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Abstract. Gene trees are leaf-labeled trees inferred from molecular se-
quences. Due to duplication events arising in genome evolution, gene
trees usually have multiple copies of some labels, i.e., species. Inferring a
species tree from a set of multi-labeled gene trees (MUL trees) is a well-
known problem in computational biology. We propose a novel approach
to tackle this problem, mainly to transform a collection of MUL trees into
a collection of evolutionary trees, each containing single copies of labels.
To that aim, we provide several algorithmic building stones and describe
how they fit within a general species tree inference process. First of all,
we propose to separately preprocess MUL trees in order to remove their
redundant parts with respect to speciation events. For this purpose, we
present a tree isomorphism algorithm for MUL trees that can be applied
to the pairs of subtrees hanging from duplication nodes. This preprocess
lowers the number of duplication nodes in gene trees. For the gene trees
that still have duplication nodes, we define the topological information
of a MUL tree that can be thought of as being unambiguously related
to speciation events. When the MUL tree contains a coherent speciation
signal, we show that we can replace the MUL tree with a single-labeled
tree representing its speciation information. Otherwise, we propose to
extract a maximum subtree that is free of duplication events. Most al-
gorithms have a linear-time complexity, except for an FPT algorithm
proposed for a problem that we show to be intractable. The algorithms
described in this paper are used to analyse the hogenom database, a
database of homologous genes from fully sequenced genomes .

1 Introduction

An evolutionary tree (or phylogeny), is a tree displaying the evolutionary history
of a set of sequences or organisms. A gene tree is an evolutionary tree built by
analyzing a gene family, i.e., homologous molecular sequences appearing in the
genome of different organisms. Gene trees are primarily used to estimate species
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trees, i.e., trees displaying the evolutionary relationships among studied species.
Unfortunately, most gene trees can significantly differ from the species tree for
methodological or biological reasons, such as long branch attraction, lateral gene
transfers, deep gene coalescence and, principally, gene duplications and losses [1].
For this reason, species trees are usually estimated from a large number of gene
trees.

Inferring a species tree from gene trees is mostly done in a two-step approach.
First, a micro-evolutionary model that takes into account events affecting indi-
vidual sites is used to infer the gene trees. The species tree is then inferred on
the basis of a macro-evolutionary model, i.e., minimizing the number of transfer,
duplication and loss events [2–6]. To produce more biologically meaningful trees,
unified models have been proposed in which the micro and macro-evolutionary
dimensions are entangled [7–9]. However, it is difficult to determine how to in-
corporate events occurring on different spatial and temporal scales, as well as
belonging to neutral and non-neutral processes, in a single model [9]. Lately,
a hybrid approach has been proposed, where a first draft of a species tree is
inferred with a micro-evolutionary model, the most uncertain parts of which are
then corrected according to a macro-evolutionary model [9].

In this paper, we propose instead to take advantage of the very large number
of gene trees present in recent phylogenomic projects to avoid entering into the
detail of all possible macro-evolutionary scenarios (e.g. is a parsimony approach
always justified? Should only the most parsimonious scenario be retained?). We
propose to extract the non-ambiguous part of the topological information con-
tained in the gene trees, i.e., that resulting from speciation events as opposed
to duplication events, and then apply a traditional supertree method letting the
weight of evidence decide in favor of one candidate species tree [10–12].

This approach is only possible when the number of gene trees is very large,
and indeed this is now the case in projects such as the HOMOLENS database
(http://pbil.univ-lyon1.fr/databases/homolens.php) and the HOGENOM

database (http://pbil.univ-lyon1.fr/databases/hogenom.php) storing sev-
eral thousands of gene trees. In the release 04 of these databases, respectively
51% and 71% of gene families have paralogous sequences, i.e., sequences where
duplications and losses have actually taken place. Currently, these gene families
are discarded when inferring a supertree of the concerned species. Disentangling
information derived from speciation events from that resulting from duplication
events would thus provide more information for species tree inference.

Supertree methods combine source trees whose leaves are labeled with in-
dividual species into a larger species tree. The source trees are single-labeled,
i.e., each species labels at most one leaf. Note that, by definition, the inferred
supertree is also single-labeled. In contrast, gene trees are usually multi-labeled,
i.e., a single species can label more than one leaf, since duplication events al-
most always resulted in the presence of several copies of the genes in the species
genomes. The task we therefore have to solve is to extract the largest amount
of unambiguous topological information from the multi-labeled gene trees under
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Fig. 1. An example of MUL tree with one odn indicated by a black square

the form of single-labeled trees. This paper presents a number of results in this
direction, that all play a role in the general scheme that is fully described below.

First of all, we propose to separately preprocess MUL trees in order to re-
move their redundant parts with respect to speciation events. For this purpose,
we extend the tree isomorphism algorithm of [13] making it applicable to MUL
trees while preserving a linear running time (section 3). This algorithm is then
applied to the pairs of subtrees hanging from duplication nodes in MUL trees.
This preprocess lowers the number of duplication nodes in gene trees. We also
give in passing a linear time algorithm to identify duplication nodes in MUL
trees (section 2.1). For the gene trees that still have duplication nodes, we define
a set R of triplets (binary rooted trees on three leaves [14, 12]) containing the
topological information of a MUL tree that can be thought of as being unam-
biguously related to speciation events. We show that this set of triplets can be
computed in O(|R|) time (section 4). When this set is compatible, the MUL tree
contributes a coherent topological signal to build the species tree. In such a case,
we can replace the MUL tree with a single-labeled tree representing its associ-
ated set of triplets by using the AncestralBuild algorithm [17] (section 4) or the
PhySIC algorithm [24] (section 7). In section 4 we also show that it is possible to
check the auto-coherency of a binary MUL tree M by using a triplet set whose
size is at most equal to the number of speciation nodes of M. When a MUL tree is
not auto-coherent, we propose to extract a maximum subtree that is both auto-
coherent and free of duplication events. Surprisingly, this optimization problem
can be solved in linear time (section 5). When extracting largest single-labeled
subtrees from MUL trees it is possible to obtain an incompatible collection, when
a compatible collection could have been obtained by choosing subtrees of MUL
trees in a coordinated way. However, solving this problem is computationally
harder, as we show by providing an NP-completeness proof (section 6). The al-
gorithms described in this paper are used to analyse the hogenom database, a
database of homologous genes from fully sequenced genomes (section 7).

2 Preliminaries

In this paper we focus on rooted binary multi-labeled (MUL) trees. Let M be a
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MUL tree and v a node of M . If v is a leaf node, we denote by lv its label. The
set of leaf nodes of M is denoted by L(M). If v is an internal node, denote by
v1 and v2 the two sons of v and by sons(v) the set {v1, v2}. We define by Mv

the subtree with v as root and by L(v) the multiset of labels of Mv. We denote
by L(M) the multiset L(root(M)).

Definition 1. A node v of M is called an observed duplication node (odn)
if the intersection of L(v1) and L(v2) is not empty.

Note that, for an odn v, L(v) will always contain some label more than once.
We denote by D(M) the set of odn. A label l ∈ L(M) is a repeated label for M
iff the label l occurs more than once in L(M). We say that f is a repeated leaf
for M iff L(f) is a repeated label.

