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Abstract This article proposes an interval-valued extension of kernel density
estimation. We show that the imprecision of this interval-valued estimation
is highly correlated with the variance of the density estimation induced by
the statistical variations of the set of observations.
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1 Introduction

The Parzen-Rosenblatt density estimation is a well known nonparametric
way of estimating the probability density function (pdf) underlying a finite
set of observations. Since the convergence of this estimation towards the true
density is only guaranteed for a infinite number of observations, it can be
of prime interest to have a measure of the statistical error of this estima-
tion (e.g. its variance). Such a measure cannot be directly computed when
the pdf has to be estimated with a single set of observations. One can use
resampling techniques, like Jackknife or Bootstrap [4], to perform this esti-
mation. However, those methods can lead to computationally very expensive
solutions.

In this paper, we propose a very novel approach for computing this estima-
tion error. This approach is based on an extension of the Parzen-Rosenblatt
method that leads to an interval-valued estimation of the pdf. Such an ex-
tension have been used in the past [8] for quantifying the effect of the input
random noise on the output of a filtering process. It is based on replacing the
summative kernel, on which is based the estimation, by a maxitive kernel [7],
i.e. a possibility distribution. In this case, however, the Parzen-Rosenblatt es-
timator has to be reformulated to comply with the maxitive-based estimation
extension.
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2 Preliminarys concepts

This section aims at presenting some preliminaries that are necessary to build
the interval-valued pdf estimation we propose. Let Ω be a subset of IR, P(Ω)
the collection of all Lebesgue measurable subsets of Ω and s : Ω → IR a
bounded L1 function associated to a distribution in the meaning of Schwartz
[12].

We call summative kernel [7] a function κ : Ω −→ IR+ such that∫
Ω
κ(x)dx = 1. It defines a probability measure on Ω denoted Pκ : ∀A ∈

P(Ω), Pκ(A) =
∫
A
κ(x)dx. Let K(Ω) be the set of summative kernels on Ω.

We call maxitive kernel [7] a function π : Ω −→ [0, 1] such that
supx∈Ω π(x) = 1. It defines two dual confidence measures on Ω: a possi-
bility measure Ππ and a necessity measure Nπ by: ∀A ∈ P(Ω), Ππ(A) =
supx∈A π(x) and Nπ(A) = 1 − supx 6∈A π(x). Based on [2], a maxitive kernel
π defines a convex set M(π) of summative kernels [6]:

M(π) = {κ ∈ K(Ω)/∀A ∈ P(Ω), Nπ(A) ≤ Pκ(A) ≤ Ππ(A)}. (1)

Let ∆ be a positive real value and x ∈ Ω, a summative kernel κx
∆ can be

derived from another summative kernel κ by: ∀u ∈ Ω, κx
∆(u) =

1
∆
κ(u−x

∆
). In

the same way, a maxitive kernel πx
∆ can be defined from a maxitive kernel π

by: ∀u ∈ Ω, πx
∆(u) = π(u−x

∆
). ∆ is called the bandwidth of the kernel.

2.1 Derivative of a summative kernel

Kernel used in density estimation are usually unimodal, symmetric with a
bounded support and having a first derivative. Let us denote K′(Ω) the subset
of those kernels on Ω.

Property 1 Let κ ∈ K′(Ω) and ∆ ∈ IR+, the first derivative dκ∆ of the
kernel κ∆ can be written as a linear combination of two summative kernels
η+∆ and η−∆ [9]:

∀u ∈ Ω,−dκ∆(u) = a∆
(
η+∆(u)− η−∆(u)

)
, (2)

where a∆ is a constant value defined by a∆ =
∫
Ω
max(0,−dκ∆(u)) and η+∆(u) =

dκ
+

∆
(u)

a∆
, η−∆(u) =

dκ
−

∆
(u)

a∆
with dκ+

∆ = max(0, dκ∆), dκ−
∆ = max(0,−dκ∆).

Note that, by construction, a∆ = a
∆
, with a =

∫
Ω
max(0,−dκ(u))du.
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2.2 Derivative in the sense of distributions

The convolution of a L1 function s by a summative kernel κ, denoted ŝκ = s⋆κ
is given by [5]:

ŝκ(x) =
(
s ⋆ κ

)
(x) =

∫

Ω

s(u)κ(x− u)du =

∫

Ω

s(u)κx(u)du = 〈s, κx〉 , (3)

κx being the function κ translated in x, and 〈., .〉 being the dot product
defined for L1 functions. The value ŝκ(x) can also be viewed as Eκx , the
expectation of s according to the neighborhood of x defined by the kernel κ .

