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ABSTRACT
Exception handling and replication are two mechanisms that
increase the reliability of applications. Exception handling
helps programmers to control situations in which the nor-
mal flow of a program execution cannot continue. Repli-
cation handles system failures. Exceptions handling and
replication do not apply to the same situations and are two
complementary mechanisms to increase the reliability of ap-
plications. Moreover, each technique can benefit from the
other: exception handling capabilities can rely on replica-
tion mechanisms while replication can be further secured
by using exceptions. The paper proposes a specification
of an execution history oriented exception handling system
for an agent language and middleware providing replication.
The paper proposes an original signaling algorithms taking
into account replicated agents and a rationale of how excep-
tion handling and replication mechanisms can combine to
increase the capability of programmers to achieve reliable
agent-based applications.

1. INTRODUCTION
Exception handling and replication are two mechanisms (al-
gorithms and architectures) dedicated to reliability and fault-
tolerance that we wish to associate. Replication handles fail-
ures whereas exceptions enable programmers to dynamically
handle those situations that prevent software from running
normally.

An agent replication system [14, 8] is able to replace an
agent (provided he has been replicated) thats fails by one
of its (active or passive) replicas. This is transparent to
software users and does not require any additional code
from programmers. A failure is generally detected when an

agent does not answer any more to messages since a given
amount of time, either because network connections are lost
or because the machine on which the agent ran is switched
off. Active replication systems include algorithms capable
of identifying the most critical agents to automatically cre-
ate replicas of them. All messages sent to an agent in ac-
tive replication are transmitted to all of its replicas, which
process the same message in parallel. In passive replica-
tion, there is only one replica (called leader) which processes
messages and sends periodically state updates to the other
replicas. In semi-active replication, the replica selected as a
leader, by the replication system, receives the messages from
other client agents and forwards them to the other replicas.

Exceptions are situations in which the standard control flow
of a program execution cannot continue. An exception is
not a failure because it is a kind of answer from the agent.
It indicates what the agent is unable to continue its task the
standard way but that he is still alive.

Exception handling and replication do not apply to the same
situations and are different in nature : replication is pre-
ventive and exception handling is curative. However, both
mechanisms are obviously very complementary. In the con-
text of the Facoma1 project that studies adaptive reliability
of large scaled multi-agent applications we are studying an
exception handling system capable of working on top of a
replication system. The goal of this global project is then
threefold:

• The combination of replication mechanisms and excep-
tion handling in general is a new an interesting chal-
lenge for software reliability.

• Exception handling can improve replication. Firstly,
the replication system implementation can be made
more robust by internally using exceptions. Secondly
it can improve replication strategies, for example, with
passive replication, the signaling of a system exception
by the leader can become a new case where a replica
can be activated in place of it.

1http://www-src.lip6.fr/homepages/facoma.officiel/



• Replication can also improve in various ways exception
handling by providing active copies of the computation
state.

The objective of this paper is to present our study on the first
of the three above points: how an exception handling system
can be combined with a replication mechanism to increase
the reliability of agent-based applications. The bases of the
study are our Sage exception handling system dedicated
to agents [21], components [22] and active objects [6] and
the Dimax replicated agent system [7, 8, 14] abstracted in
section 2.

Our study lists and discusses issues, related to the adapta-
tion of an computation histoty oriented exception handling
system on top of such replicated agent systems. Here is a
panel of the main ones:

• How to transparently exploit replication for exception
handling.

• What should happen when an exception is raised by an
agent that has one or more, active or passive, replicas?

• When and where should the replication system be able
to take control when an agent signals an exception.

• Which decisions can be taken within a handler defined
at the replication system level?

• How to distinguish an exception that can be inter-
preted as a failure from the point of view of the repli-
cation system and that cant thus entail the election of
a new replica, from an exception which can be inter-
preted as a correct answer for the service caller? For
example, signaling the “division-by-zero” exception is
the normal answer from the “divide” function if its sec-
ond argument is zero. In this case it is useless to acti-
vate another replica, because it will compute the same
answer.

• Do standard resolution mechanisms used in distributed
exception handling to concert exceptions apply to syn-
thesize the results computed by different replicas of the
same agent?