2.1 Computing D(M) in Linear Time

The easiest way to compute D(M) is checking for each node v if the sets L(v1)
and L(v2) have at least one label in common; in the case of a positive answer, v
is inserted in D(M). The complexity of this approach is O(n2), since it requires
computing O(n) intersections of two lists of O(n) elements. The algorithm 1 uses
the lca to find the set of odn D(M) and requires only linear time. To demonstrate
the correctness of algorithm 1, we need to determine some relationships between
the lca and the odn.

Lemma 1. A node is an odn if and only if it is the lca of at least two repeated
leaves m and p.

Proof. Indeed, from the definition 1, v is an odn iff L(v1) ∩ L(v2) 6= ∅. Therefore,
there exist two leaf nodes m and p with m ∈ Mv1

and p ∈ Mv2
such that lm = lp.

Thus v is a common ancestor of the two leaves m and p with the same label.
Now, m and p belong to two different subtrees having v as father (m ∈ Mv1

and
p ∈ Mv2

), hence v is their lowest common ancestor in M . Reciprocally, if v is
the lca of two leaves m and p with the same label, this means that L(v1) ∩ L(v2)
6= ∅, then v is an odn according to definition 1. ⊓⊔

According to Lemma 1, we can search for the lca of any two leaves m and p
with the same label. To determine the lca between multiple pairs of nodes, one
can use an algorithm in [15] which preprocesses a data structure in O(n) time,
where n is the number of nodes and returns the lca of any two specific nodes
from the data structure in O(1). We still have O(n2) of these couples, and even
constant time for each gives an O(n2) total complexity. However, since there
are only O(n) odn, checking the lca of any pair of leaves computes the same
lca several times. A smarter approach is used in algorithm 1: first of all, the
subtrees of M are ordered from the left to the right in an arbitrary way. Then,
each repeated leaf, starting from the left of the tree and moving to the right, is
tagged with the repeated label followed by its occurrence number. Then, for each
repeated label e, the lca of any two successive occurrences of e, ei and ei+1 is
inserted in D(M). This leads to a linear time complexity. Indeed, we have O(n)
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of these couples since each leaf of M is involved in at most two pairs (ei, ei+1).

Algorithm 1: CompDuplicationNodes(r)

Data: A MUL tree M .
Result: A set of odn D(M).
Order M in an arbitrary way. In this order, tag each duplicated leaf with the
repeated label followed by its occurrence number. Compute the lca for each
couple of leaves.
D(M)← ∅;
foreach (repeated label e) do

foreach ({ej , ej+1}) do D(M) ← lca(ej , ej+1);

return D(M);

The correctness of algorithm 1 is justified by Lemma 2 showing that algorithm
1 retrieves all the odn of M .

Lemma 2. Let M be a MUL tree. For each odn v, ∃ two successive occurrences
of a label e denoted by ei and ei+1 s.t. v = lca(ei, ei+1).

Proof. Given an odn v, there exists at least one label e present in both subtrees
Mv1

and Mv2
, where v1 (resp v2) is the left (resp right) son of v. We denote by

A the set of leaves ai s.t. ai ∈ Mv1
and lai

= e and by B the set of leaves bj s.t.
bj ∈ Mv2

and lbj
= e. If we take the last element of A (a|A|) and the first one of

b (b1), we know that v is their lca. Additionally, due to the way we tagged M,
we know that there is no other occurrence of the label e between a|A| and b1.
Indeed, if there was another leaf x labeled with e, it would be either in v1 (and
then x = a|A|) or in v2 (and then x = b1). Then a|A| and b1 are two successive
occurrences of the same label and their lca is the node v. ⊓⊔

3 Isomorphic Subtrees

Definition 2. Two rooted trees T1 , T2 are isomorphic (denoted by T1=T2) iff
there exists a one-to-one mapping from the nodes of T1 onto the nodes of T2

preserving leaf labels and descendancy.

We are interested in testing if, for each odn v, the two subtrees v1 and v2 are
isomorphic or not. In the positive, we can prune one of the two isomorphic
subtrees without losing any topological information related to speciation events
(see Proposition 1 in section 4) and eliminate the odn v, as in the example

n  n ∈ D(M )  n ∉ D(M )

a b c a b c x x y a b c x x y

Fig. 2. An example of MUL tree where the sons of the duplication node are isomorphic
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of Fig. 2. For detecting isomorphism of MUL trees, we propose Algorithm 2,
an extension of the Check-isomorphism-or-find-conflict algorithm [22].
Indeed, the latter does not deal with MUL trees. Alternatively, we could have
proposed an appropriate variant of the tree isomorphism algorithm detailed in
[23]. However, such an algorithm would likely have been less space efficient than
the one we present here due to a number of string sorting steps using a number
of queues and lists to ensure linear running time.

A node that has only two leaves as children is called cherry. In the case of
single-labeled trees we have the following lemma:

Lemma 3. [13] Let T1, T2 be two isomorphic trees and let c1 be a cherry in T1.
Then, there is a cherry c2 ∈ T2 s.t. L(c1) = L(c2).

In the case of MUL trees, we can have several copies of the same cherry. We call
a multiple cherry the list of cherries on the same two labels. For a multiple
cherry mc, we note |mc| the number of occurences of the cherry in its tree.

Lemma 4. Let M1, M2 be two isomorphic MUL trees and let mc1 be a multiple
cherry in M1. Then, there is a multiple cherry mc2 ∈ M2 s.t. L(mc1) = L(mc2)
and |mc1| = |mc2|.

The proof is inspired from that of Lemma 3 in [13] and left to the reader.

3.1 Outline of the Algorithm

First of all, we find all the multiple cherries for the MUL trees M1 and M2.
We store them in the list Lmc using a simple linked list. Additionally, we use a
hashtable H where each mc ∈ Lmc is a key. H associates to each multiple cherry
mc two linked lists, O1(mc) and O2(mc), storing pointers to nodes of M1 and M2

respectively that correspond to the occurrences of mc. The multiple cherries of
a MUL tree are then examined in a bottom-up process. Given a multiple cherry
mc in Lmc we check if the size of O1(mc) is the same as that of O2(mc). If this
is not the case, we have found a multiple cherry for which we do not have the
same number of occurrences in M1 and M2. In this instance, M1 and M2 are not
isomorphic (Lemma 4) and the algorithm returns FALSE. Otherwise we turn
all the cherries in O1(mc) and O2(mc) into leaves to which a same new label,
different from all other labels in M1 and M2, is assigned. This modification of M1

and M2 can turn the fathers of some cherries in O1(mc) and O2(mc) into new
cherries. Then Lmc is updated and the processing of cherries in M1 is iterated
until both MUL trees are reduced to a single leaf with the same label if M1 and
M2 are isomorphic, or a FALSE statement is returned.

Theorem 1. Let M1 and M2 be two rooted MUL trees with L(M1) = L(M2)
of cardinality n. In time O(n), algorithm 4 returns TRUE if M1 and M2 are
isomorphic, FALSE otherwise.

