ(n) = p(p+1)
2

. Furthermore, the DRC-covering

of K2p+1 consists of p C3’s and p(p−1)
2

C4’s.

Theorem 2.4.2 ([6]) When n = 2p, p ≥ 3, ρ(n) =
⌈

p2+1
2

⌉
. Furthermore, when n = 4q,

the DRC-covering of K4q consists of 4 C3’s and 2q2 − 3 C4’s, and when n = 4q + 2 the
DRC-covering of K4q+2 consists of 2 C3’s and 2q2 + 2q − 1 C4’s.

For C = 1 the best we can do is partition the set of requests into cycles, and this is
what these covering result state. More precisely, the previous results prove that a complete
graph can always be decomposed into C3’s and C4’s. For instance, in Figure 2.9 we can
see a covering of K10.

Indeed one can check that, in any of these coverings, all the C3’s and C4’s satisfy
the distance conditions. For instance, let’s check the case N = 2q. In [6] the proof is
done by induction adding two new vertices, and the vertices are labeled as A, 0, 1, . . . , p−
1, B, p, . . . , 2p − 1. The C4’s are of the form (A, i, B, p + i, A) and (A, p + i, B, i, A),
0 ≤ i ≤ p− 1, and the C3’s are (A, 0, B, A) and (B, p, A, B). Thus, we have no problem
to embed these subgraphs.

Nevertheless, we can deduce the same result applying the procedure described in
Section 2.7.1. On can check that this construction yields a partition into K3 = C3’s and
C4’s, that works for all the odd values of N . Furthermore, we have already proved that
the distance condition in satisfied with this construction.



2.5. Case C=2 55

Fig. 2.9 – Cycles involved in the covering of K10

2.5 Case C=2

2.5.1 Tighter Lower Bounds

For C = 2 we have that γ(2, 2) = 1 ; γ(2, 3) = 3 ; γ(2, 4) = 5 and γ(2, p) =
⌊

3p
2

⌋
.

Note that such a solution is obtained if we call the vertices Xi, 1 ≤ i ≤ p, by taking
the requests Xi, Xi+1 and Xi, Xi+2 (indices modulo p) and supposing that their distance
is at most q = N−1

2
.

Equation (2.6) becomes

N∑
p=2

apγ(2, p) = a2 + 3a3 + 5a4 + 7a5 + 9a6 + 10a7 + 12a8 + . . . ≥ N(N − 1)

2

Therefore :

A =
N∑

p=2

pap =
2

3

N∑
p=2

apγ(2, p) +
4

3
a2 + a3 +

2

3
a4 +

1

3
(a5 + a7 + a9 + . . .)

To attain the value N(N−1)
3

one would need to use decomposition with G6, G8, G10, , . . .
(by Gi we note a graph with i vertices) but that is impossible since by Equation (2.5) we
will have N2−1

16
subgraphs each with at least 6 vertices and therefore A ≥ 6

16
(N2− 1) and

6
16

> 1
3
.

We will see in a few lines that another tighter lower bound is
⌈

11N(N−1)
32

⌉
. Note that

11N(N−1)
32

> N(N−1)
3

, so that means an actual improvement of the lower bound. The idea
to look for this lower bound is the following intuitive informal but intuitive argument :
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Think about an optimal solution, and guess what would be the optimum number of
vertices of the subgraphs. Suppose also that most of the subgraphs have the same num-
ber of vertices, as it occurs frequently in known decompositions. Recall that W ≥ N2−1

16
,

E = N(N−1)
2

and that, if p ≥ 5, γ(2, p) =
⌊

3p
2

⌋
. In order to find the optimum p, we solve

the equation that equals the total number of requests :

N2 − 1

16
· 3p

2
=

N(N − 1)

2

and we obtain that

p =
16

3

N(N − 1)

N2 − 1

N→∞−→ 16

3
= 5, 3̂

Thus, the optimal graphs will have either 5 or 6 vertices. If we had a solution like this,
we would have that {

a5 + a6 ≥ N2−1
16

7a5 + 9a6 = N(N−1)
2

Roughly

{
8a5 + 8a6 ≈ N2

2

7a5 + 9a6 ≈ N2

2

, and we obtain that a5 ≈ a6 ≈ N2

32
, and A(2, N) = 5a5 +

6a6 ≈ 11
32

N2.

Now we give a formal proof of the previously guessed lower bound.

Proposition 2.5.1 (Tighter Lower Bound for C=2) The number of ADMs requi-
red in a bidirectional ring with N nodes and grooming factor 2 is lower bounded by the
expression

A(2, N) ≥
⌈

11N(N − 1)

32

⌉
(2.13)

Proof: We want to find a lower bound for the number of ADMs, that we call A. We
have :

A =
N∑

p=2

pap =
2

3

N∑
p=2

apγ(2, p) +
4

3
a2 + a3 +

2

3
a4 +

1

3
(a5 + a7 + a9 + . . .) ≥

(
using that

2

3

N∑
p=2

apγ(2, p) ≥ N(N − 1)

2

)
≥ N(N − 1)

3
+

4

3
a2+a3+

2

3
a4+

1

3
(a5+a7+a9+. . .)

As we have seen before, we cannot use only graphs with 6, 8, 10... vertices, and so N(N−1)
3

is unreachable. Because of the same contradiction, we cannot use graphs with more than
6 vertices, i.e. 7, 9... Now, to increase the minimum as possible the lower bound, one can
think that it would be a good idea to use some graphs with 5 vertices, because a5 is the
one with the lower coefficient (1

3
) among a2, a3, a4 and a5. Anyhow, we can consider all

these terms to handle the most general case.
So now we can write :
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A ≥ N(N − 1)

3
+

a5

3
+

2

3
a4 + a3 +

4

3
a2 (2.14)

A ≥
(

N2 − 1

16
− a5 − a4 − a3 − a2

)
· 6 + 5a5 + 4a4 + 3a3 + 2a2 (2.15)

Now, since N ≥ 1 ⇒ N2 − 1 ≥ N(N − 1) and therefore we can transform (2.15) into

A ≥
(

N(N − 1)

16
− a5 − a4 − a3 − a2

)
· 6 + 5a5 + 4a4 + 3a3 + 2a2 =

=
6

16
N(N − 1)− a5 − 2a4 − 3a3 − 4a2 (2.16)

From (2.14) we get −a5 − 2a4 − 3a3 − 2a2 ≥ N(N − 1)− 3A, and using this in (2.16)
we obtain

A ≥ 6

16
N(N − 1) + N(N − 1)− 3A ⇒ 4A ≥ (

6

16
+ 1)N(N − 1) ⇒

⇒ A ≥ 1

4

6 + 16

16
N(N − 1) =

11

32
N(N − 1),

as we wanted to see. The rounding to the nearest greater integer is because of the inte-
grality of the number of ADMs. 2

We can see in Table 2.1 the number of ADMs given by the Simplex and the Lower
Bound for different values of N.

A graph of the ratio versus log(N) is drawn in Figure 2.10. We can observe in this

graph that, at least ”empirically”, the ratio ADM by Simplex
Lower Bound

N→∞−→ 1, so we may think that
we are in front of the right lower bound for C=2.

It is important to remark that the value of the number of ADMs that the Simplex gives
may be impossible to achieve by an explicit construction. The reason of this phenomenon
is that not all the constraints of the problem are taken into account in the Simplex
formulation (load constraint, length of the requests, degree of the vertices, . . .). Thus,
this values are only useful to get an idea if our lower bounds are very far from the real
ones, but they do not give at all a proof about the tightness of the bounds.

2.5.2 Upper bounds, constructions and approximations

The idea that we remark from the previous section is that the best we can do is to
use graphs with 5 or 6 vertices. Let’s try to make it more explicit by getting a bit into
details. The fact that we would like to remark is that if we had an optimal solution, then
we could have another one with only (or almost) graphs on 5 and 6 vertices, and with
lower or equal drop cost.
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N ADMs by Simplex LowerBound :
⌈

11
32

N(N − 1)
⌉

Ratio ADM Simplex
Lower Bound

6 12 11 1, 090909091
7 15 15 1
8 20 20 1
10 33 31 1, 064516129
15 74 73 1, 01369863
20 133 131 1, 015267176
25 209 207 1, 009661836
30 303 300 1, 01
40 540 537 1, 005586592
50 848 843 1, 005931198
80 2180 2173 1, 003221353
100 3413 3404 1, 002643948
150 7698 7683 1, 001952362
200 13700 13681 1, 001388787
250 21425 21399 1, 00121501
300 30865 30835 1, 00097292
400 54900 54853 1, 000856836
500 85819 85766 1, 00061796
1000 343500 343407 1, 000270816
2000 1374500 1374313 1, 000136068
5000 8592500 8592032 1, 000054469
10000 34372500 34371563 1, 000027261
15000 77340000 77338594 1, 00001818
20000 137495000 137493125 1, 000013637
25000 214837500 214835157 1, 000010906

Tab. 2.1 – Different values of the simulations compared with the Lower Bound for C=2
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Fig. 2.10 – ADM by Simplex
Lower Bound

versus log(N) for C = 2 and N ≥ 15

Remark 2.5.1 If there is an optimal solution, then there is another optimal one with

a7 = a8 = a9 = . . . = 0

Proof: Let’s prove that we can get rid of of the graphs on 7 vertices. In Table 2.2 we see
that we can use graphs having the same drop cost (number of vertices) but with more
possible requests, and without graphs on 7 vertices. The same argument can be extended
to any graph on more than 7 vertices.

Number of vertices Number of requests with a7 Number of requests without a7

9 a7 + a2 → 11 a6 + a3 → 12
10 a7 + a3 → 13 a6 + a4 → 14
11 a7 + a4 → 15 a6 + a5 → 16
12 a7 + a5 → 17 2a6 → 18

Tab. 2.2 – If we don’t use graphs on 7 vertices, we can groom more requests without
increasing the drop cost

2

Remark 2.5.2 If there is an optimal solution, then there is another optimal one with

a2 + a3 + a4 ≤ 1
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V ertices # of req. with 2 small graphs # of req. with 0 or 1 small graph
8 a4 + a4 → 10 a6 + a2 → 11
7 a4 + a3 → 8 a6 + a4 → 9
6 a4 + a2 → 6 a6 → 9
6 a3 + a3 → 6 a6 → 9
5 a3 + a2 → 4 a5 → 7
4 a2 + a2 → 2 a4 → 5

Tab. 2.3 – With one ”small” graph is always enough

Proof: We can check in Table 2.3 that if we have 2 graphs on less than 5 vertices, then
we can use only one ”small” graph increasing the number of possible requests with the
same drop cost.

2

Combining remarks 2.5.1 and 2.5.2 we can conclude that we can restrict us to solutions
with graphs only on 5 and 6 vertices.
Hence, the graphs that we must use in the decompositions can be seen in Figures 2.11,
2.12 and 2.13.

Fig. 2.11 – Graph with 6 vertices and 9 requests

2.5.2.1 12
11

= 1, 0909-approximation

Proposition 2.5.2 Let N be odd, N ≥ 5 and C = 2. Then we can find an approximation
for the number of ADMs, with approximation ratio 12

11
.



2.5. Case C=2 61

Fig. 2.12 – Graph with 5 vertices and 7 requests

Fig. 2.13 – Another graph with 5 vertices and 7 requests

Proof: If N = 5 we use the following construction : let the vertex set be {0, 1, 2, 3, 4}.
We use the subgraph on vertices {1, 3, 4} with request set {13, 34, 41}, and the subgraph
on vertices {0, 1, 2, 3, 4} with request set {01, 12, 02, 23, 24, 30, 40}. In this way, we use 8
ADMs.
Now suppose that we have a valid construction for N , and we want to find a construction
for N + 2. In the whole proof, we will use the graph in Figure 2.14 (not optimal).

