INCOP: An Open Library for
INcomplete Combinatorial OPtimization

Bertrand Neveu and Gilles Trombettoni

Projet COPRIN, CERMICS-I3S-INRIA
Route des lucioles, BP 93, 06902 Sophia Antipolis France
Bertrand.Neveu@sophia.inria.fr, Gilles.Trombettoni@sophia.inria.fr

Abstract. We present a new library, INCOP, which provides incomplete
algorithms for optimizing combinatorial problems. This library offers lo-
cal search methods such as simulated annealing, tabu search as well as
a population based method, Go With the Winners. Several problems
have been encoded, including Constraint Satisfaction Problems, graph
coloring, frequency assignment.

INCOP is an open C++ library. The user can easily add new algorithms
and encode new problems. The neighborhood management has been care-
fully studied. First, an original parameterized move selection allows us
to easily implement most of the existing meta-heuristics. Second, differ-
ent levels of incrementality can be specified for the configuration cost
computation, which highly improves efficiency.

INCOP has shown great performances on well-known benchmarks. The
challenging £1at300_28 graph coloring instance has been colored in 30
colors for the first time by a standard Metropolis algorithm.

1 Introduction

Discrete optimization problems can be solved by two majors types of methods,
complete and incomplete ones. Complete algorithms are based on a tree search
with a Branch and Bound schema. Several commercial software tools propose
such methods. When an optimization problem can be modeled by linear con-
straints and a linear criterion, MIP packages can be used. Otherwise, constraint
programming tools, such as IlogSolver or Chip, can be used.

When the search space becomes too large, these systematic search techniques
are often outperformed by incomplete methods, that cannot prove the optimality
of a solution, but often give rapidly a good solution. The most common incom-
plete methods are based on local search which tries to make local changes to
one configuration for improving its cost. Other incomplete methods explore the
search space by managing a population of configurations.

To efficiently implement complete algorithms requires a great effort and
therefore commercial tools have been built and are successfully used. Conversely,
it is easier to implement an incomplete method and no important effort has been
made to build a commercial tool. I1ogSolver has recently added a local search
module, but it is included in the whole library and cannot be used separately.

This lack of tool has recently led many researchers to build their own in-
complete search method libraries [12]. We can cite i0pt [14] by British Telecom,
SCOOP [10] by SINTEF, Localizer++ [6] at Brown University, Hotframe [13]
at University of Braunschweig, Discropt [11] at State University of New York.
Philippe Galinier and Jin-Kao Hao [4] also proposed a framework for local search.

However, at the moment, all these libraries are not free or not available.
We have found only one free library available on the Web: EasyLocal++, at
University of Udine [2], that implements local search methods.

Initially, we wanted to test a new population-based method and compare
it with local search methods in the same implementation. In that purpose, we
decided to provide a free library, implementing the main local search meta-
heuristics and efficient population-based methods.

2 Architecture

We have chosen an object oriented design and implemented the library in C++,
using virtual methods and data structures provided by the STL. The main classes
are: OpProblem, Algorithm, Configuration, Move , NeighborhoodSearch,
Metaheuristic. It is then not difficult to define new meta-heuritics, new neigh-
borhoods or new problems by defining subclasses.

The most popular local search metaheuristics are implemented such as Hill
Climbing, GSAT, Simulated Annealing, Tabu Search. For adding a new meta-
heuristic, one has to define a subclass of Metaheuristic, with its data, an
acceptance condition of a candidate move and a executebeforemove method
for updating the meta-heuristic data (like the temperature of simulated anneal-
ing or the tabu list) before executing a move.

A configuration is represented by a fixed set of integer variables, with a pri-
ori known domains of values. Important combinatorial optimization problems,
as traveling salesman problems (TSP) can be encoded in this framework. Con-
straint Satisfaction Problems (CSP) are transformed into MAX-CSP optimiza-
tion problems for which the number of violated constraints (or more generally
a criterion computed on these violations) is minimized. We have implemented
several CSPs, including graph coloring and frequency assignment problems.

Adding a new problem. The criterion to be optimized is specific to a given
problem. Three methods compute this criterion. config_evaluation evaluates
the cost of an initial configuration; move_evaluation performs the incremental
evaluation of a move; update_conflicts updates the conflicts data structure
of a configuration when a move is executed.