Proof. This algorithm is an extension of the Check-isomorphism-or-find-

conflict algorithm [22] applicable to MUL trees. We show here that we can
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Algorithm 2: CheckIsomorphismMULTree(M1,M2)

Data: Two MUL tree M1 and M2.
Result: TRUE if M1 and M2 are isomorphic, FALSE otherwise.
Let Lmc be the list of multiple cherries in M1 and M2. Let H be the hashtable
where each mc ∈ Lmc is a key. To each mc, H associates two lists O1(mc) and
O2(mc), respectively of the occurrences of mc in M1 and M2;
while (Lmc 6= ∅) do

mc ← removeFirst(Lmc);
if (O1(mc) = O2(mc)) then

Turn all cherries in O1(mc) and O2(mc) into leaves to which a same
new label is assigned;
add the new multiple cherries in Lmc and H ;

else return FALSE;

return TRUE;

keep a linear time execution, using supplementary data structures.
A simple depth-first search of trees M1 and M2 initializes Lmc and H in O(n)
time. At each iteration of the algorithm, choosing a multiple cherry mc to process
is done in O(1) by removing the first element mc of Lmc. H then provides in
O(1) the lists O1(mc) and O2(mc) of its occurrences in the trees. Checking that
these lists have the same number of elements is proportional to the number
of nodes they contain, hence costs O(n) amortized time, as each node is only
once in such a list, and the list is processed once during the whole algorithm.
Replacing all occurrences of mc by a new label is done in O(n) amortized time,
since each replacement is a local operation replacing three nodes by one in a tree
and at most O(n) such replacements can take place in a tree to reduce it down
to a single node (the algorithm stops when this situation is reached). Reducing a
cherry can create a new occurrence omc′ of a cherry mc′. Checking in O(1) time
if mc′ is a key in H allows to know whether occurrences of mc′ have already
been encountered or not. In the positive, we simply add omc′ to the beginning
of the list O1(mc) (if omc′ ∈ M1) or O2(mc) (if omc′ ∈ M2), requiring O(1)
time. In the negative, we add mc′ to the beginning of Lmc, create a new entry
in H for mc′, and initialize the associated lists O1(mc) and O2(mc) so that one
contains omc′ and the other is the empty list. Again, this requires only O(1)
time. Thus, performing all operations required by the algorithm globally costs
O(n) time. ⊓⊔

Apply algorithm 2 to Mv1
and Mv2

for each odn v of a MUL tree M in a
bottom-up approach requires O(dn) time, where d is the number of duplication
nodes in M .

4 Auto-coherency of a MUL Tree

The algorithm 2 can be used to lower the number of duplication nodes in gene
trees. Let M be a gene tree M that still have duplication nodes after having
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removed isomorphic sibling subtrees in a bottom-up approach as described in
section 3. Since M contains several copies of the same gene, we can wonder
whether the evolutionary signal of each copy is coherent or not. Let introduce
some notations to formalize this concept.

Given a (single/multi)labeled evolutionary tree M . For every three leaves in
L(M), we can have three different rooted tree binary shapes, called triplets. We
denote by ab|c the rooted tree that connects the pair of taxa (a, b) to c via the
root and by R(M) the set of triplets of M i.e., R(M) = {ab|c s.t. there exist
three leaf nodes x, y, z ∈ M : lx = a, ly = b, lz = c and lca(x, y) 6= (lca(x, z) =
lca(y, z))}1.

Definition 3. Let M be a MUL tree. We define by Rwd(M) (R(M) without
duplications) the set of triplets ab|c of R(M) s.t. there exist three leaf nodes
x, y, z ∈ M : lx = a, ly = b, lz = c and lca(x, y) /∈ D(M), lca(x, y, z) /∈ D(M),
lca(x, y) 6= (lca(x, z) =lca(y, z)).

For example, for the MUL tree in Fig. 1, Rwd(M)={ac|b, ac|d,ab|d,bc|d,ac|o,ab|o,
ad|o,bc|o,cd|o,bd|o,ab|c}. Hence, not all the triplets of R(M) are kept. This is due
to the fact that, once a duplication event occurred in a gene’s history, the two
copies of the gene evolved independently. The history of each copy is influenced
by the species history but, considering them simultaneously may produce infor-
mation unrelated to the species evolution. Therefore, it is more appropriate to
discard the triplets mixing the histories of distinct copies of a gene.

Rwd(M) has size O(n3) and can be computed in O(n3) time, where n is the
number of leaf nodes of M . Indeed, once the lca of all pairs of nodes in M are
computed in O(n) time (see [15, 16]), checking for three leaf nodes x, y, z of M if
they satisfy Definition 3 can be done in O(1) time, thus in O(n3) for all triplets
of leaves in M .

Proposition 1. Let M be a MUL tree and M ′ the MUL tree obtain by applying
algorithm 2 to eliminate isomorphic sibling subtrees. Then Rwd(M) = Rwd(M

′).

Definition 4. A triplet set R is said to be compatible if there exists a single-
labeled tree T such that R ⊆ R(T ).

Definition 5. A MUL tree M is said to be auto-coherent if the triplet set
Rwd(M) is compatible, i.e., if there exists a single-labeled tree T such that Rwd(M)
⊆ R(T ).

In the case of an auto-coherent MUL tree, we know that there exists at least
one tree T containing all the information in Rwd(M), i.e., the information of M
that is considered reliable. To check if a MUL tree is auto-coherent, we use the
AncestralBuild algorithm of [17]. For a set of triplets R, this algorithm indicates
in O(|R| · log2(|L(R)|)) time whether R is compatible, where L(R) is the set of

1 The root of the tree is considered to be up and its leaves down. lca(x, y) denotes the
least common ancestor of nodes x and y, i.e., the lowest node in the tree that has
both x and y as descendants.



Building species trees from larger parts of phylogenomic databases 9

leaf labels of the elements of R. Moreover, in case of a positive answer it returns
a tree T s.t. R ⊆ R(T ).

It has been proved in [18] that a binary single-labeled rooted tree T can be
encoded using a triplet set Rl(T ) whose size is the number of inner nodes of T .
In this section we show that it is possible to check the auto-coherency of a binary
MUL tree M by using as representation of Rwd(M) a triplet set Rl

wd(M) whose
size is at most equal to the number of speciation nodes of M. To univocally
define the set Rl

wd(M), let < be a total order on the leaf set L(M). For each
node v of M , we denote by sm(v) the smallest element of L(Mv) according to
< and by anc(v) the set of nodes belonging to the path from v to the root of
M . Let lsa(v) be the least speciation ancestor of v i.e. the speciation node in
anc(v) closest to v and v′ the son of lsa(v) such that v /∈ Mv′ . Note that, if the
father of v is not in D(M), it coincides with lsa(v) while v′ is the sibling node
of v.

Definition 6. Let M be a binary MUL tree and < a total order on L(M).
We define by Rl

wd(M) the set of triplets ab|c such that ab|c ∈ Rwd(M) and
there exists a speciation node v in M such that sm(v1) = a, sm(v2) = b and
sm(v′) = c.

!"#$%&

%

%' %( %)

"*$%'&

+,#,,,,

"*$%(&

+,-,

"*$%)&

+,.

!#/.$%& 0

Fig. 3. The only triplet of Rl
wd(M) associated to the speciation node v is ab|c, while

the triplet set associated to v in Rwd(M) is composed by the triplets lxly|lz of R(M),
where x ∈ L(Mv1

), y ∈ L(Mv2
) and z ∈ L(M) such that lca(x, y, z) /∈ D(M) and

lca(x, y) 6= (lca(x, z) = lca(y, z)).

Note that, for each speciation node v, the set Rl
wd(M) contains at most one

triplet while Rwd(M) tipically contains many more triplets (see figure 3).
Once the set of duplication nodes D(M) is calculated, Algorithm 3 computes

Rl
wd(M) in linear time (see Theorem 2). We now need to show that checking

the auto-coherency of Rwd(M) and Rl
wd(M) is equivalent. To do that, we need
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Algorithm 3: linearRepresentation(M,D(M), v)

Data: A binary MUL tree M, the set of duplication nodes D(M) of M , a node
v in M.