Let N = 2p + 1, with p even. Let the vertex set be {a0, a1, . . . , ap−1, b0, b1, . . . , bp−1,∞}.
Let A and B the pair of new vertices that we want to join with the previous ones. Consi-
der the graphs on vertices {A, ai, ai p

2
, B, bi, bi+ p

2
} and request set

{Aai, Aai+ p
2
, aiB, ai+ p

2
B, Bbi, Bbi+ p

2
, biA, bi+ p

2
A}, for i = 0, . . . , p

2
− 1. I.e., in each sub-

graph we join the two new vertices with 4 old vertices. Then, we use the graph on
vertices {A,∞, B} to cover the requests {A∞,∞B, BA}.
Thus, each time we add two new vertices we use p

2
· 6 + 3 ADMs.
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Let N = 2p+1, with p odd. Let the vertex set be {a0, a1, . . . , ap−1, b0, b1, . . . , bp−1,∞}
as before. Let A and B the pair of new vertices that we want to join with the previous
ones. Consider the graphs on vertices {A, ai, ai+ p−1

2
, B, bi, bi+ p−1

2
} and request set

{Aai, Aai+ p−1
2

, aiB, ai+ p−1
2

B, Bbi, Bbi+ p−1
2

, biA, bi+ p−1
2

A}, for i = 0, . . . , p−1
2
− 1. I.e., in

each subgraph we join the two new vertices with 4 old vertices. Then, we use the graph
on vertices {A, ap−1, B,∞, bp−1} to cover the requests
{Aap−1, ap−1B, AB, B∞, Bbp−1,∞A, bp−1A}.
Thus, each time we add two new vertices we use p−1

2
· 6 + 5 ADMs.

Observe that we have no requests of length greater than p, and thus we have no pro-
blems with the load constraint, because of the sufficient condition stated in Proposition
2.1.1.

To compute the number of ADMs of this construction, we have just to write the
recurrence. Let’s note by Zp the number of ADMs when N = 2p + 1. From the previous
explanation, it is straightforward to realize that if p ≡ 0 (mod 2), then Zp = Zp−2+6p−4.
Thus, if p ≡ 0 (mod 2), we have to solve :{

Zp = Zp−2 + 6p− 4
Z2 = 8

Zp = Zp−2 + 6p− 4 = Zp−4 + 6(p− 2)− 4 + 6p− 4 = . . . =

p∑
i=4,i even

(6i− 4) + 8 =

=

p
2∑

i=2

(12i− 4) + 8 = . . . =
1

8
(3N2 − 2N − 1)

If p ≡ 1 (mod 2) (i.e. N ≡ 3 (mod 4)), we can write :

Zp = Zp−1 +
p− 1

2
· 6 + 3 = . . . =

1

8
(3N2 − 2N + 3)

Noting by A1(2, N) the number of ADMs of this construction, we can sum up :

• If N = 2p + 1, N ≡ 1 (mod 4), and N ≥ 5, then :

A1(2, N) =
1

8
(3N2 − 2N − 1)

• If N = 2p + 1, N ≡ 3 (mod 4), and N ≥ 7, then :

A1(2, N) =
1

8
(3N2 − 2N + 3)

In general, we can write :

A1(2, N) =
1

8
(3N2 − 2N − 1 + ε), where ε =

{
0 if N ≡ 1 (mod 4)
4 if N ≡ 3 (mod 4)



2.5. Case C=2 63

So we have that

A1(2, N)

Lower bound
=

1
8
(3N2 − 2N − 1 + ε)

11
32

N(N − 1)

N→∞−→ 3

8

32

11
=

12

11

We have found a 12
11

-approximation, as we wanted to see.
2

Fig. 2.14 – Graph with 6 vertices and 8 requests, used to match 2 new vertices with all
the others (inside the circles)

2.5.2.2 1, 1103-approximation

Idea : Partitioning the set of the nodes into 4 sets, and then use ”optimal” graphs to
match each set with the others, making in this way a transversal construction. Then, to
cover the requests of each set we have plenty of possibilities, and one of them is using the
optimal values for the Path (see [4]) ensuring that we have no problems with the length
and the load constraint. Obviously, the fact of using the values from the Path implies a
lack of optimality.

In this construction we have N = 10p nodes divided into 4 sets, 2 of them with 3p
elements, and the other ones with 2p elements, as we can see in Figure 2.15. The 10 sets
of p elements are named X ′, Y ′, Z ′, α1, α2, β1, β2, X, Y, Z.
The goal is matching all the nodes among them, respecting the load constraint and using
optimal graphs whenever possible. First of all, we match each element of each set with
all the elements of all the other sets, using the optimal families of graphs of Figures 2.16,
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Fig. 2.15 – Configuration in the construction of Section 2.5.2.2

2.17, 2.18 and 2.19. One can check that using all these graphs we cover all the requests
among any 2 sets. Since in each family of graphs i, j = 1, . . . , p, we have 4p2 graphs, and
thus 28p2 edges and 20p2 ADMs.

Fig. 2.16 – Graph used to match the vertices of the construction

Now what we have to do is matching among them the vertices of each of the 4 subsets.
Suppose in this construction that p is even. In Figure 2.20 we can see the graphs used
to match between them the couples {X, X ′}, {X, Y ′}, {Y,X ′}, {Y, Y ′}, {X,Z}, {X, Z ′},
{Y, Z}, {Y, Z ′}, {Z, Y ′}, {Z,Z ′}, {X ′, Y ′} and {X ′, Z ′}. Adding up, we use in this way
9p2 ADMs.

Observe that we have no requests of length greater than 5p = N
2
, and thus we have
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Fig. 2.17 – Graph used to match the vertices of the construction

Fig. 2.18 – Graph used to match the vertices of the construction

no problems with the load constraint, again because of the sufficient condition stated in
Proposition 2.1.1.

For the remaining requests, one possible idea is use the values of the grooming on the
Path (A(PN , 2)), which are clearly upper bounds of the values on the Ring. The following
Theorem of J-C.Bermond, L.Braud and D.Coudert [4] will make our work easier.

Theorem 2.5.1 ([4]) When N is even, A(PN , 2) =
⌈

N(N−1)
3

+
⌈

N2

8

⌉
+ N

6

⌉
= 11N2−4N

24
+

εN , where εN = 1
2

when N ≡ 2 or 6 (mod 12), εN = 1
3

when N ≡ 4 (mod 12), εN = 5
6

when N ≡ 10 (mod 12), and εN = 0 when N ≡ 4 or 8 (mod 6). Furthermore, the

construction contains
⌈

N2

8

⌉
subgraphs.

Let’s use these values of the path to cover the requests between the remaining 5 couples
(realize that in this case we are also matching all the elements of each member of the
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Fig. 2.19 – Graph used to match the vertices of the construction

couple among them, not only one member of the couple with the other) : {α1, α2},
{β1, β2}, {X, Y }, {Z,X ′} and {Y ′, Z ′}. One can check that all the requests are already
covered.
Note by A2(2, N) the number of ADMs of this construction. Taking into account all the
previous calculations, we can compute :

A2(2, 10p) = 20p2 + 9p2 + 5A(P2p, 2) = 29p2 + 5

(
11(2p)2 − 8p

24
+ ε2p

)
=

= 29p2 +
5

24
(44p2 − 8p) + 5ε2p =

229

6
p2 − p

3
+ 5ε2p

Thus, we can compute the approximation ratio of this construction :

A2(2, 10p)

Lower Bound
=

229
6

p2 − p
3

+ 5ε2p

11
32

(10p)(10p− 1)

p→∞−→ 229

6

32

11

1

100
= 1, 1103

Note that this value is even greater than the approximation ratio that we have obtained
with the generic construction of the previous section for all the odd values of N , but we
will improve this construction in the next sections.

2.5.2.3 1, 0861-approximation

It is an improvement of the previous construction. As before, N = 10p, and the
configuration is like Figure 2.15, but now suppose in addition that p ≡ 0 (mod ()4). As
we have said before, most of the lack of optimality has been given by using the values
of the Path. In order to minimize this effect, let’s reduce the size of the sets where the
optimality is lost. In Figure 2.21 we show how to math the couple {X, Y } using 3

4
p2 ADMs.

Let’s do the same with the other couples {α1, α2}, {β1, β2}, {Z,X ′} and {Y ′, Z ′}. Taking
into account the 5 couples we use 15

4
p2 ADMs.

Now, we only have to match the 10 sets of p elements (instead of 5 sets of 2p elements
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Fig. 2.20 – Graphs used to match some of the vertices of the subsets

in the previous construction). As before, note by A3(2, N) the number of ADMs of this
construction.

A3(2, N) = 20p2 + 9p2 +
15

4
p2 + 10A(Pp, 2) =

=
131

4
p2 + 10

(
11p2 − 4p

24
+ εp

)
=

448p2 − 20p

12
+ 10εp

Hence,

A3(2, 10p)

Lower Bound
=

448p2−20p
12

+ 10εp

11
32

(10p)(10p− 1)

p→∞−→ 448

12

32

11

1

100
= 1, 0861

This time we have improved the first approximation ratio 12
11

= 1, 0909, but on the other
hand we have restricted a lot the value of N .

2.5.2.4 1, 0858-approximation

It is again an improvement of the previous one. Provided that p ≡ 0 (mod 6) and
using the graph of Figure 2.22 and the Path for sets of sizes p

2
and p

3
, we find a ratio

of 1, 0858 (a bit lower than the previous ones). We think that it is not worth to get
into details in this case due to the increasing complexity and the similarity to the other
constructions.

2.5.2.5 Special decomposition for N=14

When N = 14 there exists a kind decomposition of K14 into graphs with 5 vertices.
Let the nodes be numbered from 0 to 13, and remark that we have to cover all the requests
of length 1 until

⌊
N
2

⌋
= 7. We can use the graph of Figure 2.23, and turn it around for

i = 0 . . . 13, covering in this way all the requests of length 1 to 7, because this graph has
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Fig. 2.21 – Matching the couple {X,Y }

Fig. 2.22 – Matching some couples

the nice property that each of its 7 arcs has a different length (and all the lengths over
the cycle add 14, luckily). I.e., for i = 0 . . . 13 we use the vertices

{i, i + 1, i + 3, i + 8, i + 8, i + 10}

and the requests

(i, i + 1), (i, i + 3), (i + 1, i + 3), (i + 3, i + 8), (i + 3, i + 10), (i + 8, i), (i + 10, i)

So we use 14 · 5 = 70 ADMs for N = 14.
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Fig. 2.23 – Graph used to partition the K14

2.6 Case C=3

Although we will study later (in Section 2.7) the case C = k(k+1)
2

, we will improve in
this section the general results related to this value of the maximum load.

For C = 3 we have that γ(3, 2) = 1 ; γ(3, 3) = 3 ; γ(3, 4) = 6 and γ(3, p) = 2p.

Equation (2.6) becomes
∑N

p=2 apγ(3, p) = a2 + 3a3 + 6a4 +
∑N

p=5 2pap.

Therefore 2A =
∑N

p=2 2pap =
∑N

p=2 apγ(3, p)+3a2+3a3+2a4 = N(N−1)
2

+3a2+3a3+2a4.

The lower bound N(N−1)
4

can be attained if we can find a decomposition without
K2, K3, K4, for example with K5 or with a graph on 6 vertices and 12 edges and supposing
that the edges have length at most q.

2.6.1 Considerations about the degree

Let’s do now some considerations about the best degree that we can use in the sub-
graphs.

Lemma 2.6.1 For any C, if we want maximum load in all the arcs of a certain graph,
then the degree of all the vertices must be even.

Proof: At any vertex i, let´s suppose that the arc at its left in the ring has maximum
load (i.e. C), and let k be the number of request that end at this vertex i. Now in the
arc at its right we have load C − k, so if we want maximum load k requests must begin
at this node i, having in this way degree 2k, which is even. 2
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Lemma 2.6.2 For C=3, if we want to attain the lower bound N(N−1)
4

of Theorem 2.2.1,
all the vertices must have degree 4 in all the subgraphs where they appear.

