## Optimization in Graphs Under Degree Constraints.

Application to Telecommunication Networks

#### Ignasi Sau Valls Mascotte – MA4

#### Advisors: Jean-Claude Bermond, David Coudert, Xavier Muñoz

October 16, 2009

# Traffic grooming

Degree-constrained subgraph problems

# Traffic grooming

- Motivation
- Overview of the results

Degree-constrained subgraph problems

- Motivation
- Overview of the results

# Traffic grooming

- Motivation
- Overview of the results
- Some details on one aspect

Degree-constrained subgraph problems

- Motivation
- Overview of the results
- Some details on one aspect



# Degree-constrained subgraph problems

\_\_\_\_ ▶

글 🕨 🖌 글

### General idea

#### • WDM (Wavelength Division Multiplexing) networks

- 1 wavelength (or frequency) = up to 40 Gb/s
- 1 fiber = hundreds of wavelengths = Tb/s
- Traffic grooming consists in packing low-speed traffic flows into higher speed streams

 $\longrightarrow$  we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

#### • Objectives:

- Better use of bandwidth
- Reduce the equipment cost (mostly given by electronics)

< ロ > < 同 > < 回 > < 回 >

- WDM (Wavelength Division Multiplexing) networks
  - 1 wavelength (or frequency) = up to 40 Gb/s
  - 1 fiber = hundreds of wavelengths = Tb/s
- Traffic grooming consists in packing low-speed traffic flows into higher speed streams

 $\longrightarrow$  we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

#### • Objectives:

- Better use of bandwidth
- Reduce the equipment cost (mostly given by electronics)

イロト イ団ト イヨト イヨト

- WDM (Wavelength Division Multiplexing) networks
  - 1 wavelength (or frequency) = up to 40 Gb/s
  - 1 fiber = hundreds of wavelengths = Tb/s
- Traffic grooming consists in packing low-speed traffic flows into higher speed streams

 $\longrightarrow$  we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

- Objectives:
  - Better use of bandwidth
  - Reduce the equipment cost (mostly given by electronics)

< □ > < 同 > < 三 > < 三 >

- **Request** (*i*, *j*): two vertices (*i*, *j*) that want to exchange (low-speed) traffic
- Grooming factor C:

$$C = \frac{Capacity of a wavelength}{Capacity used by a request}$$

\* Typical values of the grooming factor: SDH: 4, 16, 64, 256, ... SONET: 3, 12, 48, ...

**Example:** Capacity of one wavelength = 2.5 Gb/sCapacity used by a request = 640 Mb/s  $\Rightarrow$  C = 4

 load of an arc in a wavelength: number of requests using this arc in this wavelength (≤ C)

- **Request** (*i*, *j*): two vertices (*i*, *j*) that want to exchange (low-speed) traffic
- Grooming factor C:

## $C = \frac{\text{Capacity of a wavelength}}{\text{Capacity used by a request}}$

Typical values of the grooming factor:
 SDH: 4, 16, 64, 256, ...
 SONET: 3, 12, 48, ...

**Example:** Capacity of one wavelength =  $2.5 \ Gb/s$ Capacity used by a request =  $640 \ Mb/s$   $\Rightarrow C = 4$ 

 load of an arc in a wavelength: number of requests using this arc in this wavelength (≤ C)

Ignasi Sau Valls (Mascotte - MA4)

- **Request** (*i*, *j*): two vertices (*i*, *j*) that want to exchange (low-speed) traffic
- Grooming factor C:

$$C = \frac{\text{Capacity of a wavelength}}{\text{Capacity used by a request}}$$

Typical values of the grooming factor:
 SDH: 4, 16, 64, 256, ...
 SONET: 3, 12, 48, ...

#### Example:

Capacity of one wavelength =  $2.5 \ Gb/s$ Capacity used by a request =  $640 \ Mb/s$ 

 $\Rightarrow C = 4$ 

 load of an arc in a wavelength: number of requests using this arc in this wavelength (≤ C)

- **Request** (*i*, *j*): two vertices (*i*, *j*) that want to exchange (low-speed) traffic
- Grooming factor C:

$$C = \frac{\text{Capacity of a wavelength}}{\text{Capacity used by a request}}$$

Typical values of the grooming factor:
 SDH: 4, 16, 64, 256, ...
 SONET: 3, 12, 48, ...

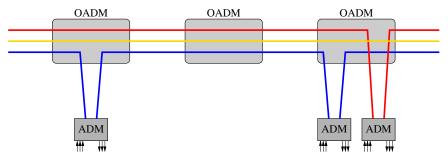
#### Example:

Capacity of one wavelength = 2.5 Gb/sCapacity used by a request = 640 Mb/s  $\Rightarrow$  C = 4

 load of an arc in a wavelength: number of requests using this arc in this wavelength (≤ C)

## ADM and OADM

- OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength



We want to minimize the number of ADMs

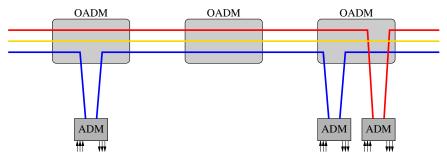
• We need to use an **ADM only at the endpoints of a request** (lightpaths) in order to save as many ADMs as possible

Ignasi Sau Valls (Mascotte - MA4)

Ph.D defense

## ADM and OADM

- OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength

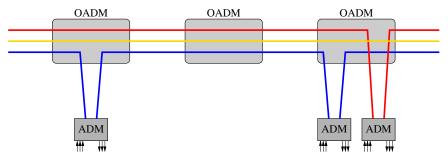


#### We want to minimize the number of ADMs

• We need to use an **ADM only at the endpoints of a request** (lightpaths) in order to save as many ADMs as possible

## ADM and OADM

- OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength



- We want to minimize the number of ADMs
- We need to use an **ADM only at the endpoints of a request** (lightpaths) in order to save as many ADMs as possible

Ignasi Sau Valls (Mascotte – MA4)

#### Model:

| Topology                 | $\rightarrow$ | graph G                   |
|--------------------------|---------------|---------------------------|
| Request set              | $\rightarrow$ | graph <i>R</i>            |
| Grooming factor          | $\rightarrow$ | integer C                 |
| Wavelength               | $\rightarrow$ | Subgraph of R             |
| Requests in a wavelength | $\rightarrow$ | edges in a subgraph of R  |
| ADM in a wavelength      | $\rightarrow$ | vertex in a subgraph of R |

• A fundamental case is when  $G = \vec{C}_n$  (unidirectional ring)

• It is also natural to consider symmetric requests

• • • • • • • • • • • • •

#### Model:

| Topology                 | $\rightarrow$ | graph G                   |
|--------------------------|---------------|---------------------------|
| Request set              | $\rightarrow$ | graph <i>R</i>            |
| Grooming factor          | $\rightarrow$ | integer C                 |
| Wavelength               | $\rightarrow$ | Subgraph of R             |
| Requests in a wavelength | $\rightarrow$ | edges in a subgraph of R  |
| ADM in a wavelength      | $\rightarrow$ | vertex in a subgraph of R |

• A fundamental case is when  $G = \overrightarrow{C}_n$  (unidirectional ring)

• It is also natural to consider symmetric requests

• • • • • • • • • • • •

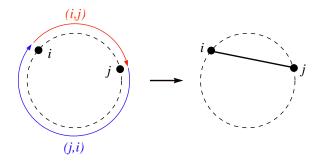
#### Model:

| Topology                 | $\rightarrow$ | graph G                   |
|--------------------------|---------------|---------------------------|
| Request set              | $\rightarrow$ | graph <i>R</i>            |
| Grooming factor          | $\rightarrow$ | integer C                 |
| Wavelength               | $\rightarrow$ | Subgraph of R             |
| Requests in a wavelength | $\rightarrow$ | edges in a subgraph of R  |
| ADM in a wavelength      | $\rightarrow$ | vertex in a subgraph of R |

- A fundamental case is when  $G = \overrightarrow{C}_n$  (unidirectional ring)
- It is also natural to consider symmetric requests

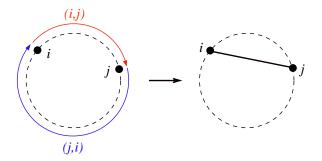
< 6 b

• Symmetric requests: whenever there is the request (*i*, *j*), there is also the request (*j*, *i*).



W.I.o.g. requests (*i*, *j*) and (*j*, *i*) are in the same subgraph
 → each pair of symmetric requests induces load 1
 → grooming factor *C* ⇔ each subgraph has < *C* edge

• Symmetric requests: whenever there is the request (*i*, *j*), there is also the request (*j*, *i*).

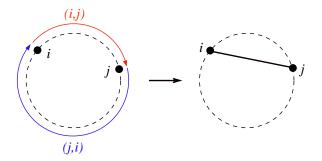


• W.I.o.g. requests (*i*, *j*) and (*j*, *i*) are in the same subgraph

ightarrow each pair of symmetric requests induces load 1

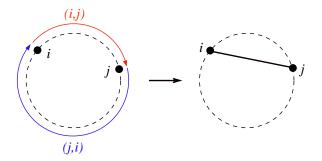
 $\rightarrow$  grooming factor  $C \Leftrightarrow$  each subgraph has  $\leq C$  edges.

• Symmetric requests: whenever there is the request (*i*, *j*), there is also the request (*j*, *i*).



- W.I.o.g. requests (i, j) and (j, i) are in the same subgraph
  - $\rightarrow$  each pair of symmetric requests induces load 1
  - $\rightarrow$  grooming factor  $C \Leftrightarrow$  each subgraph has  $\leq C$  edges.

• Symmetric requests: whenever there is the request (*i*, *j*), there is also the request (*j*, *i*).



- W.I.o.g. requests (i, j) and (j, i) are in the same subgraph
  - $\rightarrow$  each pair of symmetric requests induces load 1
  - $\rightarrow$  grooming factor  $C \Leftrightarrow$  each subgraph has  $\leq C$  edges.

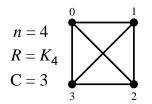
#### Traffic Grooming in Unidirectional Rings (with symmetric requests)

Input An *undirected* graph *R* on *n* nodes (request set); A grooming factor *C*.

## **Output** A partition of E(R) into subgraphs $R_1, \ldots, R_W$ with $|E(R_i)| \le C$ , i=1,...,W.

## **Objective** Minimize $\sum_{i=1}^{W} |V(R_i)|$ .

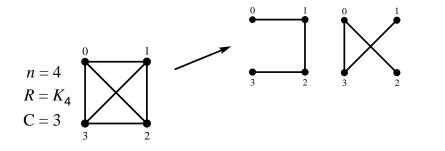
< A >



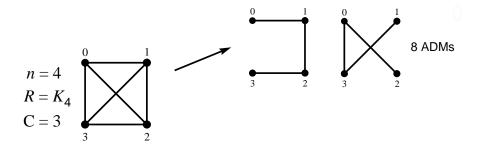
э

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

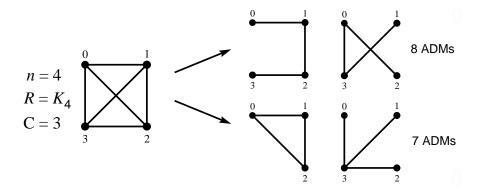
#### Example (unidirectional ring with symmetric requests)



#### Example (unidirectional ring with symmetric requests)



#### Example (unidirectional ring with symmetric requests)



< 🗇 > < 🖻

## Graph of the thesis

Traffic grooming

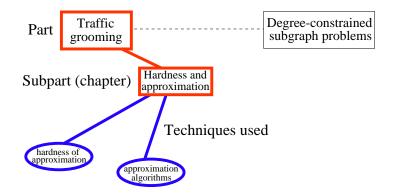
Degree-constrained subgraph problems

э

A (10) > A (10) > A (10)



< 17 ▶



э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

## Preliminaries: approximation algorithms

 Given a (typically NP-hard) minimization problem Π, ALG is an *α*-approximation algorithm for Π (with *α* ≥ 1) if for any instance *I* of Π,

 $ALG(I) \leq \alpha \cdot OPT(I).$ 

• Class APx (Approximable):

an NP-hard optimization problem is in APX if it can be approximated within a constant factor.

**Example**: MINIMUM VERTEX COVER has a 2-approximation.

• Class PTAS (Polynomial-Time Approximation Scheme):

an NP-hard optimization problem is in PTAS if it can be approximated within a constant factor  $1 + \varepsilon$ , for all  $\varepsilon > 0$  (the best one can hope for an NP-hard problem).

**Example**: MAXIMUM KNAPSACK.

< 日 > < 同 > < 回 > < 回 > < 回 > <

## Preliminaries: approximation algorithms

 Given a (typically NP-hard) minimization problem Π, ALG is an α-approximation algorithm for Π (with α ≥ 1) if for any instance / of Π,

 $ALG(I) \leq \alpha \cdot OPT(I).$ 

#### • Class APX (Approximable):

an NP-hard optimization problem is in APX if it can be approximated within a constant factor.

#### **Example**: MINIMUM VERTEX COVER has a 2-approximation.

• Class PTAS (Polynomial-Time Approximation Scheme):

an NP-hard optimization problem is in PTAS if it can be approximated within a constant factor  $1 + \varepsilon$ , for all  $\varepsilon > 0$  (the best one can hope for an NP-hard problem).

**Example**: MAXIMUM KNAPSACK.

イロト 不得 トイヨト イヨト

## Preliminaries: approximation algorithms

 Given a (typically NP-hard) minimization problem Π, ALG is an α-approximation algorithm for Π (with α ≥ 1) if for any instance / of Π,

 $ALG(I) \leq \alpha \cdot OPT(I).$ 

#### • Class APX (Approximable):

an NP-hard optimization problem is in APX if it can be approximated within a constant factor.

**Example**: MINIMUM VERTEX COVER has a 2-approximation.

#### • Class **PTAS** (Polynomial-Time Approximation Scheme):

an NP-hard optimization problem is in PTAS if it can be approximated within a constant factor  $1 + \varepsilon$ , for all  $\varepsilon > 0$  (the best one can hope for an NP-hard problem).

#### Example: MAXIMUM KNAPSACK.

## Hardness of RING TRAFFIC GROOMING

- NP-complete if C is part of the input [Chiu and Modiano. IEEE JLT'00]
- Not in APx if C is part of the input [Huang, Dutta, and Rouskas. IEEE JSAC'06]
- Remains NP-complete for fixed C ≥ 1 (the proof assumes a bounded number of wavelengths) [Shalom, Unger, and Zaks. FUN'07]
- ★ Open problem: inapproximability for fixed C?
  Conjecture: Not in PTAS for fixed C.
  [Wan, Calinescu, Liu, and Frieder. IEEE JSAC'00]
  [Chow and Lin. Networks'04]

Theorem (Amini, Pérennes, and S.)

RING TRAFFIC GROOMING is not in PTAS for any fixed  $C \ge 1$ . PATH TRAFFIC GROOMING is not in PTAS for any fixed  $C \ge 2$ .