Result: A set of triplets Rl.
Rl ← ∅;
if (v is not a leaf and v is not the root node) then

f ← the father of v;
if (f /∈ D(M)) then

if (f1 = v) then v′ ← f2;
else v′ ← f1;

else

v′ ← f ′;

Rl ← Rl ∪ linearRepresentation(M,D(M), v1);
Rl ← Rl ∪ linearRepresentation(M,D(M), v2);
if (v /∈ D(M)) and (v′ 6= ∅) then

Rl ← sm(v1)sm(v2)
˛

˛

˛
sm(v′);

return Rl;

to introduce some notations. Given a node v of a MUL tree M , we define the
height of v, denoted by h(v), as the longest path between v and its descendants.
More formally, the height of a leaf is fixed to zero and that of a internal node v
is max(h(v1),h(v2))+1. We denote by G(R) the Aho graph, or clustering graph
built from R (see [14, 19, 18]). The set of vertices of this graph is L(R). There is
an edge in G(R) connecting two vertices a and b iff there exists ab|c ∈ R. This
graph is the traditional way to check the compatibility of a set of rooted trees
(see [17] for another approach to this problem).

The proof that the auto-coherency of Rwd(M) can be tested by checking that
of Rl

wd(M) relies on the following Lemma.

Lemma 5. Let M be a binary MUL tree and v a node of M. Then, if anc(v)
contains at least one speciation node, then G(Rl

wd(M))|L(Mv) is connected.

Proof. We prove the Lemma by induction on the height of the node v. Note
that we need to consider only those nodes having at least one speciation node
as ancestor since Lemma 5 does not apply for nodes not having this property.

Let start showing that Lemma 5 is valid for all nodes with height 0. In this
case L(Mv) contains a single label, hence G(Rl

wd(M))|L(Mv) contains only one
vertex i.e., it is trivially connected.

Now suppose that Lemma 5 is valid for all nodes v such that h(v) < h̄. We
want to prove that this implies that it is true for all nodes v: h(v) 6 h̄. Let v
be a node for which anc(v) contains at least one speciation node and h(v) = h̄.
Since h(v1) = h(v) − 1 and anc(v1) ⊇ lsa(v) we know that G(Rl

wd(M))|L(Mv1
)

is connected and the same holds for G(Rl
wd(M))|L(Mv2

). It remains to prove
that there exists an edge connecting the two connected components C1 and C2.
Either v is a speciation node or a duplication node. If v is a speciation node,
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then for the definition of Rl
wd(M) there exists a triplet t ∈ Rl

wd(M) such that
t = sm(v1)sm(v2)|sm(v′) and thus t induces an edge between C1 and C2. If v is
a duplication node, there exists at least a label d such that d ∈ L(Mv1

)∩L(Mv2
)

and this label is represented in G(Rl
wd(M)) by a single vertex present in both

C1 and C2. Then G(Rl
wd(M))|L(Mv) is connected in both cases. This concludes

the proof. ⊓⊔

Lemma 5 will be useful while proving Lemma 6. Let introduce the notion of
closure of a compatible triplet set. Given a compatible triplet set R, we say that
a triplet ab|c is the closure of R, denoted by cl(R), iff ab|c ∈ R(T ), ∀T : R ⊆
R(T ). This is equivalent to requiring that both sets {R∪{ac|b}} and {R∪{bc|a}}
are incompatible [20]. We introduce a result on the closure of a triplet set that
will be useful later on.

Proposition 2. Given a compatible triplet set R, then cl(R) is compatible.

Proof. For the definition of compatibility, a triplet set R is compatible if there
exists a tree T such that R ⊆ R(T ). From proposition 4(6)2 of [21] we know that
if such a tree exists, this tree has also the property cl(R) ⊆ R(T ). It follows that
cl(R) is compatible. ⊓⊔

We prove the following result.

Lemma 6. Let M be a binary MUL tree. If the triplet set Rl
wd(M) is compatible,

then Rwd(M) ⊆ cl(Rl
wd(M)).

Proof. We prove this statement for all subtrees Mv of M by induction on the
height of the node v in M . As M = Mroot(M) this shows the statement.

If h(v) = 0 then Rwd(Mv) = cl(Rl
wd(Mv)) = ∅.

Now suppose that Rwd(Mv) ⊆ cl(Rl
wd(Mv)) for all nodes v such that h(v) <

h̄ and let v be a node such that h(v) = h̄. If v is a duplication node, then
lca(x, y, z) ∈ D(M), for x, y ∈ L(Mv1

) and z ∈ L(Mv2
) (and the symmet-

ric case). This implies that Rwd(Mv) = Rwd(Mv1
)∪Rwd(Mv2

) and Rl
wd(Mv) =

Rl
wd(Mv1

)∪Rl
wd(Mv2

). It follows that Rwd(Mv) ⊆ cl(Rl
wd(Mv1

))∪cl (Rl
wd(Mv2

))
⊆ cl(Rl

wd(Mv1
) ∪ Rl

wd(Mv2
)) = cl(Rl

wd(Mv)). Note that, if |L(Mv1
)| < 3 (resp

|L(Mv2
)| < 3) then Rwd(Mv1

) = ∅ (resp Rwd(Mv2
) = ∅) and Lemma 6 still

holds.
If v is a speciation node, then by induction all triplets lxly

∣

∣lz ∈ Rwd(Mv) with
x, y, z ∈ L(Mv1

) or x, y, z ∈ L(Mv2
) are in cl(Rl

wd(Mv)). Let t be a triplet
lxly

∣

∣lz of Rwd(Mv) with x, y ∈ L(Mv1
) and z ∈ L(Mv2

). We prove that t is

in cl(Rl
wd(Mv)) by proving that (Rl

wd(Mv) ∪ lxlz
∣

∣ly) and (Rl
wd(Mv) ∪ lylz

∣

∣lx)
are both incompatible. From Lemma 5 we know that G(Rl

wd(Mv))|L(Mv1
) and

G(Rl
wd(Mv))|L(Mv2

) are two connected components C1 and C2, since v is a
speciation node above v1 (resp v2). As L(Mv) = L(Mv1

) ∪ L(Mv2
), the graph

2 Proposition 4 of [21] is defined for quartets but it remains valid for rooted triplets
(see page 441).
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G(Rl
wd(Mv)) has at most two connected components. Since Rl

wd(M) is compat-
ible, Rl

wd(Mv) ⊆ Rl
wd(M) is also compatible then G(Rl

wd(Mv)) is composed by
exactly two connected components (see Theorem 2 in [21]) i.e., C1 and C2. Since
lxly|lz ∈ Rwd(M) then lx 6= ly 6= lz: this means that lx, ly ∈ C1, lx, ly /∈ C2 and
lz ∈ C2, lz /∈ C1. Then both triplets lxlz

∣

∣ly and lylz
∣

∣lx would connect the two

connected components. This implies that (Rl
wd(Mv) ∪ lxlz

∣

∣ly) and (Rl
wd(Mv)

∪ lylz
∣

∣lx) are both incompatible and then t is in cl(Rl
wd(Mv)). The same result

holds for the symmetric case x, y ∈ L(Mv2
) and z ∈ L(Mv1

). Note that Lemma
6 works also if |L(Mv1

)| = 1 and/or |L(Mv2
)| = 1. This proves that Rwd(M) ⊆

cl(Rl
wd(M)). ⊓⊔

Lemma 7. Let M be a binary MUL tree. If the triplet set Rl
wd(M) is compatible,

then cl(Rl
wd(M)) = cl(Rwd(M)).