The remainder of the paper is structured as follows. Sec-
tion 2 sets the context of this work, describing the agent
model and the targeted replicated agent system. Section 3
abstracts the requirements for exception handling in a multi-
agent world and provides the agent programmer-directed
Api of our X-Sage Ehs. Section 4 describes how exception
handlers are searched for in a replicated agent system while
Sect. 5 discusses how system-defined handlers can be defined
in the replication system to integrate exception handling in
the replication manager. Section 6 concludes with a short
discussion on the benefits of our approach against state of
the art exception handling systems and open perspectives to
this work.

2. CONTEXT OF THE STUDY : OVERVIEW
OF A REPLICATED MULTI-AGENT SYS-
TEM

The context of this work is the programming of reactive, col-
laborating agents that are deployed over a middleware which

handles agent replication. The concepts exposed in this sec-
tion are derived from the Dimax software that combines the
Dima multi-agent system [8] and the Darx fault-tolerant
middleware [14]. Initial names and principles are general-
ized here and adapted to the agent interaction scheme we
studied in our previous work [6], namely peer-to-peer service
exchanges.

2.1 The agent model
The agent concept has many concretisations. This section
abstracts the reactive and collaborative agent model we have
worked with.

An agent is a computation entity that executes in its own
thread. This provides the agent with the properties of being
active and autonomous. The behavior of a reactive agent
consists of two parts: a control behavior which defines how
the agent makes decisions to act, depending on its inter-
nal state and the state of its environment; several elemen-
tal behaviors that represent the different actions the agent
knows to do. Figure 1 shows an abstract of the BasicCom-
municatingAgent class, the base class in our context, used
to implement reactive agents. The control behavior of the
agent is defined by the live method. It implements a loop
that is executed while the agent is alive. Each iteration of
this control loop calls the step method. This method im-
plements the decision mechanism that enables the agent to
choose, step by step, the action it executes. A control be-
havior represents the existence of the agent and is executed
in a separate thread, provided by the execution platform as
an instance of the AgentEngine class. This enables the exe-
cution of the agents on top of different platforms, which can
adapt their specific execution model to the management of
an agent as an AgentEngine subclass. The other behaviors
of the agents are represented as methods of the agent class.
Some of these behaviors are executed upon the reception of
a request from another agent. These behaviors are called
services.

Agents interact by exchanging asynchronous messages. Each
agent holds a message box and a communication interface re-
spectively to send and receive messages (cf. the MessageBox
and CommunicationComponent classes on Fig. 1). The com-
munication interface is provided by the execution platform
and is responsible for the delivery of the messages. As de-
scribed above, specific asynchronous messaging mechanisms
can be adapted to the agent model as a Communication-
Component subclass. Each agent bears a unique identifier.
These identifiers are used as logical references to agents, for
instance as senders or recipients of messages. The execu-
tion platform uses name directories to convert these abstract
agent identifiers to effective references, in order to deliver the
messages to the agents.

A specific semantics is associated to messages in order to set
up a request / response interaction protocol between agents.
This protocol describes peer-to-peer collaborations in which
a client agent asks a server agent for a service thanks to a
request message. Conforming to a contract-based approach
of software development, whenever a server agent accepts a
request, it commits to send back a result, either standard
or exceptional, to the client agent in a response message.
Response messages are correlated with request messages.



When no response is received within a time defined by the
client agent, a timeout exception is signaled.

As an illustration (cf. Fig. 2), we use the canonical Travel
Agency example in which a Client can send to a Broker a
reservation message in order to request a bid for a travel.
The contacted broker sends in turn a bid request to several
travel providers and collects their responses. Then, the Bro-
ker selects the best offer and requests the Client and the
selected Provider to contract.

Figure 2: Execution resulting from a request to a
travel agency

2.2 The Replication System
Agents are executed on a middleware which provides a fault-
tolerant execution context thanks to a replication mecha-
nism [14]. The execution context consists of a set of dis-
tributed replication servers which manage the execution of
tasks (ReplicatedTask class of Fig. 1). Every task belongs to
a replication group (ReplicationGroup class) that identifies
the set of tasks which are replicas of a same logical task.
Thus, all the tasks within a replication group have the same
behavior (they actually are instances of the same task class).
Moreover, the middleware maintains the consistency within
the replication group so that all the tasks are in the same
state after each computation.