### Hardness of RING TRAFFIC GROOMING

- NP-complete if C is part of the input [Chiu and Modiano. IEEE JLT'00]
- Not in APX if C is part of the input [Huang, Dutta, and Rouskas. IEEE JSAC'06]
- Remains NP-complete for <u>fixed</u> C ≥ 1 (the proof assumes a bounded number of wavelengths) [Shalom, Unger, and Zaks. FUN'07]
- ★ Open problem: inapproximability for fixed C?
  Conjecture: Not in PTAS for fixed C.
  [Wan, Calinescu, Liu, and Frieder. IEEE JSAC'00]
  [Chow and Lin. Networks'04]

Theorem (Amini, Pérennes, and S.)

RING TRAFFIC GROOMING is not in PTAS for any fixed  $C \ge 1$ . PATH TRAFFIC GROOMING is not in PTAS for any fixed  $C \ge 2$ .

### Hardness of RING TRAFFIC GROOMING

- NP-complete if C is part of the input [Chiu and Modiano. IEEE JLT'00]
- Not in APx if C is part of the input [Huang, Dutta, and Rouskas. IEEE JSAC'06]
- ③ Remains NP-complete for <u>fixed</u> C ≥ 1 (the proof assumes a bounded number of wavelengths)
   [Shalom, Unger, and Zaks. FUN'07]
- ★ Open problem: inapproximability for fixed C?
   Conjecture: Not in PTAS for fixed C.
   [Wan, Calinescu, Liu, and Frieder. IEEE JSAC'00]
   [Chow and Lin. Networks'04]

Theorem (Amini, Pérennes, and S.)

RING TRAFFIC GROOMING is not in PTAS for any fixed  $C \ge 1$ . PATH TRAFFIC GROOMING is not in PTAS for any fixed  $C \ge 2$ .

- NP-complete if C is part of the input [Chiu and Modiano. IEEE JLT'00]
- Not in APx if C is part of the input [Huang, Dutta, and Rouskas. IEEE JSAC'06]
- Remains NP-complete for fixed C ≥ 1 (the proof assumes a bounded number of wavelengths)

[Shalom, Unger, and Zaks. FUN'07]

★ Open problem: inapproximability for fixed C?
 Conjecture: Not in PTAS for fixed C.
 [Wan, Calinescu, Liu, and Frieder. IEEE JSAC'00]
 [Chow and Lin. Networks'04]

Theorem (Amini, Pérennes, and S.)

- NP-complete if C is part of the input [Chiu and Modiano. IEEE JLT'00]
- Not in APx if C is part of the input [Huang, Dutta, and Rouskas. IEEE JSAC'06]
- Remains NP-complete for fixed C ≥ 1 (the proof assumes a bounded number of wavelengths) [Shalom, Unger, and Zaks. FUN'07]
- ★ Open problem: inapproximability for fixed C? Conjecture: Not in PTAS for fixed C. Wan, Calinescu, Liu, and Frieder. IEEE JSAC'0

Chow and Lin. Networks'04]

Theorem (Amini, Pérennes, and S.)

- NP-complete if C is part of the input [Chiu and Modiano. IEEE JLT'00]
- Not in APx if C is part of the input [Huang, Dutta, and Rouskas. IEEE JSAC'06]
- Remains NP-complete for fixed C ≥ 1 (the proof assumes a bounded number of wavelengths) [Shalom, Unger, and Zaks. FUN'07]
- ★ Open problem: inapproximability for fixed C?
   Conjecture: Not in PTAS for fixed C.
   [Wan, Calinescu, Liu, and Frieder. IEEE JSAC'00]

[Chow and Lin. *Networks'04*]

Theorem (Amini, Pérennes, and S.)

- NP-complete if C is part of the input [Chiu and Modiano. IEEE JLT'00]
- Not in APx if C is part of the input [Huang, Dutta, and Rouskas. IEEE JSAC'06]
- Remains NP-complete for fixed C ≥ 1 (the proof assumes a bounded number of wavelengths) [Shalom, Unger, and Zaks. FUN'07]
- ✓ Open problem: inapproximability for fixed C?
   Conjecture: Not in PTAS for fixed C.
   [Wan, Calinescu, Liu, and Frieder. IEEE JSAC'00]

[Chow and Lin. Networks'04]

Theorem (Amini, Pérennes, and S.)

RING TRAFFIC GROOMING is not in PTAS for any fixed  $C \ge 1$ .

Path Traffic Grooming is not in PTAS for any fixed  ${\it C}\geq$  2.

- NP-complete if C is part of the input [Chiu and Modiano. IEEE JLT'00]
- Not in APx if C is part of the input [Huang, Dutta, and Rouskas. IEEE JSAC'06]
- Remains NP-complete for fixed C ≥ 1 (the proof assumes a bounded number of wavelengths) [Shalom, Unger, and Zaks. FUN'07]
- ✓ Open problem: inapproximability for fixed C?
   Conjecture: Not in PTAS for fixed C.
   [Wan, Calinescu, Liu, and Frieder. IEEE JSAC'00]

[Chow and Lin. Networks'04]

Theorem (Amini, Pérennes, and S.)

- (1)  $\sqrt{C}$ -approximation is trivial (in poly-time in both *n* and *C*)
- <sup>2</sup>  $\mathcal{O}(\log C)$ -approximation algorithm, with running time  $\mathcal{O}(n^C)$ [Flammini et al. *ISAAC'05, JDA'08*]
- If O But in backbone networks, it is usually the case that  $C \ge n$ .
- ★ Open problem: approximation algorithm in poly-time in both C and n, and with approximation factor independent of C.

#### Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates RING TRAFFIC GROOMING within a factor  $O(n^{1/3}\log^2 n)$  for any  $C \ge 1$ .

Outline of the algorithm:

- partition the requests into groups of similar length
- in each group, extract "dense" subgraphs greedily using an algorithm for the DENSE k-subgraph problem

#### • $\sqrt{C}$ -approximation is trivial (in poly-time in both *n* and *C*)

- <sup>2</sup>  $\mathcal{O}(\log C)$ -approximation algorithm, with running time  $\mathcal{O}(n^C)$ [Flammini et al. *ISAAC'05, JDA'08*]
- Is the set of the
- ★ **Open problem:** approximation algorithm in poly-time in **both** *C* and *n*, and with approximation factor **independent of** *C*.

#### Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates RING TRAFFIC GROOMING within a factor  $O(n^{1/3}\log^2 n)$  for any  $C \ge 1$ .

Outline of the algorithm:

- partition the requests into groups of similar length
- in each group, extract "dense" subgraphs greedily using an algorithm for the DENSE k-subgraph problem

- $\sqrt{C}$ -approximation is trivial (in poly-time in both *n* and *C*)
- **O**(log *C*)-approximation algorithm, with running time  $O(n^C)$  [Flammini et al. *ISAAC'05, JDA'08*]
- ③ But in backbone networks, it is usually the case that  $C \ge n$ .
- ★ **Open problem:** approximation algorithm in poly-time in **both** *C* and *n*, and with approximation factor **independent of** *C*.

#### Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates RING TRAFFIC GROOMING within a factor  $\mathcal{O}(n^{1/3}\log^2 n)$  for any  $C \ge 1$ .

Outline of the algorithm:

- partition the requests into groups of similar length
- in each group, extract "dense" subgraphs greedily using an algorithm for the DENSE k-subgraph problem

- $\sqrt{C}$ -approximation is trivial (in poly-time in both *n* and *C*)
- **O**(log *C*)-approximation algorithm, with running time  $O(n^C)$  [Flammini et al. *ISAAC'05, JDA'08*]
- If O But in backbone networks, it is usually the case that  $C \ge n$ .
- ★ **Open problem:** approximation algorithm in poly-time in **both** *C* and *n*, and with approximation factor **independent of** *C*.

#### Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates RING TRAFFIC GROOMING within a factor  $\mathcal{O}(n^{1/3}\log^2 n)$  for any  $C \ge 1$ .

Outline of the algorithm:

- partition the requests into groups of similar length
- in each group, extract "dense" subgraphs greedily using an algorithm for the DENSE k-SUBGRAPH problem

イロト イヨト イヨト イヨト

- $\sqrt{C}$ -approximation is trivial (in poly-time in both *n* and *C*)
- **O**(log *C*)-approximation algorithm, with running time  $O(n^C)$  [Flammini et al. *ISAAC'05, JDA'08*]
- If O But in backbone networks, it is usually the case that  $C \ge n$ .
- ★ Open problem: approximation algorithm in poly-time in both *C* and *n*, and with approximation factor **independent of** *C*.

#### Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates RING TRAFFIC GROOMING within a factor  $\mathcal{O}(n^{1/3}\log^2 n)$  for any  $C \ge 1$ .

Outline of the algorithm:

- partition the requests into groups of similar length
- in each group, extract "dense" subgraphs greedily using an algorithm for the DENSE k-SUBGRAPH problem

(日)

- $\sqrt{C}$ -approximation is trivial (in poly-time in both *n* and *C*)
- **O**(log *C*)-approximation algorithm, with running time  $O(n^C)$  [Flammini et al. *ISAAC'05, JDA'08*]
- If O But in backbone networks, it is usually the case that  $C \ge n$ .
- $\checkmark$  **Open problem:** approximation algorithm in poly-time in **both** *C* and *n*, and with approximation factor **independent of** *C*.

#### Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates RING TRAFFIC GROOMING within a factor  $\mathcal{O}(n^{1/3}\log^2 n)$  for any  $C \ge 1$ .

#### Outline of the algorithm:

- partition the requests into groups of similar length
- in each group, extract "dense" subgraphs greedily using an algorithm for the DENSE k-SUBGRAPH problem

< 日 > < 同 > < 回 > < 回 > < 回 > <

- $\sqrt{C}$ -approximation is trivial (in poly-time in both *n* and *C*)
- **O**(log *C*)-approximation algorithm, with running time  $O(n^C)$  [Flammini et al. *ISAAC'05, JDA'08*]
- If O But in backbone networks, it is usually the case that  $C \ge n$ .
- $\checkmark$  **Open problem:** approximation algorithm in poly-time in **both** *C* and *n*, and with approximation factor **independent of** *C*.

#### Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates RING TRAFFIC GROOMING within a factor  $\mathcal{O}(n^{1/3}\log^2 n)$  for any  $C \ge 1$ .

#### Outline of the algorithm:

- partition the requests into groups of similar length
- in each group, extract "dense" subgraphs greedily using an algorithm for the DENSE k-SUBGRAPH problem

(日)

- $\sqrt{C}$ -approximation is trivial (in poly-time in both *n* and *C*)
- **O**(log *C*)-approximation algorithm, with running time  $O(n^C)$  [Flammini et al. *ISAAC'05, JDA'08*]
- If O But in backbone networks, it is usually the case that  $C \ge n$ .
- $\checkmark$  **Open problem:** approximation algorithm in poly-time in **both** *C* and *n*, and with approximation factor **independent of** *C*.

#### Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates RING TRAFFIC GROOMING within a factor  $\mathcal{O}(n^{1/3}\log^2 n)$  for any  $C \ge 1$ .

#### Outline of the algorithm:

- partition the requests into groups of similar length [factor log n]
- in each group, extract "dense" subgraphs greedily using an algorithm for the DENSE k-SUBGRAPH problem

(日)

- $\sqrt{C}$ -approximation is trivial (in poly-time in both *n* and *C*)
- **O**(log *C*)-approximation algorithm, with running time  $O(n^C)$  [Flammini et al. *ISAAC'05, JDA'08*]
- If O But in backbone networks, it is usually the case that  $C \ge n$ .
- $\checkmark$  **Open problem:** approximation algorithm in poly-time in **both** *C* and *n*, and with approximation factor **independent of** *C*.

#### Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates RING TRAFFIC GROOMING within a factor  $O(n^{1/3} \log^2 n)$  for any  $C \ge 1$ .

#### Outline of the algorithm:

- partition the requests into groups of similar length [factor log n]
- in each group, extract "dense" subgraphs greedily using an algorithm for the DENSE k-SUBGRAPH problem [factor log n]

3

イロト 不得 トイヨト イヨト

- $\sqrt{C}$ -approximation is trivial (in poly-time in both *n* and *C*)
- **O**(log *C*)-approximation algorithm, with running time  $O(n^C)$  [Flammini et al. *ISAAC'05, JDA'08*]
- If O But in backbone networks, it is usually the case that  $C \ge n$ .
- $\checkmark$  **Open problem:** approximation algorithm in poly-time in **both** *C* and *n*, and with approximation factor **independent of** *C*.

#### Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates RING TRAFFIC GROOMING within a factor  $\mathcal{O}(n^{1/3}\log^2 n)$  for any  $C \ge 1$ .

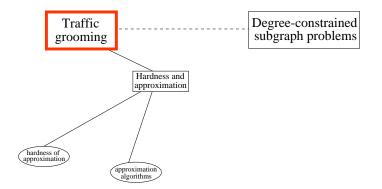
#### Outline of the algorithm:

- partition the requests into groups of similar length [factor log n]
- in each group, extract "dense" subgraphs greedily using an algorithm for the DENSE k-SUBGRAPH problem [factor log n] [factor n<sup>1/3</sup>]

ъ

< 日 > < 同 > < 回 > < 回 > < 回 > <

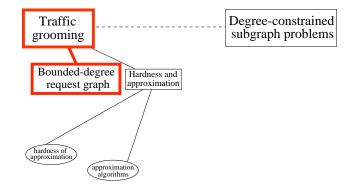
## Graph of the thesis



æ

・ロト ・ 四ト ・ ヨト ・ ヨト

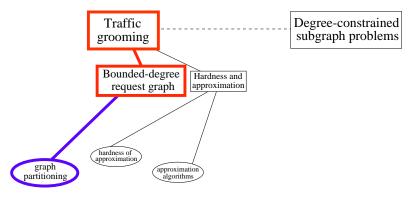
## Graph of the thesis



э

・ロト ・ 四ト ・ ヨト ・ ヨト

# Graph of the thesis



э

・ロト ・ 四ト ・ ヨト ・ ヨト

# New model of traffic grooming

# In the literature so far: place ADMs at nodes for a fixed request graph. → placement of ADMs a posteriori.

 New model [With Xavier Muñoz]: place the ADMs at nodes such that the network can support any request graph with maximum degree at most △.
 → placement of ADMs a priori.

- As the network must support any degree-bounded graph, due to symmetry we place the same number of ADMs at each node.
- The objective is then to minimize this number.

< 回 > < 三 > < 三 >

# New model of traffic grooming

- In the literature so far: place ADMs at nodes for a fixed request graph.
   → placement of ADMs a posteriori.
- New model [With Xavier Muñoz]: place the ADMs at nodes such that the network can support any request graph with maximum degree at most △.
   → placement of ADMs a priori.
- As the network must support any degree-bounded graph, due to symmetry we place the **same number of ADMs at each node**.
- The objective is then to minimize this number.