Proof. Since if Rl
wd(M) is compatible then it follows from Proposition 2 that

cl(Rl
wd(M)) is compatible. Lemma 6 implies that Rwd(M) is also compatible.

Then the closure of Rwd(M) is well defined and we can then deduce from Lemma
6 that cl(Rwd(M)) ⊆ cl(Rl

wd(M)), since cl(cl(Rl
wd(M))) = cl(Rl

wd(M)). By
construction Rwd(M) ⊇ Rl

wd(M). This implies that cl(Rwd(M)) ⊇ cl(Rl
wd(M)).

This concludes the proof. ⊓⊔

Corollary 1. The triplet set Rl
wd(M) is compatible iff the triplet set Rwd(M)

is compatible.

Proof. The fact that Rwd(M) ⊇ Rl
wd(M) implies that if Rwd(M) is compatible

then Rl
wd(M) is also compatible while if Rl

wd(M) is not then Rwd(M) is not
compatible. While proving Lemma 7 we proved that if Rl

wd(M) is compatible
then Rwd(M) is compatible. This implies that if Rwd(M) is not compatible then
Rl

wd(M) is also not compatible, otherwise we would have Rl
wd(M) compatible

and Rwd(M) incompatible and this would violate Lemma 7. This proves the
corollary. ⊓⊔

Theorem 2. Checking the auto-coherency of a binary MUL tree M can be done
in O(n · log2 n) time.

Proof. From Lemma 7 and Corollary 1 follows that checking the auto-coherency
of a binary MUL tree M can be done using the triplet set Rl

wd(M). This set
can be computed in linear time by algorithm 3. Given the set D(M) and having
previously calculated sm(v) for each node v, algorithm 3 computes v′ for each
node v in M in a top-down approach. If v /∈ D(M) and v′ 6= ∅, algorithm 3 in-
serts in Rwd(M) the triplet sm(v1)sm(v2)|sm(v′): this is exactly the definition
of Rl

wd(M). This proves that algorithm 3 computes Rl
wd(M).

Let us demonstrate that algorithm 3 computes Rl
wd(M) in linear time. The

value of sm(v) for each node can be computed in a bottom-up approach requir-
ing linear time. The set of duplication nodes D(M) can be also computed in linear
time (see section 2.1). Algorithm linearRepresentation(M,D(M), root(M),Rl)
consists in a postorder walk on the MUL tree M and takes a linear time. Since
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AncentralBuild checks the compatibility of a triplet set R on a label set of size
n in O(|R| · log2 n) time, this concludes the proof. ⊓⊔

Remark 1. The trees constructed by AncentralBuild from Rl
wd(M) and Rwd(M)

are isomorphic.

It follows from Theorem 2 and Remark 1 that, given a MUL tree M , we can
check in O(n · log2 n) time whether there exists a single-label tree T such that
Rl

wd(M) ⊆ R(T ) and, in case of positive answer, obtain such a tree. In section 7,
for building T we rely on the PhySIC heuristic algorithm [24] since this algorithm
returns a tree T that represents as much as possible Rl

wd(M) while not containing
at all additional, hence arbitrary, triplets.

5 Computing a Largest Duplication-free Subtree of a

MUL Tree

If a MUL tree is not auto-coherent, identifying duplication nodes allows for
the discrimination of leaves representing orthologous and paralogous sequences.
Since only orthologous sequence history reflects the species history, a natural
question is to determine the most informative sequence set for a given gene. As
long as the gene tree contains odn, it will also contain leaves representing paral-
ogous sequences. Yet, if for each node v ∈ D(M) of M we choose to keep either
v1 or v2, we obtain a pruned single-labeled tree containing only apparent orthol-
ogous sequences (observed paralogous have been removed by pruning nodes).
Note that the so obtained single-labeled tree is auto-coherent by definition.

Definition 7. Let M be a MUL tree. We say that T is obtained by (duplication)
pruning M iff T is obtained from M choosing for each odn v either v1 or v2.
We denote this operation by the symbol ..

One can wonder, for a non auto-coherent MUL tree M , what is the most infor-
mative single-labeled tree T s.t. T . M . We define this problem as the MIPT
(Most Informative Pruned Tree) problem.
To evaluate the informativeness of a tree we can use either the number of triplets
of T (see [24, 25, 11]) that, for binary trees, depends only on the number of leaves,
or the CIC criterion (see [26, 12]). The CIC of a not fully resolved and incom-
plete3 tree T with |L(T )| leaves among the n possible is a function of both the
number nR(T, n) of fully resolved trees T ′ on L(T ) such that R(T ) ⊆ R(T ′) and
the number nR(n) of fully resolved trees on n leaves. More precisely,

CIC(T, n) = − log
(

nR(T, n)/nR(n)
)

In the case of binary trees, nR(T, n) depends only on the number of source
taxa missing in T since T does not contain multifurcations. Thus, dealing with
binary trees, maximizing the information of a tree (i.e., maximizing the number
of triplets or minimizing the CIC value) consists in finding the tree with the
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Algorithm 4: pruning(v,M ,D(M))

Data: A node v, a MUL tree M , and a set of odn D(M).
Result: The most informative MUL tree M ′ s.t. M ′

v . Mv.
foreach (m ∈ sons(v)) do pruning(m,M ,D(M));
if (v ∈ D(M)) then

if (|L(v1)| > |L(v2)|) then v ← v1;
else v ← v2;
D(M)← D(M) − {v};

return M ;

largest number of leaves. A natural approach for the MIPT problem for binary
MUL trees is an algorithm that, after having computed D(M), uses the bottom-
up algorithm 4 starting from root(M), to keep the most informative subtree
between Mv1

and Mv2
, for each odn v.

Theorem 3. Let M a MUL tree on a set of leaves of cardinality n. In time O(n),
pruning(M,root(M),D(M)) returns the most informative tree T s.t. T . M .

Proof. First of all, it’s obvious that pruning(M,root(M),D(M)) returns a tree.
Indeed, if for each odn v only one node between v1 and v2 is kept, at the end
of the bottom-up procedure one copy of each duplicated leaf is present in the
modified M . Now, we have to show that the resulting tree is the most informative
tree s.t. T . M , i.e., the tree with as many leaves as possible. For an odn v
that is the ancestor of other duplication nodes, the choices made for v1 do not
influence the choices for v2 since for each duplication node we can keep only one
of the two subtrees, the most populous one. Thus we can search for the best
set of choices left/right for v1 and v2 independently and then choose the most
populous pruned subtree between v1 and v2. Iterating recursively this reasoning,
we demonstrate that the tree obtained by Algorithm 4 is the most informative
tree T s.t. T . M . The computation of the set of odn D(M) takes linear time.
The subroutine pruning(M, root(M),D(M)) requires a tree walk, thus the time
complexity of Algorithm 4 is O(n). ⊓⊔

6 The Compatibility Issue of Single-labeled Subtrees

Obtained from MUL Trees

We can also ask if it is possible, given a collection of MUL tree M, to discriminate
leaves representing orthologous and paralogous sequences in a gene tree using
the information contained in the other gene trees to obtain a compatible forest
T , i.e., a forest for which there exists a tree T s.t. ∪Ti∈T R(Ti) ⊆ R(T ). We
denote this problem by EPCF, Existence of a Pruned and Compatible Forest.

