
Traffic Grooming in Star Networks via Matching Techniques?

Ignasi Sau1, Mordechai Shalom2, Shmuel Zaks1

1 Department of Computer Science, Technion, Haifa, Israel, {ignasi,zaks}@cs.technion.ac.il
2 TelHai Academic College, Upper Galilee, 12210, Israel, cmshalom@telhai.ac.il

Abstract The problem of grooming is central in studies of optical networks. In graph-theoretic terms,
it can be viewed as assigning colors to given paths in a graph, so that at most g (the grooming factor)
paths of the same color can share an edge. Each path uses an ADM at each of its endpoints, and paths
of the same color can share an ADM in a common endpoint. There are two sub-models, depending on
whether or not paths that have the same color can use more than two edges incident with the same node
(bifurcation allowed and bifurcation not allowed, resp.). The goal is to find a coloring that minimizes
the total number of ADMs. In a previous work it was shown that the problem is NP-complete when
bifurcation is allowed, even for a star network. In this paper we study the problem for a star network
when bifurcation is not allowed. For the case of simple requests - in which only the case of g = 2 is of
interest - we present a polynomial-time algorithm, and we study the structure of optimal solutions. We
also present results for the case of multiple requests and g = 2, though the exact complexity of this case
remains open. We provide two techniques, which lead to 4

3
-approximation algorithms. Our algorithms re-

duce the problem of traffic grooming in star networks to several variants of maximum matching problems.

Keywords: Traffic grooming, optical networks, approximation algorithms, maximum matching, Add-
Drop Multiplexer.

1 Introduction

1.1 Optical networks

All-optical networks have been largely investigated in recent years due to the promise of data trans-
mission rates several orders of magnitudes higher than current networks [3, 5, 12, 14, 18]. Major
applications are in video conferencing, scientific visualization and real-time medical imaging, high-
speed supercomputing and distributed computing [7, 12, 18]. The key to high speeds in all-optical
networks is to maintain the signal in optical form, thereby avoiding the prohibitive overhead of con-
version to and from the electrical form at the intermediate nodes. The high bandwidth of the optical
fiber is utilized through Wavelength-Division Multiplexing (WDM): two signals connecting different
source-destination pairs may share a link, provided they are transmitted on carriers having different
wavelengths (or colors) of light. The optical spectrum being a scarce resource, given communication
patterns in different topologies are often designed so as to minimize the total number of used colors,
also as a comparison with the trivial lower bound provided by maximum load, that is the maximum
number of requests sharing a same physical edge (see [11] for a survey of the main related results).

Though a lot of works have been done in the path and ring topologies, much less is known for
more complex networks. The main problem in such networks is the existence of nodes of degree
more than two, where traffic can split. Tree networks are thus the first candidates to be studied,
and understanding the complexity of the problem for a star network is therefore central step in this
direction of finding a general solution for tree networks, and then to general topology networks.

We study the grooming problem (see Section 1.2) in star networks. Despite its simplicity, this
topology is important, as it arises in the interconnection of LANs (local area networks) or MANs
(metropolitan area networks) with a wide area backbone.

? This research was partially supported by the Israel Science Foundation, grant No. 1249/08.

1.2 The problem

The focus of current studies is to consider the hardware cost. This is modeled by considering the
basic switching unit of Add-Drop-Multiplexer (ADM), and focusing on the total number of these
ADMs. The key point here is that each lighpath uses two ADMs, one at each endpoint. If two
incident lightpaths are assigned the same wavelength, then they can share the ADM at their common
endpoint. An ADM may be shared by at most two lightpaths. Moreover, in studying the hardware
cost, the issue of traffic grooming is central. This problem stems from the fact that the network
usually supports traffic that is at rates which are lower than the full wavelength capacity, and
therefore the network operator has to be able to put together (= groom) low-capacity requests
into the high capacity fibers. At most g requests can share one lightpath. g is termed the grooming
factor. In terms of ADMs, if g requests of the same wavelength entering through the same edge to
one node, they can all use the same ADM at that node, thus saving g − 1 ADMs. The goal is to
find a coloring that minimizes the total number of ADMs. There are two sub-models, depending
on whether or not paths that have the same color can use more than two edges touching any node
(bifurcation allowed and bifurcation not allowed, resp.).

In Fig. 1 a star network is presented, with three requests a, b and c. If g = 2 then all these
requests can get the same color if traffic bifurcation is allowed, and in this case we use a total of
3 ADMs; otherwise, three colors are needed, because any set of two paths will imply a set of three
edges touching the center of the star, and in this case we use a total of 6 ADMs. In this work we
study the case where bifurcation is not allowed.

1

2 3

0

a
c

b

Fig. 1. Star network. Requests a, b, and c can be groomed for g = 2 only if traffic bifurcation is allowed.

In graph-theoretic terms, the network is modeled as a graph, each request is viewed as a simple
path in the graph, and the traffic grooming problem is viewed as assigning colors to the paths, such
that, for any color λ, at most g of the paths colored λ can share the same edge.

For tree networks, and when bifurcation is not allowed, the problem reduces to partitioning the
set of requests (paths) into sets (subgraphs) such that in each subgraph (a) the number of paths
using any edge is at most g, and (b) the graph induced by the edges of its paths has maximum
degree 2. The cost associated with such a subgraph is the number of distinct endpoints of its paths,
and the goal is to find a partition that minimizes the sum of the costs of the subgraphs.