A B F A B F

- In the literature so far: place ADMs at nodes for a fixed request graph.
   → placement of ADMs a posteriori.
- New model [With Xavier Muñoz]:

place the ADMs at nodes such that the network can support any request graph with maximum degree at most  $\Delta$ .

→ placement of ADMs a priori.

- As the network must support any degree-bounded graph, due to symmetry we place the **same number of ADMs at each node**.
- The objective is then to minimize this number.

A B F A B F

- In the literature so far: place ADMs at nodes for a fixed request graph.
   → placement of ADMs a posteriori.
- New model [With Xavier Muñoz]: place the ADMs at nodes such that the network can support any request graph with maximum degree at most △.
   → placement of ADMs a priori.
- As the network must support any degree-bounded graph, due to symmetry we place the **same number of ADMs at each node**.
- The objective is then to minimize this number.

- In the literature so far: place ADMs at nodes for a fixed request graph.
   → placement of ADMs a posteriori.
- New model [With Xavier Muñoz]: place the ADMs at nodes such that the network can support any request graph with maximum degree at most Δ.
   → placement of ADMs a priori.
- As the network must support any degree-bounded graph, due to symmetry we place the **same number of ADMs at each node**.
- The objective is then to minimize this number.

- In the literature so far: place ADMs at nodes for a fixed request graph.
   → placement of ADMs a posteriori.
- New model [With Xavier Muñoz]: place the ADMs at nodes such that the network can support any request graph with maximum degree at most Δ.
   → placement of ADMs a priori.
- As the network must support any degree-bounded graph, due to symmetry we place the **same number of ADMs at each node**.
- The objective is then to minimize this number.

#### • $\Delta$ -graph: graph with maximum degree at most $\Delta$ .

- *C*-edge partition of *G*: partition of E(G) into subgraphs with  $\leq C$  edges.
- The problem is equivalent to determining the following parameter:

# Therefore, we focus on determining M(C, Δ). W.I.o.g. we can assume that R has regular degree Δ.

Proposition (Lower Bound – Muñoz and S.)

For all  $C, \Delta \geq 1$ ,  $M(C, \Delta) \geq \left\lfloor \frac{C+1}{C} \frac{\Delta}{2} \right\rfloor$ .

- $\Delta$ -graph: graph with maximum degree at most  $\Delta$ .
- C-edge partition of G: partition of E(G) into subgraphs with  $\leq C$  edges.
- The problem is equivalent to determining the following parameter:

Therefore, we focus on determining M(C, Δ).
W.I.o.g. we can assume that R has regular degree Δ.

Proposition (Lower Bound – Muñoz and S.

For all  $C, \Delta \geq 1$ ,  $M(C, \Delta) \geq \left| \frac{C+1}{C} \frac{\Delta}{2} \right|$ .

- $\Delta$ -graph: graph with maximum degree at most  $\Delta$ .
- C-edge partition of G: partition of E(G) into subgraphs with  $\leq C$  edges.
- The problem is equivalent to determining the following parameter:

 $M(C, \Delta)$ : smallest integer *M* s.t. any  $\Delta$ -graph has a *C*-edge-partition s.t. each vertex appears in  $\leq M$  subgraphs.

- Therefore, we focus on determining  $M(C, \Delta)$ .
- W.I.o.g. we can assume that R has regular degree  $\triangle$ .

Proposition (Lower Bound – Muñoz and S.)

For all  $C, \Delta \geq 1$ ,  $M(C, \Delta) \geq \left| \frac{C+1}{C} \frac{\Delta}{2} \right|$ .

- $\Delta$ -graph: graph with maximum degree at most  $\Delta$ .
- C-edge partition of G: partition of E(G) into subgraphs with  $\leq C$  edges.
- The problem is equivalent to determining the following parameter:

 $M(C, \Delta)$ : smallest integer *M* s.t. any  $\Delta$ -graph has a *C*-edge-partition s.t. each vertex appears in  $\leq M$  subgraphs.

- Therefore, we focus on determining  $M(C, \Delta)$ .
- W.I.o.g. we can assume that R has regular degree  $\Delta$ .

Proposition (Lower Bound – Munoz and S

For all  $C, \Delta \geq 1$ ,  $M(C, \Delta) \geq \left| \frac{C+1}{C} \frac{\Delta}{2} \right|$ .

- $\Delta$ -graph: graph with maximum degree at most  $\Delta$ .
- C-edge partition of G: partition of E(G) into subgraphs with  $\leq C$  edges.
- The problem is equivalent to determining the following parameter:

 $M(C, \Delta)$ : smallest integer *M* s.t. any  $\Delta$ -graph has a *C*-edge-partition s.t. each vertex appears in  $\leq M$  subgraphs.

- Therefore, we focus on determining  $M(C, \Delta)$ .
- W.I.o.g. we can assume that *R* has regular degree △.

Proposition (Lower Bound – Muñoz and S.)

For all  $C, \Delta \geq 1$ ,  $M(C, \Delta) \geq \left| \frac{C+1}{C} \frac{\Delta}{2} \right|$ .

#### Theorem (Li and S.)

Let 
$$\Delta \ge 2$$
 be even. Then for any  $C \ge 1$ ,  $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$ .

#### Proof.

• We have just seen the lower bound. Construction:

- Orient the edges of G = (V, E) in an Eulerian tour.
- Assign to each vertex v ∈ V its Δ/2 out-edges, and partition them into <sup>Δ</sup>/<sub>2C</sub> stars with (at most) C edges centered at v.
- Each vertex v appears as a leaf in stars centered at other vertices exactly  $\Delta \Delta/2 = \Delta/2$  times.
- The number of occurrences of each vertex in this partition is

$$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left( 1 + \frac{1}{C} \right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.$$

#### Theorem (Li and S.)

Let 
$$\Delta \ge 2$$
 be even. Then for any  $C \ge 1$ ,  $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$ .

#### Proof.

#### • We have just seen the lower bound. Construction:

- Orient the edges of G = (V, E) in an Eulerian tour.
- Assign to each vertex v ∈ V its Δ/2 out-edges, and partition them into <sup>Δ</sup>/<sub>2C</sub> stars with (at most) C edges centered at v.
- Each vertex v appears as a leaf in stars centered at other vertices exactly Δ – Δ/2 = Δ/2 times.
- The number of occurrences of each vertex in this partition is

#### Theorem (Li and S.)

Let 
$$\Delta \ge 2$$
 be even. Then for any  $C \ge 1$ ,  $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$ .

#### Proof.

- We have just seen the lower bound. Construction:
  - Orient the edges of G = (V, E) in an Eulerian tour.
  - Assign to each vertex v ∈ V its Δ/2 out-edges, and partition them into <sup>Δ</sup>/<sub>2C</sub> stars with (at most) C edges centered at v.
  - Each vertex ν appears as a leaf in stars centered at other vertices exactly Δ − Δ/2 = Δ/2 times.
  - The number of occurrences of each vertex in this partition is

#### Theorem (Li and S.)

Let 
$$\Delta \ge 2$$
 be even. Then for any  $C \ge 1$ ,  $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$ .

#### Proof.

• We have just seen the lower bound. Construction:

- Orient the edges of G = (V, E) in an Eulerian tour.
- Assign to each vertex v ∈ V its ∆/2 out-edges, and partition them into <sup>Δ</sup>/<sub>2C</sub> stars with (at most) C edges centered at v.
- Each vertex ν appears as a leaf in stars centered at other vertices exactly Δ − Δ/2 = Δ/2 times.

The number of occurrences of each vertex in this partition is

$$\left[\frac{\Delta}{2C}\right] + \frac{\Delta}{2} = \left[\frac{\Delta}{2}\left(1 + \frac{1}{C}\right)\right] = \left[\frac{C+1}{C}\frac{\Delta}{2}\right]$$

#### Theorem (Li and S.)

Let 
$$\Delta \ge 2$$
 be even. Then for any  $C \ge 1$ ,  $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$ .

#### Proof.

• We have just seen the lower bound. Construction:

- Orient the edges of G = (V, E) in an Eulerian tour.
- Assign to each vertex v ∈ V its Δ/2 out-edges, and partition them into <sup>Δ</sup>/<sub>2C</sub> stars with (at most) C edges centered at v.
- Each vertex *ν* appears as a leaf in stars centered at other vertices exactly Δ − Δ/2 = Δ/2 times.

• The number of occurrences of each vertex in this partition is

$$\left[\frac{\Delta}{2C}\right] + \frac{\Delta}{2} = \left[\frac{\Delta}{2}\left(1 + \frac{1}{C}\right)\right] = \left[\frac{C+1}{C}\frac{\Delta}{2}\right].$$

#### Theorem (Li and S.)

Let 
$$\Delta \ge 2$$
 be even. Then for any  $C \ge 1$ ,  $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$ .

#### Proof.

• We have just seen the lower bound. Construction:

- Orient the edges of G = (V, E) in an Eulerian tour.
- Assign to each vertex v ∈ V its Δ/2 out-edges, and partition them into <sup>Δ</sup>/<sub>2C</sub> stars with (at most) C edges centered at v.
- Each vertex *ν* appears as a leaf in stars centered at other vertices exactly Δ − Δ/2 = Δ/2 times.
- The number of occurrences of each vertex in this partition is

$$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left( 1 + \frac{1}{C} \right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$$

#### Theorem (Li and S.)

Let 
$$\Delta \ge 2$$
 be even. Then for any  $C \ge 1$ ,  $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$ .

#### Proof.

• We have just seen the lower bound. Construction:

- Orient the edges of G = (V, E) in an Eulerian tour.
- Assign to each vertex v ∈ V its Δ/2 out-edges, and partition them into <sup>Δ</sup>/<sub>2C</sub> stars with (at most) C edges centered at v.
- Each vertex *ν* appears as a leaf in stars centered at other vertices exactly Δ − Δ/2 = Δ/2 times.
- The number of occurrences of each vertex in this partition is

$$\left\lceil \frac{\Delta}{2C} \right\rceil + \frac{\Delta}{2} = \left\lceil \frac{\Delta}{2} \left( 1 + \frac{1}{C} \right) \right\rceil = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil.$$

#### Proposition (Upper Bound – Li and S.)

Let  $\Delta \geq 3$  be odd. Then for any  $C \geq 1$ ,  $M(C, \Delta) \leq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$ .

#### Corollary (Li and S.)

Let  $\Delta \geq 3$  be odd. Then for any  $C \geq 1$ ,  $M(C, \Delta) \leq \left| \frac{C+1}{C} \frac{\Delta}{2} \right| + 1$ .

**Question**: is the lower bound  $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$  always attained?

#### Theorem (Li and S.)

Let  $\Delta \geq 3$  be odd. If  $\Delta \equiv C \pmod{2C}$ , then  $M(C, \Delta) = \left\lfloor \frac{C+1}{C} \frac{\Delta}{2} \right\rfloor + 1$ .

Ignasi Sau Valls (Mascotte – MA4)

## Proposition (Upper Bound – Li and S.)

Let  $\Delta \geq 3$  be odd. Then for any  $C \geq 1$ ,  $M(C, \Delta) \leq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$ .

## Corollary (Li and S.)

Let  $\Delta \geq 3$  be odd. Then for any  $C \geq 1$ ,  $M(C, \Delta) \leq \left| \frac{C+1}{C} \frac{\Delta}{2} \right| + 1$ .

**Question**: is the lower bound  $\left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$  always attained?

#### Theorem (Li and S.)

Let  $\Delta \geq 3$  be odd. If  $\Delta \equiv C \pmod{2C}$ , then  $M(C, \Delta) = \left\lfloor \frac{C+1}{C} \frac{\Delta}{2} \right\rfloor + 1$ .

イロト イポト イヨト イヨト 二日

## Proposition (Upper Bound – Li and S.)

Let  $\Delta \geq 3$  be odd. Then for any  $C \geq 1$ ,  $M(C, \Delta) \leq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$ .

#### Corollary (Li and S.)

Let  $\Delta \geq 3$  be odd. Then for any  $C \geq 1$ ,  $M(C, \Delta) \leq \left\lfloor \frac{C+1}{C} \frac{\Delta}{2} \right\rfloor + 1$ .

**Question**: is the lower bound  $\begin{bmatrix} \frac{C+1}{C} & \frac{\Delta}{2} \end{bmatrix}$  always attained?

#### Theorem (Li and S.)

Let  $\Delta \geq 3$  be odd. If  $\Delta \equiv C \pmod{2C}$ , then  $M(C, \Delta) = \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil + 1$ .

## Proposition (Upper Bound - Li and S.)

Let  $\Delta \geq 3$  be odd. Then for any  $C \geq 1$ ,  $M(C, \Delta) \leq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} + \frac{C-1}{2C} \right\rceil$ .

### Corollary (Li and S.)

Let  $\Delta \geq 3$  be odd. Then for any  $C \geq 1$ ,  $M(C, \Delta) \leq \left| \frac{C+1}{C} \frac{\Delta}{2} \right| + 1$ .

**Question**: is the lower bound  $\begin{bmatrix} \frac{C+1}{C} & \frac{\Delta}{2} \end{bmatrix}$  always attained? NO!!

#### Theorem (Li and S.)

Let  $\Delta \geq 3$  be odd. If  $\Delta \equiv C \pmod{2C}$ , then  $M(C, \Delta) = \left\lfloor \frac{C+1}{C} \frac{\Delta}{2} \right\rfloor + 1$ .

くロン 不通 とくほ とくほ とうほう

# Summarizing, we established the value of $M(C, \Delta)$ for "almost" all values of *C* and $\Delta$ , leaving **open** only the case where:

#### • $\Delta \geq 5$ is odd; and

- *C* ≥ 4; and
- $3 \leq \Delta \pmod{2C} \leq C 1$ ; and
- the request graph does not contain a perfect matching.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summarizing, we established the value of  $M(C, \Delta)$  for "almost" all values of *C* and  $\Delta$ , leaving **open** only the case where:

- $\Delta \geq 5$  is odd; and
- *C* ≥ 4; and
- $3 \leq \Delta \pmod{2C} \leq C 1$ ; and
- the request graph does not contain a perfect matching.

A (10) A (10)

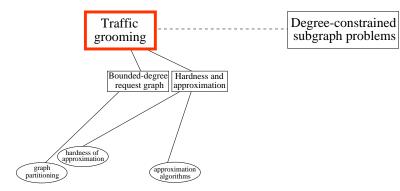
Summarizing, we established the value of  $M(C, \Delta)$  for "almost" all values of *C* and  $\Delta$ , leaving **open** only the case where:

- $\Delta \geq 5$  is odd; and
- *C* ≥ 4; and
- $3 \leq \Delta \pmod{2C} \leq C 1$ ; and
- the request graph does not contain a perfect matching.

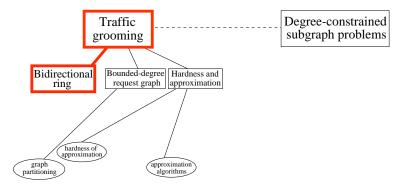
3

∃ ► < ∃ ►</p>

# Graph of the thesis

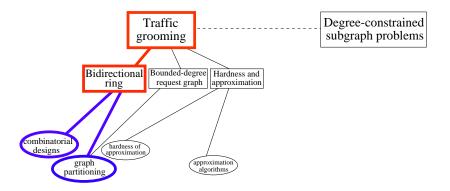


æ



2

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・



Э.