3 A tree is called incomplete when it misses some taxa.
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Unfortunately, the EPCF problem is NP-complete.

EPCF

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Instance : A set of leaves X and a collection M={M1, · · ·Mk}

of MUL trees on X .

Question : ∃ a set S of choices left/right, S : M → T ,

with T ={T1, · · ·Tk} s.t. Ti . Mi and T is compatible?

Theorem 4. The EPCF problem is NP-complete.

Proof. We start by proving that EPCF is in NP, i.e., checking if a set S of
choices left/right is a solution for the instance I = (M, X) can be done in poly-
nomial time. First of all, for each MUL tree Mj ∈ M, we place the choices
left/right on Mj, i.e., we discard the subtrees not chosen, obtaining a forest of
trees T . We check then the compatibility of T with the Aho graph[14]. Con-
structing this graph can be done in polynomial time.

Given that EPCF is in NP, we use a reduction of 3-SAT to EPCF to demon-
strate that it is NP-complete.

3-SAT

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Instance : A boolean expression C=(C1 ∧ C2 ∧ · · · ∧ Cn) on a

finite set L={l1, l2, · · · , lm} of variables with Cj=

(a ∨ b ∨ c) where {a, b, c} ∈ {l1, l2, · · · , lm, l1, l2 · · · , lm}

Question : ∃ a truth assignment for L that satisfies all Cj in C ?

We need to show that every instance of 3-SAT can be transformed into an
instance of EPCF; then we will show that given an instance I = (C, L) of 3-SAT,
I is a positive instance, i.e., an instance for which a solution exists, iff the
corresponding instance for EPCF is positive.

Given an instance I = (C, L) of 3-SAT, we build an instance I ′ = (M, X) of
EPCF associating to each li in L the binary tree4 T (li) = (((xi, yi), zi), d) and
to li the binary tree T (li) = (((zi, yi), xi), d) (see Fig. 4 for an example).

The set of subtrees
{

T (a) | a ∈ {l1, l2, · · · , lm, l1, l2, · · · , lm}
}

is denoted by TL.

Then, for each clause Cj = (a∨b∨c) in C, a binary MUL tree Mj is built, formed
by three subtrees ((T (a), T (b)), T (c)). Note that Mj has exactly two duplication
nodes due to the presence of d in T (a), T (b) and T (c), so that any left/right
choice of Mj will reduce it to either T (a), T (b) or T (c). In Fig. 5 an example of
a MUL tree built from a clause. In this way we obtain a forest of MUL trees M

on the leaf set X =
{

{
⋃m

i=1{xi, yi, zi}
}

∪ {d}
}

, i.e., an instance of the EPCF

problem. Clearly M can be built in polynomial time.

4 T (li) is expressed in the Newick format.
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T(li)  =

xi yi zi d zi yi xi d

 T(li)=

Fig. 4. Binary trees on four leaves associated to li and to li

xi yi zi d
T(li) T(lj)

xi yi zi d
 T(lk)

_  xi yi zi d

Fig. 5. MUL tree built from the clause {li∨lj∨lk}. Odn are indicated by black squares

We now need to show that a positive instance of 3-SAT gives a positive
instance of EPCF through the previous transformation. Having a positive in-
stance for 3-SAT implies that for each Cj ∈ C with Cj = (a ∨ b ∨ c), at least
one of the three literals is TRUE. Without loss of generality, let us suppose
that a is TRUE. Then in the MUL tree Mj corresponding to Cj we set the
choice left/right so that only the subtree T (a) is kept. We then obtain a for-
est T that is a subset of TL. We need to prove that T is compatible. Let T̃ (a)
denote the tree T (a)|(L(T (a)) − {d})5 and T̃ the forest composed by all trees
{T̃ (a)|T (a) ∈ T }. Then, we can build a tree Ts = (T̃1, T̃2, · · · , T̃|T̃ |, d). Since
li cannot have the value TRUE and FALSE at the same time, we have either
T (li) or T (li) in T . The tree Ts is therefore a single-labeled tree. Moreover, by
construction Ts|(L(T (a)) is identical to T (a), for all T (a) in T ensuring that
⋃

Ti∈T R(Ti) ⊆ R(Ts). Thus T is compatible.

Now, the only thing left to prove is that a positive instance of EPCF gives a
positive instance of 3-SAT.
The repetition of the taxon d in each subtree makes the two nodes connecting
the subtrees in each Mj be odn. Thus a left/right choice set S reduces each
Mj in M into a tree T (a) ∈ TL, providing the forest T . Setting the value of
a to TRUE ensures that the clause Cj corresponding to Mj is TRUE. This
can be done simultaneously for all clauses ∈ C since the forest compatibility
implies that there is no contradiction among the trees in T , all the more so
direct contradictions. Then, either T (li) or T (li) is in T . This ensures us that
either li or li is assigned to TRUE, but not both. ⊓⊔

5 Given a tree T and a label set S, we denote by T |S the restriction of T to the set S.
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Note that the problem to find the most informative forest T = {T1, · · ·Tk} s.t.
Ti . Mi and T is compatible, denoted by MIPCF (Most Informative Pruned and
Compatible Forest) is FPT. Indeed, analyzing all possible scenarios of choices
left/right is FPT on the total number of duplication nodes in M.

7 Experiments

We use here the algorithms described in this paper to analyse the hogenom

database release 4 [27]. hogenom is a database of homologous genes from 381
fully sequenced genomes, containing 147,586 gene families for which alignments
and trees are available. We focused on building trees at the species level, thus
we only retained the 46,335 families containing taxa spanning more than two
species. Other gene families concern different strains of the same few species,
which can be of use when studying macro-evolutionary events but are of no use
when building the species tree.

The 46,335 families span 376 species and 33,198 of these families have several
sequences from the same species, their gene tree being hence a MUL-tree. This
first observation shows that only 28.9% of the gene families can be used directly
by supertree methods. This echoes, though less severely, the critic of [28] who
called ”Trees of 1%” the species trees built by the first phylogenomic works that
could rely only on single-labeled trees [29, 30]. We note that as more complete
genomes will be available, the percentage of MUL-trees will only increase.

In this paper, we propose fast algorithms that allow to process MUL-trees
in order to distinguish and extract the speciation signal from the signal due to
non-speciation events such as duplications and transfers. The significant increase
in the number of gene families whose phylogenetic signal can then be used is
expected to allow phylogenomic methods to obtain a more accurate picture of the
estimated species trees. Targeted phylogenomic methods are both supermatrix
and supertree approaches, though here we will focus on the latter due to our
previous experience in the field.

7.1 Enlarging the amount of gene families to be used for species
tree building

To explore the impact of our algorithms on the huge hogenom gene tree collec-
tion, we distinguished several sets of single-labeled gene trees:

• F1, the forest of single-labeled gene trees;
• F2, the forest of MUL-trees that can be turned into single-labeled trees when

removing a copy of each pair of isomorphic sibling subtrees (section 3);
• F3, the forest of MUL-trees that are still multi-labeled after applying the

isomorphic simplification, but are auto-coherent (section 4). This third set
of trees can be turned into single-labeled trees by two alternative ways:

◦ F p
3 is the set of trees obtained from F3 by applying the algorithm of

section 5 ( i.e., by keeping for each duplication node, the largest subtree);
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◦ F s
3 is the set of trees obtained when summarizing each tree T of F3 by

another tree containing only its speciation signal. This is done by first
computing the linear triplet decomposition Rl

wd(T ) of the tree, then ob-
taining a tree T ′ that represents as much as possible this set of triplets
while not containing at all additional, hence arbitrary, triplets. For build-
ing T ′ we rely on the PhySIC heuristic algorithm [24].