Proof: As we have seen in Lemma 2.6.1 the best we can do is having even degree in all
the vertices. Since C = 3, the degree can be either 2, 4 or 6. As we can see in the Figure
2.25, if one vertex has degree 6, then there are 2 vertices with degree at most 2. Taking
into account these three vertices, since 4+4+4 > 6+2+2, we conclude that it is better
to use degree 4 in all the vertices (whenever is possible, of course).
Now let’s check that in this way we attain the lower bound. Exactly, since in the KN

each node has degree N − 1, each vertex will appear in N−1
4

subgraphs. Therefore, since

there are N vertices, we have N(N−1)
4

ADMs, as we wanted to see. 2

We can see in Table 2.4 the number of ADMs given by the Simplex and the Lower
Bound for C = 3 and different values of N ≡ 1 (mod 4).

A graph of the ratio versus log(N) is drawn in Figure 2.24 for C = 3 and N ≡ 1
(mod 4). We can observe in this graph that the ratio begins to be equal to 1 for small
values of N , and then grows a little, but insignificantly.

Fig. 2.24 – ADM by Simplex
Lower Bound

versus log(N) for C = 3 and N ≡ 1 (mod 4)

2.6.2 Tighter Lower Bounds for N=4t+3

Proposition 2.6.1 (Tighter Lower Bound for C=3 and N=4t+3) The number of
ADMs required in a bidirectional ring with N nodes and grooming factor 3, with N ≡
3 (mod 4) is lower bounded by the expression

A(3, N = 4t + 3) ≥
⌈

N(3N − 1)

12

⌉
(2.17)
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N ADMs by Simplex LowerBound :
⌈

N(N−1)
4

⌉
Ratio ADM Simplex

Lower Bound

5 5 5 1
9 18 18 1
13 39 39 1
17 68 68 1
21 105 105 1
25 150 150 1
29 203 203 1
33 264 264 1
37 333 333 1
41 410 410 1
61 915 915 1
81 1620 1620 1
101 2525 2525 1
161 6440 6440 1
201 10050 10050 1
261 16966 16965 1, 000058945
401 40100 40100 1
601 90153 90150 1, 000033278
1001 250256 250250 1, 000023976
2001 1000586 1000500 1, 000085957
5001 6251858 6251250 1, 000097261
10001 25004947 25002500 1, 00009787
15001 56259196 56253750 1, 000096811
20001 100008335 100005000 1, 000033348
25001 156268748 156256250 1, 000079984

Tab. 2.4 – Different values of the simulations compared with the Lower Bound for C = 3
and N ≡ 1 (mod 4)
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Fig. 2.25 – With C = 3, if one vertex has degree 6 (the red one in the figure), then there
are 2 vertices (at both sides of it) with degree at most 2

Proof: The idea lies in thinking on the optimum degree. As we have seen in Lemma
2.6.2, the best we can do is to use degree 4 whenever is possible. Let δ note degree of any
vertex in the complete graph. We know that δ = N − 1. Since N=4t+3, δ 6≡ 0 (mod 4).
Therefore, we cannot use degree 4 in all the subgraphs, unfortunately. For each vertex,
the best we can do is to use degree 4 in all the subgraphs except in one of them, where
it will appear with degree either 2 or 6. As we have seen in Lemma 2.6.2, there are 2
vertices of degree 2 for each vertex of degree 6. In this way, if one vertex uses degree 6,
it will appear in N−3

4
subgraphs, and if it uses degree 2 (2

3
of the vertices), it will appear

in N−3
4

+ 1 subgraphs. Therefore now we can ensure that

A(3, N = 4t + 3) ≥ N
N − 3

4
+

2

3
N =

N(3N − 1)

12
,

as we wanted to see. 2

Note that N(3N−1)
12

> N(N−1)
4

, that was the lower bound that we have got from Theo-
rem 2.2.1.

We can see in Table 2.5 the number of ADMs given by the Simplex and the Lower
Bound for C = 3 and different values of N ≡ 3 (mod 4).

A graph of the ratio versus log(N) is drawn in Figure 2.26 for C = 3 and N ≡ 3
(mod 4). We can see in this graph that the ratio is smaller than 1, which is an strange
phenomenon. The reason is that the considerations that we have done about the degree
are not taken into account in the Simplex simulations. On the other hand, the ratio tends
to 1 as before.

Final remark : if we find a good decomposition we have also to check that the lengths
of the edges are at most q. It is not necessary the case example decomposition of K9 into
C4 i, i + 1, i + 5, i + 3, i. We will discuss this later (Section 2.7).
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N ADMs by Simplex LowerBound :
⌈

N(3N−1)
12

⌉
Ratio ADM Simplex

Lower Bound

7 11 12 0, 916666667
11 28 30 0, 933333333
15 53 55 0, 963636364
19 86 89 0, 966292135
23 127 131 0, 969465649
27 176 180 0, 977777778
31 233 238 0, 978991597
35 298 304 0, 980263158
39 371 377 0, 984084881
43 452 459 0, 984749455
63 977 987 0, 989868288
83 1702 1716 0, 991841492
103 2627 2644 0, 993570348
163 6602 6628 0, 996077248
203 10252 10286 0, 996694536
263 17228 17271 0, 997510277
403 40502 40569 0, 998348493
603 90753 90852 0, 998910316
1003 251263 251419 0, 999379522
2003 1002551 1002835 0, 999716803
5003 6256768 6257085 0, 999949337
10003 25014977 25014169 1, 000032302
15003 56272017 56271252 1, 000013595
20003 100034986 100028336 1, 000066481
25003 156289584 156285419 1, 00002665

Tab. 2.5 – Different values of the simulations compared with the Lower Bound for C = 3
and N ≡ 3 (mod 4)
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Fig. 2.26 – ADM by Simplex
Lower Bound

versus log(N) for C = 3 and N ≡ 3 (mod 4)

2.6.3 Optimal Decompositions

Proposition 2.6.2 If C = 3, and N ≡ 1, 5 (mod 12),

A(3, N) =
N(N − 1)

4
,

and therefore the General Lower Bound of Theorem 2.2.1 is achieved.

Proof: The idea is to use either the Bose or the Skolem construction to build a decom-
position into triangles (see for instance [39]), and then transform this decomposition to a
valid decomposition in the bidirectional case. Proposition 2.6.2 in Section 2.7 deals with
a more general case, but we shall give the details here.

Consider an integer v for which we know that a Steiner triple system exists. Thus,
v ≡ 1, 3 (mod 6) [39]. Since each triple can be thought as a triangle, we can translate this
to a decomposition of Kv into triangles. Now, label the elements as {∞, 0, 1, . . . , v − 2}.
Split all the vertices i except the ∞ in two vertices iA, iB. We have N = 2n − 1, hence
N ≡ 1, 5 (mod 12). Then, transform the triangles in the following form :

• If the triangle is of the form (∞, i, j), transform it into a K5 on vertices
(∞, iA, jA, iB, jB), as we can see in Figure 2.27.

• If the triangle is of the form (i, j, k), transform it into a K2,2,2 on vertices (iA, jA, kA, iB, jB, kB),
as we can see in Figure 2.28.

We have seen that we use either K5 (from the triangles (∞, i, j)) or K2,2,2 (from the
triangles (i, j, k)). We know that these graphs are optimal, because of Proposition 2.2.2
(or also because all the graphs used have ρ = ρmin(C)). By definition of a Steiner triple,
all the requests that we use in the decomposition are different, so we have only to check
that we have the right number of requests.
Since N = 2v − 1, |E| = N(N−1)

2
= (2v − 1)(v − 1).
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i j

8

iA

jAiB

jB

8

Fig. 2.27 – How to split a triangle with ∞ when C = 3

i j

k

iA jA

kA

iBjB

kB

Fig. 2.28 – How to split a triangle without ∞ when C = 3

On the other hand, the number of Steiner triples (see [39], p.3) is v(v−1)
6

. Of these triples,
we have to distinguish two cases :

• v−1
2

triples contain the ∞, and therefore we have v−1
2

K5 with 10 requests each
graph, obtaining in this way 5(v − 1) requests.

• All the others triples don’t contain the ∞, therefore we have
(

v(v−1)
6

− v−1
2

)
K2,2,2

with 12 requests each graph, obtaining 2v(v − 1)− 6(v − 1) requests.

Adding up both types of requests, we obtain 2v(v − 1)− v − 1 = (2v − 1)(v − 1), as we
wanted to see.
Counting the number of ADMs, gives

5 · v − 1

2
+ 6

(
v(v − 1)

6
− v − 1

2

)
i.e., half the number of requests, this is, N(N−1)

4
, which is the value of the lower bound. 2

For example, let N = 13 and let the vertex set of K13 be {∞, i, i + 6}, i = 0, . . . , 5.
Then, K13 can be partitioned into K5 and K2,2,2 :
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We use


3 K5 : {∞, i, i + 3, i + 6, i + 9}, with i = 0, 1, 2
4 K2,2,2 : {i, j, k, i + 6, j + 6, k + 6}, with

(i, j, k) = (0, 1, 5), (0, 2, 4), (1, 2, 3), (3, 4, 5)

Lower Bound This construction −→ optimal
N(N−1)

4
= 39 ADMs 3 · 5 + 4 · 6 = 39 ADMs decomposition !

2.6.4 Upper Bounds and constructions

Proposition 2.6.3 If C = 3, and N ≡ 9 (mod 12),

A(3, N) ≤ N(N − 1)

4
+ 4

Proof: We have that N = 12t+9. Consider n such that N = 2n−1, and thus n = 6t+5.
Let’s consider the construction of almost Steiner triples for n = 6t + 5. In this case we
have all the vertices grouped into triples except one group of 5 vertices. One can check
that the number of blocks of size 3 in the construction is 6t + 3

(
2t+1

2

)
= 6t2 + 9t. Now

mark as ∞ one of the points that appear in the block of size 5. Split the blocks in the
following way :

• Transform the triangles (∞, i, j) into a K5 on vertices (∞, iA, jA, iB, jB)
• Transform the triangles (i, j, k) with i, j, k 6= ∞ into K2,2,2 on vertices

(iA, jA, kA, iB, jB, kB)
• Transform the block of five elements (∞, i, j, k, l) into a K9 on vertices

(∞, iA, jA, kA, lA, iB, jB, kB, lB). Recall that a K9 it is not a valid graph when the
grooming factor is 3.

Let’s count the number of vertices of the construction. Since the point ∞ appears in
n−1

2
− 2 triples, we have on this hand 5

(
n−1

2
− 2
)

vertices. On the other, we have 6t2 +
9t− n−1

2
+ 2 triples without ∞, and thus 6

(
6t2 + 9t− n−1

2
+ 2
)

vertices.
It only remains to partition the K9 using the minimum number of vertices. Consider
the K5’s (∞, iA, kA, iB, kB) and (∞, jA, lA, jB, lB), the C4 (kA, lA, kB, lB) and a graph on
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vertices (iA, jA, kA, lA, iB, jB, kB, lB) with the remaining edges (one can check that it has
load 3 on all the arcs). Thus, we have used 5 + 5 + 4 + 8 = 22 ADMs.
Adding up the total number of vertices, we obtain

5

(
n− 1

2
− 2

)
+ 6

(
6t2 + 9t− n− 1

2
+ 2

)
+ 22 =

N(N − 1)

4
+ 4,

as claimed. 2

Proposition 2.6.4 If C = 3, and N ≡ 3, 7 (mod 12),

A(3, N) ≤ N(3N − 1)

12
+

N

3
− 3

Proof: Let N = 2n+1, and therefore n ≡ 1, 3 (mod 6)). Consider a Steiner triple system
for n. We split the vertices of the triangles as before, but now we split the node ∞ into
3 nodes ∞A, ∞B and ∞C .
This time, transform the triple (∞, i, j) into the K5 on vertices (∞A, iA, jA, iB, jB) and
the graph of Figure 2.29 (i.e., using 11 vertices). Note that we can change the role of
∞A, ∞B and ∞C in different graphs, and therefore we cover the 3 requests among them
without using new graphs.
It is easy to check that there are n(n−1)

6
triples. Since n−1

2
of the triples contain ∞, the

number of ADMs used by this construction is

11
n− 1

2
+ 6

(
n(n− 1)

6
− n− 1

2

)
=

N(N − 1
3
)

4
+

N

3
− 3 =

N(3N − 1)

12
+

N

3
− 3,

as claimed. 2

Proposition 2.6.5 If C = 3, and N ≡ 11 (mod 12),

A(3, N) ≤ N(3N − 1)

12
+

N

3
− 11

Proof: It consists in combining both previous constructions. Split the node ∞ into 3
nodes ∞A, ∞B and ∞C , and therefore N = 2n + 1 with n = 6t + 5. Consider an almost
Steiner triple system for n. Adding up the ADMs coming from triples with ∞, the ADMs
coming from triples without∞ and the ADMs used in the decomposition of K9, we obtain

11

(
n− 1

2
− 2

)
+ 6(6t2 + 6t) + 22 =

N(3N − 1)

12
+

N

3
− 11,

as claimed. 2

Note that we have already studied all the cases for C = 3 and N odd, obtaining op-
timal decompositions for N ≡ 1, 5 (mod 12), and 1-approximations for all the other cases.