# **Bidirectional rings**

With Jean-Claude Bermond and Xavier Muñoz

#### Most of the research had been done for unidirectional rings.

#### We consider the bidirectional ring with

- \* all-to-all requests.
- ★ shortest path routing.
- We provide:
  - Statement of the problem and general lower bounds.
  - 2 Exhaustive study of the cases  $C \in \{1, 2, 3\}$ .
  - Deptimal solutions for some infinite families when C = k(k + 1)/2.
  - Asymptotically optimal or approximated solutions

イロト イ団ト イヨト イヨト

# **Bidirectional rings**

With Jean-Claude Bermond and Xavier Muñoz

Most of the research had been done for unidirectional rings.

- We consider the bidirectional ring with
  - ★ all-to-all requests.
  - shortest path routing.
- We provide:
  - Statement of the problem and general lower bounds.
  - 2 Exhaustive study of the cases  $C \in \{1, 2, 3\}$ .
  - Deptimal solutions for some infinite families when C = k(k + 1)/2.
  - Asymptotically optimal or approximated solutions

イロト イ団ト イヨト イヨト

• Most of the research had been done for unidirectional rings.

- We consider the bidirectional ring with
  - ★ all-to-all requests.
  - shortest path routing.
- We provide:
  - Statement of the problem and general lower bounds.
  - 2 Exhaustive study of the cases  $C \in \{1, 2, 3\}$ .
  - Optimal solutions for some infinite families when C = k(k+1)/2.
  - Asymptotically optimal or approximated solutions.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Most of the research had been done for unidirectional rings.

- We consider the bidirectional ring with
  - ★ all-to-all requests.
  - shortest path routing.
- We provide:
  - Statement of the problem and general lower bounds.
  - 2 Exhaustive study of the cases  $C \in \{1, 2, 3\}$ .
    - Optimal solutions for some infinite families when C = k(k + 1)/2.
    - Asymptotically optimal or approximated solutions.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Most of the research had been done for unidirectional rings.

- We consider the bidirectional ring with
  - ★ all-to-all requests.
  - ★ shortest path routing.
- We provide:
  - Statement of the problem and general lower bounds.
  - 2 Exhaustive study of the cases  $C \in \{1, 2, 3\}$ .
  - Optimal solutions for some infinite families when C = k(k+1)/2.

Asymptotically optimal or approximated solutions.

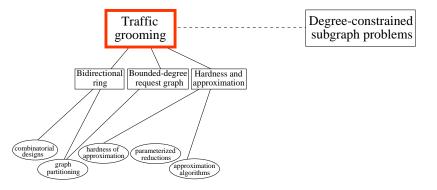
э.

• Most of the research had been done for unidirectional rings.

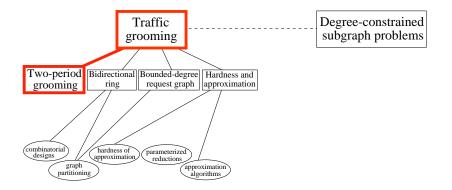
- We consider the bidirectional ring with
  - ★ all-to-all requests.
  - ★ shortest path routing.
- We provide:
  - Statement of the problem and general lower bounds.
  - 2 Exhaustive study of the cases  $C \in \{1, 2, 3\}$ .
  - Optimal solutions for some infinite families when C = k(k+1)/2.
  - Asymptotically optimal or approximated solutions.

э.

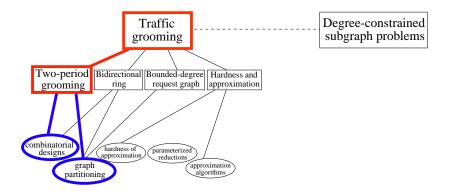
# Graph of the thesis



э



э



э

# 2-period traffic grooming in unidirectional rings

- We consider a pseudo-dynamic scenario in unidirectional rings:
  - in the 1st period of time, there is all-to-all traffic among *n* nodes, each request using 1/C of the bandwidth.
  - in the 2nd period, there is all-to-all traffic among a subset of n' < n nodes, each request using 1/C' of the bandwidth, with C' < C.
- The problem consists in finding a C-edge-partition of K<sub>n</sub> that embeds a C'-edge-partition of K<sub>n'</sub>.
- Introduced in [Colbourn, Quattrocchi, and Syrotiuk. Networks'08]. They solved the cases C = 2 and C = 3 (C' ∈ {1,2}).
- We solve the case C = 4 (that is,  $C' \in \{1, 2, 3\}$ ).
- In addition, we provide the optimal cost under the constraint of using the minimum number of wavelengths.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- We consider a pseudo-dynamic scenario in unidirectional rings:
  - in the 1st period of time, there is all-to-all traffic among *n* nodes, each request using 1/*C* of the bandwidth.
  - in the 2nd period, there is all-to-all traffic among a subset of n' < n nodes, each request using 1/C' of the bandwidth, with C' < C.
- The problem consists in finding a C-edge-partition of K<sub>n</sub> that embeds a C'-edge-partition of K<sub>n'</sub>.
- Introduced in [Colbourn, Quattrocchi, and Syrotiuk. *Networks'08*]. They solved the cases C = 2 and C = 3 ( $C' \in \{1, 2\}$ ).
- We solve the case C = 4 (that is,  $C' \in \{1, 2, 3\}$ ).
- In addition, we provide the optimal cost under the constraint of using the minimum number of wavelengths.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- We consider a pseudo-dynamic scenario in unidirectional rings:
  - in the 1st period of time, there is all-to-all traffic among *n* nodes, each request using 1/*C* of the bandwidth.
  - in the 2nd period, there is all-to-all traffic among a subset of n' < n nodes, each request using 1/C' of the bandwidth, with C' < C.
- The problem consists in finding a *C*-edge-partition of *K<sub>n</sub>* that embeds a *C'*-edge-partition of *K<sub>n'</sub>*.
- Introduced in [Colbourn, Quattrocchi, and Syrotiuk. *Networks'08*]. They solved the cases C = 2 and C = 3 ( $C' \in \{1, 2\}$ ).
- We solve the case C = 4 (that is,  $C' \in \{1, 2, 3\}$ ).
- In addition, we provide the optimal cost under the constraint of using the minimum number of wavelengths.

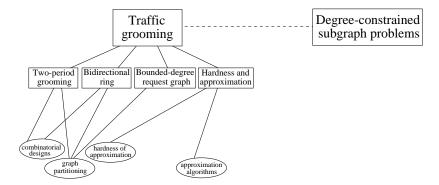
- We consider a pseudo-dynamic scenario in unidirectional rings:
  - in the 1st period of time, there is all-to-all traffic among *n* nodes, each request using 1/*C* of the bandwidth.
  - in the 2nd period, there is all-to-all traffic among a subset of n' < n nodes, each request using 1/C' of the bandwidth, with C' < C.
- The problem consists in finding a C-edge-partition of K<sub>n</sub> that embeds a C'-edge-partition of K<sub>n'</sub>.
- Introduced in [Colbourn, Quattrocchi, and Syrotiuk. *Networks'08*]. They solved the cases C = 2 and C = 3 ( $C' \in \{1, 2\}$ ).
- We solve the case C = 4 (that is,  $C' \in \{1, 2, 3\}$ ).
- In addition, we provide the optimal cost under the constraint of using the minimum number of wavelengths.

- We consider a pseudo-dynamic scenario in unidirectional rings:
  - in the 1st period of time, there is all-to-all traffic among *n* nodes, each request using 1/*C* of the bandwidth.
  - in the 2nd period, there is all-to-all traffic among a subset of n' < n nodes, each request using 1/C' of the bandwidth, with C' < C.
- The problem consists in finding a C-edge-partition of K<sub>n</sub> that embeds a C'-edge-partition of K<sub>n'</sub>.
- Introduced in [Colbourn, Quattrocchi, and Syrotiuk. *Networks'08*]. They solved the cases C = 2 and C = 3 ( $C' \in \{1, 2\}$ ).
- We solve the case C = 4 (that is,  $C' \in \{1, 2, 3\}$ ).
- In addition, we provide the optimal cost under the constraint of using the minimum number of wavelengths.

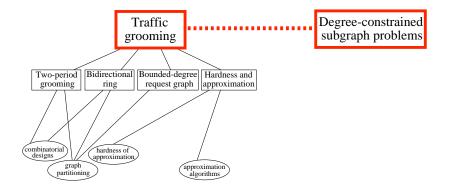
- We consider a pseudo-dynamic scenario in unidirectional rings:
  - in the 1st period of time, there is all-to-all traffic among *n* nodes, each request using 1/*C* of the bandwidth.
  - in the 2nd period, there is all-to-all traffic among a subset of n' < n nodes, each request using 1/C' of the bandwidth, with C' < C.
- The problem consists in finding a C-edge-partition of K<sub>n</sub> that embeds a C'-edge-partition of K<sub>n'</sub>.
- Introduced in [Colbourn, Quattrocchi, and Syrotiuk. *Networks'08*]. They solved the cases C = 2 and C = 3 ( $C' \in \{1, 2\}$ ).
- We solve the case C = 4 (that is,  $C' \in \{1, 2, 3\}$ ).
- In addition, we provide the optimal cost under the constraint of using the minimum number of wavelengths.

- We consider a pseudo-dynamic scenario in unidirectional rings:
  - in the 1st period of time, there is all-to-all traffic among *n* nodes, each request using 1/*C* of the bandwidth.
  - in the 2nd period, there is all-to-all traffic among a subset of n' < n nodes, each request using 1/C' of the bandwidth, with C' < C.
- The problem consists in finding a C-edge-partition of K<sub>n</sub> that embeds a C'-edge-partition of K<sub>n'</sub>.
- Introduced in [Colbourn, Quattrocchi, and Syrotiuk. *Networks'08*]. They solved the cases C = 2 and C = 3 ( $C' \in \{1, 2\}$ ).
- We solve the case C = 4 (that is,  $C' \in \{1, 2, 3\}$ ).
- In addition, we provide the optimal cost under the constraint of using the minimum number of wavelengths.

# Graph of the thesis



э



э

#### Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates RING TRAFFIC GROOMING within a factor  $O(n^{1/3} \log^2 n)$  for any  $C \ge 1$ .

 partition the requests into groups of similar length [factor log n]
 in each group, extract subgraphs greedily using an algorithm for the DENSE k-SUBGRAPH problem [factor log n] [factor n<sup>1/3</sup>]

DENSE *k*-SUBGRAPH (D*k*S) **Input:** An undirected graph G = (V, E) and a positive integer *k*. **Output:** A subset  $S \subseteq V$ , with |S| = k, such that |E(G[S])| is maximized.

#### Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates RING TRAFFIC GROOMING within a factor  $O(n^{1/3} \log^2 n)$  for any  $C \ge 1$ .

 partition the requests into groups of similar length [factor log n]
 in each group, extract subgraphs greedily using an algorithm for the DENSE k-SUBGRAPH problem [factor log n] [factor n<sup>1/3</sup>]

DENSE *k*-SUBGRAPH (D*k*S) **Input:** An undirected graph G = (V, E) and a positive integer *k*. **Output:** A subset  $S \subseteq V$ , with |S| = k, such that |E(G[S])| is maximized.

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates RING TRAFFIC GROOMING within a factor  $O(n^{1/3} \log^2 n)$  for any  $C \ge 1$ .

 partition the requests into groups of similar length [factor log n]
 in each group, extract subgraphs greedily using an algorithm for the DENSE k-SUBGRAPH problem [factor log n] [factor n<sup>1/3</sup>]

DENSE *k*-SUBGRAPH (D*k*S) **Input:** An undirected graph G = (V, E) and a positive integer *k*. **Output:** A subset  $S \subseteq V$ , with |S| = k, such that |E(G[S])| is maximized.

Theorem (Amini, Pérennes, and S.)

There is a polynomial-time approximation algorithm that approximates RING TRAFFIC GROOMING within a factor  $O(n^{1/3} \log^2 n)$  for any  $C \ge 1$ .

 partition the requests into groups of similar length [factor log n]
 in each group, extract subgraphs greedily using an algorithm for the DENSE k-SUBGRAPH problem [factor log n] [factor n<sup>1/3</sup>]

DENSE *k*-SUBGRAPH (D*k*S) **Input:** An undirected graph G = (V, E) and a positive integer *k*. **Output:** A subset  $S \subseteq V$ , with |S| = k, such that |E(G[S])| is maximized.

• Unfortunately, the DkS problem is a very "hard" problem:

- Best approximation algorithm: O(n<sup>1/3-ε</sup>)-approximation. [Feige, Kortsarz, and Peleg. Algorithmica'01]
- Best hardness result: No PTAS, unless P=NP. [Khot. *SIAM J. Comp'06*]
- What about trying to find dense subgraphs differently?
- In DkS, the objective is to maximize the average degree
- What about the minimum degree ...?

• Unfortunately, the DkS problem is a very "hard" problem:

- Best approximation algorithm: O(n<sup>1/3-ε</sup>)-approximation.
   [Feige, Kortsarz, and Peleg. Algorithmica'01]
- Best hardness result: No PTAS, unless P=NP. [Khot. *SIAM J. Comp'06*]

#### What about trying to find dense subgraphs differently?

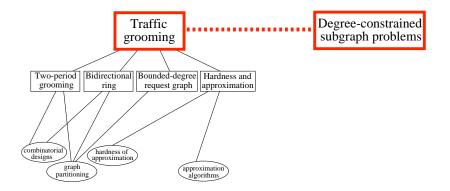
- In DkS, the objective is to maximize the average degree
- What about the minimum degree...?

• Unfortunately, the DkS problem is a very "hard" problem:

- Best approximation algorithm: O(n<sup>1/3-ε</sup>)-approximation.
   [Feige, Kortsarz, and Peleg. Algorithmica'01]
- Best hardness result: No PTAS, unless P=NP. [Khot. *SIAM J. Comp'06*]
- What about trying to find dense subgraphs differently?
- In DkS, the objective is to maximize the average degree
- What about the minimum degree...?

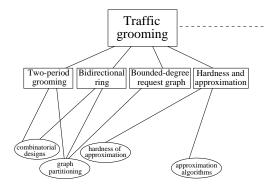
• Unfortunately, the DkS problem is a very "hard" problem:

- Best approximation algorithm: O(n<sup>1/3-ε</sup>)-approximation.
   [Feige, Kortsarz, and Peleg. Algorithmica'01]
- Best hardness result: No PTAS, unless P=NP. [Khot. *SIAM J. Comp'06*]
- What about trying to find dense subgraphs differently?
- In DkS, the objective is to maximize the average degree
- What about the minimum degree...?