Logical tasks are identified by logical names that are used
to send them messages. The replication middleware is in
charge of the location and the delivery of messages to the
corresponding replicas. More precisely, the message is de-
livered first to the leader of the corresponding replication
group. The leader is a replica which has the specific role to
control the replication group. For this purpose, the leader
holds a replication manager which monitors the messages
sent to or by the replicas in the replication group. The
replication manager maintains status information about the
replicas and executes group management operations (cre-
ation, destruction of replicas, etc.). The replication man-
ager distinguishes two kinds of replicas. Active replicas ef-
fectively execute treatments. The leader is necessarily an

active replica. The leader forwards the messages sent to the
task to the other active replicas so that they do the same
computation and reach the same new state. Passive replicas
only perform state updates. When the leader completes the
computation, its new state is serialized and sent to all the
passive replicas. After their update, the passive replicas are
in the same state as the leader (and supposedly as the other
active replicas).

Conversely, all the messages sent by the replicas are filtered
by the replication middleware. Only the messages sent by
the leader are actually delivered to other tasks. This way,
replication is transparent. Whatever the number of replicas
of a task, a unique message is sent to invoke a computation
and a unique message is received as a response. In fact,
active and passive replicas are to be considered as failover
copies of the leader. Only the leader interacts with other
tasks as long as it runs correctly.

The number and the type of replicas is determined by the
replication policy, regarding the criticality of the task and
the availability of resources (memory, Cpu). In case of fail-
ures, new replicas can be dynamically created in order to
maintain the redundancy required to provide an expected
level of fault-tolerance. The type of replica (active, passive)
can be changed to adapt resource consumption to criticality
and risk. When the leader fails, its responsibility is trans-
ferred to another replica. When a passive replica is chosen
to become the leader, its status is changed to active. The
state of the task (meaning the state of all the replicas of
the corresponding replication group) is thus rolled back to
the state of the new leader (which represents the previous
consistent state of the task, backed up in a passive replica).
If no replica still exists, the task has been finally destroyed
by the failure.

Every agent executes inside a task (cf. Fig. 1). As such,
agents can be replicated by the middleware and benefit from
this fault-tolerance mechanism. The following sections ex-
plain how exception handling is combined with replication
to provide a more reliable and robust multi-agent system.

3. CONTROL STRUCTURES FOR EXCEP-
TION HANDLING WITH REPLICATED
AGENTS

This section motivates and presents the first part of our
proposal : the X-Sage control structures for exception han-
dling designed for agent programmers. These control struc-
ture only slightly differ from the Sage system ones. Indeed,
they are programmer-directed and replication mechanisms
do not interfere in any programmer-directed capability as
replication must be transparent to the agent programmer.
Handling replication will intervene in the implementation of
these control structures in sections 4 and 5.

3.1 Requirements for an Agent Programmer-
directed EHS

The key requirements of the X-Sage exception handling sys-
tem, extended from [21, 6], are :

• to enforce agent encapsulation,



Figure 1: Excerpt from the agent model

• to provide a representation for collaborative concur-
rent activities [19] so that they can be coordinated and
controlled [18],

• to look for handlers in the history of computation, in-
stead of delegating exception handling to specialized
agents, and to execute handlers in their lexical defini-
tion context; we call this caller contextualization [4] for
handler definition and execution). When encapsula-
tion and decoupling are enforced, non lexical handlers
do not have access to the execution contexts where the
exceptions are signaled (the agents which execute the
faulty services). They can only use generic manage-
ment operations (such as ervice or agent termination)
to cope with the signaled exception.

• to handle concurrent exceptions with resolution func-
tions [10],

• and, to support asynchronous signaling and handler
search and thus maintain agent reactivity,

Our specification comes in four steps indicating: (1) to which
program code units exception handlers can be attached, (2)
how exceptions can be signaled, (3) what can be written
within the code of exception handlers to put the system back
into a coherent state and, (4) in which order handlers are
searched for. The following two subsections are dedicated
to items 1 to 3. Item number 4 involves interfacing with the
agent replications mechanisms. It is discussed in Sect. 4 and
5.

3.2 Signaling Exceptions and Attaching Han-
dlers

Figure 3 shows the java code of an X-Sage agent that de-
fines services and various exception handlers. X-Sage takes
advantage of the java annotations to make exception han-
dling for agents as seamless as possible. It shows examples of
service definitions (annotated by @service): lines 6–7 define
the pollProviders service and lines 17–30 the contactParties
service. It also illustrates (lines 20–28) how a message can
be sent by (a service of) a client agent to request a server
agent to provide him with some (sub-) service.