If the summative kernel κ is differentiable, it can be seen as a test func-
tion [12]. It is thus possible to link ds, the derivative of s in the sense of
distributions, to dκ, the derivative of κ in the sense of functions by [5]:

〈ds, κx〉 =

∫

Ω

ds(u)κx(u)du = −

∫

Ω

s(u)dκx(u)du = 〈s,−dκx〉 . (4)

2.3 Reformulation of the Parzen-Rosenblatt density

estimator

Let (x1, ..., xn) be a sample coming from the same random variable X with
density function f . The Parzen-Rosenblatt kernel estimate [10, 11] of the
density f in every point x ∈ Ω is given by:

f̂n
κ∆

(x) =
1

n∆

n∑

i=1

κ(
x− xi

∆
) =

1

n

n∑

i=1

κx
∆(xi). (5)

Property 2 The estimation f̂n
κ∆

in every point x ∈ Ω can be interpreted as
the expectation of the empirical distribution en according to a neighborhood
of x defined by the summative kernel κ∆:

f̂n
κ∆

(x) = Eκx

∆
(en) = 〈en, κ

x
∆〉 . (6)

with en = 1
n

∑n
i=1 δ

xi and δxi is the impulse Dirac translated in xi. In the
same manner, an estimate of the cumulative distribution function Fη∆

, as-
sociated with the random variable X , can be obtained by computing the
expectation of the empirical distribution function En according to a neigh-
borhood of x defined by the summative kernel η∆:

F̂n
η∆

(x) = Eηx

∆
(En) = 〈En, η

x
∆〉 , (7)
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with En(x) =
1
n

∑n
i=1 H(x− xi) and H being the Heaviside function defined

by H(x) = 1 if x ≥ 0 and 0 elsewhere. Since en is the derivative of En in the
sense of distributions [12], the Parzen-Rosenblatt estimator can be rewritten,
for all x ∈ Ω, as:

f̂n
κ∆

(x) = 〈en, κ
x
∆〉 = 〈dEn, κ

x
∆〉 = 〈En,−dκx

∆〉 . (8)

Theorem 1 Let κ∆ ∈ K′(Ω), whose first derivative dκ∆ can be decomposed
in: ∀u ∈ Ω,−dκ∆(u) = a∆

(
η+∆(u)− η−∆(u)

)
, with a∆ ∈ IR+ and

(
η+∆, η−∆

)
∈

K(Ω), then, for all x ∈ Ω, f̂n
κ∆

(x) = a∆

(
F̂n

η
+

∆

(x) − F̂n

η
−

∆

(x)
)
.

Proof According to (2) and (7), we have:

f̂n
κ∆

(x) = a∆
(〈
En, η

x+
∆

〉
−
〈
En, η

x−
∆

〉)
= a∆

(
F̂n
η+

∆

(x)− F̂n
η−

∆

(x)
)
. �

3 Interval-valued estimation

A maxitive kernel based imprecise estimate of the cumulative distribution
function has been proposed in [6]. It is defined for all x ∈ Ω by:

F
n

π∆
(x) =

[
Fn

π∆
(x), F

n

π∆
(x)

]
= Eπx

∆

(En) =
[
Eπx

∆

(En),Eπx

∆
(En)

]
, (9)

where π is a maxitive kernel, ∆ ∈ IR+ a bandwidth and Eπ(.) is the imprecise
expectation based on the maxitive kernel π [6].

