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Abstract. In this article we introduce a parameterized cut problem in
graphs, called List Allocation, and prove that it is Fixed-Parameter
Tractable (FPT). Our algorithm uses, in particular, a sequence of Turing
FPT-reductions and several ingredients of the randomized contraction
technique introduced by Chitnis et al. [FOCS 2012]. Besides being a
natural and quite general cut problem by itself and encompassing, in
particular, the Multiway Cut problem, the relevance of List Alloca-
tion is best demonstrated by the following algorithms, which we obtain
by reducing in FPT time each corresponding problem to particular cases,
or slight variations, of List Allocation:
• An FPT-algorithm for the Min-Max-Multiway Cut problem, which

is the variation of Multiway Cut where the parameter is the max-
imum number of edges (instead of the sum) leaving any connected
component defined by the edge cut.

• FPT-algorithms for the Edge Cutting into Many Components
and Cutting a Specific Number of Vertices problems, which
are the natural vertex variants of two cut problems introduced by
Marx [TCS 2006] and that were known to be W[1]-hard for some
other parameterizations.

• An FPT-algorithm for a generalization of Digraph Homomorphism,
which we call Arc-Specified List Digraph Homomorphism, where
given two digraphs G and H, a list of allowed vertices of H for every
vertex of G, and a prescribed number of arcs of G to be mapped to
every non-loop arc of H, one has to decide whether there exists a
homomorphism from G to H respecting these constraints.

• An FPT-algorithm for computing a 2-approximation of the tree-cut
width of a graph, a graph invariant recently introduced by Wol-
lan [JCTB 2015] and that has proved of fundamental importance in
the structure of graphs not admitting a fixed graph as an immer-
sion. Obtaining this FPT 2-approximation requires some additional
algorithmic steps, and is one of the main technical contributions of
this article.

Keywords: Parameterized complexity; graph cut; Fixed-Parameter Tractable
algorithm; digraph homomorphism; graph immersion; tree-cut width.
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1 Introduction

The Multiway Cut problem asks, given a graph G, a set of r terminals T , and
a non-negative integer w, whether it is possible to partition V (G) into r parts
such that each part contains exactly one of the terminals of T and there are
at most w edges among different parts (i.e., at most w crossing edges). In the
special case where |T | = 2, this gives the celebrated Minimum Cut problem,
which is polynomially solvable [28]. In general, when there is no restriction on
the number of terminals, the Multiway Cut problem is NP-complete [9] and
a lot of research has been devoted to the study of this problem and its general-
izations, including several classic results on its polynomial approximability More
recently, more attention to the Multiway Cut problem was given from the pa-
rameterized complexity point of view. The existence of an FPT-algorithm, i.e.,
an f(w) · nO(1)-step algorithm, for Multiway Cut had been an long-standing
open problem. This question was answered positively by Marx in [23] with the
use of the important separators technique. The same technique was later useful
for the design of FPT-algorithms for several other variants and generalizations
of the Multiway Cut problem [4–6].

1.1 List Allocation

In this paper we introduce a vast generalization of the Multiway Cut problem,
namely the List Allocation problem. List Allocation encompasses Mul-
tiway Cut and is general enough in the sense that several other, quite diverse
problems, are TFPT-reducible1 to it.

The List Allocation problem is defined as follows: We are given a graph
G and a set of r “boxes” indexed by numbers from {1, . . . , r}. Each vertex v of
G is accompanied with a list λ(v) of indices corresponding to the boxes where
it is allowed to be allocated. Moreover, there is a weight function α assigning
to every pair of different boxes a non-negative integer. The question is whether
there is a way to place each of the vertices of G into some box of its list such
that, for any two different boxes i and j, the number of crossing edges between
them is exactly α(i, j). By a straightforward reduction from Maximum Cut, it
follows that List Allocation is NP-complete, even when r = 2. Throughout
this paper, we parameterize the List Allocation problem by the total number
w of “crossing edges” between different boxes, i.e., w =

∑
1≤i<j≤r α(i, j).

Let us verify first that Multiway Cut, parameterized by w, is TFPT-
reducible to List Allocation. Given an instance of Multiway Cut, we first
discard from its graph all the connected components that have at most 1 ter-
minal. Clearly, this gives an equivalent instance (G,T = {t1, . . . , tr}, w) where
r ≤ w+1. Next, we consider the set A containing every weight function α where∑

1≤i<j≤r α(i, j) ≤ w. Let also λ : V (G)→ 2[r] be the list function such that if

1 Let A and B be two parameterized problems. We say that a parameterized problem
A is Turing FPT-reducible to B when the existence of an FPT-algorithm for B
implies the existence of an FPT-algorithm for A. (For brevity, in this paper, we
write “TFTP” instead of “Turing FPT”.)
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v = ti ∈ T , then λ(v) = {i}, otherwise λ(v) = {1, . . . , r}. It is easy to verify that
(G,T,w) is a YES-instance of Multiway Cut if and only if there exists some
α ∈ A such that (G, r, λ, α) is a YES-instance of List Allocation. This yields
the claimed reduction, as |A| is clearly bounded by some function of w. The
above reduction to the List Allocation problem turns out to be quite versa-
tile. As we will see in Subsection 1.3, by suitably adapting the definition of λ
and the set A, we can easily TFPT-reduce more problems to List Allocation.

Our main result is an FPT-algorithm for the List Allocation problem. In
particular, we give an algorithm that solves this problem in 2O(w2 logw) ·n4 · log n
steps.

1.2 Techniques

The proof that List Allocation admits an FPT-algorithm is the consequence
of a series of TFPT-reductions between several variants of the problem. Briefly,
these reductions are the following:

1. List Allocation is TFPT-reduced to its restriction, called CLA, where G
is a connected graph and only O(w) boxes are used. This reduction takes
care about the different ways connected components of G can entirely by
placed into the boxes (see Subsection 3.1).

2. CLA is TFPT-reduced to a restriction of it, called HCLA, where G is highly
connected in the sense that there is no set of w − 1 edges that can separate
G into two parts of at least f(w) vertices each (for some suitable function
f). This reduction is presented in Subsection 3.2 and uses the technique of
recursive understanding, introduced in [6] and further developed in [8] (see
also [19]), for generalizations of the Multiway Cut problem.

3. HCLA is TFPT-reduced to a special enhancement of it, called SHCLA,
whose input additionally contains some set S ⊆ V (G) and the problem
asks for a solution where all vertices of S are placed in a unique “big”
box and all vertices of this box that are incident to crossing edges between
different boxes are contained in S. This variant of the problem permits the
application of the technique of randomized contraction, also introduced in [6]
(see Subsection 3.3).

4. Finally, SHCLA is TFPT-reduced to List Allocation restricted to in-
stances whose sizes are bounded by a function of the parameter. This al-
gorithmic reduction is presented in Subsection ?? and is based on the fact
that an essentially equivalent instance of the problem can be constructed if,
apart from S, we remove from G all but a bounded number of the connected
components of G \ S.

The specification of the parametric dependencies in all the above reductions
yields the claimed running time.