Signaling exceptions is done by the means of a classical signal
primitive (cf. Fig. 3, line 11). Signaling is possible anywhere
in the code. This includes the possibility of signaling an
exception from within handlers.

Steps of the request / response interaction pattern highlight
the role of three key entities: the request, the service and
the active agent. They are the three program code units to
which exception handlers can be attached:

• Exception handlers can be attached to requests. Such
handlers can, for example, specify two distinct reac-
tions to the occurrence of two identical exceptions raised
by two invocations of the same service. Lines 23–27 of
Fig. 3 show how a handler can be attached to a specific
request.

• Exception handlers can be attached to services. Such
handlers treat exceptions that are raised, directly or in-
directly, by some service’s execution. If the service is
complex, the handler has to be able to deal with con-
current exceptions, to compose with partial results or
to ignore partial failures. Lines 10–14 of Fig. 3 shows
the code of two handlers attached to a same service
(@serviceHandler annotation). Note that the service-
name attribute of the annotation allows to identify the
service the handler protects.

• Finally, exception handlers can be attached to agents.
Such handlers act as if they were repeatedly attached
to all of the agent’s services. They can be used, for
example, to uniformly maintain in the consistency of
the agent’s private data. Lines 3–4 of Fig. 3 shows
how such handlers can be associated to agents using
the@agentHandler annotation.

These capabilities are powerful enough to encompass most
cases the agent programmer will be confronted to and simple
enough to be easy to learn and use.

3.3 Defining Exception Handlers and Resolu-
tion Functions

Exception handlers are classically defined by the set of ex-
ception types they can catch and by their code body (as



( 1) public class Broker extends X_SaGEAgent
( 2) {
( 3) // handler associated to the Broker agent
( 4) @agentHandler public void handle (GlobalNetworkException exc) { ... }
( 5)
( 6) // service provided by the Broker agent
( 7) @service public void pollProviders () { ... }
( 8)
( 9) // handler associated to the PollProviders service
(10) @serviceHandler(servicename=pollProviders) public void handle (BadParameterException exc)
(11) { signal (new NoAirportInDestinationException ( ... ); }
(12)
(13) // handler associated to the PollProviders service
(14) @serviceHandler(servicename=pollProviders) public void handle (NoProviderException exc) { ... }
(15)
(16) // service provided by the Broker agent
(17) @service public void contactParties ()
(18) {
(19) ...
(20) sendMessage (new RequestMessage (aServerAgent, "ContactSelectedProvider")
(21) {
(22) // handler associated to a request
(23) @requestHandler public void handle (OffLineException exc)
(24) {
(25) wait(120);
(26) retry();
(27) }
(28) });
(29) ...
(30) }
(31)
(32) // resolution function associated to the pollProviders service
(33) @serviceResolutionFunction(servicename=pollProviders) public TooManyProvidersException concert ()
(34) {
(35) int failed = 0;
(36) for (int i=0; j<subServicesInfo.size(); i++)
(37) if ((ServiceInfo) (subServicesInfo.elementAt(i)).getRaisedException() != null) failed++;
(38) if (failed > 0.3*subServicesInfo.size()) return new TooManyProvidersException(numberOfProviders);
(39) return null;
(40) }
(41) }

Figure 3: Service, handler and resolution function definitions in X-SaGE using annotations

illustrated by Fig. 3, lines 23–27, for example). There are
three main actions a handler can classically have:

• A handler can restore whatever should be, to put back
data into a consistent state, and can return a value
that becomes the value of the expression the handler
is associated to. In case of a message sending expres-
sion (standard or broadcast), the value returned by
the handler is the value of the expression. In case of
a handler attached to a service, the value becomes the
result of the service execution. In case of a handler
attached to an agent, the value becomes the result of
the execution of the service that raised the exception.

• A handler can signal a new exception (generally of
a higher conceptual level) or re-signal the original
one. This behavior is illustrated on Fig. 3 line 11. Of
course, handlers cannot protect themselves from the
exceptions they signal.

• A handler can retry the execution of the program unit
it is attached to. Retry amounts to entirely re-execute
the program unit it is attached to, generally after hav-
ing modified the local environment, but in the same
historical context. This possibility is illustrated on

Fig. 3, line 27. In case of handlers attached to agents,
retrying means re-executing the service that signaled
the exception.