We sum up the main results of this section in Table 2.6.
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Fig. 2.29 – Graph used in the construction when N ≡ 3, 7 (mod 12)

2.7 C of the form
∑k

i=1 i

2.7.1 Optimal Solution using BIBDs

In this section we will extend the optimal construction that we have found for C = 3
in Proposition 2.6.2. Again, we will split the vertices and here the basic tool from design
theory will be a BIBD.

Our aim is to find the minimum number of ADMs of the bidirectional case. We can
summarize our method as follows :

1. We consider C of the form C =
∑k

i=1 i = k(k+1)
2

For example, C = 1, 3, 6, 10...

2. We want to find a decomposition in graphs that achieve the ρmin(C). For each C,
consider a generic number of vertices v. Let´s make a partition of vertices into an
isolate vertex (let’s call it ∞ as it is usual in this kind of constructions) and sets of
2k (remember k = k(C)) vertices surrounding the central vertex. Obviously, it will
not be possible for a generic value of N .

3. Match the vertices of the sets of 2k vertices and identify both vertices of the pair.
Doing this we obtain a new graph G on N vertices (this graphs have a special vertex
labeled as∞ and sets of k vertices). It’s easy to check that N = 2(v−1)+1 = 2v−1.

4. Now we use the optimal results of the unidirectional case to make an optimal
decomposition of the new graph G. To be able to make the optimal decomposition,
it will give us congruences for N modulo P for a certain P , and therefore congruences
for v modulo P .
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N (mod 12) Lower Bound ADMs of the explicit constr. Ratio construction
lower bound

1 N(N−1)
4

N(N−1)
4

1

3 N(3N−1)
12

N(3N−1)
12

+ N
3
− 3 1 +

N
3
−3

N(3N−1)
12

N→∞−→ 1

5 N(N−1)
4

N(N−1)
4

1

7 N(3N−1)
12

N(3N−1)
12

+ N
3
− 3 1 +

N
3
−3

N(3N−1)
12

N→∞−→ 1

9 N(N−1)
4

N(N−1)
4

+ 4 1 + 4
N(N−1)

4

N→∞−→ 1

11 N(3N−1)
12

N(3N−1)
12

+ N
3
− 11 1 +

N
3
−11

N(3N−1)
12

N→∞−→ 1

Tab. 2.6 – Explicit constructions for C=3 and N odd

5. The idea is to convert each subgraph of the unidirectional case to a subgraph of the
bidirectional case without losing the optimality. The subgraphs of the unidirectional
case are Kk+1. Remember that each vertex of the graph G (except the center) cor-
responds to a pair of vertices of the real bidirectional graph. We consider two cases :

• If the Kk+1 contains the center, we transform it into a complete graph K2k+1

• If the Kk+1 doesn’t contain the center, we transform it into a complete multipar-
tite graph K2×(k+1)

We have already seen examples about how to transform a triangle (k = 2, C = 3)
without the vertex ∞ in Figure 2.28, and with it in Figure 2.27.

We have seen in Section 2.1.3 that the labeling of the vertices is a key issue. Ne-
vertheless, for this specific construction we can give a labeling to the vertices that
ensures the fulfilment of the load constraint. Remember that, if N = 2p + 1, we
have two sets of p vertices, and an isolated vertex. Let’s label as ∞ this isolated
vertex, and label as {iA, iB} each pair of split vertices, 0 ≤ i ≤ p − 1. Thus, the
vertex set is {∞, 0A, 1A, . . . , (p − 1)A, 0B, 1B, . . . , (p − 1)B}, and in this way there
are no requests of length greater than p =

⌊
N
2

⌋
(it is not difficult to check).

6. As we know (see previous section) that this subgraphs achieve the ρmin, we have
found an optimal decomposition with the minimum number of ADMs. As we have
said, the well known results for the unidirectional case give us congruences about
N . To find the congruences for n we only have to use that N = 2n− 1.

7. Using this construction and the results taken from [22] that we have extended
using [15], we obtain Table 2.7. What we have to do is just look for a BIBD(v, k,
1), with k = 1, 2, 3 . . .. Then we have to transform the values of v that we obtain
to N = 2v − 1. The problem is that nowadays only BIBDs of small block size are
known. Furthermore, for C = 15, 21, 28, 37 there is a finite set of values of N for
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which the existence of a BIBD that guarantees an optimal construction remains
unknown [15]. We can see an exhaustive list of these values in Table 2.8. For all the
other values of N , the rule of Table 2.7 applies.

k C δ̄ ρmin N
1 1 2 1 N ≡ 1 (mod 2)
2 3 4 1/2 N ≡ 1, 5 (mod 12)
3 6 6 1/3 N ≡ 1, 7 (mod 24)
4 10 8 1/4 N ≡ 1, 9 (mod 40)
5 15 10 1/5 N ≡ 1, 9 (mod 30)
6 21 12 1/6 N ≡ 1, 13 (mod 84)
7 28 14 1/7 N ≡ 1, 15 (mod 112)
8 37 16 1/8 N ≡ 1, 17 (mod 144)

Tab. 2.7 – Congruences for N and certain values of the grooming factor C

It is easy to check that we really have a construction with grooming factor C = k(k+1)
2

.
Indeed, either in a K2k+1 or in a K2×(k+1), each vertex is joint with its k nearest neigh-
bours in each direction of the cycle (remember that we are always ”inside” a ring), i.e.

we have all the requests of lengths 1 till k, and thus a load of k(k+1)
2

, as we wanted to see.

In this way we have found an optimal decomposition of the complete graph KN .

Theorem 2.7.1 For the values of C and N found via the previous process, the lower
bound of Theorem 2.2.1 is attained, and therefore we have found an optimal decomposi-
tion.

Proof: It is straightforward from the previous explanation, and taking into account the
optimality of the graphs used in the decomposition (Proposition 2.2.2). 2
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C Possible exceptions of optimal constructions
15 91 101 121 161 281 331 391 401 451 461 511 521 551

571 581 631 641 691 701 751 811 821 871 881 941 991
1001 1051 1121 1181 123 1291 1301 1351 1411 1481 1531
1541 1591 1601 1831 1891 2441 2491 2501 2791 2911 2971

3041 3221 3341 3701 4061
21 169 253 265 349 421 505 517 1009 1177 1429 1597 1609

1849 2269 2437 2449 2773 2869 3109 3277 3289 3529 3613
3709 3949 4957 5125 5209 5545 5629 6973

28 225 337 351 449 561 673 785 1247 1471 1569 2129 2241
2255 2353 2465 2479 2591 2689 2801 2815 2913 2927 3025
3039 3137 3151 3473 3585 3809 3921 4369 4481 5153 5825

6609 6833 6945 7505
37 289 305 433 449 577 593 721 737 1009 1153

1585 1729 1745 1889 2033 2161 2609 2881 2897 3025
3169 3185 3329 3457 3617 3761 3889 3905 4049 4465
4481 4609 4769 4897 4913 5329 5473 5489 5761 5777
5921 6049 6193 6209 6481 6641 6769 6785 6929 7201
7489 7505 7633 8065 8513 8641 8657 8785 8801 8929

8945 9649 9665 9793 9809 10369 10801 10945 10961 12097
12257 13249 13393 13409 13537 13553 13825 13969 14689
14705 14849 15409 18433 19009 20033 21329 25057 25073
26369 27505 27665 27937 28225 28369 28945 29105 29249

29377 30097 30113 30529 31537 32993

Tab. 2.8 – Finite sets of values of N for which the existence of a BIBD remains undecided
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2.8 Large values of C

We have that, in the all-to-all case, the load of each arc is N2−1
8

if N = 2q + 1, and
N
4
(N

2
+ 1) if N = 2q (this is in the worst case, where all the q diameters cross that edge).

In any case we can write it as
∑q

i=1 i = q(q+1)
2

to simplify.

If C ≥ N2−1
8

then obviously we will put all the requests in only one subgraph, using in
this way N ADMs.
Now let´s see what happens for specific values of C :

• Let N = 2q, and q even. Let´s put all the requests of half of the nodes (N
2
) in one

subgraph. We have to compute now what is the load that we have in this case.
It’s not difficult to see that in such a situation there are the same number of re-
quests of odd length than in the all-to-all case, and half of the requests of even case.

Lemma 2.8.1 Let N = 2q, and q even. When C = q
4
(3

2
q + 1), we can use 3

2
N

ADMs.

Proof: It´s enough to see that if we put all the requests of half of the nodes (taken
from 2 to 2 in the whole graph) in one subgraph, the load is exactly that grooming
factor. Then, we have also to check that we can satisfy the remaining requests of
the other half of the nodes in other subgraph respecting the load.
First of all, observe that in a given arc, we will have all the requests of odd length,
because those requests will always contain a node of the half that we want to cover
all the requests. On the other hand, half of the requests of even side will begin and
end in the other half of the nodes, and so they will not be taken into account in this
subgraph, having in these way only half of the requests of even length. Therefore,
in conclusion, the load of this subgraph can we computed as :

load = 1+3+5+...+(q−1)+1+2+3+...+
q

2
=

q
2∑

i=1

i+

q
2∑

i=1

(2i−1) = ... =
q

4
(
3

2
q+1)

Now we have to cover all the requests among the N
2

remaining nodes in another

subgraph. Now the load is
∑ q

2
i=1 i = q

4
( q

2
+1), that is clearly lower than the grooming

factor.
In conclusion, we have used N + N

2
= 3

2
N ADMs, as we wanted to see. 2

• Let N = 2q, and q odd. We follow the same process than in the previous case.

Lemma 2.8.2 Let N = 2q, and q odd. When C = q+1
4

(3
2
q + 1

2
), we can use 3

2
N

ADMs.
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Proof: Now the new load is :

load = 1+3+5+...+q+1+2+3+...+
q − 1

2
=

q−1
2∑

i=1

i+

q+1
2∑

i=1

(2i−1) = ... =
q + 1

4
(
3

2
q+

1

2
)

The rest of the proof is the same. 2

Note that in both cases the grooming factor required is larger than half of the total
load ( q

4
(q + 1)), which is a fact that can maybe contradict intuition.

2.9 MILP formulation of the Problem using CPLEX

A MILP formulation is useful to guess if the lower bounds that we have are very far
away from the real ones.

For example, for C = 2, we have seen that the simulated values of the number of
ADMs tend to the value that we state in Proposition 2.5.1 as N increases.

In Appendix A we can see the C code compiled to formulate the problem in terms of
Linear Programming and an example of the output file of the CPLEX software.
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2.10 Concluding Remarks

In this Chapter we have studied the Bidirectional Ring Grooming Problem with all-
to-all unitary requests and shortest path symmetric routing. We have found a new lower
bound, after finding the explicit formula of γ(C, p), which was an open problem. We have
improved this lower bound for C = 2, 3. Some upper bounds have also been provided.