1.3 Consequences and applications

Our main result has several consequences on quite diverse parameterized prob-
lems. Due to space restrictions, their presentation has entirely been moved to
Appendix B. We list them below:
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Min-Max-Multiway Cut. In the Multiway Cut problem the parameter w
bounds the total number of crossing edges (i.e., edges with endpoints in different
parts). Svitkina and Tardos [29] considered a “min-max” variant of this problem,
namely the Min-Max-Multiway Cut, where w bounds the maximum number
of outgoing edges of the parts, i.e., crossing edges that have endpoints in the same
part. (Notice that under this viewpoint Multiway Cut can be seen as Min-
Sum-Multiway Cut.) In [29], it was proved that Min-Sum-Multiway Cut is
NP-complete even for fixed r = 4. As a consequence of the results in [29] and [25],
Min-Max-Multiway Cut admits an O(log2 n)-approximation algorithm. This
was improved recently in [1] to a O((log n · log r)1/2)-approximation algorithm.
To our knowledge, nothing is known about the parameterized complexity of this
problem.

Our first result is that Min-Sum-Multiway Cut admits an FPT-algorithm
when parameterized by both r and w. The proof is almost the same TFPT-
reduction to the List Allocation problem as the one we described before for
Multiway Cut. The only difference is that we now define A so to contain
every α such that ∀i ∈ {1, . . . , w},

∑
j∈{1,...,w}\{i} α(i, j) ≤ w. As a result of

this, Min-Sum-Multiway Cut can be solved in 2O((wr)2 logwr) ·n4 · log n steps.
The details are presented in Subsection B.1.

Edge Cutting into Many Components. The input of the Edge Cutting
into Many Components problem (ECMC for short) is a graph G and two
non-negative integers w and r. The question asks whether there is a set of at
most w edges in G whose removal leaves at least r connected components. The
“vertex variant” of this problem was studied by Marx in [23], where it was
proven to be W[1]-hard when parameterized by w or r, while it admits an FPT-
algorithm when parameterized by both w and r. It appears that the landscape
in the case of ECMC is somewhat different. According to [13], this problem
is W[1]-hard when parameterized by r, and in this paper we prove that it ad-
mits an FPT-algorithm when parameterized by w. In order to expose the ver-
satility of our approach, we examine the case where G is a connected graph.
Indeed, this assumption permits us to assume that r ≤ w + 1 (otherwise we
have a NO-instance). Then the problem is TFPT-reducible to List Alloca-
tion by the same reduction scheme as in the case of Multiway Cut, with
the difference that now we set λ(v) = {1, . . . , r} for all v ∈ V (G) (i.e., no list
restrictions are imposed) and A contains every α such that

∑
1≤i<j≤r α(i, j) ≤

w and ∀i ∈ {1, . . . , r}, ∃j ∈ {1, . . . , r} \ {i} such that α(i, j) > 0. The general,
non-connected, setting is treated in Subsection B.2, where we prove that ECMC
can be solved in 2O(w2·logw) · n4 · log n steps.

Cutting a Specific Number of Vertices. In the Cutting a Specific Num-
ber of Vertices problem (CSNV) we are given a graph and two non-negative
integers r and w, and the question is whether G has a set S of exactly r vertices
such that the edges with one endpoint in S and the other outside S are at most
w. The variant of the above problem where we additionally demand that G[S]
is a connected graph is called Cutting a Specific Number of Connected
Vertices (CSNCV).
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In the vertex-separation analogue of Cutting a Specific Number of Ver-
tices we are asked for a partition {S,B,A} of V (G) such that |B| ≤ w, |S| = r,
there is no edge with one endpoint in S and the other in S, and there are at
most w “outgoing edges” from S. This problem is called Separating a Spe-
cific Number of Vertices (SSNV) and, its connected analogue, where we
demand G[S] to be connected, is called Separating a Specific Number of
Connected Vertices (SSNCV). These two latter problems were also studied
by Marx in [23], where they were proven to be W[1]-hard when parameterized
either by r or by w, while, when parameterized by both r and w, SSNCV admits
an FPT-algorithm, while SSNV remains W[1]-hard.

CSNV was proven to be W[1]-hard when parameterized by r in [13]. More-
over, the same reduction proves that CSNCV is also W[1]-hard. Here we prove
that both CSNV and CSNCV admit FPT-algorithms when parameterized by
r and w. For the proof we consider an extension of List Allocation, called
Bounded List Allocation (BLA). where the input additionally specifies the
number of vertices that will be allocated into some of the boxes. In Subsection B.3
we give a TFTP-reduction of BLA to LA that yields a 2O(w2·logw) ·n4 · log n-step
algorithm for BLA. The CSNV problem is TFPT-reducible to BLA by a reduc-
tion that is very similar to the one that we used before for ECMC: The function
λ is defined in exactly the same way, we have r+1 boxes, and we demand all ex-
cept from the last one to receive exactly one vertex. We define A to contain every
α where ∀i, i′, 1 ≤ i < i′ ≤ r, α(i, i′) ∈ {0, 1} and

∑
i∈{1,...,r} α(i, r + 1) ≤ w. It

is easy to see that (G,w, r) is a YES-instance of CSNV if an only if a YES-

instance of BLA is generated by some α ∈ A. As |A| = 2O(r2+w log r) and∑
1≤i<i′≤r+2 α = O(w + r2), this reduction gives a 2O((r4+w2)·log(w·r)) · n4 ·

log n-step algorithm for CSNV. For for the case of CSNCV, the reduction
is the same with the difference that we further restrict A so that the graph
({1, . . . , r}, {{i, i′} | α(i, i′) = 1}) is connected.

List Digraph Homomorphism. Given two directed graphs G and H, an
H-homomorphism of G is a mapping χ : V (G) → V (H) such that if (x, y) is
an arc of G, then (χ(x), χ(y)) is also an arc in H. In the List Digraph Ho-
momorphism problem, we are given two graphs G and H and a list function
λ : V (G) → 2V (H) and we ask whether G has a (list) H-homomorphism that
respects the restrictions of λ, i.e., for every vertex v of G, χ(v) ∈ λ(v). Graph
homomorphisms have been extensively studied both from the combinatorial and
the algorithmic point of view (see e.g., [14, 15, 20]). Especially for the List Di-
graph Homomorphism problem, a dichotomy characterizing the instantiations
of H for which the problem is hard was given in [21] A parameterization of list
homomorphism (for undirected graphs) has been introduced in [10], where the
parameter is a bound on the number of pre-images of some prescribed set of
vertices of H (see also [11, 24]). Another parameterization, again for the undi-
rected case, was introduced in [7], where the parameter is the number of vertices
to be removed from the graph G so that the remaining graph has a list H-
homomorphism. In this paper we introduce a new, natural, parameterization
where the number w of “crossing edges”, i.e., the edges whose endpoints are
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mapped to different vertices of H. In this paper, we prove that this parameteri-
zation of List Digraph Homomorphism can be solved in 2O(w2·logw) ·n4 · log n
steps, where m = |E(G)|. The proof is again based on a TFPT-reduction to the
List Allocation problem that is given in Subsection B.4.