Note that F1, F2 and F3 correspond to mutually exclusive sets of hogenom

families, while F p
3 and F s

3 are composed of alternative single-labeled trees that
correspond to same families. Then we considered the largest datasets that can
be composed by combining these forests, i.e., F s

all = F1 ∪ F2 ∪ F s
3 and F p

all =
F1 ∪F2 ∪ F p

3 . All these forests are all composed of single-labeled trees, thus can
be analyzed by supertree methods to produce species trees. For this purpose,
the most informative forest is obviously the union of F1, F2 with either F p

3 or
F s

3 . Note that F s
3 and F p

3 cannot be used at the same time, which would bias
the supertree inference toward the phylogenetic signal contained in families of
F3.

F1 F2 F s
3 F p

3 F s
all F p

all

# trees 13,378 11,891 17,674 16,148 42,943 41,417

# triplets in total 151,287 2×106 421×106 424×106 423×106 426×106

# triplets/tree on avg. 11 169 23,819 26,261 18,472 10,291

# distinct triplets 68,538 601,429 22.9×106 22.2×106 22.9×105 22.3×106

% of input triplets 0.3% 2.3% 86.8% 84.4% 86.9 % 84.4%

Table 1. Information contained in the six considered forests to build the species tree for
the 376 species present in hogenom. The first row reports the number of trees in each
forest, while other rows give indications on the amount of information contained in the
forests in terms of triplets. Considered triplets are speciation triplets as defined earlier
in this paper. The second row reports the total number of triplets (with repetitions)
for each forest (i.e., the sum of |Rwd(Mi)| for all MUL-trees Mi in the forest). The
third row deduces from it the average number of triplets induced by a tree on average.
The fourth row displays the number of distinct triplets, i.e., when not considering the
fact that some triplets are found several times. The fifth row details the percentage of
speciation triplets available as input to the methods in proportion of the number of
possible triplets for building a supertree of that size.

We first report on characteristics of the forests detailed above (see Table 1).
This allows to measure the phylogenetic signal contained in each part of the
initial tree collection and the gain obtained by the possible enlargements of the
F1 forest. This is measured here both in number of trees in the forests and
number of triplets they contain. To that aim, we report sizes of Rwd sets, rather
than that of Rl

wd sets, because this gives a more extent idea of the information
contained in the collections.
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From the number of trees in the different collections displayed in Table 1, it
can be observed that the algorithms proposed in this paper allow to use up to 43k
gene families instead of the 13k trees corresponding to orthologous genes with
no detected paralogs. These 43k trees represent more than 90% of hogenom

gene families, i.e., more than three times the number of gene families that can
be used in phylogenomic studies.

What is even more impressive is the gain in the amount of topological infor-
mation for building the species tree. Indeed, from the second and third row of
the table, it can be seen that trees in F1 include on average few species. This
is due to the fact that most of the large trees contain duplication nodes. In-
deed, widening the scope of considered species for a same family increases the
probability of observing duplicated sequences. This is particularly true for some
species that are known to have undergone ancient duplications of their whole
genome. Taking the presence of duplications into account, even in a very simple
way as done to obtain F2, allows a significant increase in the expressed phyloge-
netic signal. Indeed, though F2 contains roughtly the same number of trees than
F1, it contains 10 times more speciation triplets. However, as F2 only allows
identical resolution of duplicated sequences, most trees translating the presence
of several duplication and/or transfer events can only be represented in the F3

forests. The table shows that the more refined analyses conducted to compose
F p

3 and F s
3 lead to a very significant increase in the number of speciation infor-

mation extracted (about 2,000 times more speciation triplets than F1 and 300
times more distinct speciation triplets).

Moreover, the increase of the additionally available information covers har-
moniously the set of all possible triplets, as the number of distinct triplets for
which the input forest contains a resolution goes from 68.5k to almost 23 mil-
lions. In terms of percentage of information available to build a species tree, the
last row of Table 1 shows that the critic of Bapteste et al [28] was well founded
since less than 1% triplets of all possible triplets are contained in the F1 forest.
In contrast, this increases up to 86.9% in the best case that we can now consider
(forest F s

all).

7.2 Running times

All algorithms have been implemented in C++. In table 7.2 we report the run-
ning times of the algorithms presented in Sections 3-5 on the hogenom data
base on a Linux-based machine running with 3 GHz processor and 4 GB RAM.

7.3 Building supertrees

It now remains to be seen whether the increase in the amount of available
information benefits the species tree construction step, i.e., whether the ex-
tracted information is of good quality. This is the question we now address. To
build supertrees, we composed several datasets from the above forests: the four
forests F1, F2, F

s
3 , F p

3 were each considered separately, then we considered the
two largest forests that could be composed from these basic ones, namely F s

all
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applied algorithms running time

obtaining F1 checking if D(M) 6= ∅ (algorithm 1) 2m20s

obtaining F2 algorithm 2 5m1s

obtaining F3 AncestralBuild algorithm 14m40s

obtaining F p
3 algorithm 4 0m14s

obtaining F s
3 PhySIC algorithm 21m14s

Table 2. Running times of the algorithms presented in Sections 3- 5 on the hogenom

gene tree collection.

and F p
all. Two supertree methods were considered: the well-known MRP method

[10] and the more recent PhySIC IST method [12]. The two methods differ in
the way they deal with contradictory topological signals found in the source
trees. MRP is a voting method, i.e., arbitrating between conflicting signals in
favor of the most frequent one, that relies on the maximum parsimony crite-
rion. In contrast, PhySIC IST is a method merely built from a veto principle,
i.e., allowing pieces of contradictory signal to vote against resolution of some
branches in the supertree. As a result, PhySIC IST infers more reliable but less
resolved supertrees. This veto behavior can be tempered by removing the less
frequent triplets from the input trees. This preprocess is regulated by a param-
eter called STC (source tree correction), for which we used different values in
our experiments: 0.9, 0.8, 0.5, ordered by increasing tolerance to contradictory
signal.

F1 F2 F s
3 F p

3 F s
all F p

all

CIC of PhySIC IST (0.9) 2% 12% 48% 46% 47% 44%
# species PhySIC IST (0.9) 22 67 204 198 200 189

CIC of PhySIC IST (0.8) 3% 16% 59% 54% 57% 51%
# species PhySIC IST (0.8) 22 81 241 225 234 213

CIC of PhySIC IST (0.5) 3% 19% 81% 79% 60% 61%
# species PhySIC IST (0.5) 23 96 323 318 246 248

CIC of MRP supertree N/A N/A 98.01% 99.90% 99.73% 99.95%
# of most pars. trees for MRP N/A N/A 510 2 4 1

Table 3. Characteristics of the supertrees built by MRP and PhySIC IST from inves-
tigated forests. CIC values (i.e., resolution degree [12]) of the inferred supertrees are
detailed, as well as the number of species in the supertrees for the non-complementary
PhySIC IST method. The latter method was run for three different values of its STC
threshold (ie. contradiction intolerance, see main text): 0.5, 0.8 and 0.9. Last row details
the number of most parsimonious trees found by MRP in each case.