X-Sage provides exception resolution support integrated to
the handler search. It enables resolution functions to be de-
fined at places where concurrent activities are launched and
have to be co-ordinated (i.e., at the service level). There is
no need for a resolution function either at the request level,
because requests are atomic, or at the agent level because all
semantically sound activities of agents, that need to be co-
ordinated, are accessible via services. The default behavior
of the resolution function associated to a service is, once all
recipients have replied, to aggregate all the exceptions that
occurred into a concerted one. Another possible behavior is
to transmit one reply as soon as it arrives without waiting
for others. Such a use of resolution for concerted excep-
tion slightly differs from the original work of [10], a resolu-
tion function is executed each time an exception handler is
searched for at the service level, this makes our system reac-
tive, because our resolution function evaluates the situation
each time an exception is signaled. Of course, a program-
mer can define his own exception resolution function using
the @serviceResolutionFunction annotation as shown in the



example of Fig. 3, lines 33-40.

4. HANDER SEARCH IN A REPLICATED
AGENT SYSTEM

Handler search requires that a tree of service execution
contexts be monitored. Each node represents a service ex-
ecution context and records the identities of the service be-
ing executed and the agent that owns the current service
(cf. Fig. 4). Each node can optionally have a parent node
that links to the calling context of the current service. In
this parent node, the request that triggered the current ser-
vice is recorded. Links between nodes (callee to caller links)
are used to look for handlers. Figure 2 shows the service ex-
ecution context tree that results from the services executed
in the travel agency example.

Figure 4: Node of a service execution context tree

The Figure 5 then shows the organigram that synthesizes the
different steps of the handler search process.

If an exception is raised within an agent service, then the
execution of the service is suspended and handler search is
launched. The handler search process decomposes into four
steps. First, a handler for the exception is searched in the
list of handlers and resolution functions associated to the
service. Concerning the resolution function, three cases are
possible:

• the exception is critical for the service. The resolution
function returns the exception object and the handler
search process carries on.

• the resolution function evaluates that the exception is
under-critical and that nothing more should be done
yet. The exception is logged, the resolution function
returns null and the handler search process stops. The
collective activity is not affected. The only service that
is terminated is the defective sub-service.

• the resolution function evaluates that the exception is
under-critical but that there is a need to signal some-
thing, for example because too many under-critical ex-
ceptions have been logged. The resolution function re-
turns a special exception that reflects the situation and
the handler search carries on.

If no handler has been found at the service level, one is
searched at the agent owner of the service. If a suitable
handler is found, it is executed and its execution terminates
the execution of the service. The agent is of course still
alive. Along with the execution of the handler, all pending
services called by the current one, if any, are terminated.

If no handler has been found at the agent level, and if the
agent is replicated, the control is given to its replication
manager. Each replication manager has a handler that traps
all exceptions and which acts in fact as a resolution function
the goal of which is to coordinate the answers given by the
various replicas of the agent. The behavior of this replication
manager handler is described in section 5).

If the replication manager does not want to handle the ex-
ception or if it propagates it, the search proceeds in the
calling context. First, the caller service is suspended and
the search for a handler is initiated in the calling service’s
context. The list of handlers associated to the request which
initiated the called service is searched first. If a handler is
found, it is executed and the search stops. Then, the search
proceeds by starting again at step 1, searching the list of
handlers associated to the current service, then, those asso-
ciated to the owner agent of the current service, etc.

The same four steps are repeated until an adequate handler
is found and executed, following callee to caller links in the
service execution context graph. If no handler has been
found when the root of the service execution context tree is
reached, a default top-level handler is executed.

5. HANDLING EXCEPTIONS AT THE REPLI-
CATION MANAGER LEVEL

With replication, we face the following global issues: (1) how
to trap an exception raised by the leading replica of an agent
before the exception is propagated to the caller? (2) What
to do when it has been trapped? Solving issue 1 is done by
invoking the replication manager during handler search as
explained in the preceding section. We have added in each
replication managers a resolution function and an associated
handler that trap all exceptions. Concerning Issue 2, the
replication manager handler will either, as described in the
following section, put the system back into a coherent state,
signal a new exception to the request caller of propagate
one of those it has trapped. In this latter case, the handler
search will continue as explained in section 4.