Tree-cut width. Treewidth is a graph invariant that may serve as a measure
of the topological resemblance of a graph to a tree. This invariant is of great
importance for algorithmic graph theory, as a wide family of NP-hard graph
problems admit FPT-algorithms when parameterized by the treewidth of their
input graph. Besides that, there are interesting cases of problems where no such
and FPT-algorithm is expected to exist [12, 16, 18]. Therefore, it is an interest-
ing question whether there are different, but still general, graph invariants that
can provide tractable parameterizations for such cases. The definition of several
such intractable problems is critically related to edges and, intuitively, this is
what makes them hard to fit in the meta-algorithmic framework that already
exists for treewidth. The challenging issue here is to detect an “edge” analogue of
treewidth that will provide a reasonable extension of “treewidth-based” theories
of algorithm design. An interesting candidate in this direction is the graph invari-
ant of tree-cut width that was introduced by Wollan in [30] (see Subsection B.5
for the definition). In [30] Wollan proved that “for every planar sub-cubic graph
H, there is a constant cH such that every graph excluding H as an immersion2

has bounded tree-cut width”. The above is an analogue of the celebrated “grid
exclusion theorem” (proven in [26]). In fact, the grid exclusion theorem becomes
equivalent to the above statement if we replace “immersion” by “topological mi-
nor” and “tree-cut width” by “treewidth”. This implies that tree-cut width has
combinatorial properties analogous to those of treewidth. From the algorithmic
point of view, there was some recent progress on the development of a dynamic
programming framework for tree-cut width that can also work as a counterpart
of the existing one on treewidth [17]. Namely, it is proved in [17] that there
are problems that are W[1]-hard (or open) when parameterized by treewidth
that admit FPT-algorithms when parameterized by tree-cut width. According
to [17], such problems are the Capacitated Dominating Set problem, the
Capacitated Vertex Cover [12], and the Balanced Vertex-Ordering
problem.

A fundamental pre-requirement for the design of dynamic programming al-
gorithms for graphs of bounded tree-cut width is to have the corresponding
decomposition as part of the input. For this, it is important to construct an FPT-
algorithm that, given a graph G and an integer w, answers correctly whether
G has tree-cut width at most w and, if so, outputs an optimal tree-cut width
decomposition of G. This problem was resolved for the case of treewidth by Bod-
laender in [2] (see also the more recent 5-approximation FPT-algorithm in [3],

2 A graph H is a topological minor (resp. immersion) of a graph G if H can be obtained
from some subgraph of G after dissolving vertices of degree 2 (resp. lifting pairs of
edges with a common endpoint). Given a graph G and two edges e1 = {x, y} and
e2 = {y, z} of G, the operation of lifting e1 and e2 removes the edges e1 and e2 from
G and adds the edge {x, y}.
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with better parametric dependency). Interestingly, we know that there exists
an FPT-algorithm checking whether tree-cut width at most w, because of the
seminar results of [27] and [19]. However, the problem of constructing such an
algorithm remains wide open because of the non-constructive natures of the re-
sult in [27]. In this paper we make a step towards this direction by providing a
2-approximation FPT-algorithm for this problem. In particular, we construct an
algorithm that, given G and w, either outputs that the tree-cut width of G is
more than w or outputs a tree-cut width decomposition of G of width at most
2w in 2O(w4·logw) ·n5 · log n steps. This algorithm is presented in Subsection B.5,
makes extensive use on the combinatorial properties of tree-cut width and is
essentially an TFPT-reduction to a certain graph partitioning problem that we
call Special Partitioning. All the lemmata and the algorithms supporting
this reduction are presented in the Appendix (Sub-subsection B.5.2).

2 Preliminaries and problem definition

2.1 Basic definitions

In this paper, when giving the running time of an algorithm of some problem
whose instance involves a graph G, we agree that n = |V (G)| and m = |E(G)|.
Functions and allocations. We use the notation log(n) to denote dlog2(n)e
for n ∈ Z≥1 and we agree that log(0) = 1. Given a non-negative integer n, we
denote by [n] the set of all positive integers no bigger than n. Given a finite
set A and an integer s ∈ Z≥0, we denote by

(
A
s

)
(resp.

(
A
≤s
)

) the set of all

subsets of A with exactly (resp. at most) s elements. Given two sets A and B we
denote by BA the set containing every function f : A → B. Given a collection
F of sets or graphs, we define ∪∪∪∪∪∪∪∪∪F =

⋃
S∈F S. Given a function h : A → B and

S ⊆ A, we define h|S = {(x, y) ∈ h | x ∈ S}. Given a function f : A → Z≥0
we define

∑
f =

∑
x∈A f(x). Given two functions f1, f2 : A → Z≥0 we define

f1 +f2 : A→ Z≥0 such that (f1 +f2)(x) = f1(x) +f2(x). Let X be a set and let
ζ1, ζ2 be two functions mapping X to non-negative integers. We say that ζ1 ≤ ζ2
if ∀i ∈ X, ζ1(i) ≤ ζ2(i). Given a (possibly partial) function ζ : X → Z≥0 we
define F≤(ζ) = {ζ ′ : X → Z≥0 | ζ ′ ≤ ζ} and F+

≤(ζ) = F≤(ζ) \ {(x, 0) | x ∈ X}.
An r-allocation of a set S is an r-tuple V = (V1, . . . , Vr) of, possibly empty,

sets that are pairwise disjoint and whose union is the set S. We refer to the
elements of V as the parts of V and we denote by V(i) the i-th part of V, i.e.,
V(i) = Vi. Given a set T ⊆ S, we define the restriction of V to S as the r-
allocation V ∩T = (V(1)∩T, . . . ,V(r)∩T ). Notice that V ∩T is an r-allocation of
T . Given two r-allocations V1 = (V 1

1 , . . . , V
1
r ) and V2 = (V 2

1 , . . . , V
2
r ), we define

V1 ∪ V2 = (V 1
1 ∪ V 2

1 , . . . , V
1
r ∪ V 2

r ).

Graphs. All graphs in this paper are loopless and they may have multiple edges.
The only exception to this agreement is in Subsection B.4 where we also allow
loops. Given two graphs G and G′ we set G∪G′ = (V (G)∪V (G′), E(G)∪E(G′)).
Given a graph G and a set S ⊆ V (G), we define ∂G(S) as the set of all vertices
in S that are adjacent to vertices in V (G) \ S. For a vertex set S ⊆ V (G), we
define NG(S) as the set of vertices in V (G) \ S with at least one neighbor in S,
and NG[S] = NG(S) ∪ S.
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If G is a graph and X, Y are two disjoint vertex subsets of V (G), we define
δG(X,Y ) as the set of edges with one endpoint in X and the other in Y . Given a
graph G denote by C(G) the collection of all connected components of G. Given
an S ⊆ V (G), we denote by G[S] the subgraph of G induced by S and we also
denote G+[S] = G[S ∪NG(S)].

Let G be a connected graph. A partition (V1, V2) of V (G) is a (q, w)-good
separation if |V1|, |V2| > q, |δG(V1, V2)| ≤ w, and G[V1] and G[V2] are both
connected. A graph G is called (q, w)-connected if it does not contain any (q, w−
1)-good separation. (Note that for q = 0, (q, w)-connectivity corresponds exactly
to classical w-edge-connectivity.)

Proposition 1 (Chitnis et al. [6]). There exists a deterministic algorithm
that, with input a n-vertex connected graph G, a q ∈ Z≥1 and w ∈ Z≥0, ei-
ther finds a (q, w)-good separation, or reports that no such separation exists, in
2O(min{q,w}·log(q+w))n3 log n steps.