1.3 Related works

A review on traffic grooming problems can be found in [20]. In [9] the traffic grooming problem in tree
and star networks is studied. The authors extend the approximation results for ring networks of [10]
to trees and stars, obtaining an approximation algorithm with approximation factor 2 log g+o(log g),
running in polynomial time if g is constant. The traffic grooming model studied in [9] allows
bifurcation, and in this case the problem is shown to be NP-complete even for star networks, if
g ≥ 3.

In [13] traffic grooming on path, star, and tree networks is addressed with a deep technological
background, but the cost function used to minimize the cost of electronic equipment differs from

that used in [1,2,4,9,10,15,16] among many others. Indeed, in [13] the authors consider the model
first stated in [8] (in particular, the function referred as total amount of electronic switching), where
one unity of cost (namely, a SONET Add-Drop Multiplexer, ADM for short) is incurred each time
a wavelength conversion of a request is carried out. That is, what is intended to minimize in this
model is the total number of optical hops of all requests from their origins to their destinations.
It is assumed that each request requires some electronics at its origin and its destination nodes,
regardless of how many requests are terminated at those nodes on each wavelength.

1.4 Summary of results

In this work we deal with the single hop problem, where a request is carried along one wavelength,
and where bifurcation is not allowed. We study a star network, with n + 1 nodes 0, 1, 2, · · · , n, and
a set of edges {{0, 1} , {0, 2} , · · · , {0, n}}. The requests are of length 1 or 2, termed short and long
requests, respectively. We first consider the case of simple requests (Section 3), that is, there are no
two requests sharing both endpoints (i.e. identical). In this case only the case g = 2 is of interest,
and we show a polynomial-time algorithm for the problem. Actually, this result holds also for the
case when multiple identical requests of length 2 are allowed. It turns out that a basic component
of each solution is a triangle; that is, three requests – one between i and 0, one between j and 0,
and one between i and j – all colored with the same color. Indeed, we show that in each optimal
solution there is the same number of triangles. We also present (Section 4) results for the case of
multiple requests and g = 2 (though the exact complexity of this case remains open). We present two
techniques, which lead to two 4

3 -approximation algorithms. Our algorithms reduce our problems to
the maximum matching problem and several of its variants. We start with preliminaries in Section 2,
and conclude with a summary in Section 5.

2 Preliminaries

In this section we provide some preliminaries concerning matchings and the notation we use to denote
the subgraphs involved in a partition of the request graph. We use standard graph terminology (cf.
for instance [6]). We consider undirected graphs, which may have multiple edges and self-loops.

Matchings. Let G = (V,E) be a (multi)graph with a weight function w : E → R, and let I
be a function associating an interval of natural numbers with each vertex in V . An I-matching is
a function m : E → N such that for v ∈ V ,

∑
e∈E|v∈e m(e) lies in the interval I(v). An I-factor

is an I-matching such that m : E → {0, 1}. A matching is an I-factor such that I(v) = [0, 1] for
each v ∈ V . A maximum I-matching is an I-matching m such that

∑
e∈E m(e) ·w(e) is maximized.

Maximum I-matchings can be found in polynomial time [17,19]. An I-matching m corresponds to a
sub(multi)graph M of G, such that the multiplicity of the edges of G in M is given by the function
m. With slight abuse of notation, M will be also called an I-matching.

Notation. The request graph is denoted R, where a request between two vertices i and j,
denoted (i, j), corresponds to an edge of R. The grooming factor is denoted g. A subgraph of R
is called valid if (a) it respects the grooming constraint, that is, no more than g requests share
the same link, and (b) it contains at most two leaves of the star (this is equivalent to forbidding
bifurcation). Therefore, the problem we consider can be stated as finding a minimum cost partition
of E(G) into valid subgraph, where the cost of a partition is given by the total number of vertices
of the subgraphs involved in the partition. When the physical network is a star and the grooming
factor is at most 2, the possible subgraphs involved in a partition of E(R) are denoted as follows:

• i denotes the request (i, 0).
• i + j denotes the path on three vertices made of the two requests (i, 0) and (j, 0).
• i + (i, j) denotes the subgraph made of the long request (i, j) and the short request (i, 0).
• [i, j] denotes the triangle that consists of the three requests (i, 0), (j, 0), and (i, j).

• 2(i, j) (resp. 2i) denotes the subgraph made of two copies of the request (i, j) (resp. (i, 0)).
• 2i + j denotes the subgraph made of two copies of the request (i, 0) and one copy of the request

(j, 0).
• 2i + 2j denotes the subgraph made of two copies of the request (i, 0) and two copies of the

request (j, 0).

Note that last four subgraphs corresponding to the three last items are only possible if multiple
requests are allowed.

0
i

3

[i,j]

1

i+(i,j)

1

i+j
0

(i,j)

5

2i+2j
3

2i+j
2

2(i,j)
2

2i

Fig. 2. Possible subgraphs in the star for g = 2, together with the notation used to denote them. The number near
each subgraph indicates its savings. Note that the upper subgraphs are only possible if multiple requests are allowed.