æ

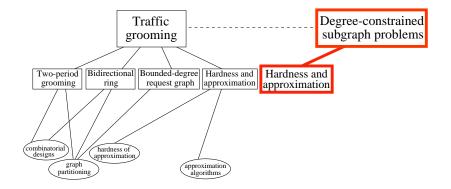
・ロト ・四ト ・ヨト ・ヨト



#### Degree-constrained subgraph problems

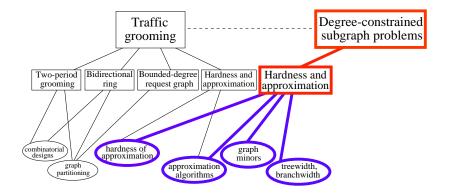
æ

・ロト ・四ト ・ヨト ・ヨト



э

・ロト ・ 四ト ・ ヨト ・ ヨト



э

・ロト ・ 四ト ・ ヨト ・ ヨト

#### A typical **D**EGREE-CONSTRAINED SUBGRAPH PROBLEM:

#### Input:

- a (weighted or unweighted) graph G, and
- an integer d.

#### Output:

- a (*connected*) subgraph *H* of *G*,
- satisfying some degree constraints ( $\Delta(H) \leq d$  or  $\delta(H) \geq d$ ),
- and optimizing some parameter (|V(H)| or |E(H)|).
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

#### A typical **D**EGREE-CONSTRAINED SUBGRAPH PROBLEM:

#### Input:

- a (weighted or unweighted) graph G, and
- an integer d.

### **Output:**

- a (connected) subgraph H of G,
- satisfying some degree constraints ( $\Delta(H) \leq d$  or  $\delta(H) \geq d$ ),

• and optimizing some parameter (|V(H)| or |E(H)|).

- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

#### A typical **D**EGREE-CONSTRAINED SUBGRAPH PROBLEM:

#### Input:

- a (weighted or unweighted) graph G, and
- an integer d.

### **Output:**

- a (connected) subgraph H of G,
- satisfying some degree constraints ( $\Delta(H) \leq d$  or  $\delta(H) \geq d$ ),
- and optimizing some parameter (|V(H)| or |E(H)|).
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

Ignasi Sau Valls (Mascotte – MA4)

#### A typical **D**EGREE-CONSTRAINED SUBGRAPH PROBLEM:

#### Input:

- a (weighted or unweighted) graph G, and
- an integer d.

### **Output:**

- a (connected) subgraph H of G,
- satisfying some degree constraints ( $\Delta(H) \leq d$  or  $\delta(H) \geq d$ ),
- and optimizing some parameter (|V(H)| or |E(H)|).
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

**Input:** an undirected graph G = (V, E) and an integer  $d \ge 3$ .

**Output:** a subset  $S \subseteq V$  with  $\delta(G[S]) \ge d$ , s.t. |S| is minimum.

• For d = 2 it is exactly the GIRTH problem, which is in **P**.

• Therefore, it can be seen as a generalization of GIRTH.

• Is it also in **P** for  $d \ge 3$  ?

イロト イポト イラト イラ

**Input:** an undirected graph G = (V, E) and an integer  $d \ge 3$ .

**Output:** a subset  $S \subseteq V$  with  $\delta(G[S]) \ge d$ , s.t. |S| is minimum.

#### • For d = 2 it is exactly the GIRTH problem, which is in **P**.

• Therefore, it can be seen as a generalization of GIRTH.

• Is it also in **P** for  $d \ge 3$  ?

イロト イポト イラト イラ

**Input:** an undirected graph G = (V, E) and an integer  $d \ge 3$ .

**Output:** a subset  $S \subseteq V$  with  $\delta(G[S]) \ge d$ , s.t. |S| is minimum.

- For d = 2 it is exactly the **GIRTH** problem, which is in **P**.
- Therefore, it can be seen as a generalization of GIRTH.
- Is it also in **P** for  $d \ge 3$  ?

イロト イポト イラト イラ

**Input:** an undirected graph G = (V, E) and an integer  $d \ge 3$ .

**Output:** a subset  $S \subseteq V$  with  $\delta(G[S]) \ge d$ , s.t. |S| is minimum.

- For d = 2 it is exactly the **GIRTH** problem, which is in **P**.
- Therefore, it can be seen as a generalization of GIRTH.
- Is it also in **P** for  $d \ge 3$  ?

With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh

# • MSMD<sub>d</sub> is not in APX for any $d \ge 3$ , using the error amplification technique:

- first we prove that  $MSMD_d$  is not in PTAS (unless P=NP).
- then we prove that MSMD<sub>d</sub> does not accept **any** constant factor approximation.
- O(n/ log n)-approximation algorithm for minor-free classes of graphs, using dynamic programming techniques and a known structural result on graph minors.

(In particular, this applied to planar graphs and graphs of bounded genus.)

< ロ > < 同 > < 回 > < 回 >

With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh

- MSMD<sub>d</sub> is not in APX for any  $d \ge 3$ , using the error amplification technique:
  - first we prove that  $MSMD_d$  is not in PTAS (unless P=NP).
  - then we prove that MSMD<sub>d</sub> does not accept **any** constant factor approximation.
- O(n/ log n)-approximation algorithm for minor-free classes of graphs, using dynamic programming techniques and a known structural result on graph minors.

(In particular, this applied to planar graphs and graphs of bounded genus.)

With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh

- MSMD<sub>d</sub> is not in APX for any  $d \ge 3$ , using the error amplification technique:
  - first we prove that  $MSMD_d$  is not in PTAS (unless P=NP).
  - then we prove that MSMD<sub>d</sub> does not accept **any** constant factor approximation.
- O(n/ log n)-approximation algorithm for minor-free classes of graphs, using dynamic programming techniques and a known structural result on graph minors.

(In particular, this applied to planar graphs and graphs of bounded genus.)

- an undirected graph G = (V, E),
- an integer  $d \ge 2$ , and
- a weight function  $\boldsymbol{\omega}: \boldsymbol{E} \to \mathbb{R}^+$ .

#### **Output:**

a subset of edges  $E' \subseteq E$  of **maximum weight**, s.t. G' = (V, E')

- is connected (except isolated vertices), and
- satisfies  $\Delta(G') \leq d$ .
- It is one of the classical NP-hard problems of *[Garey and Johnson, Computers and Intractability, 1979].*If the output subgraph is not required to be connected, the problem is in P for any *d* (using matching techniques). [Lovász, 70's]
  For fixed *d* = 2 it corresponds to the LONGEST PATH problem.

- an undirected graph G = (V, E),
- an integer  $d \ge 2$ , and
- a weight function  $\boldsymbol{\omega}: \boldsymbol{E} \to \mathbb{R}^+$ .

#### **Output:**

a subset of edges  $E' \subseteq E$  of **maximum weight**, s.t. G' = (V, E')

- is connected (except isolated vertices), and
- satisfies  $\Delta(G') \leq d$ .

It is one of the classical NP-hard problems of *[Garey and Johnson, Computers and Intractability, 1979].*If the output subgraph is not required to be connected, the problem is in P for any *d* (using matching techniques). [Lovász, 70's]
For fixed *d* = 2 it corresponds to the LONGEST PATH problem.

- an undirected graph G = (V, E),
- an integer  $d \ge 2$ , and
- a weight function  $\boldsymbol{\omega}: \boldsymbol{E} \to \mathbb{R}^+$ .

#### **Output:**

a subset of edges  $E' \subseteq E$  of maximum weight, s.t. G' = (V, E')

- is connected (except isolated vertices), and
- satisfies  $\Delta(G') \leq d$ .

It is one of the classical NP-hard problems of *[Garey and Johnson, Computers and Intractability, 1979].*If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques). [Lovász, 70's]
For fixed d = 2 it corresponds to the LONGEST PATH problem.

- an undirected graph G = (V, E),
- an integer  $d \ge 2$ , and
- a weight function  $\boldsymbol{\omega}: \boldsymbol{E} \to \mathbb{R}^+$ .

#### **Output:**

a subset of edges  $E' \subseteq E$  of maximum weight, s.t. G' = (V, E')

- is connected (except isolated vertices), and
- satisfies  $\Delta(G') \leq d$ .
- It is one of the classical NP-hard problems of [Garey and Johnson, Computers and Intractability, 1979].
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques). [Lovász, 70's]

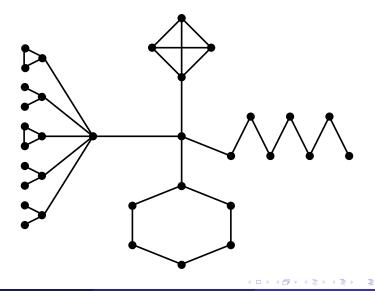
• For fixed d = 2 it corresponds to the **LONGEST PATH** problem.

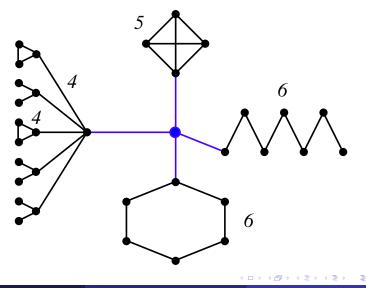
- an undirected graph G = (V, E),
- an integer  $d \ge 2$ , and
- a weight function  $\boldsymbol{\omega}: \boldsymbol{E} \to \mathbb{R}^+$ .

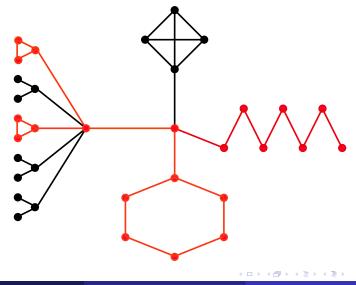
#### **Output:**

a subset of edges  $E' \subseteq E$  of maximum weight, s.t. G' = (V, E')

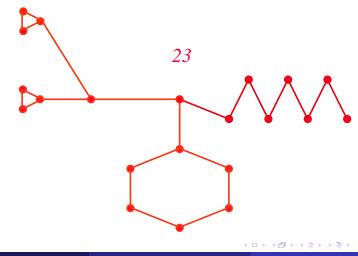
- is connected (except isolated vertices), and
- satisfies  $\Delta(G') \leq d$ .
- It is one of the classical **NP**-hard problems of *[Garey and Johnson, Computers and Intractability, 1979].*
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques). [Lovász, 70's]
- For fixed d = 2 it corresponds to the **LONGEST PATH** problem.







æ



Ignasi Sau Valls (Mascotte – MA4)

October 16, 2009 32 / 54

æ

With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh

#### **1** not in APX for any fixed $d \ge 2$ .

- if there is a polynomial time algorithm for MDBCS<sub>d</sub>,  $d \ge 2$ , with performance ratio  $2^{\mathcal{O}(\sqrt{\log n})}$ , then NP  $\subseteq$  DTIME $(2^{\mathcal{O}(\log^5 n)})$ .
- (a) min{m/ log n, nd/(2 log n)}-approximation algorithm for unweighted graphs. (n = |V(G)| and m = |E(G)|)
- If  $min\{n/2, m/d\}$ -approximation algorithm for weighted graphs.
- If G has a low-degree spanning tree (in terms of d) it can be approximated within a small constant factor.

With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh

#### **1** not in APX for any fixed $d \ge 2$ .

- ② if there is a polynomial time algorithm for MDBCS<sub>*d*</sub>, *d* ≥ 2, with performance ratio  $2^{\mathcal{O}(\sqrt{\log n})}$ , then NP ⊆ DTIME $(2^{\mathcal{O}(\log^5 n)})$ .
- 3 min{m/ log n, nd/(2 log n)}-approximation algorithm for unweighted graphs. (n = |V(G)| and m = |E(G)|)
- If  $min\{n/2, m/d\}$ -approximation algorithm for weighted graphs.
- if G has a low-degree spanning tree (in terms of d) it can be approximated within a small constant factor.

With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh

- **1** not in APX for any fixed  $d \ge 2$ .
- ② if there is a polynomial time algorithm for MDBCS<sub>*d*</sub>, *d* ≥ 2, with performance ratio  $2^{O(\sqrt{\log n})}$ , then NP ⊆ DTIME $(2^{O(\log^5 n)})$ .
- $\min\{\frac{m}{\log n}, \frac{nd}{(2\log n)}\} \text{-approximation algorithm for unweighted graphs.} \qquad (n = |V(G)| \text{ and } m = |E(G)|)$
- Image min $\{n/2, m/d\}$ -approximation algorithm for weighted graphs.
- if *G* has a low-degree spanning tree (in terms of *d*) it can be approximated within a small constant factor.

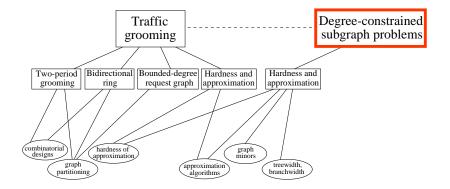
3

With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh

- **1** not in APX for any fixed  $d \ge 2$ .
- ② if there is a polynomial time algorithm for MDBCS<sub>*d*</sub>, *d* ≥ 2, with performance ratio  $2^{O(\sqrt{\log n})}$ , then NP ⊆ DTIME $(2^{O(\log^5 n)})$ .
- So  $min\{m/\log n, nd/(2\log n)\}$ -approximation algorithm for unweighted graphs. (n = |V(G)| and m = |E(G)|)
- $\min\{n/2, m/d\}$ -approximation algorithm for weighted graphs.
- if G has a low-degree spanning tree (in terms of d) it can be approximated within a small constant factor.

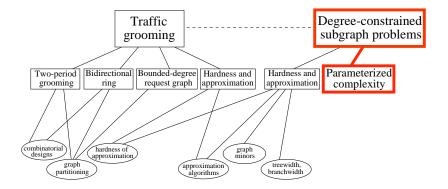
With Omid Amini, David Peleg, Stéphane Pérennes and Saket Saurabh

- **1** not in APX for any fixed  $d \ge 2$ .
- ② if there is a polynomial time algorithm for MDBCS<sub>*d*</sub>, *d* ≥ 2, with performance ratio  $2^{O(\sqrt{\log n})}$ , then NP ⊆ DTIME( $2^{O(\log^5 n)}$ ).
- So  $min\{m/\log n, nd/(2\log n)\}$ -approximation algorithm for unweighted graphs. (n = |V(G)| and m = |E(G)|)
- $\min\{n/2, m/d\}$ -approximation algorithm for weighted graphs.
- if G has a low-degree spanning tree (in terms of d) it can be approximated within a small constant factor.



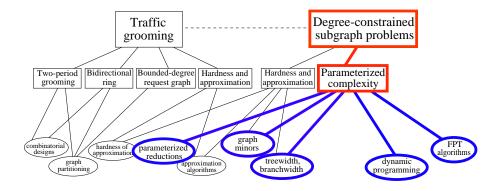
э

・ロト ・ 四ト ・ ヨト ・ ヨト …



э

・ロト ・四ト ・ヨト ・ヨト



э

・ロト ・ 四ト ・ ヨト ・ ヨト

 Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

**Example**: the size of a VERTEX COVER.

 Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in

 $f(\mathbf{k}) \cdot \mathbf{n}^{\mathcal{O}(1)}$ , for some function *f*.