2.2 The list allocation problem

Let G be a graph, r ∈ Z≥1, and let λ : V (G)→ 2[r]. If H is a subgraph of G, we
define the common indices with respect to λ of H as the set

⋂
v∈V (H) λ(v). We

also say that H is (i, λ)-friendly if i ∈
⋂
v∈V (H) λ(v).

List Allocation (LA)
Input: A tuple (G, r, λ, α) where G is a graph, r ∈ Z≥1, λ : V (G) → 2[r], and

α :
(
[r]
2

)
→ Z≥0.

Parameter: w =
∑
α.

Output: An r-allocation V of V (G) such that

1. ∀{i, j} ∈
(
[r]
2

)
, |δG(V(i),V(j))| = α(i, j)3 and

2. ∀v ∈ V (G),∀i ∈ [r], if v ∈ V(i) then i ∈ λ(v),

or a correct report that no such r-allocation exists.

In the definition of the above problem each vertex v of G carries a list λ(v)
indicating the parts where v can be possibly allocated. Moreover, α is a function
assigning weights to pairs of parts in V. The weights defined by α prescribe the
number of crossing edges between distinct parts of V.

3 Description of the TFPT-reductions

In this section we give a description of the TFPT-reductions required to prove
that LA admits an FPT-algorithm. Due to space restrictions, all the proofs have
been moved to Appendix A.

If I is an instance of LA, we define sol(I) as the set of all solutions of LA
for I.

Lemma 1. There exists an algorithm that, given an instance I = (G, r, λ, α)
of LA, computes sol(I) in nO(w) · 2O((w+`)·log r) steps, where ` is the number of
connected components of G.
3 For simplicity, we write α({i, j}) as α(i, j) and we agree that α(i, j) = α(j, i).



The List Allocation Problem and Some of its Applications 9

3.1 Connected list allocation

We define the Connected List Allocation problem (CLA, in short) as the
List Allocation with the additional demand that the input graph is connected
and r ≤ 2w.

Lemma 2. If there exists an algorithm solving CLA in f(w) · p(n) steps, then

there is an algorithm that solves LA in 2O(w2) · f(w) · p(n) +O((n+ r)2) steps.

If I = (G, r, λ, α) is an instance of CLA and B ∈
(
V (G)
≤2w

)
, we set U(I,B) =

[r]B × F≤(α). Let f1(w) = 2w · (2w)2w.

Observation 1. For every instance I = (G, r, λ, α) of CLA and B ∈
(
V (G)
≤2w

)
, it

holds that |U(I,B)| ≤ f1(w).

Given a w = (ψ, α′) ∈ U(I,B), we define the instance Iw = (G,λ′, r, α′) of
CLA, where λ′ = λ|V (G)\B ∪ ψ. We also set up the function f2 : Z≥0 → Z≥0
such that f2(w) = w · (f1(w))2 + 2 · w + 2.

3.2 Highly connected list allocation

We define the Highly Connected List Allocation problem (HCLA, in
short) as the Connected List Allocation problem with the only difference
that we additionally demand that the input graph is (f1(w), w + 1)-connected,
where w is the parameter of the problem.

Given a graph G, an integer r ∈ Z≥1, an allocation V = {V(1), . . . ,V(r)} of
V (G) and two integers j ∈ [r] and x ∈ Z≥0, we say that V is x-bounded out of j
if
∑
i∈[r]\{j} |V(i)| ≤ x.

Lemma 3. Let V be a solution of HCLA for the instance I = (G, r, λ, α) where
|V (G)| ≥ 2·(w+1)·f1(w). Then there is a unique j ∈ [r] such that V is w ·f1(w)-
bounded out of j and a unique C ∈ C(G\E(V)) with |V (C)| > f1(w). Moreover,
for such C and j, C is a subgraph of G[V(j)].

The definition of the set MI,B . Let I = (G, r, λ, α) be an instance of HCLA
where |V (G)| ≥ 2 · (w+ 1) · f1(w) and let B be a subset of V (G) of at most 2 ·w
vertices. We define Ũ(I,B) as the set of all w ∈ U(I,B) such that Iw is a YES-
instance of HCLA. We assign to each w ∈ Ũ(I,B) an arbitrarily chosen solution
Vw for the instance Iw of HCLA. For every w ∈ Ũ(I,B), we apply Lemma 3 on
Iw and Vw and we find the unique index jw ∈ [r] such that Vw is f1(w)-bounded
out of jw. We call the vertices in V(jw) w-marginal and, given that Ũ(I,B) 6= ∅,
we define MI,B = {v ∈ V (G) | v is w-marginal for all w ∈ Ũ(I,B)}.

The proof of the next lemma uses Lemma 3 and Observation 1.

Lemma 4. If I = (G, r, λ, α) is a YES-instance of HCLA with at least f2(w)
vertices and B is a subset of V (G) of at most 2 · w vertices, then MI,B \ B
contains at least two vertices.
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The definitions of I[Q] and I〈Q〉. Let I = (G, r, λ, α) be an instance of
CLA and let Q ⊆ V (G). We set I[Q] = (G[Q], r, λ|Q, α). We also set I〈Q〉 =
(G〈Q〉, r, λ〈Q〉, α) whereG〈Q〉 is the result of the identification inG of all vertices
of Q into a single vertex vQ and λ〈Q〉 = λ|V (G)\Q ∪ {(vQ,

⋂
v∈Q λ(v))} (edges

multiplicities are summed up during each identification).

The definition of I⊕qI
′. Let I = (G, r, λ, α) and I ′ = (G′, r, λ′, α) be instances

of CLA, where G and G′ have disjoint vertex sets. Let also q = (A,A′, J) be
a triple such that A ⊆ V (G), A′ ⊆ V (G′), and J is a set of edges, each having
one endpoint in A and one endpoint in A′. We define I ⊕q I

′ = (G ∪G′ ∪ (A ∪
A′, J), r, λ ∪ λ′, α).

The proof of the next lemma uses Lemma 4.

Lemma 5. Let I = (G, r, λ, α) be an instance of CLA, and let (V1, V2) be a
bipartition of V (G) such that I[V1] is an instance of HCLA whose graph has at
least f2(w) vertices. Let also Ii = I[Vi], i ∈ {1, 2}, J = δ(V1, V2), Bi = Vi∩V (J)
for i ∈ {1, 2}, q = (B1, B2, J), and Q = MI1,B1

\B1. Then I and I ′ = I1〈Q〉⊕qI2
are equivalent instances of CLA.

The proof of the following lemma uses Lemmata 1 and 5.

Lemma 6. If HCLA can be solved in f(w) ·p(n) steps, then CLA can be solved

in max{2O(w2·logw) · n4 · log n, f(w) · p(n) · 2O(w·logw)} steps.

3.3 Split highly connected list allocation

We define the Split Highly Connected List Allocation problem (SHCLA,
in short) so that its instances are as the instances of Highly Connected List
Allocation enhanced with some subset S of V (G) and where we impose that
|V (G)| ≥ 2·(w+1)·f1(w) and that a solution V, additionally, satisfies the follow-
ing condition: There exists some j ∈ [r], such that A. V is w ·f1(w)-bounded out
of j and B. ∂G(V(j)) ⊆ S ⊆ V(j). The proof of the next Lemma uses Lemma 3.