The computation of the lower and the upper bounds of the imprecise
cumulative distribution estimator, defined by (9), is given in [6] by:

Eπx

∆
(En) = CΠπx

∆

(En) =
1

n

n∑

i=1

(πx
∆(xi)H(xi − x) +H(x− xi)) , (10)

Eπx

∆

(En) = CNπx
∆

(En) =
1

n

n∑

i=1

((1 − πx
∆(xi))H(x − xi)) , (11)

CΠπx
∆

(En) (resp. CNπx
∆

(En)) being the Choquet integral of En with respect

to the possibility measure Ππx

∆
(resp. the necessity measure Nπx

∆
). As shown

in [6] when κ ∈ M(π), then ∀∆ ∈ IR+, ∀x ∈ Ω, F̂n
κ∆

(x) ∈ F
n

π∆
(x).
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3.1 Interval-valued estimation of the probability

density function

The idea underlying the maxitive based imprecise estimation of the density is
the following: instead of dominating the summative kernel on which is based
the density estimation like in (9), we will dominate the summative kernels
involved in the decomposition (2) of its derivative.
Let (x1, . . . , xn) be a set of n observations, f the pdf underlying the observa-
tion process and En the empirical distribution function associated with this
set of observations. Let κ∆ ∈ K′(Ω) be a summative kernel, whose derivative
−dκ∆ can be decomposed in: a∆

(
η+∆ − η−∆

)
, a∆ ∈ IR+ and

(
η+∆, η−∆

)
∈ K(Ω).

Let π+ (rsp. π−) be the most specific maxitive kernel dominating η+ (rsp.
η−) [7].

Definition 1. A Parzen-Rosenblatt-like imprecise estimator of the pdf un-
derlying a set of observations, whose empirical cumulative is En, is defined
by:

∀x ∈ Ω, f
n

(κ∆)
(x) = a∆

(
Eπ

+x

∆

(En)⊖ Eπ
−x

∆

(En)
)
, (12)

where ⊖ is the Minkowski difference [1].

The question concerns now the properties of the obtained imprecise es-
timation. We will first denote D (a,∆, (π+, π−)) a subset of K′(Ω) defined
by:

D
(
a,∆, (π+, π−)

)
=

{
υ ∈ K′(Ω), ∃ ξ+ ∈ M(π+

∆) and ξ− ∈ M(π−
∆),

such that − dυ = a∆ (ξ+ − ξ−)

}

where a∆, ∆, a, π+
∆ and π−

∆ have been previously defined.
The interval-valued estimation, defined by (12),verifies the following prop-

erty:

Property 3 Let f
n

(κ∆)
be the interval-valued estimation of the pdf defined by

Equation (12), then:

∀x ∈ Ω, ∀ϕ ∈ D
(
a,∆, (π+, π−)

)
, f̂n

ϕ(x) ∈ f
n

(κ∆)
(x). (13)

Remark 1 The reverse property of expression (13) is not true, i.e.:

∃y ∈ f
n

(κ∆)
(x), ∀ϕ ∈ D

(
a,∆, (π+, π−)

)
, y 6= f̂n

ϕ (x).
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3.2 Integrated imprecision of the interval-valued

estimation

It would have been nice if the imprecision of the interval-valued density es-
timate we propose had decreased with ∆ and 1

n
. Unfortunately, as we prove

here, the integral of the imprecision of f
n

(κ∆)
depends neither on n nor on ∆.

To prove this property, we need the following theorem:

Theorem 2 Let π∆ be a maxitive kernel. Let ǫnπ∆
(x) = F

n

π∆
(x) − Fn

π∆
(x)

be the imprecision at x of the interval-valued estimation F
n

π∆
(x), defined by

(9), then:
∫
Ω
ǫnπ∆

(x)dx = ρ(π∆) = ∆ ρ(π), with ρ(π) =
∫
Ω
π(x)dx being the

granulosity of the maxitive kernel π [7], i.e. its degree of imprecision.

Proof According to (10) and (11), we have ǫnπ∆
(x) = 1

n

∑n
i=1(π

x
∆(xi) −

1lx=xi
). Since

∫
Ω
1lx=xi

dx = 0, ∀i ∈ {1, . . . , n}, we obtain:
∫
Ω
ǫnπ∆

(x)dx =
1
n

∑n
i=1 ρ(π∆) = ∆ ρ(π). �

Theorem 3 Let κ∆ ∈ K′(Ω) be a summative kernel. Let ζn(κ∆)(x) = f
n

(κ∆)(x)−

fn

(κ∆)
(x) be the imprecision at x of the interval-valued estimation f

n

(κ∆)
de-

fined by (12), then
∫
Ω
ζn(κ∆)(x)dx is a constant value that we call α.