The above subgraphs are shown in Fig. 2, together with the saving in the number of ADMs
corresponding to each subgraph. For example, the case 2i + j corresponds to a subgraph containing
two short requests (i, 0) and one short request (j, 0). The saving of this subgraph is 3 because if
every request stood by its own, they would use a total of 6 ADMS, while by grouping them in a
subgraph of type 2i + j they use only 3 ADMs, so the saving is of 6− 3 = 3 ADMs. If only simple
requests are given, then we only have the subgraphs depicted in the lower row of Fig. 2, while
multiple requests allow also for the subgraphs depicted in the upper row. Note that minimizing the
total cost is equivalent to maximizing the total number of savings.

3 Simple requests

We first provide an optimal algorithm in Section 3.1 and then we give a combinatorial characteri-
zation of the optimal solutions in Section 3.2.

3.1 Optimal algorithm

Theorem 1. For any g ≥ 1, there exists a polynomial time polynomial algorithm for Star Traffic
Grooming problem for the case of simple requests.

Proof. Let first g = 1. Each long request (i, j) uses 2 ADMs, and no saving is possible. Therefore,
only short requests of type i can be matched and save 1 ADM at the central node 0, so if the
instance contains x short requests, bx

2 c savings can be done, and such a solution is optimal.
If grooming is allowed, but no multiple requests are allowed, then note that the case g = 2 is the

only interesting case, since for arbitrary g ≥ 2, as we do not allow bifurcations, the only possible
subgraphs are those depicted in the lower row of Fig. 2. So, we focus henceforth on the case g = 2.

We claim that the following Algorithm SimpleMatch

Algorithm SimpleMatch:
Input: A star S and a set R of simple requests between pairs of vertices in S.
Output: a partition of E(R) into a set of valid subgraphs for g = 2.

(1) Build an edge-weighted graph G = (V, E) as follows:
(1.1) For each short request (i, 0) in R, add a vertex vi to V .
(1.2) For each long request (i, j) in R, add a vertex vij to V .
(1.3) For each vertex vij ∈ V , if the vertex vi (resp. vj) is in V , add the edge

{vij , vi} (resp. {vij , vj}) to E with weight 1.
(1.4) For each pair of vertices vi, vj ∈ V , add the edge {vi, vj} to E with weight 3

if the vertex vij is in V , and add it with weight 1 otherwise.
(2) Find a maximum weighted matching M in G.
(3) Output the set of subgraphs corresponding to the edges in M . If some request is

left, output it as a subgraph itself.

returns an optimal solution in polynomial time.
The possible subgraphs involved in the partition of the request set are the five lower subgraphs of

Fig. 2. We only need to show that all the possible subgraphs, together with their savings, correspond
to the weighted edges of the graph G build in the description of the algorithm.

The subgraphs of type i + (i, j) are captured by the edges {vij , vi}, and their weight does
correspond to the unitary savings. Also the subgraphs of type i + j when the request (i, j) /∈ R are
captured by the edge {vi, vj} with weight 1. Finally, let us see how triangles are represented in G.
The key idea is the following.

Claim 2 If for two integers i, j the three requests (i, 0), (j, 0), and (i, j) are in R, there exists an
optimal solution not containing the subgraph i + j.

Indeed, assume that an optimal solution with cost OPT contains the subgraph i + j. We can
remove the request (i, j) from wherever it is, add it to the subgraph i + j, and then the obtained
solution containing the triangle [i, j] has cost OPT ′ ≤ OPT .

Due to Claim 2, whenever three requests (i, 0), (j, 0), and (i, j) belong to R, we do not need to
consider the subgraph i + j. In this case, the edge {vi, vj} with weight 3 corresponds to the triangle
[i, j]. Note that if the edge {vi, vj} is in the matching M , it prevents the vertex vij to be used again,
since the only neighbors of vij in G are vi and vj .

Thus, a maximum weighted matching in G (plus possibly, some single requests) corresponds to a
valid solution for the instance R maximizing the total savings, or equivalently minimizing the total
number of ADMs.

In fact, when the requests are simple, for any g ≥ 3 the problem is also solved by Algorithm Sim-
pleMatch. This is because, as we mentioned above, due to the model that we are assuming the
set of subgraphs involved in any partition of the set of requests is the same for any g ≥ 2. ut

3.2 Structure of an optimal solution

Assume that the maximal number of triangles in a given instance of the problem is k. We show
now that all optimal solutions contain k triangles. Note that even if Algorithm SimpleMatch does
not take into account this property, Lemma 1 provides structural information about the optimal
solutions, which is of interest by itself.

We are given a set of requests R = {`1, · · · , `x, s1, · · · , sy}, where `1, · · · , `x are requests of
length 2 and s1, · · · , sy are requests of length 1. The maximal number of triangles in R is denoted
by max(R).

Lemma 1. Let R be a given set of requests on a star network, and let max(R) = k ≥ 0, let
MAX = {t1 = [1, 2], t2 = [3, 4], · · · , tk = [2k − 1, 2k]} be a maximal set of triangles in R, and let
OPT be any optimal solution for R. Then OPT contains exactly k triangles.