We have focused mainly on the cases C = 2 and C = 3, finding in both cases either
optimal solutions or α-approximations, being α very close to 1. By using the existence of
a BIBD, we have found optimal constructions for these values of C and N :

C N
1 N ≡ 1 (mod 2)
3 N ≡ 1, 5 (mod 12)
6 N ≡ 1, 7 (mod 24)
10 N ≡ 1, 9 (mod 40)
15 N ≡ 1, 9 (mod 30)
21 N ≡ 1, 13 (mod 84)
28 N ≡ 1, 15 (mod 112)
37 N ≡ 1, 17 (mod 144)

A MILP formulation of the problem has been done in order to get an idea about the
tightness of our lower bound. Finally, some results have been found for large values of C.



Chapter 3

Other Sets of Requests

Abstract

In this Chapter study other particular cases of the general Traffic Groo-
ming Problem. First of all, we consider the unidirectional ring with a set of
requests made up of graphs with a bounded degree.
In the second part we focus on the bidirectional ring case, with circulant
graphs as set of requests.
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3.1 Degree constraints in the unidirectional case

An interesting grooming problem arises from considering graphs of requests in which
we have restrictions on the degree of the vertices, namely we are given a maximum de-
gree. Here we study the unidirectional ring (using primitive rings, each pair of requests is
represented by an edge, following the standard notation of [22]) and the particular case
when we have constant degree in all the vertices. The idea lies in thinking about the
”worst case” set of requests, because an important feature of the problem is that we have
to place the ADMs in the vertices before knowing which is the set of requests. We solve
here the cases corresponding to degree 2 and 3.

Note by ADM(∆ = δ = k,N,C) the optimal solution in a unidirectional ring of N
nodes with grooming factor C when the set of requests is given by a k-regular graph.

3.1.1 2-regular graphs of requests

We consider degree equal to 2 in all the vertices (2-regular graphs of requests). In
this case the set of requests is made up by disjoint cycles. The idea is to consider all the
possible request graphs. Then, besides the small values of N , we have that

Proposition 3.1.1 If the set of requests is given by a 2-regular graph, then

ADM(∆ = δ = 2, N, C) = 2N − (C − 1)

Proof: Since the degree is 2, of course a possible solution consists in placing 2 ADMs
at each vertex. What we do is to count in how many ADMs we can assure that we can
place only an ADM. As we have said, we have to think in the worst case.
Let’s see first that we cannot use 1 ADM in more than C − 1 vertices. Suppose this, i.e.
that we have 1 ADM in C vertices and 2 in all the others. Then, consider a set of requests
made up by a cycle of length C + 1 that has all C vertices with 1 ADM inside it. In this
situation, we are forced to use 2 subgraphs, and at least 2 vertices must appear in both
subgraphs, hence we will need more than 1 ADM in some vertex that had initially only
1 ADM.
Now, let’s see that we can always save C − 1 ADMs. Let {a0, a1, . . . , aC−2} be the set
of vertices with only 1 ADM. We will see that we can decompose the set of requests in
such a way that the vertices ai always lie in the middle of a path or a cycle, covering in
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this way both requests of each vertex with only 1 ADM. Indeed, if two of these vertices
(namely, ai and aj) are not consecutive in one of the disjoint cycles of the set of requests.
Let bi be the nearest vertex to ai in the cycle in the direction of aj, and conversely for bj

(bi may be equal to bj if ai and aj differ only on one vertex). Then, consider two paths
(or cycles) of the form {biai . . .} and {bjaj . . .} to assure that both ai and aj lie in the
middle. We can see an illustration in Figure 3.1
Otherwise, suppose that all C − 1 vertices are consecutive in a cycle. Let b0 be the
nearest vertex to a0 different from a1, and let bC−2 be the nearest vertex to aC−2 dif-
ferent from aC−3. Then, consider a subgraph with the path (or cycle, if b0 = bC−2)
{b0a0a1 . . . aC−2bC−2}. 2

a

a

b

bi

i

j

j

Fig. 3.1 – Construction in the proof of Proposition 3.1.1

3.1.2 3-regular graphs of requests

In this case we will need some previous graph theory concepts.

Definition 3.1.1 (Separate) If A, B ⊆ V and X ⊆ V ∪ E are such that every A-B
path in G contains a vertex or an edge from X, we say that X separates the sets A and
B in G. More generally we say that X separates G if G −X is disconnected, that is, if
X separates in G some two vertices that are not in X. A separating set of vertices is a
separator.

Definition 3.1.2 (Cutvertex ; Bridge) A vertex which separates two other vertices of
the same component is a cutvertex, and an edge separating its ends is a bridge. Thus,
the bridges in a graph are precisely those edges that do not lie on any cycle.

We can see a graph with a bridge in 3.2. The ends of the bridge are cutvertices.
It is time to recall some other definitions given in Chapter 1.
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Bridge

Fig. 3.2 – Example of a graph with a bridge

Definition 3.1.3 (Matching) A set M of independent edges in a graph G = (V, E) is
called a matching. M is a matching of U ⊆ V if every vertex in U is incident with an
edge in M . The vertices in U are then called matched (by M) ; vertices not incident with
any edge of M are unmatched.

Definition 3.1.4 (k-factor) A k-regular spanning subgraph is called a k-factor. Thus,
a subgraph H ⊆ G is a 1-factor of G if and only if E(H) is a matching of V .

We use now a well known result from matching theory :

Theorem 3.1.1 (Petersen, 1981) Every bridgeless cubic graph has a 1-factor.

Then, if we erase a 1-factor from a cubic graph, what it remains is a disjoint set of cycles.

Corollary 3.1.1 Every bridgeless cubic graph has a decomposition into a 1-factor and
disjoint cycles.

We can see an example of a decomposition of a bridgeless cubic graph into disjoints cycles
and a 1-factor in Figure 3.3.

We will use Proposition 3.1.1 in the following result.

Proposition 3.1.2 If the set of requests is given by a bridgeless cubic graph and C = 3,
then

ADM(∆ = δ = 3, N, 3) = 2N

Proof: When C = 3 and we cannot assure the existence of triangles, the best we can do
is to decompose the set of requests into paths of length 3. Let’s proof that we can do it.
In the decomposition of Proposition 3.1.1, take a clockwise orientation of the edges of
each cycle. With this orientation, each edge of the 1-factor has two ”incoming” and two
”outgoing” edges of the cycles. Now take for each edge of the 1-factor the 2 incoming
edges to it, and form in this way a path of length 3. It is easy to verify that this is a true
decomposition into paths of length 3. For instance, if we do this in the graph of Figure
3.3, and we label the edges of the 1-factor as {A,B,. . . ,G} and the ones of the cycles as
{1,2,. . . ,14} (see Figure 3.4), we have the following decomposition of the graph :

{1, A, 6}, {5, B, 2}, {3, C, 8}, {7, D, 9}, {14, E, 11}, {10, F, 12}, {4, G, 13}
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Fig. 3.3 – Decomposition of a bridgeless cubic graph into disjoints cycles and a 1-factor

Now let’s see that we cannot do it better, that is, with 2N − 1 ADMs. If such a
solution exists, there would be at least one vertex with only 1 ADM, and the mean of
the ADMs of all other vertices must not exceed 2. In order to see that this is not always
possible, consider the cubic bridgeless graph of Figure 3.5. Let C be the vertex with only
1 ADM. This graph has the property that is has no triangles except of those through C.
Since we can use only 1 ADM in C, we must take all its requests in one subgraph (green
color). Now, it is not possible to cover the 4 remaining requests of the nodes A and B in
one single subgraph (the best we can do is to take the red path), and thus wlog we will
need 3 ADMs in A. With these constraints, one can check that the best solution we can
find uses 20 ADMs, that equals 2N > 2N − 1. 2

Looking at the proof, we see that the only thing that we need from the bridgeless
cubic graph is that it has a decomposition into a 1-factor and disjoint cycles. Hence, we
can relax a bit the hypothesis of Proposition 3.1.2.

Corollary 3.1.2 If C = 3, and the set of requests can be partitioned into disjoints cycles
and a 1-factor, then

ADM(∆ = δ = 3, N, 3) = 2N

Another corollary can be deduced easily.

Corollary 3.1.3 If C ≥ 3, and the set of requests can be partitioned into disjoints cycles
and a 1-factor, then

ADM(∆ = δ = 3, N, C) ≤ 2N

Proof: We can do the same construction of Proposition 3.1.2 to obtain 2N ADMs. 2
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Fig. 3.4 – Decomposition of a bridgeless cubic graph into paths of length 3

A B
C

Fig. 3.5 – Cubic bridgeless graph used in the proof of Proposition 3.1.2

3.1.3 k-regular graphs of requests

The main fact that obstructs the number of ADMs to fall down is that we cannot
assure the existence of cycles of length smaller or equal than C. In this case, the best
graphs we can use are paths.

Proposition 3.1.3 If the set of requests is given by a k-regular graph, then

ADM(∆ = δ = k,N,C) ≥ Nk

2C
(C + 1)

Proof: The proof consists just in counting how many ADMs would be in a decompo-
sition of the request set into stars with C edges. Since the number of edges is Nk

2
, the
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number of stars is Nk
2C

, and this yields the result taking into account that each star has
C + 1 vertices. 2

A natural question is : when can we assure the existence of cycles of length smaller or
equal than C ?

Let I be the request graph, as usual. If N ≥ E(I) then we know that there are cycles
(because I is not a tree in this case), but these cycles can be very large, until length N .
Thus, a sufficient condition is that C ≥ N ≥ E(I).

3.2 Circulant graphs in the bidirectional case

Definition 3.2.1 A circulant graph is a graph of n vertices in which the ith vertex is
adjacent to the (i + j)th and (i− j)th vertices for each j in a list l. The circulant graph
Cin(1, 2, . . . ,

⌊
n
2

⌋
) gives the complete graph Kn and the graph Cin(1) gives the cyclic graph

Cn.

The number of circulant graphs on n = 1, 2, . . . nodes (counting empty graphs as cir-
culant graphs) are 1, 2, 2, 4, 3, 8, 4, 12, . . ., the first few of which are illustrated in Figure
3.6. Note that these numbers cannot be counted simply by enumerating the number of
nonempty subsets of {1, 2, . . . ,

⌊
n
2

⌋
} since, for example, Ci5(1) = Ci5(2) = C5. There is an

easy formula for prime orders, and formulas are known for square-free and prime-squared
orders.

Fig. 3.6 – Circulant graphs enumeration
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The numbers of connected circulant graphs on n = 1, 2, . . . nodes are
0, 1, 1, 2, 2, 5, 3, 8, . . ., illustrated in Figure 3.7.

Fig. 3.7 – Connected circulant graphs enumeration

We will use the funny fact that the numbers from 1 till 12 can be packed into 4 sets
of 3 elements such that in each set 2 of its elements add up the third. One possible way
to do it is :

1 + 6 = 7

2 + 10 = 12

3 + 8 = 11

4 + 5 = 9

Note that the solution might not be unique. Indeed :

3 + 9 = 12

4 + 7 = 11

2 + 8 = 10

1 + 5 = 6

Proposition 3.2.1 If N = 39k, C = 2, and the set of requests in a ring is given by
a circulant graph Cin(1, 2, 3, . . . , 12), then we have an optimal decomposition using 8N
ADMs.

Proof: First of all, note that the best we can do in the ring with grooming factor 2 is
use whenever possible triangles joined by a vertex. Any other configuration have smaller
ratio edges

vertices
, as it is not difficult to check.