**Examples**: *k*-Vertex Cover, *k*-Longest Path.

• Barometer of intractability:

### $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots \subseteq XP$

不同 トイモトイモ

 Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

**Example**: the size of a VERTEX COVER.

 Given a (NP-hard) problem with input of size *n* and a parameter *k*, a fixed-parameter tractable (FPT) algorithm runs in

 $f(\mathbf{k}) \cdot \mathbf{n}^{\mathcal{O}(1)}$ , for some function *f*.

**Examples**: *k*-Vertex Cover, *k*-Longest Path.

Barometer of intractability:

### $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots \subseteq XP$

 Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

**Example**: the size of a VERTEX COVER.

 Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in

 $f(\mathbf{k}) \cdot \mathbf{n}^{\mathcal{O}(1)}$ , for some function *f*.

**Examples**: *k*-Vertex Cover, *k*-Longest Path.

• Barometer of intractability:

### $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots \subseteq XP$

 Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

**Example**: the size of a VERTEX COVER.

 Given a (NP-hard) problem with input of size *n* and a parameter *k*, a fixed-parameter tractable (FPT) algorithm runs in

 $f(\mathbf{k}) \cdot \mathbf{n}^{\mathcal{O}(1)}$ , for some function *f*.

**Examples**: *k*-Vertex Cover, *k*-Longest Path.

• Barometer of intractability:

 $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots \subseteq XP$ 

#### Some words on parameterized complexity

 Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

**Example**: the size of a VERTEX COVER.

 Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in

 $f(\mathbf{k}) \cdot \mathbf{n}^{\mathcal{O}(1)}$ , for some function *f*.

#### **Examples**: *k*-VERTEX COVER, *k*-LONGEST PATH.

• Barometer of intractability:

 $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots \subseteq XP$ 

### Some words on parameterized complexity

 Idea: given an NP-hard problem, fix one parameter of the input to see if the problem gets more "tractable".

**Example**: the size of a VERTEX COVER.

 Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in

 $f(\mathbf{k}) \cdot \mathbf{n}^{\mathcal{O}(1)}$ , for some function *f*.

**Examples**: *k*-VERTEX COVER, *k*-LONGEST PATH.

• Barometer of intractability:

$$\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq W[3] \subseteq \cdots \subseteq XP$$

With Omid Amini and Saket Saurabh

• We have studied the parameterized complexity of finding degree-constrained subgraphs, with

parameter = number of vertices of the desired subgraph

Namely, given two integers d and k, the problems of finding

a *d*-regular subgraph (induced or not) with at most  $\leq k$  vertices.

- 2) a subgraph with at most  $\leq k$  vertices and of minimum degree  $\geq d$ .
- We prove that
  - ) these problems are W[1]-hard in general graphs.

With Omid Amini and Saket Saurabh

 We have studied the parameterized complexity of finding degree-constrained subgraphs, with

parameter = number of vertices of the desired subgraph

- Namely, given two integers d and k, the problems of finding
  - a *d*-regular subgraph (induced or not) with at most  $\leq k$  vertices.
  - a subgraph with at most  $\leq k$  vertices and of minimum degree  $\geq d$ .
- We prove that
  - these problems are *W*[1]-hard in general graphs.

With Omid Amini and Saket Saurabh

 We have studied the parameterized complexity of finding degree-constrained subgraphs, with

parameter = number of vertices of the desired subgraph

- Namely, given two integers d and k, the problems of finding
  - a *d*-regular subgraph (induced or not) with at most  $\leq k$  vertices.
  - 2) a subgraph with at most  $\leq k$  vertices and of minimum degree  $\geq d$ .
- We prove that
  - these problems are *W*[1]-hard in general graphs.

With Omid Amini and Saket Saurabh

 We have studied the parameterized complexity of finding degree-constrained subgraphs, with

parameter = number of vertices of the desired subgraph

- Namely, given two integers d and k, the problems of finding
  - a *d*-regular subgraph (induced or not) with at most  $\leq k$  vertices.
  - 2 a subgraph with at most  $\leq k$  vertices and of minimum degree  $\geq d$ .
- We prove that
  - these problems are W[1]-hard in general graphs.

With Omid Amini and Saket Saurabh

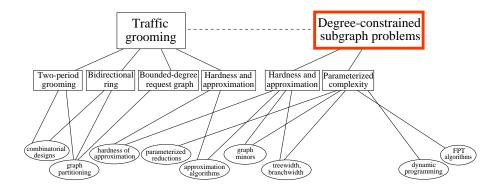
 We have studied the parameterized complexity of finding degree-constrained subgraphs, with

parameter = number of vertices of the desired subgraph

- Namely, given two integers d and k, the problems of finding
  - a *d*-regular subgraph (induced or not) with at most  $\leq k$  vertices.
  - 2 a subgraph with at most  $\leq k$  vertices and of minimum degree  $\geq d$ .
- We prove that
  - these problems are *W*[1]-hard in general graphs.
  - We then provide explicit FPT algorithms to solve both problems in graphs with bounded local treewidth and graphs with excluded minors, using a dynamic programming approach.

Ignasi Sau Valls (Mascotte - MA4)

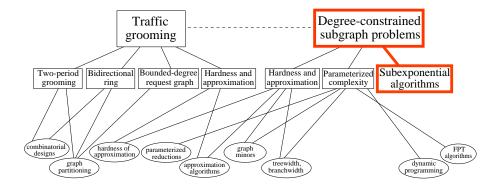
# Graph of the thesis



э

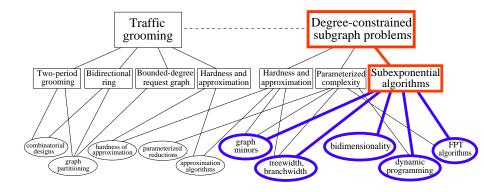
・ロト ・ 四ト ・ ヨト ・ ヨト …

# Graph of the thesis



э

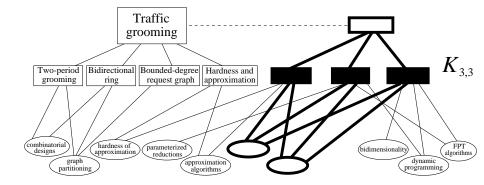
・ロト ・四ト ・ヨト ・ヨト



э

・ロト ・ 四ト ・ ヨト ・ ヨト …

# Graph of the thesis



ъ

イロン イ理 とく ヨン イヨン

Given a (NP-hard) problem with input of size n and a parameter k:

• A fixed-parameter tractable (FPT) algorithm runs in

 $f(\mathbf{k}) \cdot \mathbf{n}^{\mathcal{O}(1)}$ , for some function *f*.

*Examples*: *k*-VERTEX COVER, *k*-LONGEST PATH.

• Problem: f(k) can be huge!!! (for instance,  $f(k) = 2^{3^{4^{5^{6^{n}}}}}$ )

A subexponential parameterized algorithm is a FPT algo s.t.

 $f(\mathbf{k}) = 2^{o(\mathbf{k})}.$ 

• Typically 
$$f(k) = 2^{\mathcal{O}(\sqrt{k})}$$
.

Given a (NP-hard) problem with input of size *n* and a parameter *k*:

• A fixed-parameter tractable (FPT) algorithm runs in

 $f(\mathbf{k}) \cdot \mathbf{n}^{\mathcal{O}(1)}$ , for some function *f*.

*Examples*: *k*-VERTEX COVER, *k*-LONGEST PATH.

• Problem: f(k) can be huge!!! (for instance,  $f(k) = 2^{2^{4^{5^{6^{k}}}}}$ )

A subexponential parameterized algorithm is a FPT algo s.t.

$$f(k) = 2^{o(k)}.$$

• Typically 
$$f(k) = 2^{\mathcal{O}(\sqrt{k})}$$
.

Given a (NP-hard) problem with input of size *n* and a parameter *k*:

• A fixed-parameter tractable (FPT) algorithm runs in

 $f(k) \cdot n^{\mathcal{O}(1)}$ , for some function *f*.

*Examples*: *k*-VERTEX COVER, *k*-LONGEST PATH.

• Problem: f(k) can be huge!!! (for instance,  $f(k) = 2^{3^{4^{5^{6^{k}}}}}$ )

A subexponential parameterized algorithm is a FPT algo s.t.

$$f(\mathbf{k}) = 2^{o(\mathbf{k})}.$$

• Typically 
$$f(k) = 2^{\mathcal{O}(\sqrt{k})}$$
.

Given a (NP-hard) problem with input of size n and a parameter k:

• A fixed-parameter tractable (FPT) algorithm runs in

 $f(\mathbf{k}) \cdot \mathbf{n}^{\mathcal{O}(1)}$ , for some function *f*.

*Examples*: *k*-VERTEX COVER, *k*-LONGEST PATH.

• Problem: f(k) can be huge!!! (for instance,  $f(k) = 2^{3^{4^{5^{6^{k}}}}}$ )

• A subexponential parameterized algorithm is a FPT algo s.t.

$$f(\mathbf{k}) = 2^{o(\mathbf{k})}$$

• Typically  $f(k) = 2^{\mathcal{O}(\sqrt{k})}$ .

Given a parameter **P** defined in a planar graph G, **P**(G)  $\leq k$ ?

First we compute  $\mathbf{bw}(G)$ . [Seymour and Thomas. *Combinatorica*'94]

(A) Combinatorial bounds via Graph Minor theorems:

**bw**(G) is "big"  $\Rightarrow$  **P** is also "big" (typically, **P** =  $\Omega$ (**bw**<sup>2</sup>)).

Bidimensionality: use square grids as "certificates".
 [Demaine, Fomin, Hajiaghayi, Thilikos. SODA'04, J.ACM'05]

(B) Dynamic programming which uses graph structure: If bw(G) is "small", we decide P by "fast" dynamic programming.

Catalan structures.
 [Dorn, Fomin, Thilikos. ICALP'07, SODA'08]

★ With D.M. Thilikos we have adapted this framework to MDBCS<sub>d</sub>, as well as for a few variants, introducing some general techniques.

< ロ > < 同 > < 回 > < 回 >

Given a parameter **P** defined in a planar graph *G*,  $P(G) \le k$ ? First we compute **bw**(*G*). [Seymour and Thomas. *Combinatorica*'94]

(A) Combinatorial bounds via Graph Minor theorems:

**bw**(G) is "big"  $\Rightarrow$  **P** is also "big" (typically, **P** =  $\Omega$ (**bw**<sup>2</sup>)).

- Bidimensionality: use square grids as "certificates".
   [Demaine, Fomin, Hajiaghayi, Thilikos. SODA'04, J.ACM'05]
- (B) Dynamic programming which uses graph structure: If bw(G) is "small", we decide P by "fast" dynamic programming.
  - Catalan structures.
     [Dorn, Fomin, Thilikos. ICALP'07, SODA'08]

 With D.M. Thilikos we have adapted this framework to MDBCS<sub>d</sub>, as well as for a few variants, introducing some general techniques.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given a parameter **P** defined in a planar graph G,  $P(G) \le k$ ? First we compute **bw**(G). [Seymour and Thomas. *Combinatorica*'94]

(A) Combinatorial bounds via Graph Minor theorems:

 $\mathbf{bw}(G)$  is "big"  $\Rightarrow$  **P** is also "big" (typically,  $\mathbf{P} = \Omega(\mathbf{bw}^2)$ ).

Bidimensionality: use square grids as "certificates". [Demaine, Fomin, Hajiaghayi, Thilikos. SODA'04, J.ACM'05]

(B) Dynamic programming which uses graph structure: If bw(G) is "small", we decide P by "fast" dynamic programming.

Catalan structures.
 [Dorn, Fomin, Thilikos. ICALP'07, SODA'08]

 With D.M. Thilikos we have adapted this framework to MDBCS<sub>d</sub>, as well as for a few variants, introducing some general techniques.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given a parameter **P** defined in a planar graph G,  $P(G) \le k$ ? First we compute **bw**(G). [Seymour and Thomas. *Combinatorica*'94]

(A) Combinatorial bounds via Graph Minor theorems:

 $\mathbf{bw}(G)$  is "big"  $\Rightarrow$  **P** is also "big" (typically,  $\mathbf{P} = \Omega(\mathbf{bw}^2)$ ).

- Bidimensionality: use square grids as "certificates".
   [Demaine, Fomin, Hajiaghayi, Thilikos. SODA'04, J.ACM'05]
- (B) Dynamic programming which uses graph structure:If bw(G) is "small", we decide P by "fast" dynamic programming.
  - ► Catalan structures. [Dorn, Fomin, Thilikos. ICALP'07, SODA'08]

★ With D.M. Thilikos we have adapted this framework to MDBCS<sub>d</sub>, as well as for a few variants, introducing some general techniques.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨー

Given a parameter **P** defined in a planar graph G,  $P(G) \le k$ ? First we compute **bw**(G). [Seymour and Thomas. *Combinatorica*'94]

(A) Combinatorial bounds via Graph Minor theorems:

 $\mathbf{bw}(G)$  is "big"  $\Rightarrow$  **P** is also "big" (typically,  $\mathbf{P} = \Omega(\mathbf{bw}^2)$ ).

- Bidimensionality: use square grids as "certificates". [Demaine, Fomin, Hajiaghayi, Thilikos. SODA'04, J.ACM'05]
- (B) Dynamic programming which uses graph structure: If bw(G) is "small", we decide **P** by "fast" dynamic programming.
  - ► Catalan structures. [Dorn, Fomin, Thilikos. ICALP'07, SODA'08]

★ With D.M. Thilikos we have adapted this framework to MDBCS<sub>d</sub>, as well as for a few variants, introducing some general techniques.

Given a parameter **P** defined in a planar graph G,  $P(G) \le k$ ? First we compute **bw**(G). [Seymour and Thomas. *Combinatorica*'94]

(A) Combinatorial bounds via Graph Minor theorems:

 $\mathbf{bw}(G)$  is "big"  $\Rightarrow$  **P** is also "big" (typically,  $\mathbf{P} = \Omega(\mathbf{bw}^2)$ ).

- Bidimensionality: use square grids as "certificates". [Demaine, Fomin, Hajiaghayi, Thilikos. SODA'04, J.ACM'05]
- (B) Dynamic programming which uses graph structure: If bw(G) is "small", we decide **P** by "fast" dynamic programming.
  - Catalan structures.
     [Dorn, Fomin, Thilikos. ICALP'07, SODA'08]

★ With D.M. Thilikos we have adapted this framework to MDBCS<sub>d</sub>, as well as for a few variants, introducing some general techniques.

Given a parameter **P** defined in a planar graph *G*,  $P(G) \le k$ ? First we compute **bw**(*G*). [Seymour and Thomas. *Combinatorica*'94]

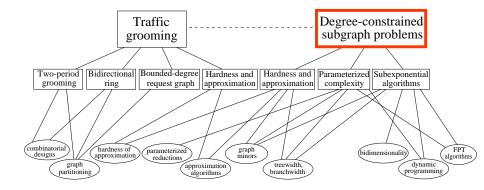
(A) Combinatorial bounds via Graph Minor theorems:

 $\mathbf{bw}(G)$  is "big"  $\Rightarrow$  **P** is also "big" (typically,  $\mathbf{P} = \Omega(\mathbf{bw}^2)$ ).