Proof. Assume that OPT does not contain exactly 0 < m ≤ k triangles of MAX (so, OPT contains
k −m of the triangles in MAX) . W.l.o.g. assume these are the triangles t1, t2, · · · , tm. We define
a function f that will assign to each triangle in t1, t2, · · · , tm a triangle or a pair of triangles in
OPT −MAX.

Consider any of these triangles tj = (2j − 1, 2j), 1 ≤ j ≤ m.
Since tj 6∈ OPT , we have to consider two cases, according to whether the request (2j − 1, 2j) is

paired in OPT with one short request (Case a) or it is by itself in OPT (Case b):
Case a: (2j − 1, 2j) is paired in OPT with (2j − 1, 0) (or, similarly, with (2j, 0)).
Consider the request (2j, 0). If (2j, 0) is paired with one short request, or with one long request, or
it is by itself in OPT , then by moving (2j, 0) to join (2j − 1, 2j) and (2j − 1, 0) we get a solution
SOL with cost(SOL) < cost(OPT), a contradiction. So we conclude that in this case (2j, 0) is
in another triangle t (which is clearly neither of the triangles t1, t2, · · · , tm). In this case we define
f(tj) = t.
Case b: (2j − 1, 2j) is a component containing only itself in OPT .
Consider the request (2j − 1, 0) and (2j, 0). They cannot form together one component of OPT ,
they cannot form two components with two other short requests, and neither of them can be a
component of itself in OPT ; this is since in each of these cases we could add them to (2j − 1, 2j)
and get a solution SOL with cost(SOL) < cost(OPT), a contradiction. Hence, they are matched
to long requests in OPT . They cannot both be paired to long requests alone, since then a solution
SOL that will add them to (2j − 1, 2j) will satisfy cost(SOL) < cost(OPT), a contradiction. So,
at least one of them is in a triangle t of OPT . In this case we define f(tj) = t. If both of them are
connected to triangles t1j and t2j then we define f(tj) = {t1j , t2j}.

At this point, the set of triangles in t1, t2, · · · , tm is partitioned into two subsets T1 and T2 of
sizes s1 and S2, respectively, where s1 + s2 = m. Each triangle in T1 is mapped to one triangle in
OPT . We claim that this mapping is 1-1. Otherwise there are two triangles tj and tj′ mapped to the
same triangle of OPT . This is because w.l.o.g. OPT contains the components 2j − 1 + (2j − 1, 2j)
and 2j′ − 1 + (2j′ − 1, 2j′) and the triangle [2j, 2j′]; these components contribute 9 ADMs to the
solution. The solution OPT ′ obtained from OPT by taking out all these components and adding
tj , tj′ and (2j, 2j′) uses one less ADMs, a contradiction. These triangles correspond to s1 triangles
of OPT .

Each triangle in T2 is mapped to two triangles in OPT . These triangles in OPT contain the
short requests (2j−1, 0) and (2j, 0). The number of vertices > 0 in these triangles is thus at least s2,
and therefore that ∪t∈T2f(t) contain at least s2 triangles. Since it must contain at most s2 triangles,
it follows that the number of these triangles is exactly s2, and thus the total number of triangles in
OPT in ∪t∈T1∪T2f(t) is m. These, together with the k−m triangles in OPT that belong to MAX,
sum up to a total of k triangles in OPT . This completes the proof. ut

4 Multiple requests

4.1 Motivation

If multiple requests are allowed, the problem becomes more complicated. Besides the subgraphs of
type 2(i, j), the greedy removal of any type of subgraph will not lead to an optimal solution. First
we show an example where the pairing if identical short requests leads to a sub-optimal solution:
Consider a star with 3 leaves a, b, and c with the request set R = {a, a, b, c, (a, b), (a, c)}. If we pair the
two short requests a in the same component, the cost will be at least 8 whereas an optimal solution
uses two triangles [a, b] and [a, c]. One could be tempted to remove greedily all the triangles, or
similarly a set of triangles of maximum cardinality. The following is a counter example showing that

this strategy is not optimal. Consider the request set R = {a, a, b, b, (a, b)}. A solution containing
the only triangle [a, b] will have a cost of at least 6 ADMs, as opposed to the cost of 5 ADMs in the
optimal solution (a, b), 2a + 2b.

First we provide in Subsection 4.2 an approximation algorithm in the same spirit of Section 3.
Namely, we construct an auxiliary edge-weighted graph G made of appropriate gadgets that capture
the possible subgraphs involved in a partition of the request graph, and then we find a feasible
solution to our problem by optimally solving a maximum I-matching problem in G. We then present
another approach in Subsection 4.3, also based on I-matching. We prove that these two apparently
different algorithms constitute a 4/3-approximation to the problem for g = 2. Before presenting the
algorithms, we make an observation to be used in the sequel.

Claim 3 The subgraphs of type 2(i, j) can be greedily removed from R without changing the cost of
an optimal solution.

Proof. Assume that R contains two copies of the request (i, j), and that in an optimal solution
OPT these copies belong to different subgraphs B1 and B2. Since |V (B1)| ≥ 2 and |V (B2)| ≥ 2, the
solution OPT ′ obtained from OPT by replacing the subgraphs B1 and B2 with B′

1 = (B1 \ (i, j))∪
(B1 \ (i, j)) and B′

2 = 2(i, j) satisfies cost(OPT ′) ≤ cost(OPT). ut

By Claim 3, we assume henceforth that the requests of type (i, j) (i.e., long requests) are simple.
For any leaf i of a star S, denote by si (resp. `i) the number of short (resp. long) requests of node
i in the request set R. We also let S =

∑
i si and L =

∑
i `i.