If N = 39k, we will see now that we can decompose the whole set of requests into sub-
graphs made up by joined triangles. Indeed, let N = 39, and use the graph of Figure 3.8
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turning it around for i = 0, . . . , 38. In this way, we have covered all the requests of lengths
1, . . . , 12, and we have no repeated requests. With this construction we use 8 · 38 = 8N
ADMs.
Now let N = 39k, with k > 1. What we do now is to merge k of the previous graphs in
the following way : when the 4th triangle of the 1st graph, begin with the 1st triangle
of the 2nd, and so on. We obtain a graph on 8k vertices. We can see in Figure 3.9 an
example for k = 2, i.e N = 78.
Then, turn this big graph around for i = 0, . . . , 38. As before, we have covered all the
requests of lengths 1, . . . , 12, and we have no repeated requests. With this construction
we use 8k · 38 = 8N ADMs, as claimed. 2

5

9
4

11

3

8
12

10

2

7

1

6

i

i+7

i+19

i+30

Fig. 3.8 – Special decomposition of a circulant graph
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Fig. 3.9 – Merging 2 optimal graphs for N = 78

3.3 Concluding Remarks

We have begun this Chapter considering the unidirectional ring with a set of requests
made up of graphs with a bounded degree. We have solved the cases when the graph is
2-regular and 3-regular. Lower bounds have been deduced in the k-regular case.

In the second part we have dealt with the bidirectional ring case, with circulant graphs
as set of requests. We have found an optimal solution for a particular case.



Chapter 4

Grooming for Two-Period Optical
Networks

Abstract

In this Chapter study a variation of the Traffic Grooming Problem : the
Grooming for Two-Period Optical Networks. We consider two possible values
of the grooming factor, that affect different subsets of the node set of the
network.
It is a first approach to the dynamic grooming using graph partitioning tools.
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4.1 Introduction

The study of this problem has been motivated by an article named Grooming for
Two-Period Optical Networks that has been written by Charles J. Colbourn, Gaetano
Quattrocchi and Violet R. Syrotiuk, and that has not been published yet [17].

As we have already said before, many approaches to the traffic grooming problem are
possible. Even restricting to the ring topology, also quite different scenarios have been
considered, with respect to different features of the network :

• All-to-all, one-to-all or irregular traffic pattern

• Uniform or non-uniform traffic. In the non-uniform case, for instance one can consi-
der a distance-dependent traffic (the amount of traffic between node pairs is inver-
sely proportional to the distance separating them) or a hub traffic (all the traffic is
going to one node on the ring)

• Bidirectional or unidirectional routing

• Static or dynamic traffic

Heuristics and approximations have been widely applied for nearly all scenarios, but
conversely graph theoretical tools have been applied above all for the static traffic case.
Only in [12] they apply some tools from graph theory for the dynamic grooming problem.
The main idea in that paper by Colbourn et al. is extending the theoretical methodology
stated in [10] to some kind of dynamic traffic pattern.

Specifically, they consider the problem of minimizing the drop cost to support two traf-
fic periods in SONET/WDM unidirectional rings. Informally, each time period supports
different traffic requirements. In the first time period n nodes are required to support a
grooming ratio of C, while in the second time period a grooming ratio of C ′, C ′ < C, is
required for v ≤ n nodes. We can think in applying a static theoretical approach for each
time period. This allows the two-period grooming problem to be expressed as an opti-
mization problem on graph decompositions of Kn that embed graph decompositions of
Kv for v ≤ n. Using this formulation, optimal two-period groomings are found for small
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grooming ratios. In the next section we will formalize the problem and the notation,
following the cited article.

4.2 Definitions and Statement of the Problem

In general, the traffic grooming problem consists in partitioning the set of traffic
requirements into a number of groups such that each group is carried on a single SO-
NET/WDM ring. When the traffic requirements are uniform symmetric with grooming
ratio C and the ring has n vertices, the grooming is denoted by N(n, C). When the
grooming N(n,C) is optimal, i.e., minimizes the total ADM cost, then the grooming is
denoted by ON (n, C). Whether general or optimal, the drop cost of a grooming is de-
noted by cost N(n,C) or cost ON (n,C), respectively.

Let’s make now the notion of a two-period optical network precise.

In a network with n nodes, the traffic requirement Rij between the node pair i ↔ j is
represented by the n× n array R = [Rij]. If Rij = 1

C
> 0 for every pair of distinct nodes

i, j, then the traffic requirements of the network are uniform symmetric with grooming
ratio C.

Definition 4.2.1 Let X = {0, 1, . . . , n− 1} and V ⊆ X, with |V | = v. A grooming of a
two-period network N(n, v; C, C ′) with ratio (C, C ′) is a SONET/WDM network and a
partition of time into two disjoint periods T and T ′ such that :

1. For times in T the traffic is symmetric and uniform with ratio C ≥ 2 between all
node pairs in V ; that is RT

ij = 1
C
, C ≥ 2, for every i, j ∈ V, i 6= j.

2. For times in T ′ the traffic is symmetric and uniform with ratio C ′, 1 ≤ C ′ < C,
between all node pairs in V , i.e., RT ′

ij = 1
C′ , C ≥ 2, for every i, j ∈ V, i 6= j. For

every pair {i, j} such that either i, j ∈ W = X \ V or i ∈ X and j ∈ W , RT ′
ij = 0.

Intuitively, the traffic in time periods T and T ′ is specified by different requirements
matrices RT

ij and RT ′
ij . In the first time period, the traffic between node pairs of the n

nodes has a grooming ratio of C. In the second time period only a subset of v ≤ n nodes
are active with the traffic among them therefore able to run at a higher rate (and hence
C ′ < C).

Let’s model the problem of grooming in a two-period network in terms of graph
decomposition. Recall that a graph decomposition of the complete graph Kn on n vertices
is a partition of the edges of Kn into b edge-disjoint subgraphs Gi, i = 0, 1, . . . , b − 1.
Such a decomposition is denoted by (V,B), where V is the vertex set of Kn and B =
{G0, G1, . . . , Gb−1}. Following terminology from design theory, B is the block set of the
graph decomposition.

Definition 4.2.2 Let V ⊆ X, V 6= ∅. The graph decomposition (X,B) embeds the graph
decomposition (V,D) if there is a mapping f : D → B such that D is a subgraph of f(D)
for every D ∈ D. If f is injective (that is, one-to-one), then (X,B) faithfully embeds
(V,D).



4.2. Definitions and Statement of the Problem 98

A grooming of a two-period network N(n, v; C, C ′) with ratio (C, C ′) coincides with
a graph decomposition (X,B) of Kn such that (X,B) is a grooming N(n, C) in time
period T , and (X,B) faithfully embeds a graph decomposition of Kv such that (V,D)
is a grooming N(v, C ′) in time period T ′. Furthermore, for every B ∈ B such that
f−1(B) 6= ∅,

∑
D∈f−1(B) |E(D)| ≤ C ′.

Simply put, a N(n, v; C, C ′) coincides with an N(n,C) that faithfully embeds an
N(v, C ′).

Let’s use the same notation that Colbourn et al. for referring to the standard graphs :

• KV,W denotes a complete bipartite graph in which the classes are V and W .
• Pn = [a0, a1, . . . , an−1] denotes a path, i.e., V (Pn) = {a0, a1, . . . , an−1} and E(Pn) =
{a0a1, a1a2, . . . , an−2an−1}.

• Kn = (a0, a1, . . . , an−1) denotes a complete graph, i.e., V (Kn) = {a0, a1, . . . , an−1}
and E(Kn) = {a0a1, a0a2, . . . , a0an−1, a1a2, a1a3, . . . , a1an−1, . . . , an−2an−1}. If the
notation KV is used, it represents the complete graph on the vertex set V .

• K1,n = [a0; a1, a2, . . . , an] is used for the star where a0 is the source (center) and
a1, . . . , an are sinks, i.e., V (K1,n) = {a0, a1, . . . , an} and E(K1,n) =
= {a0a1, a0a2, . . . , a0an}.

We use the notation ON (n, v; C, C ′) to denote an optimal grooming N(n, v; C, C ′)
of a two-period SONET/WDM network with ratio (C, C ′).
As it turns out, an ON (n, v; C, C ′) does not always coincide with an ON (n, C). Gene-
rally we have cost ON (n, v; C, C ′) > cost ON (n, C). Of particular interest is the case
when cost ON (n, v; C, C ′) = cost ON (n,C).

For every triple (n, C, C ′) denote by ℵ(n,C, C ′) the set of integers v for which
cost ON (n, v; C, C ′) = cost ON (n, C). In this definition it is implied that in each case we
choose the best set V to achieve ON (n, v; C, C ′), because in general cost ON (n, v; C, C ′)
will depend on V . Evidently 1 ∈ ℵ(n,C, C ′) for every positive integer n.

In the article the authors have provided complete solutions when (C, C ′) = (2,1), (3,1)
and (3,2), respectively. Here we will extend the results by studying the case (C, C ′) =
(4, 1), using similar techniques as Colbourn et al.
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4.3 ON (n, v ; 4, 1)

We recall the complete characterization for optimal groomings with a grooming ratio
of four :

Theorem 4.3.1 ([10]) If n ≥ 6, an ON (n, 4) can be realized with

•
⌈

n(n−1)
8

⌉
− α C4’s and K3 + e ;

• α K3,

where

α =


0 if n ≡ 0 or 1 (mod 8)
1 if n ≡ 3 or 6 (mod 8)
2 if n ≡ 4 or 5 (mod 8)
3 if n ≡ 2 or 7 (mod 8)

Furthermore, the number of subgraphs is the minimum :
⌈

n(n−1)
8

⌉
We can see the graphs involved in this decomposition in Figure 4.1.

C K +e4 33 K

Fig. 4.1 – Graphs involved in the decomposition of Kn when C = 4

In this case, there will be two different problems :

• Variant A : we just want an optimal ON (n, C), that is, we allow as many K3s as
we want.

• Variant B : we are looking for an optimal ON (n,C) with the minimum number of
wavelengths. Thus, there are at most 3 K3s.

We will see that the results for both variants of the problem are different. We will
specify in each results to which variant we refer.

Recall that V = {0, 1, . . . , v− 1} and that W = {a0, a1, . . . , an−v−1}. Note that for all
V ⊆ X we can decompose the whole graph Kn into a KV , a KW and a KV,W .

Now, let

ϑA
4 (n) =

⌈n

2

⌉
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and

ϑB
4 (n) =


2 if n = 3
3 if n = 4
4 if n = 7⌊
n
2

⌋
if n > 7

Proposition 4.3.1 With the definitions above,

Variant A : ∀v ∈ ℵ(n, 4, 1), v ≤ ϑA
4 (n).

Variant B : ∀v ∈ ℵ(n, 4, 1), v ≤ ϑB
4 (n).

Proof: Among the graphs of an optimal solution (C4, K3 and K3 + e) consider those
intersecting V in at least (and therefore exactly, because C ′ = 1) one edge. They are of
3 types :

• Type 1 : those intersecting W in one edge and containing two edges between V and
W . They correspond to numbers 1, 2, 5 in Figure 4.2.

• Type 2 :those not intersecting W and containing 3 edges between V and W . They
correspond to numbers 3, 4 in Figure 4.2.

• Type 3 :those not intersecting W and containing two edges between V and W .
They correspond to number 6 in Figure 4.2.

Let a1, a2, a3 be the number of subgraphs of the ON (n, 4) of type 1, 2, 3.

Counting respectively the edges in V , those between V and W and those in W we
obtain :

a1 + a2 + a3 =

(
v

2

)
(4.1)

2a1 + 3a2 + 2a3 ≤ v(n− v) (4.2)

a1 ≤
(

n− v

2

)
(4.3)

From (4.1) and (4.2) we deduce

0 ≤ a2 ≤ v(n− v)− 2

(
v

2

)
= v(n− 2v + 1) (4.4)

Therefore v ≤ dn
2
e, proving the result for variant A.

If n is odd and v = n+1
2

, then a2 = 0, but from (4.1) and (4.3) we deduce that
a3 ≥

(
v
2

)
−
(

n−v
2

)
= n−1

2
.

So, as soon as n ≥ 9 and n odd, there cannot exist an optimal solution with the
minimum number of wavelengths and so in variant B : v4(n) ≤ bn

2
c, proving the result

for variant B. 2
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Fig. 4.2 – Possible configurations for (C, C ′) = (4, 1)

Remark 4.3.1 If v ∈ ℵ(n,C, C ′), then w ∈ ℵ(n, C, C ′) for all 1 ≤ w ≤ v.