5.1 Typology of exceptions
The first global question for the replication manager han-
dler of an agent when one of its replicas raises an exception
is to know whether the same exception will also be raised
by the others. Which exception is replica-specific (examples
of this include exceptions raised when some resources spe-
cific to a given replica are unavailable) and which ones are
replica-independent (an example is bad parameter in the re-
quest sent to the agent (and thus to all its replicas), leading
for example to a division by zero)? In the worst case, it
could be considered that all exceptions are replica-specific.
It would mean that when one replica signals an exception,
we could systematically elect a new one to retry the same
computation. This would significantly slow down program
executions.

We thus have conceived our algorithms on the base of a clas-
sification of exceptions. Goodenough’s seminal paper has
proposed a classification in domain, range and monitoring
exceptions that highlights the reason why an exception is
raised. It however appears that we have no way to know



Figure 5: Organigram for handler search

whether a range exception (for example) is replica specific
or independent. A classification in terms of Error (serious
problem, should not be handled) and Exception (business
problem, can be handled) as in Java, inherited from the
Flavors system, highlights the exception gravity but cannot
again be applied to our problem.

A more appropriate classification in our case is a classical
semantic one in term of business (also called domain or ap-
plicative exceptions) and resource or system exceptions. Re-
source or system exceptions are raised by the computing
environment and are likely to reflect a specific communi-
cation or resource lack problem. System exception can be
considered as replica-specific. Business exceptions are direct
consequences of a programmer’s code. Under the hypothesis
that all the replicas of an agent have the same deterministic
behavior, exceptions identified as business exception can be
considered as replica-independent : they will be raised by
all replicas of a given agent. The question of knowing how
to detect at run-time whether an exception is a system or
business is left open at this point of the study.

Beyond this classification, the strategies of the exception
handler of the replication manager also takes into account
the composition of the replication group. Three strategies
are described in the following sections.

5.2 Controlling one active replica with multi-
ple passive ones

So-called passive-replication strategy uses one active replica
(the leader) and a set of passive ones.

When the active replica (leader) raises a business exception,
it is immediately propagated to the client agent. The leader
is considered to be in a coherent state as a business exception
is part of the behavior designed by the programmer of the
agent. Moreover, this exception should be raised by any
replica executing the same request message. It is useless to
discard the current leader and to activate another replica to

retry and execute the request.

When the active replica (leader) raises a system exception, it
is handled as a failure of the leader. The leader, which is left
in an undefined, potentially inconsistent and harmful state,
is destroyed. One of the passive replicas is activated and it is
asked to to retry the interpretation of the requested message.
If this new leader raises a system exception too, another
passive replica is used until their number runs out. If the
last replica fails, the exception (or a m is finally signaled to
the client agent to warn about the service failure.

An optimization can be introduced to manage more effi-
ciently system exceptions. If the same kind of system excep-
tion is raised by all replicas, a global problem is suspected
(for example, the unavailability of a shared resource or a
faulty programming). After a given number of attempts,
the replication manager stops retrying the execution of the
request to prevents a useless consumption of replicas. This
threshold is a configuration parameter of the replication pol-
icy and its value is defined by the administrator of the repli-
cated agent environment.

5.3 Controlling a set of active replicas
When a business-related exception is raised by a replica, it
is immediately propagated to the client agent since all the
others one are intended to raise the same exception. The
replication manager handler does not stop the execution of
the request in the other replicas but filters the exceptions
they raise (in order not to send the same exception to the
client agent several times). This also enables to determine
when the execution of the request is achieved for all the
replicas, to verify that they have raised the same exception
and are thus in the same new consistent state.

When a system-related exception is raised by a replica, it is
recorded by the resolution function of the replication man-
ager, until all the active replicas have achieved the execution
of the request and have sent a response. Meanwhile, if a nor-



mal response is computed by one replica, it is immediately
forwarded to the client agent. The other subsequent normal
responses are discarded by the replication manager. When
all the replicas have sent a response, the replication manager
destroys all the faulty replicas. If the leader is destroyed, a
new leader is chosen among the remaining replicas. If all
the replicas are destroyed, an exception is then signaled to
the client agent to warn it about the service failure.