Lemma 7. If (I, S) is a YES-instance of SHCLA, where I = (G, r, λ, α), then
there exists some solution V of SHCLA for (I, S) and a unique j ∈ [r] such
that, i. V is w · f1(w)-bounded out of j and ii. if C ∈ C(G \ S) and C is not
(j, λ)-friendly, then V (C) ∩ V(j) = ∅.

Proposition 2 (Chitnis et al. [6]). There exists an algorithm that given a
set U of size n and two integers a, b ∈ [0, n], outputs a set F ⊆ 2U with |F| =
2O(min{a,b}·log(a+b+1)) ·log n such that for every two sets A,B ⊆ U , where A∩B =
∅ and |A| ≤ a and |B| ≤ b, there exists a set S ∈ F with A ⊆ S and B ∩ S = ∅,
in 2O(min{a,b}·log(a+b+1)) · n · log n steps.

The proof of the following lemma uses Proposition 2 and Lemmata 1 and 3.

Lemma 8. Given an algorithm solving SHCLA in f(w) · p(n) steps, then there

is an algorithm solving HCLA in f(w) · 2O(w2·logw) · log n ·max{n, p(n)} steps.

The proof of the next lemma uses Lemmata 7 and 8.
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Lemma 9. SHCLA can be solved in in 2O(w2·logw) · n steps.

Combining Lemmata 2, 6, 8, and 9 and the fact that f1(w) = 2O(w·logw) and
f2(w) = 2O(w·logw) we can derive the main result of this paper.

Theorem 1. LA can be solved in 2O(w2 logw) · n4 · log n steps.

4 Further research

A first natural research direction is to improve the running time of our FPT-
algorithm for LA given in Theorem 1. We think that it may be a difficult task, as
the dependency on the parameter, namely 2O(w2 logw), is achieved at several steps
of our algorithm, so in order to improve it, all these steps should be implemented
more efficiently. As for the polynomial part, we think that it is somehow inherent
to the technique of recursive understanding and randomized contractions, as
algorithms given in [6] have also the same running time.

We believe that LA may have other applications other than the ones dis-
cussed discussed in this article. A possible extension is the Connected List
Allocation problem where we additionally demand that the graphs induced
by the parts of the solution to be connected and this can be treated with an
easy modification of the definitions of Subsection 3.2 so that the two vertices
in Lemma 4 are connected by an edge. This variant can encompass more prob-
lems such as the Edge Multiway Cut-Uncut, studied in [6]. Exploring the
existence of polynomial kernels for LA is also an interesting question.

Finally, finding an explicit exact FPT-algorithm for computing the tree-cut
width of a graph remains open. As the treewidth of a graph of bounded tree-cut
width is also bounded [30], a possible approach would be to build a tree-cut de-
composition of the input graph by performing dynamic programming over a tree
decomposition of it. Nevertheless, this dynamic programming would probably
be quite involved.
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A Proofs of Section 3

A.1 Proof of Lemma 1

Given an instance I = (G, r, λ, α) of LA, we say that a pair {i, j} ∈
(
[r]
2

)
is a

positive pair of I if α(i, j) > 0. An index i ∈ [r] is a positive index of I if it
belongs to some positive pair of I. We use notation [r]∗ to denote the positive
indices of I. In what follows, we always assume that positive indices of each
instance I of LA form a prefix of [r], otherwise we rearrange the indices so that
this is the case.

If I is an instance of LA, we define E(V) =
⋃
{i,j}∈([r]

2 ) δG(V(i),V(j)).

Observation 2. If V is a solution for some instance I = (G, r, λ, α) of LA then
every connected component of G\E(V) is also a connected component of G[V(i)]
for some i ∈ [r].

Observation 3. If V is a solution for an instance I = (G, r, λ, α) of LA, where
G has ` connected components, then G \E(V) contains at most w+ ` connected
components.

Proof:[of Lemma 1] The algorithm considers each subset F of E(G) of size w.
Notice that there are nO(w) such subsets. From Observation 3, GF = G \ F has
at most w + ` connected components. From Observation 2, if V is a solution
of LA for I, and E(V) = F , then the vertex set of each connected component
of GF is entirely contained in some V(i). The algorithm considers all possible
ways to assign the ≤ w + ` connected components of GF to the r indices of I
and checks whether this creates a solution for I. As there are 2O((w+`)·log r) such
assignments, the claimed running time follows. �

A.2 Proof of Lemma 2

Given an instance I = (G, r, λ, α) of CLA, we define

folio(I) = {α′ ∈ F≤(α) | I = (G, r, λ, α′) is a YES-instance of CLA}.

Let W be a collection of connected subgraphs of G and let λ : V (G)→ [r]. For
each α′ ∈ F≤(α) we define

rep(W, α′) = {C ∈ W | α′ ∈ folio(C, r, λ|V (C), α)}

and, for every set S ⊆ V (G), we define

trunk(I,W, S) =
⋃

α′∈F≤(α)

˜rep(W, α′)

where, for each α′ ∈ F≤(α), ˜rep(W, α′) consists of min{w, |rep(W, α′)|} small-
est, with respect to the number of vertices not in S, elements of rep(W, α′).
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Observation 4. Given an instance I of CLA, and a collection W of connected
subgraphs of G, and a set S ⊆ V (G), the set trunk(I,W, S) contains at most
w · 2w elements and can be computed in O(2O(w) · n) steps. Moreover, for every
α′ ∈ F≤(α∗), |trunk(I,W, S) ∩ rep(W, α′)| ≥ min{w, |rep(W, α′)}.

Observation 5. Each instance I of LA has at most w positive pairs and 2w
positive indices.

Proof:[of Lemma 2] Suppose that A is an algorithm that solves CLA in f(w) ·
p(n) steps.

Let r∗ = 2w, α∗ = α|([r∗]
2 ), and λ∗ = λ|2[r∗] . Let also I∗ = (G, r∗, λ∗, α∗). We

define
W = {C ∈ C(G) | C is (j, λ)-friendly for some j ∈ [r]},

and set Y = C(G) \ W. Observe that Y can be computed in O((n + r)2)
steps. Notice also that if I is a YES-instance of LA, then Y contains at most
w connected components of G. From now on we assume that |Y| ≤ w. Let
W̃ = trunk(I∗,W, ∅).

Claim 1. I is a YES-instance of LA if and only if, for some Q ∈
( W̃
≤w
)
,

(G̃Q, r
∗, λ∗, α∗) is a YES-instance of LA where G̃Q = G[∪∪∪∪∪∪∪∪∪Q ∪∪∪∪∪∪∪∪∪∪Y].

Proof of the Claim: Let V∗ be a solution for the instance (G̃Q, r
∗, λ∗, α∗)

for some Q ∈
( W̃
≤w
)
. Recall that for every C ∈ W \ Q there exists some jC ∈ [r]

such that C is (jC , λ)-friendly. We define the r-allocation V such that, for i ∈ [r],
V(i) = V∗(i) ∪ {V (C) | jC = i} and observe that V is a solution of LA for I.