4.2 First approach

Our first approach is described in Algorithm MultipleMatch1.

Algorithm MultipleMatch1:
Input: A star S and a set R of (possibly multiple) requests between pairs of vertices in S.
Output: a partition of E(R) into a set of valid subgraphs for g = 2.

(1) Build an auxiliary edge-weighted multigraph G = (V, E) as follows:
(1.1) For each leaf i in S, add a new vertex vi to V .
(1.2) For each vertex vi ∈ V , add a self-loop in vi to E with weight 2.
(1.3) For each long request (i, j) in R, add two new vertices vij , v

′
ij to V and the following

edges to E: {vi, vij} with weight 1, {vj , v
′
ij} with weight 1, {vij , v

′
ij} with weight 1,

and {vij , v
′
ij} with weight -1.

(2) Define the following function I, which associates an interval of natural numbers with
each vertex in V :

(2.1) I(vi) = [0, si] for each vi ∈ V .
(2.2) I(vij) = I(v′ij) = [2, 3] for each vij , v

′
ij ∈ V .

(3) Find a maximum I-matching M of G using the algorithm of [17].
(4) Output the following subgraphs of R according to M :

(4.1) For each self-loop of vertex vi in M , output subgraph 2i.
(4.2) For each i, j in S, if the two edges {vi, vij}, {vj , v

′
ij} and the edge {vij , v

′
ij} with

weight 1 are in M , output subgraph [i, j].
(4.3) For each i, j in S, if the edge {vi, vij} and the two copies of the edge {vij , v

′
ij} are in

M , output subgraph i + (i, j).
(4.4) For each i, j in S, if the edge {vj , v

′
ij} and the two copies of the edge {vij , v

′
ij} are in

M , output subgraph j + (i, j).
(4.5) If some request is left, output it as a subgraph itself.

v

1

[2,3]

i

j

k

(a) (b)

R

G

[2,3]

[2,3]

[2,3]

[0,3]

[0,2]

[0,4]

1

1

1

1

1

2

2

2

-1

-1

ijvi

vj

vk

v'ij

v'ik

vik

Fig. 3. (a) A traffic instance I in a star on three vertices i, j, k, with si = 3, sj = 2, and sk = 4. (b) Auxiliary graph
G and function I built in Algorithm MultipleMatch1. The number beside each edge indicates its weight, while the
interval in brackets beside each vertex indicates its allowed degrees.

An example of the graph G and the function I built in Algorithm MultipleMatch1 is illus-
trated in Fig. 3 for a simple star on four vertices. We now briefly discuss the intuition behind the
algorithm. For each leaf i of S, the degree bounds at node vi assure that no more than si short
requests can be used at vertex i. The degree bounds at vertices vij , v

′
ij make sure that the output of

the I-matching algorithm can be indeed translated to a partition of the requests in R, and such the
savings of each subgraph correspond to the sum of the weights of the edges in M corresponding to
this subgraph. As one can check from step (4) of Algorithm MultipleMatch1, we do not use any
subgraph of type 2i + 2j, 2i + j, or i + j. The key point is that the gadgets used by the algorithm
capture simultaneously all other possible subgraphs. The fact of forgetting some subgraphs has of
course direct consequences in the worst-case performance of the algorithm, as stated in the following
theorem.

Theorem 4. Algorithm MultipleMatch1 is a polynomial-time 4/3-approximation algorithm for
the Star Traffic Grooming problem for g = 2 when multiple requests are allowed.

Proof. First, the algorithm clearly runs in polynomial time, as the algorithm of [17] used in step (3)
does so. We now argue that the output of the algorithm defines a feasible solution to Star Traffic
Grooming for g = 2. From steps (4.1)-(4.5) it follows that the number of short requests used at
each vertex i of S by the output of Algorithm MultipleMatch1 is equal to the degree (taking
into account the multiplicity of the edges, and considering that a self-loop induces degree 2) of vi

in the I-matching M of G. Since by definition of I(v), the degree of vi in M is at most si, no more
than si short requests are used at vertex i.

In order to analyze the approximation ratio of the algorithm, we now discuss how the output
M reflects the cost of the solution of Star Traffic Grooming that it defines. (Recall Fig. 2 for
the definition of the possible subgraphs and their associated savings.) In case (4.1), for each vertex
i in S, a subgraph of type 2i has an associated saving of 2, which corresponds to the weight of a
self-loop at vertex vi in G. Let i, j be two vertices in S such that the long request (i, j) is in R. In
case (4.2), if the two edges {vi, vij}, {vj , v

′
ij} and one copy of {vij , v

′
ij} belong to M , then the fact

that M is a maximum I-matching implies that the copy of {vij , v
′
ij} in M is the one with positive

weight. In this case, the sum of the weights of these three edges is 3, which is equal to the saving of
a triangle [i, j]. In case (4.3), the edge {vi, vij} and the two copies of the edge {vij , v

′
ij} are in M , so

the sum of the weights of these three edges is 1, which corresponds to the saving of the subgraph
i+(i, j). Case (4.4) is symmetric to case (4.3). If none of cases (4.2), (4.3), or (4.4) holds, then none
of the edges {vi, vij} and {vj , v

′
ij} is in M . From the degree constraints at vertices vij , v

′
ij , one can

check that the only remaining feasible possibility for an I-matching is to take both copies of the
edge {vij , v

′
ij}, therefore incurring a total weight of 0, which indeed corresponds to not saving any

ADM.