- Bidimensionality: use square grids as "certificates".
   [Demaine, Fomin, Hajiaghayi, Thilikos. SODA'04, J.ACM'05]
- (B) Dynamic programming which uses graph structure: If bw(G) is "small", we decide **P** by "fast" dynamic programming.
  - Catalan structures.
     [Dorn, Fomin, Thilikos. ICALP'07, SODA'08]
  - ★ With D.M. Thilikos we have adapted this framework to MDBCS<sub>d</sub>, as well as for a few variants, introducing some general techniques.

ъ

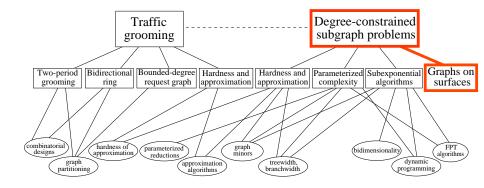
# Graph of the thesis



э

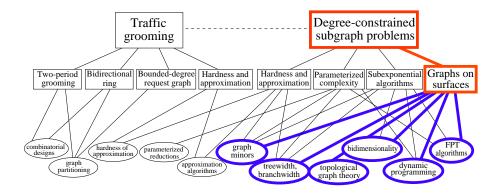
・ロト ・ 四ト ・ ヨト ・ ヨト

# Graph of the thesis



э

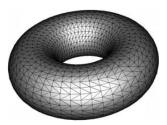
・ロト ・ 四ト ・ ヨト ・ ヨト …



э

・ロト ・四ト ・ヨト ・ヨト

#### • Surface: connected compact 2-manifold.





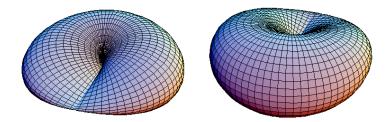




Ignasi Sau Valls (Mascotte - MA4)

2

イロン イ理 とく ヨン イヨン



<ロ> <四> <四> <三</td>

- The surface classification Theorem: any compact, connected and without boundary surface can be obtained from the sphere S<sup>2</sup> by adding handles and cross-caps.
- Orientable surfaces: obtained by adding g ≥ 0 handles to the sphere S<sup>2</sup>, obtaining the g-torus T<sub>g</sub> with Euler genus eg(T<sub>g</sub>) = 2g.
- Non-orientable surfaces: obtained by adding *h* > 0 cross-caps to the sphere S<sup>2</sup>, obtaining a non-orientable surface ℙ<sub>h</sub> with Euler genus eg(ℙ<sub>h</sub>) = *h*.

- The surface classification Theorem: any compact, connected and without boundary surface can be obtained from the sphere S<sup>2</sup> by adding handles and cross-caps.
- Orientable surfaces: obtained by adding g ≥ 0 handles to the sphere S<sup>2</sup>, obtaining the g-torus T<sub>g</sub> with Euler genus eg(T<sub>g</sub>) = 2g.

• Non-orientable surfaces: obtained by adding h > 0 cross-caps to the sphere  $S^2$ , obtaining a non-orientable surface  $\mathbb{P}_h$  with Euler genus  $eg(\mathbb{P}_h) = h$ .

- The surface classification Theorem: any compact, connected and without boundary surface can be obtained from the sphere S<sup>2</sup> by adding handles and cross-caps.
- Orientable surfaces: obtained by adding g ≥ 0 handles to the sphere S<sup>2</sup>, obtaining the g-torus T<sub>g</sub> with Euler genus eg(T<sub>g</sub>) = 2g.

Non-orientable surfaces: obtained by adding *h* > 0 cross-caps to the sphere S<sup>2</sup>, obtaining a non-orientable surface ℙ<sub>h</sub> with Euler genus eg(ℙ<sub>h</sub>) = *h*.

- An embedding of a graph G on a surface  $\Sigma$  is a drawing of G on  $\Sigma$  without edge crossings.
- An embedding defines vertices, edges, and faces.
- The Euler genus of a graph *G*, **eg**(*G*), is the least Euler genus of the surfaces in which *G* can be embedded.

- An embedding of a graph G on a surface  $\Sigma$  is a drawing of G on  $\Sigma$  without edge crossings.
- An embedding defines vertices, edges, and faces.
- The Euler genus of a graph G, **eg**(G), is the least Euler genus of the surfaces in which G can be embedded.

# Dynamic programming for graphs on surfaces With Juanjo Rué and Dimitrios M. Thilikos

#### • Let *G* be a graph on *n* vertices with branchwidth at most *k*.

• We consider graph problems for which dynamic programming uses tables encoding vertex partitions ("Category (C)").

For instance, our approach applies to MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH, MAXIMUM *d*-DEGREE-BOUNDED CONNECTED INDUCED SUBGRAPH and several variants, CONNECTED DOMINATING SET, CONNECTED *r*-DOMINATION, CONNECTED FVS, MAXIMUM LEAF SPANNING TREE, MAXIMUM FULL-DEGREE SPANNING TREE, MAXIMUM EULERIAN SUBGRAPH, STEINER TREE, MAXIMUM LEAF TREE, ...

• For general graphs, the best known algorithms for such problems run in  $k^{\mathcal{O}(k)} \cdot n$  steps.

• • • • • • • • • • • •

# Dynamic programming for graphs on surfaces With Juanjo Rué and Dimitrios M. Thilikos

- Let *G* be a graph on *n* vertices with branchwidth at most *k*.
- We consider graph problems for which dynamic programming uses tables encoding vertex partitions ("Category (C)").

For instance, our approach applies to MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH, MAXIMUM *d*-DEGREE-BOUNDED CONNECTED INDUCED SUBGRAPH and several variants, CONNECTED DOMINATING SET, CONNECTED *r*-DOMINATION, CONNECTED FVS, MAXIMUM LEAF SPANNING TREE, MAXIMUM FULL-DEGREE SPANNING TREE, MAXIMUM EULERIAN SUBGRAPH, STEINER TREE, MAXIMUM LEAF TREE, ...

• For general graphs, the best known algorithms for such problems run in  $k^{\mathcal{O}(k)} \cdot n$  steps.

# Dynamic programming for graphs on surfaces With Juanjo Rué and Dimitrios M. Thilikos

- Let *G* be a graph on *n* vertices with branchwidth at most *k*.
- We consider graph problems for which dynamic programming uses tables encoding vertex partitions ("Category (C)").

For instance, our approach applies to MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH, MAXIMUM *d*-DEGREE-BOUNDED CONNECTED INDUCED SUBGRAPH and several variants, CONNECTED DOMINATING SET, CONNECTED *r*-DOMINATION, CONNECTED FVS, MAXIMUM LEAF SPANNING TREE, MAXIMUM FULL-DEGREE SPANNING TREE, MAXIMUM EULERIAN SUBGRAPH, STEINER TREE, MAXIMUM LEAF TREE, ...

• For general graphs, the best known algorithms for such problems run in  $k^{\mathcal{O}(k)} \cdot n$  steps.

# Dynamic programming for graphs on surfaces With Juanjo Rué and Dimitrios M. Thilikos

- Let *G* be a graph on *n* vertices with branchwidth at most *k*.
- We consider graph problems for which dynamic programming uses tables encoding vertex partitions ("Category (C)").

For instance, our approach applies to MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH, MAXIMUM *d*-DEGREE-BOUNDED CONNECTED INDUCED SUBGRAPH and several variants, CONNECTED DOMINATING SET, CONNECTED *r*-DOMINATION, CONNECTED FVS, MAXIMUM LEAF SPANNING TREE, MAXIMUM FULL-DEGREE SPANNING TREE, MAXIMUM EULERIAN SUBGRAPH, STEINER TREE, MAXIMUM LEAF TREE, ...

• For general graphs, the best known algorithms for such problems run in  $k^{\mathcal{O}(k)} \cdot n$  steps.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- We build a framework for the design of 2<sup>O(k)</sup> · n step dynamic programming algorithms on surface-embedded graphs.
- In particular, our results imply and improve all the results in [Dorn, Fomin, and Thilikos. *SWAT'06*]
- Our approach is based on a new type of branch decomposition, called surface cut decomposition.
- Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs.
   [Seymour and Thomas. *Combinatorica*'94]

不同 トイモトイモ

- We build a framework for the design of 2<sup>O(k)</sup> · n step dynamic programming algorithms on surface-embedded graphs.
- In particular, our results imply and improve all the results in [Dorn, Fomin, and Thilikos. *SWAT'06*]
- Our approach is based on a new type of branch decomposition, called surface cut decomposition.
- Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs.
   [Seymour and Thomas. *Combinatorica*'94]

A (10) A (10)

- We build a framework for the design of 2<sup>O(k)</sup> · n step dynamic programming algorithms on surface-embedded graphs.
- In particular, our results imply and improve all the results in [Dorn, Fomin, and Thilikos. SWAT'06]
- Our approach is based on a new type of branch decomposition, called surface cut decomposition.
- Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs.
   [Seymour and Thomas. *Combinatorica'94*]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

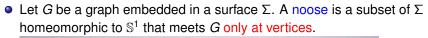
- We build a framework for the design of 2<sup>O(k)</sup> · n step dynamic programming algorithms on surface-embedded graphs.
- In particular, our results imply and improve all the results in [Dorn, Fomin, and Thilikos. SWAT'06]
- Our approach is based on a new type of branch decomposition, called surface cut decomposition.
- Surface cut decompositions for graphs on surfaces generalize sphere cut decompositions for planar graphs.
   [Seymour and Thomas. *Combinatorica'94*]

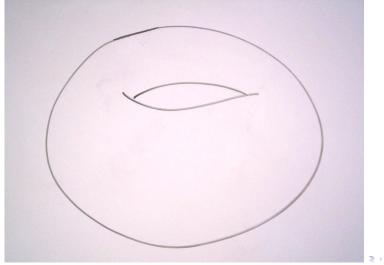
 Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to S<sup>1</sup> that meets G only at vertices.

A (10) > A (10) > A (10)

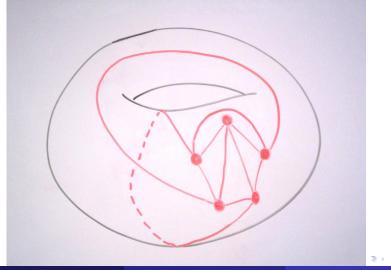
 Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to S<sup>1</sup> that meets G only at vertices.

A >

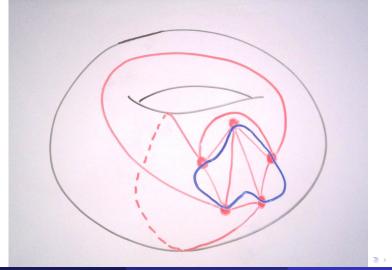




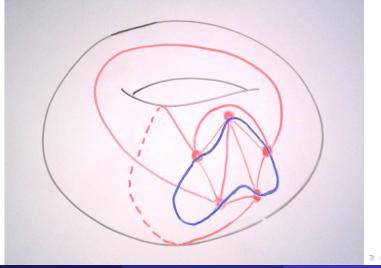
 Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to S<sup>1</sup> that meets G only at vertices.



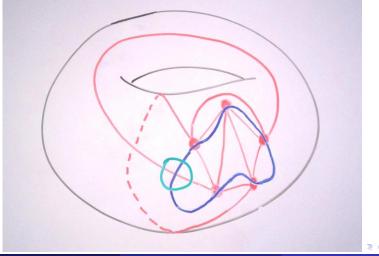
 Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to S<sup>1</sup> that meets G only at vertices.



 Let G be a graph embedded in a surface Σ. A noose is a subset of Σ homeomorphic to S<sup>1</sup> that meets G only at vertices.







Ignasi Sau Valls (Mascotte - MA4)

- *Sphere cut decomposition*: Branch decomposition where the vertices in each **mid**(*e*) are situated around a noose.
- The size of the tables of a dynamic programming algorithm depend on how many ways a partial solution can intersect mid(e).
- In how many ways we can draw polygons inside a circle such that they touch the circle only on its vertices and they do not intersect?

 Exactly the number of non-crossing partitions over l elements, which is given by the l-th Catalan number:

$$\operatorname{CN}(\ell) = \frac{1}{\ell+1} \binom{2\ell}{\ell} \sim \frac{4^{\ell}}{\sqrt{\pi}\ell^{3/2}} \approx 4^{\ell}.$$

- *Sphere cut decomposition*: Branch decomposition where the vertices in each **mid**(*e*) are situated around a noose.
- The size of the tables of a dynamic programming algorithm depend on how many ways a partial solution can intersect mid(e).
- In how many ways we can draw polygons inside a circle such that they touch the circle only on its vertices and they do not intersect?

 Exactly the number of non-crossing partitions over l elements, which is given by the l-th Catalan number:

$$\operatorname{CN}(\ell) = \frac{1}{\ell+1} \binom{2\ell}{\ell} \sim \frac{4^{\ell}}{\sqrt{\pi}\ell^{3/2}} \approx 4^{\ell}.$$

A (10) A (10)

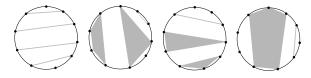
- *Sphere cut decomposition*: Branch decomposition where the vertices in each **mid**(*e*) are situated around a noose.
- The size of the tables of a dynamic programming algorithm depend on how many ways a partial solution can intersect mid(e).
- In how many ways we can draw polygons inside a circle such that they touch the circle only on its vertices and they do not intersect?

• Exactly the number of *non-crossing partitions* over  $\ell$  elements, which is given by the  $\ell$ -th Catalan number:

$$\mathsf{CN}(\ell) = \frac{1}{\ell+1} \binom{2\ell}{\ell} \sim \frac{4^{\ell}}{\sqrt{\pi}\ell^{3/2}} \approx 4^{\ell}.$$

(B) (A) (B)

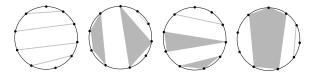
- *Sphere cut decomposition*: Branch decomposition where the vertices in each **mid**(*e*) are situated around a noose.
- The size of the tables of a dynamic programming algorithm depend on how many ways a partial solution can intersect mid(e).
- In how many ways we can draw polygons inside a circle such that they touch the circle only on its vertices and they do not intersect?



■ Exactly the number of *non-crossing partitions* over l elements, which is given by the l-th Catalan number:

$$\mathrm{CN}(\ell) \;=\; rac{1}{\ell+1} inom{2\ell}{\ell} \;\sim\; rac{4^\ell}{\sqrt{\pi}\ell^{3/2}} pprox 4^\ell.$$

- *Sphere cut decomposition*: Branch decomposition where the vertices in each **mid**(*e*) are situated around a noose.
- The size of the tables of a dynamic programming algorithm depend on how many ways a partial solution can intersect mid(e).
- In how many ways we can draw polygons inside a circle such that they touch the circle only on its vertices and they do not intersect?