Assume now that V is a solution of LA for I. Given such a solution we define
the set

QV = {C ∈ W | ∀i ∈ [r], V (C) 6⊆ V(i)}

and we choose I such that the quantity |QV \ W̃| is minimized.
Notice that |QV | ≤ w. Our first step is to prove that QV ⊆ W̃. Suppose on

the contrary that C is a connected component in QV that does not belong in
W̃. Let αC :

(
[r]
2

)
→ [r] such that

∀{i, j} ∈
(

[r]

2

)
, αC(i, j) = |δG(V(i) ∩ V (C),V(j) ∩ V (C))|.

Notice that C ∈ rep(W, αC). As C 6∈ W̃, we obtain that |rep(W, αC)| ≥ w,
therefore |W̃ ∩rep(W, αC)| ≥ w. This in turn implies that, among the connected
components in W̃ ∩ rep(W, αC), at least one, say C ′, of them does not belong
to QV \ {C}.

As C ′ ∈ rep(W, αC) we have that (C ′, r, λ|V (C′), αC) is a YES-instance of
CLA and let VC′ be a solution for this instance. Let also jC ∈ [r] such that C is
(jC , λ)-friendly (we know that this is the case because C ∈ QV ⊆ W). Let VC be

an r-allocation of V (C) such that V(jC)
C = V (C) and V(i)

C = ∅ for i ∈ [r] \ {jC}.
We now set V ′ = V ′′ ∪ VC′ ∪ VC , where V ′′ = V ∩ (V (G) \ (V (C) ∪ V (C ′))).
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Observe that V ′ is a solution of CLA for I. Notice that QV′ has one more
element from W̃ than QV (i.e., the connected component C ′). This means that
|QV′ \ W̃| < |QV \ W̃|, a contradiction to the choice of V. This completes the
proof that |QV | ≤ w.

Let Q = QV . It now remains to verify that I∗ = (G̃Q, r
∗, λ∗, α∗) is a YES-

instance of LA. For this it is enough to observe that V ∩ V (G̃Q) is a solution of
CLA for I∗ and this completes the proof of the claim. 3

Notice that |
( W̃
≤w
)
| ≤ 2O(w2). It remains to give an algorithm for checking

whether (G̃Q, r
∗, λ∗, α∗) is a YES-instance of LA, given that G̃Q has at most

2w connected components. For this, we fix an ordering C1, . . . , Cs of the members
of Q ∪ Y, and for every sequence α1, . . . , αs ∈ F+

≤(α∗) where
∑
i∈[s] αi = α, we

use algorithm A to check whether, for i ∈ [s], (Ci, r
∗, λ∗, αi) is a YES-instance of

CLA. Notice that there are 2O(w·logw) choices for the sequence α1, . . . , αs. This
yields the claimed running time. �

A.3 Proof of Lemma 3

Proof:[of Lemma 3] Let C be a connected component of G \ E(V) that has
maximum number of vertices. As G \E(V) has at most w+ 1 connected compo-
nents and 2 · (w+1) ·f1(w) ≥ (w+1) ·f1(w)+1, we deduce that |V (C)| > f1(w).
Using Observation 2, we know that C belongs entirely in some V(j). As G is
(f1(w), w+ 1)-connected, every connected component of G \E(V) that is differ-
ent from C has at most f1(w) vertices. This implies that the union of the parts
of V that are different from V(j) contains at most w · f1(w) vertices. Moreover j
is unique as, otherwise, |V (G)| ≤ 2 · w · f1(w). �

A.4 Proof of Lemma 4

Proof:[of Lemma 4] Let w ∈ U(I,B). Since G is (f1(w), w + 1)-connected and
f2(w) ≥ 2 · (w + 1) · f1(w), Lemma 3 implies that there are at most w · f1(w)
vertices in V (G) that are not w-marginal. This, together with Observation 1,
implies that there are at most w · (f1(w))2 vertices in V (G) that do not belong
in MI,B . The proof of the lemma follows as |V (G)| ≥ w · (f1(w))2 + 2 ·w+ 2 and
|B| ≤ 2 · w. �

A.5 Proof of Lemma 5

Proof:[of Lemma 5] We need to prove that I is a YES-instance of CLA if and
only if I ′ is. Note that by Lemma 4 it holds that |Q| ≥ 2, and therefore the
instance I1〈Q〉 is well-defined. Note also that I ′ is indeed an instance of CLA,
as the identification of the vertices in Q does not break the connectivity of G,
and r and α are the same in I and in I ′, so r ≤ 2

∑
α holds. Let V ′1 be the

vertex set resulting from V1 after identifying all vertices of Q into a vertex vQ
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(recall that edge multiplicities are summed up after the identification), and let
G′ be the graph of I ′.

Assume first that I is a YES-instance, and let V be a solution of CLA for
I. Let ψ1 = {(v,V(v)) | v ∈ B1}, where V(v) denotes the integer i ∈ [r] such
that v ∈ V(i). Let also α1 be the element of F≤(α) such that for any two distinct
integers i, j ∈ [r], α1(i, j) = |δG[V1](V(i),V(j))|, and let w1 = (ψ1, α1). Note that
by the definition of w1 and since we assume that I[V1] is an instance of HCLA,
it holds that w1 ∈ Ũ(I1, B1). Since Q contains only vertices of V1 that are w-
marginal for all w ∈ Ũ(I1, B1), in particular for w1, there exists a solution Vw1

for the instance Iw1 of HCLA such that all the vertices in Q belong to the same

part of Vw1
, say V(jw1

)
w1 . Let VvQ be the r-allocation of the vertex set {vQ} such

that V(jw1 )
vQ = {vQ} and for all i ∈ [r], i 6= jw1

, V(i)
vQ = ∅. It follows that the

r-allocation
(Vw1

∩ (V1 \Q)) ∪ VvQ ∪ (V ∩ V2)

is a solution of CLA for I ′.
Conversely, assume now that I ′ is a YES-instance. Let V ′ be a solution of

CLA for I ′, let jQ ∈ [r] be such that vQ ∈ V ′(jQ), and let VQ be the r-allocation

of the vertex set Q such that V(jQ)
Q = Q and for all i ∈ [r], i 6= jQ, V(i)

Q = ∅. We
claim that the r-allocation

V = (V ′ ∩ (V ′1 \ {vQ})) ∪ VQ ∪ (V ′ ∩ V2)

of V (G) is a solution of CLA for I. Indeed, since V ′ is a solution of CLA for I ′,
in particular we have that

⋂
v∈Q λ(v) 6= ∅, and therefore for all v ∈ Q, if v ∈ V(i)

then i ∈ λ(v). On the other hand, since the only change in V with respect to V ′
are the vertices of Q, which all belong to part V(jQ), it holds that for any two
distinct integers i, j ∈ [r], |δG(V(i),V(j))| = |δG′(V ′(i),V ′(j))| = α(i, j). �

A.6 Proof of Lemma 6

Observation 6. If there exists an algorithm that can find, if it exists, a solution
of HCLA in f(w) ·p(n) steps, then there is an algorithm that, given an instance
I = (G, r, λ, α) of HCLA and a set B ⊆ V (G) where |B| ≤ 2 · w, computes the
set Ũ(I,B), the set {Vw | w ∈ Ũ(I,B)}, and (in case Ũ(I,B) 6= ∅) the set MI,B

in f(w) · p(n) · f1(w) steps.