Finally, in case (4.5), a subgraph of R made of a single request has a saving of 0.
From the above discussion, it follows that there is a bijective correspondence between the gadgets

used by the I-matching and subgraphs of type 2i, [i, j], or i + (i, j). Therefore, our algorithm finds
the best solution under the constraint of not using the other subgraphs that incur some saving,
namely those of type 2i + 2j, 2i + j, or i + j (see Fig. 2).

Given an instance R, let OPT be the cost of an optimal solution S∗, and let ALG be the cost
given by Algorithm MultipleMatch1. We construct from S∗ another solution S with cost C as
follows. For every subgraph B of type 2i + 2j, 2i + j, or i + j in S∗, we split B into two subgraphs
Bi and Bj , where Bi (resp. Bj) contains the short requests of vertex i (resp. j). Note that for each
such subgraph B, the cost of B in S∗ is 3, while the cost of Bi plus the cost of Bj in S is 4. As all
the other subgraphs remain unchanged, it follows that C ≤ 4

3 · OPT . But as no subgraph of type
2i+2j, 2i+ j, or i+ j is in solution S, the solution found by Algorithm MultipleMatch1 is equal
or better than S, so ALG ≤ C, which in turn implies that ALG ≤ 4

3 ·OPT . ut

4.3 Second approach

In this section we propose an algorithm that uses an oracle (called TriangleOracle in the algo-
rithm) providing part of the subgraphs, namely all the triangles [i, j] of the solution. We show that
the algorithm is optimal provided that the oracle is optimal. In this way we reduce the problem to
the problem of finding an optimal set of triangles.

Algorithm MultipleMatch2:
Input: A star S and a set R of (possibly multiple) requests between pairs of vertices in S.
Output: a partition of E(R) into a set of valid subgraphs for g = 2.

(1) Build an unweighted graph G = (V,E) as follows:
(1.1) V is the set of leaves of S, that is V = {1, . . . , n}.
(1.2) {i, j} ∈ E whenever the request (i, j) belongs to R.

// Note that dG(i) = `i for each i = 1, . . . , n.
(2) Invoke the algorithm TriangleOracle(G, s), where s is the vector of the values si of

the number of short requests i. The algorithm returns a subgraph T of G.
(3) For each edge {i, j} ∈ E(T), return the triangle [i, j] as a subgraph and remove it from

R.
(4) For each node i ∈ V (G) build b si−dT (i)

2 c subgraphs of type 2i and at most one subgraph
of type i (but do not remove them from R).

(5) For each subgraph of type i built in the previous step, choose arbitrarily a request
(i, j) ∈ R, build the subgraph i + (i, j) and remove it from R. If no such request exists,
do nothing.

(6) Build a complete n-partite graph whose nodes are the subgraphs built at step (4) that
are still in R. There is an edge between two subgraphs if they correspond to different
nodes of S. Calculate a maximum matching of this graph. Each edge of this matching
corresponds to a subgraph of the form 2i + 2j, 2i + j or i + j, and each unmatched node
of corresponds to a subgraph of type i. Return all these subgraphs.

From the above description of the algorithm, it follows that the set of subgraphs of type [i, j] (i.e.
triangles) returned by algorithm MultipleMatch2 corresponds to the edges E(T) of the subgraph
returned by TriangleOracle. For this reason, in the rest of this section we will use the terms edge
and triangle interchangeably. In order algorithm MultipleMatch2 to be optimal, it is a necessary
condition that TriangleOracle returns the set of triangles of an optimal solution. We will prove
that this is also a sufficient condition.

Theorem 5. If the set of triangles E(T) returned by TriangleOracle is the set of triangles of
some optimal solution, then MultipleMatch2 returns an optimal solution.

Proof. We have to show that the decisions taken at steps (4), (5) and (6) are correct. We start with
step (4).

We say that a request i paired if its subgraph contains another request i, i.e., i is in a subgraph
of type 2i + 2j, 2i + j, or 2i, and unpaired otherwise. We claim that there is an optimal solution
that does not contain two subgraphs G1 and G2 such that both contain an unpaired request i. This
implies that the decision taken by the algorithm in step (4) is optimal.

Indeed, consider an optimal solution with the same set of triangles returned by our algorithm,
i.e. the set E(T). Assume by contradiction that it contains two such subgraphs G1 and G2. If one
of these subgraphs (without loss of generality G1) does not contain a long request (i, j), then the
request i in G2 can be moved to the subgraph G1. In this case it does not increase the cost of G1,
because it shares the ADMs of the request i in G1, and its removal from G2 does not increase the
cost of G2. Otherwise both G1 and G2 contain long requests (i, j1) and (i, j2) respectively. Moreover,
j1 6= j2 because by Claim 3 we assume that the long requests form a simple set of requests. Also
neither one of G1 and G2 is a triangle, because these triangles are not returned by our algorithm,
and therefore are not in this optimal solution. Therefore G1 = i + (i, j1) and G2 = i + (i, j2) and
they use 6 ADMs in total. In this case we can replace G1 and G2 with the three subgraphs 2i, (i, j1),
and (i, j2) having a total cost of 6 ADMs, to obtain an optimal solution as claimed.