A first general observation is that, as expected, the resolution degree (CIC
value) of the supertrees proposed by all methods increases as the amount of
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available information increases. This is shown by the first line of Table 3 when
going from F1 to F2 and from F2 to F3 forests. When going from F3 forests to
the corresponding Fall ones, the MRP method follows again the same tendency,
while the PhySIC IST method does not. This is however explained by an increase
in the level of contradictory signal present in the information that PhySIC IST
extracts from the forests when going from F s

3 to F s
all and similarly from F p

3 to
F p

all (data not shown).
We first analyze results of the MRP method. On datasets F1 and F2, the

method was interrupted after a week computation. Most probably, the method
couldn’t give any supertree in these cases6 due to too poor phylogenetic signal
contained in the forests (as can be checked in Table 1). As a result, the parsi-
mony criterion could not distinguish between candidate supertrees due to a huge
number of most parsimonious trees. Other datasets did not suffer from this prob-
lem as they contained several thousand times more signal. However, even for the
relatively large datasets F p

3 and F s
3 , the parsimony analysis found several most

parsimonious trees. The number of most parsimonious tree was always reduced
when completing these forests with the relatively small F1 and F2 forests (i.e.,
datasets F s

all and F p
all). This shows how important it is to use every possible bit

of information that can be extracted from the data when dealing with such large
phylogenies spanning the origins of life.

When observing the structure of the inferred supertrees, for all datasets it can
be observed that super-kingdoms are respected up to 5 taxa over the 376 con-
sidered: Archaea and Eukaryotes are monophyletic, while Bacteria are splitted
into several paraphyletic groups. Moreover, the number of badly placed species
always decreases when going from F p

3 , F s
3 to F p

all, F
s
all forests, again showing the

interest in using all possibly available information.
Problematic species are the following:

– the Candidatus Carsonella ruddii bacteria groups with Archaea for the F s
3

dataset and within Eukaryotes with F s
all. It is however placed just outside

Eukaryotes in other datasets;
– the Encephalitozoon cuniculi (a.k.a. microsporidians) eukaryote groups with

bacteria when building supertrees from F s
3 and F p

3 , however it correctly goes
to the root of eukaryotes when resorting to F s

all and F p
all;

– the Guillardia theta eukaryote behaves like Encephalitozoon cuniculi except
that it is correctly placed only when using F s

all. This species is well known to
be problematic from a phylogenetic point of view, as it results from a long
branch.

– the two bacteria Aquiflex Aeolicus and Thermotoga branch from a polyto-
mous node at the root of archaea when analyzing F s

all but are within bacteria
for other datasets. It is believed that these taxa are indeed the closest bac-
teria from archaea (e.g., [31]).

The fact that bacteria are paraphyletic could be due to several effects. Firstly,
perturbations introduced by an incorrect rooting of gene trees in general: the

6 even when asked to restrict to a small number of most parsimonious trees
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midpoint rooting procedure was used in hogenom without manual curation.
Second, it is has been established that some genes in eukaryotes have an en-
dosymbiotic origin: mitochondria from an alpha proteobacteria and plastids from
cyanobacteria [32, 33]. Thus, it is likely such eukaryotic genes vote for an incor-
rect placement of eukaryotes inside bacteria, making the latter paraphyletic.
Once again a deeper analysis is of these effects is needed and we postpone it to
a further study.

Nonetheless, species from the three super-kingdoms are overall well separated
in inferred supertrees. This shows the good quality of the speciation informa-
tion that we extracted from hogenom multigene families thanks algorithms
presented here. That is, not only one can now extract more phylogenetic signal
from phylogenomic databases, but this signal seems to be useful to build species
trees. The next step is looking into details of the changes induced in the species
tree inferred when going from F p

3 , resp. F s
3 to F p

all, resp. F s
all, but this deeper

analysis is beyond the scope of the current paper.

The results obtained by the PhySIC IST supertree method are complemen-
tary to those obtained by MRP. Overall, the supertrees output by PhySIC IST
are less resolved (as can be observed by CIC values of Table 1, but more cor-
rect phylogenies seem to be inferred in return as far as our analysis went, i.e.,
mostly looking at the separation between eukaryotes, bacteria and archaea. In
all inferences from F1, F s

3 , F p
3 , F s

all, F
p
all, eukaryotes were always monophyletic,

as well as archaea. Bacteria were monophyletic in 13 of these trees, while one
group of bacteria went to the root of the tree for the dataset F s

all analysed with
threshold 0.8 and one group of bacteria went to the root of the archaea in the
supertree inferred from F s

3 with threshold 0.8. Supertrees proposed from forest
F2 are form a less idyllic picture, since we observe the same problems as for
MRP supertrees, i.e., several bacteria branching into the eukaryotic group.

We note that the smaller CIC values obtained by PhySIC IST in comparison
to MRP is almost exclusively explained by the fact that some taxa species are
not inserted, i.e., the PhySIC IST supertree contain very few polytomies (unre-
solved nodes), most trees being binary. This goes to an extreme for the smallest
forest, where PhySIC IST supertrees contain less than 10% species, and only
eukaryotes. This indicates that the method finds the positioning of bacteria and
archaea too difficult given the small amount of information available in F1. Recall
also that MRP could not terminate for this forest. The supertrees proposed by
PhySIC IST in this case conforms mostly to what is known on eukaryotes, e.g.
encoded in the NCBI taxonomy. The two differences are Encephalitozoon cuni-
culi going to the root of the eukaryotes, and the group composed of Leishmania
major and Trypanosoma brucei that goes into the coelomata group instead of
being at the root of eukaryotes. Recall that the eukaryote Encephalitozoon cuni-
culi is a problematic species for MRP. As an improvement, PhySIC IST places
it most often at the basis of the eukaryotic group, and not among bacteria.
Though, the acknowledged position for this taxa is deeper in the eukaryotes. All
in all, this confirms the hypothesis of a problematic positioning of this taxa in
the hogenom gene trees.
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In contrast to what happens for F1, supertrees inferred from other forests
contain species from the three super kindgoms, most usually well-separated as
indicated above. Lastly, we note that the resolution proposed by PhySIC IST
supertrees for these groups oscillates between the two possible topologies, i.e.,
the two grouped ones being different depending on the forests, and sometimes
also depending on the STC thresholds used. This confirms that contradictory
signal exist in hogenom data for deciding how to root the Tree of Life, likely
due to a too crude rooting procedure of the gene trees.

8 Conclusions

In this paper we presented several algorithms to transform multi-labeled evolu-
tionary trees into single-labeled ones so that they can be used by all existent
supertree methods. We studied the impact of these algorithms on a phyloge-
nomic database. Results showed that not only these algorithms allow to extract
more information, but that supertrees inferred from this extra information are
much more resolved and, at a first rough level of analysis, globally in accordance
to phylogenetic knowledge. Moreover, the algorithms shown very inexpensive
running times, e.g. processing several million trees in a few minutes for some of
them.

Future work includes a more thorough analysis of the inferred supertrees,
i.e., to look at the proposed phylogeny for major bacterial groups. However, this
could only be done after refining the rooting procedure applied to hogenom

gene trees. Further theoretical developments needs to be done to obtain more
involved FPT algorithms to solve the MIPCF problem.
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