Proof:[of Lemma 6] Let I = (G, r, λ, α) be an instance of CLA. If G has less
than f2(w) vertices then, because of Lemma 1 and the fact that r ≤ 2w, the

problem can be solved in 2O(w2·log(w) steps. If not, we apply the same Lemma
on shrink(I, ∅). The correctness of Algorithm shrink follows immediately from
Lemma 5. Therefore what remains is to prove that it runs in the claimed running
time, assuming that there exists an algorithm that solves HCLA in f(w) · p(n)
steps.

Let now T (n,w) be the running time of Algorithm shrink when it runs on
an instance I = (G, r, λ, α) where |V (G)| = n and w =

∑
α. Notice that
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Algorithm: shrink(I, B)
Input : An instance I = (G, r, λ, α) of CLA and a set B ⊆ V (G)

where |B| ≤ 2 · w and |V (G)| ≥ f2(w).
Output : An instance Inew that is equivalent to I whose graph has

less than f2(w) vertices or a report that I is a NO-instance.

1. if G has a (f1(w), w + 1)-separation (V1, V2) then
2. let i be an integer in {1, 2} such that |B ∩ Vi| ≤ w
3. let J = δ(V1, V2), Ai = Vi ∩ V (J), and A3−i = V3−i ∩ V (J)
4. let B′ = (B ∩ Vi) ∪Ai

5. let I ′ = I[Vi] and I ′′ = I[V3−i]
6. let I ′new= shrink(I ′, B′)
7. let Inew = I ′new ⊕q I

′′, where q = (A1, A2, J)
8. if |V (Inew)| ≥ f2(w) then
9. return shrink(Inew, B)

10. else
11. return Inew

12. end

13. else

14. if Ũ(I,B) = ∅ then
15. report that I is a NO-instance
16. else
17. compute MI,B

18. let Q = MI,B \B
19. return Inew = I〈Q〉
20. end

21. end

T (n,w) ≤ max
f1(w)≤n′≤n−f1(w)

{T1(n,w)+T (n′, w)+T (f2(w)+n−n′, w), T2(n,w)},

where T1 is the running time of required by line 1 and T2 is the running time
required to computeMI,B in line 17. From Proposition 1, T1(n,w) = 2O(w2·logw)·
n3 · log n and, from Observation 6, T2(n,w) = f(w) · p(n) · f1(w). By resolving
the above recursion, we obtain that T (n,w) = max{T1(n,w) ·n, T2(n,w)}, which
yields the claimed running time. �

A.7 Proof of Lemma 7

Proof:[of Lemma 7] Let V be a solution of SHCLA for (I, S). From Lemma 3,
there is a unique index j satisfying A. We also adjust the choice of V such that
|V(j)| is maximized. Obviously Condition i holds. To prove Condition ii, consider
a connected component C of G\S. Suppose that C is not (j, λ)-friendly. Clearly,
V (C) is not a subset of V(j), therefore it contains some vertex x not in V(j).
Towards a contradiction we assume that C has also a vertex y in V(j). This is
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impossible as every path between x and y in C should contain some vertex z
of ∂G(V(j)). From B, z ∈ S, a contradiction as C is a connected component of
G \ S. �

A.8 Proof of Lemma 8

Proof:[of Lemma 8] Let I be an instance of HCLA. If |V (G)| < 2·(w+1)·f1(w),

HCLA can be solved in (2 · (w + 1) · f1(w))w · 2O(w·logw) = 2O(w2·logw) steps
because of Lemma 1 (applied for ` = 1).

Let F be a family of subsets of V (G) such that the condition of Proposition 2
is satisfied for a = w and b = w · f1(w). We claim that I is a YES-instance of
HCLA if and only if for some S ∈ F , (I, S) is a YES-instance of SHCLA. Recall
that (I, S) is an instance of SHCLA, as |V (G)| ≥ 2 · (w + 1) · f1(w).

In the non-trivial direction, assume that V is a solution for I. By applying
Lemma 3 on I, we know that there is a unique j such that V is w · f1(w)-
bounded out of j. Let A = ∂G(V(j)) and B =

⋃
i∈[r]\{j} V(i). Clearly, |A| ≤ w

and |B| ≤ w · f1(w). By the definition of F , there exists some set S ∈ F such
that A ⊆ S and B ∩ S = ∅. Therefore ∂G(V(j)) ⊆ S ⊆ V(j) and (I, S) is a
YES-instance of SHCLA as required.

Suppose now that A is an algorithm that solves SHCLA in f(w) ·p(n) steps.
To solve HCLA, we apply A on (I, S) for all S ∈ F . If we obtain a solution to
(I, S) for some S ∈ F we output this solution as a solution to I, otherwise we
output that I is a NO-instance of HCLA. As |F| = 2O(w·log(w·f1(w))) · log n =

2O(w2·logw) · log n, this algorithm runs in 2O(w2·logw) · log n ·n+2O(w2·logw) · log n ·
f(w) · p(n) steps as required. �

A.9 Proof of Lemma 9

Let (I, S) be an instance of SHCLA where I = (G, r, λ, α) and S ⊆ V (G), and
let W ⊆ C(G \ S) and j ∈ [r]. We define the function λj,S : V (G) → 2[r] such
that

λj,S(x) =

{
{j} x ∈ S,
λ(x) \ {j} x ∈ V (G) \ S.

Proof:[of Lemma 9] Our first aim is to prove that if shcla-solver(I, S) outputs
some r-allocation V of V (G) then V is a solution of SHCLA for (I, S). By
Line 17, V was produced by some r-allocation V∗ of V (GQ) where V∗ is a
solution to (GQ, r, λj,S |Q, α), for some choice of j and Q and V∗ is w · f1(w)-
bounded out of j.

As j ∈ L =
⋂
v∈S λ(v), it follows that for every x ∈ Q, λj,S |Q(x) ⊆ λ|Q(x).

This implies that V∗ is a solution of LA for I = (GQ, r, λ|Q, α). Moreover, by
the definition of λj,S , S ∩Q = V∗(j). This implies that

∂GQ(V∗(j)) ⊆ V∗(j) ⊆ S. (1)
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Algorithm: shcla-solver(I, S)
Input : An instance (I, S) of SHCLA, where I = (G, r, λ, α).
Output : A solution V of SHCLA for (I, S) or a report that (I, S) is

a NO-instance.

1. let L =
⋂

v∈S λ(v)
2. if L = ∅ then return that (I, S) is a NO-instance
3. for j ∈ L
4. do
5. let {W,Y,Z} be a partition of C(G \ S) such that
6. W contains every (j, λ)-friendly graph C ∈ C(G \ S) where
7. |V (C)| ≤ w · f1(w) and |NG(V (C))| ≤ w, and
8. Y is the set of all graphs in C(G \ S) that are not (j, λ)-friendly.
9. let W+ = {G+[V (C)] | C ∈ W} and Y+ = {G+[V (C)] | C ∈ Y}

10. let Ij = (G, r, λj,S , α) and W̃+ = trunk(Ij ,W+, S)

11. for Q ∈
(Y+∪W̃+

≤w

)
such that Y+ ⊆ Q do

12. let Q = V (∪∪∪∪∪∪∪∪∪Q), GQ = G[Q], and
13. if |Q| ≤ w · (f1(w) + 1) and there exists a

V∗ ∈ sol(GQ, r, λj,S |Q, α)
14. such that V∗ is w · f1(w)-bounded out of j, then
15. let V be the r-allocation obtained from V∗ by adding in

V∗(j) the vertices in S together
16. with the vertices of all the graphs in C(G \ S) except

from those that intersect Q
17. return V
18. end

19. end
20. return that (I, S) is a NO-instance
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Notice now that V is created by adding in the j-part of V∗ the vertices of S
together with the vertices of all the connected components of C(G \ S) except
from those intersecting Q. Clearly, S ⊆ V(j).