 Exactly the number of *non-crossing partitions* over l elements, which is given by the l-th Catalan number:

$$\operatorname{CN}(\ell) \;=\; rac{1}{\ell+1} inom{2\ell}{\ell} \;\sim\; rac{4^\ell}{\sqrt{\pi}\ell^{3/2}} pprox 4^\ell.$$

A surface cut decomposition of G is a branch decomposition  $(T, \mu)$  of G and a subset  $A \subseteq V(G)$ , with  $|A| = \mathcal{O}(\mathbf{g})$ , s.t. for all  $e \in E(T)$ 

- either  $|\mathbf{mid}(e) \setminus A| \leq 2$ ,
- or
  - \* the vertices in  $mid(e) \setminus A$  are contained in a set  $\mathcal{N}$  of  $\mathcal{O}(g)$  nooses;
  - $\star$  these nooses intersect in  $\mathcal{O}(\mathbf{g})$  vertices;
  - \*  $\Sigma \setminus \bigcup_{N \in \mathcal{N}} N$  contains exactly two connected components.

A surface cut decomposition of *G* is a branch decomposition  $(T, \mu)$  of *G* and a subset  $A \subseteq V(G)$ , with |A| = O(g), s.t. for all  $e \in E(T)$ 

• either 
$$|\mathbf{mid}(e) \setminus A| \leq 2$$
,

• or

- \* the vertices in  $mid(e) \setminus A$  are contained in a set  $\mathcal{N}$  of  $\mathcal{O}(g)$  nooses;
- $\star$  these nooses intersect in  $\mathcal{O}(\mathbf{g})$  vertices;
- \*  $\Sigma \setminus \bigcup_{N \in \mathcal{N}} N$  contains exactly two connected components.

A surface cut decomposition of *G* is a branch decomposition  $(T, \mu)$  of *G* and a subset  $A \subseteq V(G)$ , with |A| = O(g), s.t. for all  $e \in E(T)$ 

• either 
$$|\mathbf{mid}(e) \setminus A| \leq 2$$
,

or

- \* the vertices in  $mid(e) \setminus A$  are contained in a set  $\mathcal{N}$  of  $\mathcal{O}(g)$  nooses;
- $\star$  these nooses intersect in  $\mathcal{O}(\mathbf{g})$  vertices;
- \*  $\Sigma \setminus \bigcup_{N \in \mathcal{N}} N$  contains exactly two connected components.

A surface cut decomposition of *G* is a branch decomposition  $(T, \mu)$  of *G* and a subset  $A \subseteq V(G)$ , with |A| = O(g), s.t. for all  $e \in E(T)$ 

• either 
$$|\mathbf{mid}(e) \setminus A| \leq 2$$
,

- or
- \* the vertices in  $mid(e) \setminus A$  are contained in a set  $\mathcal{N}$  of  $\mathcal{O}(g)$  nooses;
- $\star$  these nooses intersect in  $\mathcal{O}(\mathbf{g})$  vertices;
- \*  $\Sigma \setminus \bigcup_{N \in \mathcal{N}} N$  contains exactly two connected components.

A surface cut decomposition of *G* is a branch decomposition  $(T, \mu)$  of *G* and a subset  $A \subseteq V(G)$ , with |A| = O(g), s.t. for all  $e \in E(T)$ 

• either 
$$|\mathbf{mid}(e) \setminus A| \leq 2$$
,

or

- \* the vertices in  $\operatorname{mid}(e) \setminus A$  are contained in a set  $\mathcal{N}$  of  $\mathcal{O}(g)$  nooses;
- $\star$  these nooses intersect in  $\mathcal{O}(\mathbf{g})$  vertices;
- \*  $\Sigma \setminus \bigcup_{N \in \mathcal{N}} N$  contains exactly two connected components.

A surface cut decomposition of *G* is a branch decomposition  $(T, \mu)$  of *G* and a subset  $A \subseteq V(G)$ , with |A| = O(g), s.t. for all  $e \in E(T)$ 

• either 
$$|\mathbf{mid}(e) \setminus A| \leq 2$$
,

or

- \* the vertices in  $\operatorname{mid}(e) \setminus A$  are contained in a set  $\mathcal{N}$  of  $\mathcal{O}(g)$  nooses;
- $\star$  these nooses intersect in  $\mathcal{O}(\mathbf{g})$  vertices;
- \*  $\Sigma \setminus \bigcup_{N \in \mathcal{N}} N$  contains exactly two connected components.

#### Surface cut decompositions can be efficiently computed:

#### Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus **g**, with **bw**(G)  $\leq k$ , one can construct in  $2^{3k+\mathcal{O}(\log k)} \cdot n^3$  time a surface cut decomposition  $(T, \mu)$  of G of width at most  $27k + \mathcal{O}(\mathbf{g})$ .

The main result is that if dynamic programming is applied on surface cut decompositions, then the time dependence on branchwidth is single exponential:

#### Theorem (Rué, Thilikos, and S.)

Given a problem P belonging to Category (C) in a graph G embedded in a surface of Euler genus **g**, with **bw**(G)  $\leq k$ , the size of the tables of a dynamic programming algorithm to solve P on a surface cut decomposition of G is bounded above by  $2^{O(k)} \cdot k^{O(g)} \cdot g^{O(g)}$ .

This fact is proved using topological graph theory and analytic combinatorics,

SUITACES.ㅁ > < 쿱 > < 클 > < 클 >

Surface cut decompositions can be efficiently computed:

#### Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus **g**, with **bw**(G)  $\leq k$ , one can construct in  $2^{3k+\mathcal{O}(\log k)} \cdot n^3$  time a surface cut decomposition  $(T, \mu)$  of G of width at most  $27k + \mathcal{O}(\mathbf{g})$ .

The main result is that if dynamic programming is applied on surface cut decompositions, then the time dependence on branchwidth is single exponential:

#### Theorem (Rué, Thilikos, and S.)

Given a problem P belonging to Category (C) in a graph G embedded in a surface of Euler genus **g**, with **bw**(G)  $\leq k$ , the size of the tables of a dynamic programming algorithm to solve P on a surface cut decomposition of G is bounded above by  $2^{\mathcal{O}(k)} \cdot k^{\mathcal{O}(g)} \cdot g^{\mathcal{O}(g)}$ .

Ignasi Sau Valls (Mascotte - MA4)

Surface cut decompositions can be efficiently computed:

#### Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus **g**, with **bw**(G)  $\leq k$ , one can construct in  $2^{3k+\mathcal{O}(\log k)} \cdot n^3$  time a surface cut decomposition  $(T, \mu)$  of G of width at most  $27k + \mathcal{O}(\mathbf{g})$ .

The main result is that if dynamic programming is applied on surface cut decompositions, then the time dependence on branchwidth is single exponential:

#### Theorem (Rué, Thilikos, and S.)

Given a problem P belonging to Category (C) in a graph G embedded in a surface of Euler genus **g**, with **bw**(G)  $\leq k$ , the size of the tables of a dynamic programming algorithm to solve P on a surface cut decomposition of G is bounded above by  $2^{\mathcal{O}(k)} \cdot k^{\mathcal{O}(g)} \cdot g^{\mathcal{O}(g)}$ .

Ignasi Sau Valls (Mascotte - MA4)

Ph.D defense

Surface cut decompositions can be efficiently computed:

#### Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus **g**, with **bw**(G)  $\leq k$ , one can construct in  $2^{3k+\mathcal{O}(\log k)} \cdot n^3$  time a surface cut decomposition  $(T, \mu)$  of G of width at most  $27k + \mathcal{O}(\mathbf{g})$ .

The main result is that if dynamic programming is applied on surface cut decompositions, then the time dependence on branchwidth is single exponential:

#### Theorem (Rué, Thilikos, and S.)

Given a problem P belonging to Category (C) in a graph G embedded in a surface of Euler genus **g**, with **bw**(G)  $\leq k$ , the size of the tables of a dynamic programming algorithm to solve P on a surface cut decomposition of G is bounded above by  $2^{\mathcal{O}(k)} \cdot k^{\mathcal{O}(g)} \cdot g^{\mathcal{O}(g)}$ .

This fact is proved using topological graph theory and analytic combinatorics, generalizing Catalan structures to arbitrary surfaces.

Surface cut decompositions can be efficiently computed:

#### Theorem (Rué, Thilikos, and S.)

Given a G on n vertices embedded in a surface of Euler genus **g**, with **bw**(G)  $\leq k$ , one can construct in  $2^{3k+\mathcal{O}(\log k)} \cdot n^3$  time a surface cut decomposition  $(T, \mu)$  of G of width at most  $27k + \mathcal{O}(\mathbf{g})$ .

The main result is that if dynamic programming is applied on surface cut decompositions, then the time dependence on branchwidth is single exponential:

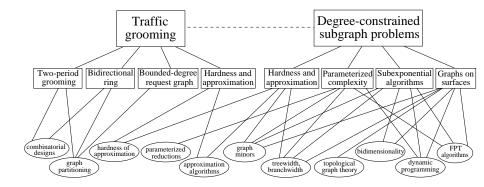
#### Theorem (Rué, Thilikos, and S.)

Given a problem P belonging to Category (C) in a graph G embedded in a surface of Euler genus **g**, with  $\mathbf{bw}(G) \leq k$ , the size of the tables of a dynamic programming algorithm to solve P on a surface cut decomposition of G is bounded above by  $2^{\mathcal{O}(k)} \cdot k^{\mathcal{O}(g)} \cdot g^{\mathcal{O}(g)}$ .

This fact is proved using topological graph theory and analytic combinatorics, generalizing Catalan structures to arbitrary surfaces.

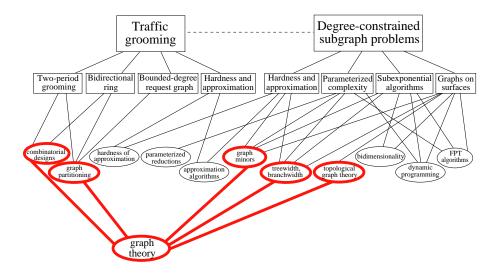
Ignasi Sau Valls (Mascotte - MA4)

Ph.D defense



э

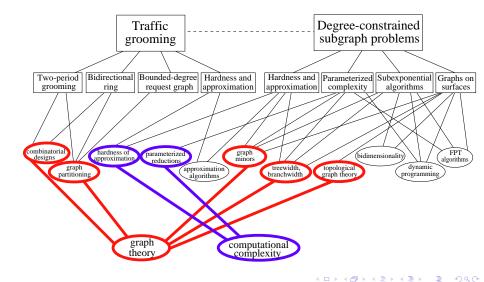
イロト イヨト イヨト ・ ヨトー

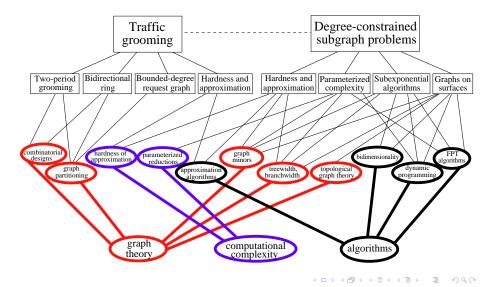


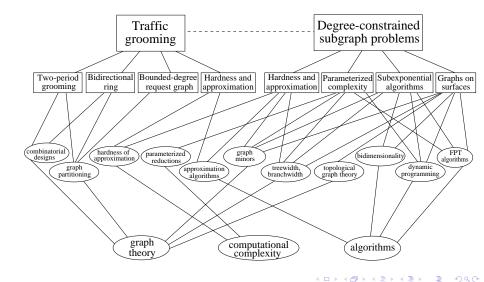
Ignasi Sau Valls (Mascotte - MA4)

э

・ロト ・四ト ・ヨト ・ヨト







#### Open problems and conjectures in each chapter of the manuscript.

#### • Traffic grooming:

- Close the complexity gap when C is part of the input.
- In rings, determine the best routing for each request graph.
- Consider other physical topologies.
- Where is the limit of generalization? algorithmic meta-theorems
- Better understand the structure and the algorithmic properties of sparse families of graphs.
- Graph coloring, probabilistic method, ....

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Open problems and conjectures in each chapter of the manuscript.
- Traffic grooming:
  - Close the complexity gap when C is part of the input.
  - In rings, determine the best routing for each request graph.
  - Consider other physical topologies.
- Where is the limit of generalization? algorithmic meta-theorems
- Better understand the structure and the algorithmic properties of sparse families of graphs.
- Graph coloring, probabilistic method, ....

- Open problems and conjectures in each chapter of the manuscript.
- Traffic grooming:
  - Close the complexity gap when C is part of the input.
  - In rings, determine the best routing for each request graph.
  - Consider other physical topologies.
- Where is the limit of generalization? algorithmic meta-theorems
- Better understand the structure and the algorithmic properties of sparse families of graphs.
- Graph coloring, probabilistic method, ....

- Open problems and conjectures in each chapter of the manuscript.
- Traffic grooming:
  - Close the complexity gap when C is part of the input.
  - In rings, determine the best routing for each request graph.
  - Consider other physical topologies.
- Where is the limit of generalization? algorithmic meta-theorems
- Better understand the structure and the algorithmic properties of sparse families of graphs.

Graph coloring, probabilistic method, ....

4 6 1 1 4

- Open problems and conjectures in each chapter of the manuscript.
- Traffic grooming:
  - Close the complexity gap when C is part of the input.
  - In rings, determine the best routing for each request graph.
  - Consider other physical topologies.
- Where is the limit of generalization? algorithmic meta-theorems
- Better understand the structure and the algorithmic properties of sparse families of graphs.

• Graph coloring, probabilistic method, ...

- Open problems and conjectures in each chapter of the manuscript.
- Traffic grooming:
  - Close the complexity gap when C is part of the input.
  - In rings, determine the best routing for each request graph.
  - Consider other physical topologies.
- Where is the limit of generalization? algorithmic meta-theorems
- Better understand the structure and the algorithmic properties of sparse families of graphs.
- Graph coloring, probabilistic method, ...

A (17) > 4

- Open problems and conjectures in each chapter of the manuscript.
- Traffic grooming:
  - Close the complexity gap when C is part of the input.
  - In rings, determine the best routing for each request graph.
  - Consider other physical topologies.
- Where is the limit of generalization? algorithmic meta-theorems
- Better understand the structure and the algorithmic properties of sparse families of graphs.

• Graph coloring, probabilistic method, ....

- Open problems and conjectures in each chapter of the manuscript.
- Traffic grooming:
  - Close the complexity gap when C is part of the input.
  - In rings, determine the best routing for each request graph.
  - Consider other physical topologies.
- Where is the limit of generalization? algorithmic meta-theorems
- Better understand the structure and the algorithmic properties of sparse families of graphs.
- Graph coloring, probabilistic method, ....







Ignasi Sau Valls (Mascotte - MA4)

Ph.D defense

October 16, 2009 54 / 54

æ