5.4 Controlling a mix of active and passive repli-
cas

In the case where active and passive replicas are mixed (the
most general case), the handler first behaves as if there were
only active replicas (the second case above). If system ex-
ceptions are successively signaled by all active replicas and
active replicas are destroyed, it is possible to activate some
of the passive replicas, whether to augment the number of
active replicas for the next request or to retry and execute
the current request. It is to be noticed that the creation of
new replicas is not part of the behavior of replication man-
agers (which are specific to each replication group) because it
must be arbitrated between the different replication groups,
according to the criticality of the tasks and the availability
of computing resources. Replica creation is thus managed
by another replication middleware mechanism based on the
observation of task termination.

6. CONCLUSION AND RELATED WORKS
In this paper, we have proposed the specification of the X-
Sage exception handling system able to work with replicated
agents. X-Sage firstly offers to agent programmers an ex-
ception handling system that works transparently with repli-
cated agents. It secondly offers to replication implementors
the capacity to implement new replication strategies based
on the signaling of programmers-code related exception by
replicas. We have described such possible strategies for pas-
sive and active replicas. It can finally offer to replication
implementors the capacity to internally control internal ex-
ceptions raised by the replication algotithms, as proposed in
[13]. This last point concerns replication implementors and
is not developed in this paper. We have proposed an orig-
inal and light programming API, using java annotations to
define handlers and resolution functions. We propose a han-
dler search and a handler invocation algorithms that take
into account the service execution history and, when possi-
ble, work asynchronously to improve agent reactivity. The
implementation of our specification in the context of the
Dimax[7] software (the DIMA agent language on top of the
Darx replication system) in in progress.

Concerning related works, there are few studies on mixing
exception handling and replication and as far as we know, no
other in the agent context. [13] has proposed internal strate-
gies to enhance a majority voting algorithm for replicated
processes thanks to the handling of sequencing exceptions or
hardware failures via an exception handling system. What is
done for hardware failure has partially influenced our strate-
gies for replication in presence of exceptions. The system is
also able to report exceptions to callers. [11] has proposed
an initial study to combine distributed object-oriented pro-
gramming and N-version programming and [20] proposes an
ADA framework for the same purpose. Our handler at the

replication manager level globally plays the same role for
exceptions than the “exception adjudicator” of [20]. One
main difference with our proposal is that the control of the
coherence of versions is more complex with N-version since
versions are programmed by different programmers whereas
replication simply duplicate agents that run the same code
in the same environment on different processors. For this
reason we have been able to propose different strategies to
return responses to clients as soon as possible without wait-
ing all responses from replicas.
Concerning our resulting exception handling system, as far
as replication is transparent to programmers, it can be com-
pared with existing ones. Various proposals address the is-
sues related to exception handling for active object inte-
grating asynchronous communication [2, 12, 3, 9, 15, 16,
17, 1]. Our solution is original in that it combines the fol-
lowing features : handling of request / response interactions
between agents, handling of agent replicas, encapsulation
and reactivity, ability to write context-dependent dynamic
scope handlers (caller-contextualization), ability to coordi-
nate and control group of active agents collaborating to a
common task, ability to configure the exception propaga-
tion policy by defining exception resolution functions at the
service level.

This specification and implementation are first steps and we
wish to develop many points in future works. In a first step,
the interactions between the replication mechanism and the
exception handling system have to be further analyzed for
system-level and application-level exceptions to rafine repli-
cation strategies. We also plan to enhance Dimax capabili-
ties using the exception handling system as a “last chance”
mechanism to signal failures when the Darx replication sys-
tem has failed. This could be used in two distinct situations:
(1) to signal that the last remaining replica of an agent died
(failed) in order to allow to trigger less efficient modes the
programmer might have coded at the agent level, and (2) to
signal the death (failure) of an agent that was not considered
to be critical. This would allow to provide a recover strat-
egy if the estimated criticality was wrong. This would imply
that the Darx component dedicated to failure detection also
detect those specific situations and raise an exception. This
could also lead to enhance Sage capabilities using the meta-
information on agents computed by the Dimax platform.
For example, an agent’s computed criticality could be used
to tune concerted exception resolution. We could also pro-
pose a vulnerability measure that would use information on
agents such as its reliability (using an exception history) its
criticality and its current number of replicas. We also look
forward to use replication as a support to give the core im-
plementation of an exception handling system that supports
a resumption policy. Indeed, even if handler search is stack
destructive, as in most systems, a replica of an agent could
restart the computation where it has been stopped in the
original one.
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