Proof: If w < v, then |Kw| < |Kv|. 2

Proposition 4.3.2 We have that

Variant A : ℵ(n, 4, 1) = {1, 2, . . . , ϑA
4 (n)}. Equivalently, for v ≤ ϑA

4 (n),

cost ON (n, v; 4, 1) = cost ON (n, 4) =
n(n− 1)

2

Variant B : ℵ(n, 4, 1) = {1, 2, . . . , ϑB
4 (n)}. Equivalently, for v ≤ ϑB

4 (n),

cost ON (n, v; 4, 1) = cost ON (n, 4) =
n(n− 1)

2

Proof: [Proof for variant A]

Because of Remark 4.3.1, it will suffice to prove that ϑA
4 (n) ∈ ℵ(n, 4, 1) ∀ n.

Case n = 3, v= 2 : 1 K3 OK.
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Case n odd : n = 2t + 1, v = t + 1 :

Proof by induction that there exists an optimal ON (2t + 1, t + 1; 4, 1) with t K3 and(
t
2

)
C4’s. Suppose it is true for n = 2t + 1 and v = t + 1 ; add two vertices ∞ and a∞, the

C4’s (i,∞, ai, a∞) i = 0, 1, . . . , t− 1 and the K3 (t,∞, a∞).

Remark : Note that for n = 3, 5, 7 the solution has the minimum number of K3 and
so the minimum number of wavelengths.

Case n even : n = 2t , v = t :

Proof by induction that there exists an ON (2t, t; 4, 1) with at least one C4 containing
an edge of V .

Example for n = 8 : decomposition into 6 K3 + e’s and 1 C4 :
(1, 2, a3)+(a0, a3) ; (0, 3, a2)+(a1, a2) ; (1, 3, a1)+(3, a0) ; (1, a0, a2)+(0, 1) ; (2, a0, a1)+

(0, 2) ; (0, a1, a3) + (0, a0) ; and the C4 (2, 3, a3, a2).

Suppose it is true for n = 2t and v = t and let the C4 be (t − 2, t − 1, at−1, at−2) ;
add two vertices ∞ and a∞ ; then delete the C4 (t− 2, t− 1, at−1, at−2), add the K3 + e :
(t− 2, at−2,∞) + (∞, a∞), the three K3’s (t− 1, at−1,∞), (at−2, at−1, a∞) and (t− 2, t−
1, a∞) and the (t− 2) C4’s (i,∞, ai, a∞) for i = 0, 1, . . . , t− 3.

For n = 6 and v = 3 we have a decomposition with 3 K3 + e and one K3 :
(0, 1, a0) + (1, a2) ; (1, 2, a1) + (2, a0) ; (0, 2, a2) + (0, a1) ; (a0, a1, a2).

Remark : Note that for n = 6, 8, 10 the ON (n, 4) has also the minimum number of
wavelengths. 2

Proof: [Proof for variant B]

Because of Remark 4.3.1, it will suffice to prove that ϑA
4 (n) ∈ ℵ(n, 4, 1) ∀ n.

Case n even : n = 2t , v = t :

Proof by induction that there exists an ON (2t, t; 4, 1) with minimum number of
wavelengths.

Induction from t to t + 4, that is from n = 2t , v = t to n = 2t + 8 , v = t + 4.
It works for n = 6, 8, 10 (remark above). For n = 12 start from the solution for n = 8,

delete the C4 (2, 3, a3, a2), add 4 vertices ∞0,∞1, a∞0 , a∞1 , the K3 + e’s (∞0,∞1, a∞1)
+ (a∞0 , a∞1) ; (2,∞0, a2) + (∞0, a∞0) ; (2, 3, a∞0) + (a∞0 ,∞1) plus the K3’s (3,∞0, a3)
and (a2, a3, a∞0). Then add the C4’s (i,∞0, ai, a∞0) for i = 0, 1 and (i,∞1, ai, a∞1) for
i = 0, 1, 2, 3.

Suppose it is true for n = 2t and v = t ; add the 8 vertices ∞j, a∞j
for j = 0, 1, 2, 3.

Take the decomposition for n, v and on the graph on the 8 vertices∞j, a∞j
for j = 0, 1, 2, 3

plus the C4’s (i,∞j, ai, a∞j
) for i = 0, 1, . . . , t− 1 and j = 0, 1, 2, 3.
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Case n odd : n = 2t + 1 , v = t :

Proof by induction that there exists an ON (2t, t; 4, 1) with minimum number of
wavelengths.

Induction from t to t + 4, that is from n = 2t + 1 , v = t to n = 2t + 9 , v = t + 4.
True for n = 3, 5, 7 (see remark above).
True for n = 9 and v = 4 with 9 K3 + e : (0, 1, a0) + (a0, a3) ; (0, 2, a1) + (a1, a3) ;

(0, 3, a2)+ (a2, a3) ; (2, 3, a0)+ (a0, a4) ; (1, 3, a1)+ (a1, a4) ; (1, 2, a3)+ (3, a3) ; (0, a3, a4)+
(3, a4) ; (1, a2, a4) + (2, a4) ; (a0, a1, a2) + (2, a2).

Now suppose it is true for n = 2t + 1 and v = t ; add the 8 vertices ∞j, a∞j
for

j = 0, 1, 2, 3. Take the decomposition for n,v and on the graph on the 9 vertices ∞j, a∞j

for j = 0, 1, 2, 3 plus the vertex at. Finally use the C4’s (i,∞j, ai, a∞j
) for i = 0, 1, . . . , t−1

and j = 0, 1, 2, 3. 2

Proposition 4.3.3 (Lower Bound) For both variants of the problem, if v > ϑA
4 (n)

(resp. ϑB
4 (n)), then

cost ON (n, v; 4, 1) ≤ n(n− 1)

2
+

(
v

2

)
−
⌊

v(n− v)

2

⌋
Proof: Note that for an edge of Kv there can be two possibilities :

• Case 1 : either it belongs to a C4, or a K3 or a K3 + e, in which case this subgraph
contains 2 edges of KV,W .

• Case 2 : it belongs to another kind of subgraph for which the number of vertices is
one more than its number of edges. We can see all these graphs in Figure 4.3.

Let e1 be the number of edges of type 1 and e2 of type 2. We have :

e1 + e2 =

(
v

2

)
(4.5)

2e1 ≤ v(n− v) (4.6)

A =

(
n

2

)
+ e2 (4.7)

Therefore, if v > dn
2
e, then v(n− v) ≥

(
v
2

)
and so e2 ≥ 0.

From (4.6) and (4.5) we get : e2 ≥
(

v
2

)
− bv(n−v)

2
c implying by (4.7) the lower bound

for cost ON (n, v; 4, 1). 2

For the next theorem the only way to obtain an optimal cost for ON(n, v; 4, 1) is to
allow triangles.

Theorem 4.3.2 For variant A of the problem, if v > ϑA
4 (n), then

cost ON (n, v; 4, 1) =
n(n− 1)

2
+

(
v

2

)
−
⌊

v(n− v)

2

⌋
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Fig. 4.3 – Other possible graphs in a N(n, v; 4, 1)

Proof:

Proof of equality, case v even :

Partition Kv into v − 1 1-factors Fi for i = 0, 1, . . . , v − 2.
For j = 0, 1, . . . , n− v − 1 join aj to the edges of Fj to form v(n−v)

2
triangles.

Add to
(

n−v
2

)
of these triangles the edges of KW ; that is possible since

(
n−v

2

)
≤ v(n−v)

2
.

For example add to the K3’s containing aj the edges aj, aj + k for k = 0, 1, . . . , n−v
2

the
indices being taken modulo n−v and when n−v is even the edges aj, aj+n−v

2
being added

only once.
Finally it remains

(
v
2

)
− v(n−v)

2
edges of Kv (those of Fj for j = n− v, . . . , v− 1) which

gives the excess value to ON(n,4) in the cost formula.

Proof of equality, case v odd :

Partition Kv into v near 1-factors Fi, where i is missing in Fi, for i = 0, 1, . . . , v − 1.
(Fi consists of the edges i− k, i + k for k = 1, 2, . . . , v−1

2
).

For j = 0, 1, . . . , n− v − 1 join aj to the edges of Fj to form v(n−v)
2

triangles.
Form the bn−v

2
c C4’s (2h, a2h, a2h+1, 2h + 1) for h = 0, 1, . . . , bn−v

2
c − 1.

Add to
(

n−v
2

)
− bn−v

2
c of the triangles the edges of KW like for v even.

Finally it remains
(

v
2

)
− bv(n−v)

2
c edges of Kv which gives the excess value to

cost ON (n, 4) in the cost formula. 2
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4.4 Concluding Remarks

In this Chapter we have studied the Grooming for Two-Period Optical Networks. This
is a first theoretical approach to dynamic grooming.
Following the graph partitioning methods of [17], we have completely solved the case
(C, C ′) = (4, 1).



Chapter 5

Conclusions and Further Research

5.1 Conclusions

This Master Thesis deals with the Traffic Grooming Problem in Optical WDM Rings.

In Chapter 1, after providing all the necessary concept for understanding this work,
we have formulated the Traffic Grooming problem in terms of graph partitioning, and we
have shown that it turns out to be a combinatorial optimization problem.
We have also summarized the state-of-the-art, and finally we have seen that the Groo-
ming Problem is NP-complete.

In Chapter 2 we have studied the Bidirectional Ring Grooming Problem with all-to-
all unitary requests and shortest path symmetric routing. We have found a new lower
bound, after finding the explicit formula of γ(C, p), which was an open problem. We have
improved this lower bound for C = 2, 3. Some upper bounds have also been provided.
We have focused mainly on the cases C = 2 and C = 3, finding in both cases either
optimal solutions or α-approximations, being α very close to 1. By using the existence of
a BIBD, we have also found optimal constructions for these values of C and N :

C N
1 N ≡ 1 (mod 2)
3 N ≡ 1, 5 (mod 12)
6 N ≡ 1, 7 (mod 24)
10 N ≡ 1, 9 (mod 40)
15 N ≡ 1, 9 (mod 30)
21 N ≡ 1, 13 (mod 84)
28 N ≡ 1, 15 (mod 112)
37 N ≡ 1, 17 (mod 144)

A MILP formulation of the problem has been done in order to get an idea about the
tightness of our lower bound. Finally, some results have been found for large values of C.
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We have begun Chapter 3 considering the unidirectional ring with a set of requests
made up of graphs with a bounded degree. We have solved the cases when the graph is
2-regular and 3-regular. Lower bounds have been deduced in the k-regular case.
In the second part we have dealt with the bidirectional ring case, with circulant graphs
as set of requests. We have found an optimal solution for a particular case.

Finally, in Chapter 4 we have studied the Grooming for Two-Period Optical Networks.
Following the methods of [17], we have solved the case (C, C ′) = (4, 1).
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5.2 Future work and open problems

A lot of exciting problems remain unsolved concerning the Traffic Grooming problem.
Let’s cite some of them :

• We have given a general lower bound. Is it possible to improve this lower bound for
other values of C (besides 2 and 3) ?

• Does the grooming problem belong to FPT ?

• Consider the grooming problem in the Bidirectional Ring but not imposing neither
shortest path nor symmetric routing.

• In the Ring and for each value of N and C, which is the routing that minimizes the
number of ADMs ?

• Consider the grooming problem in a Tree.

• Consider the grooming problem in the Unidirectional Ring with constant degree
(greater than 2) in the request graph.

• Try to improve the best ratio of an approximation algorithm known up to date for
the traffic grooming problem.

• Try to solve more cases of the Two-Period Grooming problem.



Appendix A

MILP formulation of the problem

In Section A.1 we can see the code that we have compiled to simulate the problem,
using the CPLEX software. In Figure A.1 in Section A.2 we can see an example of an
output file of this software of Linear Programming.