3 Contributions

This section details original features of INCOP. First, the incremental configura-
tion cost computations offered by our library improve efficiency. Second, efficient
population-based algorithms can be used to tackle the most difficult instances.
Third, an original parameterized move selection can lead to easily create new
variants of local search algorithms.

3.1 Incrementality

The contribution of any variable value to the evaluation of a configuration cost
is the number of constraints violated by this value (considering the current value
of the other variables). Since this evaluation is performed very often, it is crucial
to rapidly evaluate the impact of a move on the whole configuration cost. We
provide 3 manners to manage the conflicts, implemented by 3 classes.

1. In CSPconfiguration, the conflicts are not stored: one needs to compute
the number of constraints violated by the old and the new values.

2. In IncrCSPconfiguration, the contribution of the current value is stored
in conflicts; we need to compute only the contribution of the new value.

3. In FullincrCSPconfiguration, all the contributions of all possible values
are stored in conflicts; the evaluation of a move is immediate.

The incremental evaluations are performed by the two following methods:
move_evaluationis called when a move is tested, and update_conflicts when
a move is performed. With full incrementality, the computation effort is mainly
done in update_conflicts. It is fruitful when a lot of moves must be tested
before accepting one. When the problem is sparse as in most of graph color-
ing instances, the updating is not costly. It only concerns the values of the few
variables linked by a constraint with the currently changed variable. Full in-
crementality can save an order of magnitude in computing time. The memory
required is also reasonable for coloring problems: the size of the conflict data
structure is IV x D, where N is the number of nodes and D the number of colors.

3.2 Go With the Winners algorithms

The population-based algorithms implemented in INCOP are variants of the Go
With the Winners algorithm [3]. Several configurations are handled simultane-
ously. Every configuration, named particle, performs a random walk and, peri-
odically, the worst particles are redistributed on the best ones. To ensure im-
provements in the population, a threshold is lowered during the search and no
move passing above the threshold is allowed.

The hybridization with local search is straightforward: instead of performing
a random walk, every particle performs a local search. GWW-grw [9], a hybridiza-
tion of GWW with a simple walk algorithm, has given very good results.

3.3 Selection of a move

An atomic step in local search algorithms is the way neighbors of the current
configuration are tested. An original generic move selection, a kind of candidate
list strategy [5], has been embedded in INCOP. First, the method is_feasible
gives a feasibility condition for the move. For instance, in GWW algorithms, the
configuration cost must stay under the current threshold. In order to finely tune
the intensification effort of the search, 3 parameters are used:

1. We first test Min_neighbors neighbors in order to select the best one.

2. If none has been accepted by the meta-heuristics, we test other neighbors
until one is accepted or a sample of Max_neighbors is exhausted.

3. Finally, if no neighbor among these Max_neighbors has been accepted, the
No_acceptation parameter indicates how to select a configuration: either
the best feasible or any feasible among the Max_neighbors visited neighbors.

These parameters allow us to implement many different classical behaviors
as searching the best neighbor in the entire neighborhood or the first acceptable
neighbor in a sample of K neighbors.

4 Experiments

We have performed experiments on difficult instances mainly issued from two
categories of problems encoded as weighted MAX-CSPs: difficult graph coloring
instances proposed in the DIMACS challenge, and CELAR frequency assignment
problems!. All the tests have been performed on a PentiumIII 935 Mhz.

4.1 Graph coloring instances

Incomplete algorithms succeeded in coloring £1at300_28 in 31 colors [8].We
colored it in 31 colors in a few minutes and in 30 colors in 1.6 hour using a
Metropolis algorithm (i.e., simulated annealing with constant temperature [1])
and a neighborhood implementing the Min-conflicts heuristics [7].

| ||nb-col|time||nb-c01|conﬂicts| time |success| algo | neighb. |
1le450_15c¢ 15 min 15 0 1.1 min 10/10 GWW-grw |var-conflict
led450_15d 15 min 15 1.4 1min | 5/10 GWW-grw |var-conflict
le450_25c 25 min 25 1.5 55 min 1/10 Metropolis|var-conflict
le450_25d 25 min 25 1.3 58min| 1/10 |Metropolis|var-conflict
£1at300_28|| 31 h 31 0.3 4min | 9/10 [Metropolis|min-conflict
£1at300_28|| 31 h 30 1.6 1.6h | 5/10 |Metropolisjmin-conflict

Table 1. Results on graph coloring benchmarks. The best results of known algorithms
are reported in the left side (number of colors, time); the results with INCOP in the right
side (number of colors, number of conflicts (average on 10 trials), cpu time (average on
10 trials), success rate, algorithm and neighborhood used.