We proceed with the correctness of step (5). In the rest of the proof we consider the cost of
a solution in the following way. The L long requests incur a fixed cost of 2L ADMs. All other
(i.e. short) requests sharing one of these ADMs do not incur any cost for these ADMs. The first
observation is that, if there is an unpaired request i at the beginning of this step, a subgraph of type
i + (i, j) is an optimal subgraph for it. This is because it incurs a cost of at most 1 ADM (at node
0) in this case, and in any other case it will incur a cost of at least 1 ADM (at node i). The second
observation is that no two unpaired requests i and j and a long request (i, j) can exist in R at this
point. This is because in this case they would incur a total cost of 1 in the triangle [i, j], and in any
other subgraph each one of them incurs a cost of 1, contradicting the optimality of the triangles
returned by TriangleOracle. In other words, no two short requests i and j can “compete” for a
long request (i, j), therefore greedily forming the subgraphs i + (i, j) will not cause a conflict.

The correctness of step (6) is now almost straightforward. At this point we are left with subgraphs
of type i and 2i which might be merged to form bigger subgraphs. It can be checked that all the other
subgraphs can not be merged. Moreover, these subgraphs can be merged only in pairs, namely pairs
of the form i + j, 2i + j, or 2i + 2j. Each such merging operation reduces the cost of the solution
by one ADM. Therefore the goal of the algorithm is to maximize the number of these merging
operations. This is equivalent to calculate the maximum cardinality matching of the auxiliary graph
built in step (6). ut

Following the above result, our goal is to find an algorithm TriangleOracle(G, s) that returns
the set of triangles of some optimal solution. Having in mind the counter examples presented at the
beginning of this section, we present the following lemma that gives a partial characterization of an
optimal set of triangles.

Lemma 2. There is an optimal solution S∗ with the following property: Let T be the set of triangles
of S∗ and let [i, j] ∈ T . Then either si − dT (i) is even or S∗ contains a subgraph i + (i, j).

Proof. We consider the optimal solution S∗ that is returned by the algorithm using the set of
triangles T returned by the oracle. Let us consider also a triangle [i, j] ∈ T . Assume that si − dT (i)
is odd and there is no subgraph i+(i, j) in S∗. Then after step (3) there will be an odd number of i
requests left in R. Therefore there will be one unpaired request i after step (4). This request will not
participate in a subgraph i + (i, j) at step (5) by the assumption. Therefore it will remain unpaired
in S∗. In this case we can obtain a solution S∗∗ from S∗ by removing the request i from the triangle
[i, j], and moving it to the subgraph containing this unpaired request without increasing the cost.
If j has also this property that this leads to a contradiction to the optimality of S∗, otherwise S∗∗

is the claimed optimal solution. ut

By the above Lemma we can restrict ourselves to algorithms not returning any triangle [i, j]
in T if this causes si − dT (i) (or sj − dT (j)) to be odd. For this reason we propose the following
algorithm as a first attempt towards a TriangleOracle.

Algorithm TrianglesViaIFactor:
Input: A Graph G = (V, E), and a vector s of numbers indexed by V .
Output: A subgraph T of G.

(1) Define the function f : V → N as follows:

f(i) =
{

si, if si ≤ `i

`i − (si − `i) mod 2, otherwise

(2) Find a maximum I-factor T in G, where I(i) = [0, f(i)] for each i ∈ V .

Theorem 6. MultipleMatch2 is a 4/3-approximation for the Star Traffic Grooming prob-
lem if it uses TrianglesViaIFactor as TriangleOracle.

Proof. Let S be a solution returned by the algorithm and let S∗ be an optimal solution. Let T ′ be
the set of triangles of S \ S∗. Consider the 2 |T ′| short requests in these triangles (of S). Let x be
the number of short requests participating in the same subgraphs as these requests in S∗. Then the
cost OPT of S∗ satisfies

OPT ≥ 3
4
(2

∣∣T ′∣∣ + x) =
3
2

∣∣T ′∣∣ +
3
4
x

because these subgraphs are not triangles by the way T ′ is chosen, and in any subgraph of another
type a short request incurs a cost of 3/4 in average, the best case being a subgraph of type 2i + 2j
using 3 ADMs for 3 short requests.

On the other hand, the cost ALG of S satisfies

ALG ≤ ∣∣T ′∣∣ + x ≤ 3
2

∣∣T ′∣∣ + x

because all these x requests are either paired in S, or part of a subgraph of type i + (i, j). In both
cases each such request incurs a cost of at most 1. Comparing the right hand sides of the above
inequalities we conclude the claim. ut

However the proposed algorithm is not optimal, as the following lemma shows:

Lemma 3. There is an instance for which MultipleMatch2 using TrianglesViaIFactor as Tri-
angleOracle returns a sub-optimal solution.