A.1 C source code for MILP formulation in Chapter

2

#inc lude <s t d i o . h>\\
#inc lude <s t d l i b . h>\\
#inc lude <math . h>\\\\

i n t my gamma( i n t C, i n t N) {\\
i n t p , r ;\\

i f (N==2) re turn 1 ;
i f (N==3) re turn 3 ;
i f (N==4) i f (C==2) re turn 5 ;

i f (C==2) re turn (3*N)/2 ;
e l s e
{

p= f l o o r ( (1+ sq r t (1+8*C) ) / ( double ) 2 ) ;
r = C−p*(p−1)/2;

r e turn (p−1)*N+f l o o r ( r *N/p ) ;
}

}

void gen lp (FILE * f , i n t C, i n t N) {
i n t i ;
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i n t W;

f p r i n t f ( f ,”\\Problem name : blop f o r C=%d and N=%d\n” ,C,N) ;
f p r i n t f ( f , ” Minimize\n A\n\nSubject To\n\n ” ) ;

f p r i n t f ( f ,”\\NUMBER OF ADMS\n ” ) ;

f p r i n t f ( f , ”A” ) ;
f o r ( i =2; i<=N; i++)

f p r i n t f ( f , ” − %d a %d” , i , i ) ;

f p r i n t f ( f , ” >= 0\n ” ) ;
f p r i n t f ( f , ”\n\\NUMBER OF SUBGRAPHS\n ” ) ;
f p r i n t f ( f , ”W” ) ;
f o r ( i =2; i<=N; i++)

f p r i n t f ( f , ” − a %d” , i ) ;

f p r i n t f ( f , ” <= 0\n ” ) ;
f p r i n t f ( f , ”W >= %d” , ( i n t ) c e i l ( (N*N−1)/(8*( double )C) ) ) ;
f p r i n t f ( f , ”\n\\NUMBER OF EDGES\n ” ) ;
f p r i n t f ( f , ” NBedges ” ) ;
f o r ( i =2; i<=N; i++)

f p r i n t f ( f , ” − %d a %d” ,my gamma(C, i ) , i ) ;

f p r i n t f ( f , ” <= 0\n ” ) ;
f p r i n t f ( f , ” NBedges >= %d” ,N*(N−1)/2);
f p r i n t f ( f , ”\n\\VARIABLES POSITIVES\n ” ) ;
f o r ( i =2; i<=N; i++)

f p r i n t f ( f , ” a %d >= 0\n” , i ) ;

f p r i n t f ( f , ”\n\\VARIABLES ENTIERES\nGENERAL\n ” ) ;
f o r ( i =2; i<=N; i++)

f p r i n t f ( f , ” a %d\n” , i ) ;

f p r i n t f ( f , ”\nEnd\n ” ) ;
}

void write command ( i n t C, i n t N) {
FILE * f ;
char buf [ 5 0 0 ] ;
s p r i n t f ( buf , ”C%d/command−n%d” ,C,N) ;
f=fopen ( buf , ”w” ) ;
f p r i n t f ( f , ” read n%d . lp \nmip\ndisp s o l var −\n” ,N) ;
f c l o s e ( f ) ;

}
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main ( i n t argc , char ** argv ) {
i n t C,N;
i n t i ;

FILE * f ;
char buf [ 5 0 0 ] ;

s s c an f ( argv [1 ] ,”%d”,&C) ;
s s c an f ( argv [2 ] ,”%d”,&N) ;

f=stdout ;

s p r i n t f ( buf , ”C%d/n%d . lp ” ,C,N) ;
f=fopen ( buf , ”w” ) ;

// f p r i n t f ( stdout ,”%d\n” ,my gamma(C,N) ) ;

gen lp ( f ,C,N) ;

f c l o s e ( f ) ;

write command (C,N) ;
}
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A.2 Example of an output file of CPLEX

Fig. A.1 – Example of an output file of CPLEX (C=3, ADMs=23)
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ABSTRACT 
 
We study the minimization of ADMs (Add-Drop Multiplexers) in Optical WDM Networks with 
Bidirectional Ring topology considering symmetric shortest path routing and all-to-all unitary requests. 
We insist on the statement of the problem, which had not been clearly stated before in the bidirectional 
case. Optimal solutions had not been found up to date. In particular, we study the case C = 2 and C = 3 
(giving either optimal constructions or near-optimal solutions) and the case C = k(k+1)/2 (giving optimal 
decompositions for specific congruence classes of N). We state a general Lower Bound for all the values 
of C and N, and we improve this Lower Bound for C=2 and C=3 (when N=4t+3). We also include some 
comments about the simulation of the problem using Linear Programming. 
 
Keywords: SONET over WDM; traffic grooming; ADM; MILP formulation; graph decomposition; 
combinatorial designs. 
 
1- INTRODUCTION AND STATEMENT OF THE PROBLEM 
 
Traffic grooming in networks refers to grouping low rate traffic into higher speed streams (see [1,2,3]). 
There are many variants according to the type of network considered (for example, in [4] the Path 
grooming problem is studied), the constraints used and the parameters to be optimize which give rise to a 
lot of interesting design problems (graph decomposition). 
The objective is to minimize the equipment cost. Among possible criteria, one is to minimize the number 
of wavelengths used to route all the requests. This leads to the widely studied loading problem [5]. 
Another choice, which is in fact a better approximation of the real equipment cost, is to minimize the 
number of add/drop locations (called ADMs in SONET terminology) instead of the number of 
wavelengths. These two problems are proved to be different. Indeed, it is known that even for the simpler 
network (the unidirectional ring), the number of wavelengths and the number of ADMs cannot be 
simultaneously minimized [6]. In [7] the bidirectional case is studied, and in [8] a MILP formulation of 
the traffic grooming in the ring is done. 
Let an optical network be represented by a directed graph G (in many cases a symmetric one) on N 
vertices, for example an unidirectional ring CN or a bidirectional ring CN

*. We are given also a traffic (or 
instance) matrix, that is a family of connection requests represented by a multidigraph I (the number of 
arcs from i to j corresponding to the number of requests from i to j). It is usual to refer to G as the 
physical graph, whereas I is called logical graph (or request graph). Satisfying a request r from i to j 
consists in finding a route (path) P(r) in G and assigning a wavelength to it. The grooming factor (or 
grooming ratio) C is the number of unitary requests that can be grouped on a single wavelength, i.e. a 
request uses only 1/C of the bandwith available on a wavelength along its route. In other words, for each 
arc e of G and for each wavelength w, there are at most C paths using wavelength w and containing arc e.  
Let Bw be the subgraph of I that represents the set of instances that use wavelength w. Then the load is 
defined as follows 
 
Definition 1.1 For a subgraph Bw of requests of I, we define the load of an edge e of G, L(Bw,e), as the 
number of requests which are routed through e. i.e.: 
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For each wavelength w, an ADM is needed at each node sending or receiving a request on that 
wavelength. Recall that only one ADM is needed for a node to send or receive various requests on the 
same wavelength. Therefore The number of ADMs used on wavelength w equals the number of vertices 
in the the subgraph Bw .  
 
Let Ar be the set of paths in G through which a request r may be routed and let 

r

r I

A A

!

=! . The general 

Traffic Grooming Problem is stated as follows: 
 
Problem 1.1 (The Traffic Grooming Problem) 

 
 
In this work we focus on the Bidirectional Ring Grooming Problem with symmetric shortest path 
routing, and specifically the all-to-all unitary case. i.e., from now on we will consider G = CN and I = 
TN, where TN  is a tournament containing all the arcs (i, i+q), i = 0, ... ,N-1, q = 1, ... , / 2N! "# $  (plus  N/2 
arcs of the form (i, i+N/2), if N is even). 
 
Remark 1.1 In this case, what we do is minimize the number of ADMs used by the requests following 
one direction in the cycle, and then double the number of ADMs and the number of wavelengths to 
compute the total number of ADMs used by the whole set of requests. In this way, we can get rid of the 
orientation of the requests, because all of them have the same direction. This is the main reason for 
choosing this routing, besides of its common use in real optical networks. Thus, all the results that we will 
show take into account only half of the total number of ADMs. 
 
Finally, our problem can be reformulated as follows. 
 
Problem 1.2 (Symmetric Shortest Path routing) 

 
  
2- GENERAL LOWER BOUNDS 
 
Let’s introduce some notation: consider a valid construction for the Problem and let ap denote the number 
of subgraphs of the partition with exactly p nodes, A the number of ADMs, and W the number of 
subgraphs of the partition. 
We have the following equalities: 

 
In the particular case where I = TN , we have |E| = N(N-1)/2,  and we know that  

 
To obtain accurate lower bounds we need to bound the value of | |E

!
 for a graph with | |V

!
 = p vertices, 

satisfying the load constraint.  
 



Definition 2.1 Let ( , )C p!  be the maximum number of edges of any graph H with p vertices, such that 
. 

 
Proposition 2.1 (Requests of Shortest Length)  
Let C = k(k+1)/2 +r, with 0 r k! ! , then ( , )C p! is given by the expression 
 

 
 

Using the previous result and equations (1), (2) and (3), we state a general Lower Bound for our Problem: 
 
Theorem 2.1 (General Lower Bound)  
For NG C=

!"
, C = k(k+1)2 + r , with 0 r k! ! , and if all the requests cannot be put in a single subgraph: 

 
 
It is easy to se that for C=1 the lower bound can always be reached using the decomposition in cycles that 
can be found in [10].  
 
3- CASE C=2 
 
We have improved the previous Lower Bound when the grooming factor is equal to 2. 
 
Proposition 3.1 (Tighter Lower Bound for C=2) 
For NG C=

!"
 and C = 2, 

 
 

To get an idea about the validity of this Lower Bound, we have formulated the Problem using MILP, 
taking into account equations (1), (2) and (3). A graph of the ratio ADM_simplex/ADM_LB vs Log(N) is 
drawn in Fig. 1, for N>14. We can observe in this graph that the ratio tends to 1 when N increases. Notice 
that a solution given by MILP does not imply the existence of a valid decomposition, since the load of 
edges is not taken into account. 

   
Figure 1. Simplex/LB vs Log(N)            Figure 2. Graph used in the 12/11-approx 

 
We have found explicit decompositions which are near-optimal solutions for C=2. In particular, we 
proved that for odd values of N, TN can be decomposed into triangles and subgraphs isomorphic to the one 
depicted in Fig. 2 in such a way that the load of every edge is less or equal to 2 and the number of ADMs 
given by such decomposition is less than 12/11 times the lower bound.  
 
4- CASE C=3 
 
Similarly to the previous case, we have improved the Lower Bound when N=4t+3, and we have found 
either optimal solutions (see Section 5) or 1-approxs (extending the Steiner triples construction in [10]) 



for all the odd values of N, as we can see in Table 1. The extension to the even values of N should be 
straightforward. 

 
Table 1. Explicit constructions for C=3 and N odd 

 
5- CASE C=k(k+1)/2 
 
Using the results of the unidirectional case, we have found optimal constructions for several values of C 
and infinite families of values of N. The main idea is to take known decompositions of the unidirectional 
case (using combinatorial designs that are in fact BIBDs, see [1] and [11]), and then split each vertex 
(except one) to obtain graphs that become optimal for the bidirectional case (under criterion of 
Proposition 2.1). In Table 2 we sum up the values for which we have obtained optimal solutions. 

 
Table 2. Optimal solutions 

6- CONCLUSIONS 
 
In this paper we have formally stated the Traffic Grooming Problem considering symmetric shortest path 
routing and all-to-all unitary requests, and we have given a general Lower Bound. It would be interesting 
to try to improve this LB for other values of C (besides 2 and 3), but it seems to be a difficult problem. 
Finding other optimal constructions will lead to exciting graph decomposition problems, where tools from 
combinatorial design are strongly needed. Another approach to the problem consists in finding good 
approximations, which sometimes (but not always) has more practical value. 
Other routings and topologies could be considered, and we are convinced that many of the results that we 
sum up in this paper can be extended to similar problems.  
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