4.2 CELAR frequency assignment instances

bound |best found|bound (average)| time |succes| algo
celar6|| 3389 min 3389 (3405.7) |9min | 4/10 |GWW-grw
celar7||343592 min 343596 (343657) | 4.5h | 1/10 |GWW-grw
celar8|| 262 min 262 (267.4) 33min| 2/10 |GWW-grw

Table 2. Results on CELAR frequency assignment benchmarks. The results of the best
known algorithms are in the left side; the results with INCOP in the right side.

The constraints are of the form |x; — z;| = ¢ or |x; — x| > é. The objective
function is a weighted sum of violated constraints.
! Thanks to the “Centre d’ELectronique de PARmement”.

5 Conclusion

This paper has presented a new C++ library for incomplete combinatorial op-
timization. We have implemented several local search, and original and efficient
population-based algorithms. A great effort has been done for the neighborhood
management. An important issue is the incrementality in move evaluations. We
have obtained it by maintaining a conflict data structure. Finally, we hope that
our parameterized move selection process will improve existing meta-heuristics.

We think that no incomplete algorithm can efficiently solve all the problems.
So it is important to test rapidly different algorithms, different neighborhoods.
Such a library permits it and we have obtained good results for CELAR fre-
quency assignment problems with GWW-grw and for graph coloring problems with
GWW-grw or Metropolis, with a min-conflict or a var-conflict neighborhood.
We have, for the first time, colored £1at300_28 with 30 colors.

References

1. D. T. Connolly. An improved annealing scheme for the QAP. FEuropean Journal
of Operational Research, (46):93-100, 1990.

2. L. DiGaspero and A. Schaerf. Easylocal++ : An object oriented framework for
flexible design of local search algorithms. Technical Report UDMI/13, Universita
degli Studie di Udine, 2000.

3. Tassos Dimitriou and Russell Impagliazzo. Towards an analysis of local optimiza-
tion algorithms. In Proc. STOC, 1996.

4. Philippe Galinier and Jin-Kao Hao. Hybrid evolutionary algorithms for graph
coloring. Journal of Combinatorial Optimization, 3(4):379-397, 1999.

5. F. Glover and M.Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

6. L. Michel and P. Van Hentenryck. Localizer++ : An open library for local search.
Technical Report CS-01-02, Brown University, 2001.

7. S. Minton, M. Johnston, A. Philips, and P. Laird. Minimizing conflict: a heuris-
tic repair method for constraint satisfaction and scheduling problems. Artificial
Intelligence, 58:161-205, 1992.

8. C. Morgenstern. Distributed coloration neighborhood search. In D. Johnson and
M. Trick, editors, Cliques, Coloring, and Satisfiability, volume 26 of dimacs, pages
335-357. American Mathematical Society, 1996.

9. Bertrand Neveu and Gilles Trombettoni. When local search goes with the winners.
In Proc. of CPAIOR’03 workshop, 2003.

10. P. K. Nielsen. SCOOP 2.0 Reference Manual. SINTEF Report 42A98001, 1998.

11. V. Phan and S. Skiena. Coloring graphs with a general heuristic search engine. In
Computational Symposium of Graph Coloring and Generalizations, 2002.

12. S. Vol and D. Woodruff. Optimization Software Class Libraries. Kluwer, 2002.

13. S. Vo and D.L. Woodruff. Hotframe: A heuristic optimization framework. [12],
pages 81-154.

14. C. Voudouris and R.Dorne. Integrating heuristic search and one-way constraints
in the iOpt toolkit. [12], pages 177-192.