Proof According to (12) and by theorem 2 we have:

∫

Ω

ζn(κ∆)(x)dx = a∆

(∫

Ω

(F
n

π
+

∆

(x)− Fn

π
+

∆

(x))dx +

∫

Ω

(F
n

π
−

∆

(x)− Fn

π
−

∆

(x))

)
dx,

= a
(
ρ(π+) + ρ(π−)

)
= α. �

The main consequence of theorem 3 is that the defined imprecise estimator
cannot converge to the true density, i.e. when ∆ → 0 and n∆ → ∞,

(
f
n

(κ∆)−

fn

(κ∆)

)
6→ 0.

4 Link between imprecision and variance

This section is dedicated to an experiment showing that the imprecision
ζn(κ∆)(x) of the interval-valued estimate f

n

(κ∆)
(x) can be used to estimate

var(f̂n
κ∆

(x)), the variance of the Parzen-Rosenblatt estimate of f via the ker-

nel κ∆. First, as shown by numerous other works, theoretically var(f̂n
κ∆

(x))
decreases when n and ∆ increases. In fact, as stated in [13]:

∀x ∈ Ω, var(f̂n
κ∆

(x)) ≈ (n∆)−1f(x)R(κ∆), (14)

with R(κ∆) =
∫
Ω
κ∆(x)2dx. Since the integral of ζn(κ∆) depends neither on

n nor on ∆, the direct value of ζn(κ∆)(x) cannot be used directly to estimate

var(f̂n
κ∆

(x)) but should be multiplied by a factor γ(n,∆) that depends on
both n and ∆. Let us suppose this relation to be linear, i.e.:
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var(f̂n
κ∆

(x)) = E
(
γ(n,∆) ζn(κ∆)(x)

)
. (15)

Thus, by integrating expression (15), we directly obtain γ(n,∆) = R(κ∆)
αn∆

,
with α =

∫
Ω
ζn(κ∆)(x)dx. The experiment we report here aims at testing

whether
(
γ(n,∆) ζn(κ∆)(x)

)
is correlelated or not with var(f̂n

κ∆
(x)). It is based

on simulating a random process whose underlying pdf is a mixture of two
Gaussian distributions of mean 3 (resp. 8) and variance 1 (resp. 4). We use the

symmetric summative kernel defined by κ∆(x) = 1
2∆ (1+cos( |x|π

∆
))1l[−∆,∆](x).

The computation of the different values associated with this kernel are:

η+∆(x) = η−∆(x) =
π
2∆ (cos( |x|π

∆
))1l[−∆

2
,∆
2 ]
, a = 1, α ≈ 0.7268 and R(κ∆) =

3
4∆ .

The value of∆ is fixed to ∆ = 1, while the number of observations varies from
n = 1000 to n = 10000. For each values of n, we compute 400 different sets
of observation. We then estimate both var(f̂n

κ∆
(x)) and E

(
γ(n,∆) ζn(κ∆)(x)

)

on 500 equally spaced samples of the reference subset Ω = [−5, 20].

variance of the density estimate
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Fig. 1 The cloud of values E
(
γ(n,∆) ζn

(κ∆)

)
versus var(f̂n

κ∆
).

Fig. 1 shows the result of this experiment by plotting var(f̂n
κ∆

) versus

E
(
γ(n,∆) ζn(κ∆)

)
. As can be seen on Fig. 1, the correlation between var(f̂n

κ∆
)

and E
(
γ(n,∆) ζn(κ∆)

)
is high (correlation coefficient r ≈ 0.995). However,

the cloud of the computed values is close but rather above the theoretical
line materializing equation (15) on Fig. 1. This bias can be explained first by
the fact that relation (14) is an approximation and second by the fact that
the dependence is possibly not exactly linear. However, the numerous exper-
iments we carried out show that

(
γ(n,∆) ζn(κ∆)

)
provide a good estimation

of var(f̂n
κ∆

).
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5 Conclusion

The interval-valued nonparametric extension of the kernel density estimation
improves on the traditional approach by providing an estimation of the error
induced by the statistical variation of the set of observations with a significant
increase of the computational complexity.

Future work should focus on the relation between the median of this
interval-valued density and the true density (convergence if any ?) and pro-
pose a modification of expression (12) that leads to an interval-valued density
whose imprecision decreases with the bandwidth of the kernel or when the
number of observation increases. We are now working on comparing this ap-
proach with the classical approach based on confidence intervals [3].
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