Proof. Consider the following instance, on a star with 4 leaves, with R = {(1, 2), (2, 3), (3, 4), (4, 1),
1, 2, 2, 2, 2, 4, 4, 4, 4, 4}.

In this case G is a C4, ` = (1, 1, 1, 1), s = (1, 4, 0, 5) the f = (1, 2, 0, 1), and any maximum I-
factor has cardinality 1. The oracle might return the singleton T = {(1, 2)} which leads to a solution
with a cost of 16 ADMs. On the other hand, there is a solution with T ∗ = {(4, 1)} as the set of its
triangles, implying a cost 15 ADMs. ut

5 Conclusions

We studied the traffic grooming problem in star networks when bifurcation is not allowed. We
presented a polynomial-time algorithm for the case of simple requests, and gave some insight into
the structure of an optimal solution. Though the algorithm can be extended to the case of multiple
long requests, the status of the problem when multiple short requests are allowed remains unsolved.

We presented two approaches with good approximation guarantee using matching techniques. We
expect our techniques to lead to a polynomial-time algorithm for the case g = 2. For instance, in
the approach we presented in Section 4.2, in order to obtain a polynomial-time algorithm for the
problem it would be enough to find the right gadgets that also capture the missing subgraphs. In
fact, the only subgraph we have not been able to capture is the quadruple given by two pairs of short
requests, so we suspect that either such a gadget may be found, or the quadruple would probably
play a distinguished role in a possible NP-completeness proof.

While, according to our results, matching techniques prove to be very helpful for the case g = 2,
it is not clear how to use them for g > 2. It might well be the case that more complicated techniques
are needed to deal with higher values of the grooming factor, even for this apparently simple network
topology. We believe that our study sheds light on the complexity of traffic grooming for networks
whose maximal degree is more than two. Among them, it will be of interest to study the complexity
of the problem for tree networks, bounded degree networks, or planar networks.

References

1. O. Amini, S. Pérennes, and I. Sau. Hardness and Approximation of Traffic Grooming. Theoretical Computer
Science, 410(38-40):3751–3760, 2009.

2. J.-C. Bermond, L. Braud, and D. Coudert. Traffic grooming on the path. Theoretical Computer Science, 384(2-
3):139–151, 2007.

3. C. A. Brackett. Dense wavelength division multiplexing networks: principles and applications. IEEE Journal on
Selected Areas in Communications, 8:948–964, 1990.

4. T. Chow and P. Lin. The ring grooming problem. Networks, 44(3):194–202, 2004.

5. N. K. Chung, K. Nosu, and G. Winzer. Special issue on dense wdm networks. IEEE Journal on Selected Areas
in Communications, 8, 1990.

6. R. Diestel. Graph Theory, volume 173. Springer-Verlag, 2005.

7. D. H. C. Du and R. J. Vetter. Distributed computing with high-speed optical networks. In Proceedings of IEEE
Computer, volume 26, pages 8–18, 1993.

8. R. Dutta and N. Rouskas. Traffic grooming in WDM networks: Past and future. IEEE Network, 16(6):46–56,
2002.

9. M. Flammini, G. Monaco, L. Moscardelli, M. Shalom, and S. Zaks. Approximating the Traffic Grooming Problem
in Tree and Star Networks. Journal of Parallel and Distributed Computing, 68(7):939–948, 2008.

10. M. Flammini, L. Moscardelli, M. Shalom, and S. Zaks. Approximating the Traffic Grooming Problem. Journal
of Discrete Algorithms, 6(3):472–479, 2008.

11. L. Gargano and U. Vaccaro. “Routing in All–Optical Networks: Algorithmic and Graph-Theoretic Problems” in:
Numbers, Information and Complexity. Kluwer Academic, 2000.

12. P. E. Green. Fiber-Optic Communication Networks. Prentice Hall, 1992.

13. S. Huang, R. Dutta, and G. Rouskas. Traffic Grooming in Path, Star, and Tree Networks: Complexity, Bounds,
and Algorithms. IEEE Journal on Selected Areas in Communications, 24(4):66–82, 2006.

14. R. Klasing. Methods and problems of wavelength-routing in all-optical networks. In Proceedings of the MFCS
Workshop on Communication, pages 1–9, 1998.

15. Z. Li and I. Sau. Graph Partitioning and Traffic Grooming with Bounded Degree Request Graph. In Proceedings of
the 35th International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages 5911 of LNCS,
pages 285–295, 2009.

16. X. Muñoz and I. Sau. Traffic Grooming in Unidirectional WDM Rings with Bounded Degree Request Graph. In
Proceedings of the 34th International Workshop on Graph-Theoretic Concepts in Computer Science (WG), pages
300–311, volume 5344 of LNCS, 2008.

17. R. Pulleyblank. Faces of Matching Polyhedra. PhD thesis, University of Waterloo, 1973.

18. R. Ramaswami. Multi-wavelength lightwave networks for computer communication. IEEE Communications
Magazine, 31:78–88, 1993.

19. A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.

20. K. Zhu and B. Mukherjee. A review of traffic grooming in wdm optical networks: Architecture and challenges.
Optical Networks Magazine, 4(2):55–64, 2003.