Claim 2. NG(Q \ V∗(j)) ⊆ V∗(j).

Proof of the Claim: Let {Q1, Q2} be the partition of Q where Q1 contains
the vertices that belong to S and Q2 contains the vertices that belong to some
connected component of C(G \ S). As S ∩Q = V∗(j), we obtain that Q1 = V∗(j)
and as V∗ is an r-alocation of Q, we also have that Q2 =

⋃
i∈[r]\{j} V∗(i). From

the construction of W+ and Y+ we have that every neighbor of a vertex in Q2

in G is a member of Q, therefore NG(Q2) ⊆ Q1 and the claim holds. 3

Claim 3. ∂G(V(j)) = ∂GQ(V∗(j)).

Proof of the Claim: We prove that ∂G(V(j)) ⊆ ∂GQ(V∗(j)) as the other
direction is trivial. Let x ∈ ∂G(V(j)). Then there exists a vertex y ∈ V (G) \ V(j)

such that {x, y} ∈ E(G). By the construction of V, we have that V (G) \ V(j) =
Q\V∗(j) and thus y ∈ Q\V∗(j). As x ∈ ∂G(V(j)) ⊆ V(j) and V is an r-allocation,
we have that x /∈ V (G) \ Vj = Q \ Vj . Hence x ∈ NG(Q \ V∗(j)) which, from
Claim 2 implies that x ∈ V∗(j). Observe that both x and y are vertices of Q,
therefore {x, y} ∈ E(GQ). It follows that x ∈ ∂GQ(V∗(j)). 3

A direct consequence of the above claim and (1) is that ∂G(V(j)) ⊆ S ⊆ V(j).
As Q \ V∗(j) = V (G) \ V(j) and V∗ is w · f1(w)-bounded out of j it also follows
that V is w · f1(w)-bounded out of j. Therefore V satisfies conditions A and B.

It remains to show that V is a solution of LA for I. For Condition 1 notice
that Q\V∗(j) = V (G)\V(j) implies that |δG(V(i),V(w))| = |δGQ(V∗(i),V∗(w))| =
α(i, w), for {i, w} ∈

(
[r]\[j]

2

)
. Observe also that for every i ∈ [r] \ {j},

|δG(V(i),V(j))| = |δG(V(i), ∂G(V(j)))|.

From Claim 3 and the fact that V∗(i) = Vi, for i ∈ [r] \ {j}, the last quantity is
equal to |δGQ(V∗(i), ∂G(V∗(j)))| = |δGQ(V∗(i),V∗(j))| = α(i, j).

Finally, as V∗ is a solution of LA for I = (GQ, r, λ|Q, α) and the image of λ
contains j for all vertices in V (G) \Q, V satisfies Condition 2. This finishes the
proof that V is a solution of SHCLA for I.

In what follows, we assume that there exists a solution of SHCLA for (I, S).
Fix some j ∈ [r] such that there exists some solution V of SHCLA for (I, S)
such that

A. V is w · f1(w)-bounded out of j and

B. ∂G(V(j)) ⊆ S ⊆ V(j).

From the second inclusion relation of B, j ∈ λ(v) for all v ∈ S, therefore
j ∈ L and this choice of j will be considered during the application of shcla-
solver(I, S) in Line 3. Let W̃+ be the set of subgraphs of G, produced by the
algorithm in Line 10, given that j is chosen in Line 3.
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Let W̃ be the set containing all graphs in C(G\S) that contain a vertex from
a graph in W̃+.

Because of the first inclusion relation of B, the vertex set of every connected
component in C(G \S) should be either a subset of V(j) or a subset of in V (G) \
V(j). This distinction partitions C(G \ S) into sets CVin and CVout respectively. As
S ⊆ V(j), we obtain that

V (∪∪∪∪∪∪∪∪∪Cout) = V (G) \ V(j). (2)

Among all solutions of SHCLA for (I, S), satisfying A and B for this specific
j, we choose V such that |(W\W̃)∩CVout| is minimized. Our objective is to prove
that shcla-solver(I, S) may output V as a solution for some choice of Q and V∗.
Before we determine which are these choices, we prove the following two claims.

Claim 4. (W \ W̃) ∩ CVout = ∅.

Proof of the Claim: Suppose that there is a graph C in W \ W̃ that also
belongs in CVout. We set C+ = G+[V (C)]. Let αC+ :

(
r
2

)
→ [r] such that

αC+(i, j) = |δG(V(i) ∩ V (C+),V(j) ∩ V (C+))|. We notice that C+ belongs in
rep(W+, αC+). The fact that C 6∈ W̃ implies that C+ 6∈ W̃+ and this means
that |rep(W+, αC+)| ≥ w, therefore

|W̃+ ∩ rep(W+, αC+)| ≥ w (3)

We next prove that

|CVout| ≤ w (4)

To prove (4), observe first that, since G is connected and CVout is a collection
of connected components of G \ S, each member of CVout contributes at least
one unit to |δG(V (C), S)|. Therefore |CVout| ≤ |δG(V (∪∪∪∪∪∪∪∪∪CVout), S)| ≤ |δG(V (G) \
V(j),V(j))| =

∑
i∈[r]\{j} α(i, j) ≤ w and (4) follows.

From (3) and (4), it follows that, among the graphs in W̃+ ∩ rep(W+, αC+),
there is at least one, say C+′, that do not belong in CVout and

|V (C+′ \ S)| ≤ |V (C+) \ S|. (5)

As C+′ ∈ rep(W+, αC+), we have that (C+′, r, λ|V (C+′), αC+) is a YES-
instance of CLA and let VC+′ be a solution for this instance.

Let VC+ be an r-allocation of V (C+) such that V(j)
C+ = V (C+) and V(i)

C+ = ∅
for i ∈ [r] \ {j}. We now set V ′ = V ′′ ∪ VC+′ ∪ VC+ , where V ′′ = V ∩ (V (G) \
(V (C+) ∪ V (C+′))). Observe that V ′ is a solution of CLA for I. Let C ′ =
G[C+′ \ S]. Observe that (5) implies that |V (C ′)| < |V (C)| and this yields
Condition A for V ′. As both C and C ′ = G[C+′ \ S] are connected components
of G\S, B holds for V ′ as well. We conclude that V ′ is a solution of SHCLA for
(I, S). As C ′ ∈ W̃ and C 6∈ W̃ we have that |(W \W̃)∩CV′out| < |(W \W̃)∩CVout|,
a contradiction to the choice of V. The claim follows. 3



22 E. Kim, S. Oum, C. Paul, I. Sau, and D. M. Thilikos

Claim 5. Y ⊆ CVout and Z ⊆ CVin.

Proof of the Claim: The fact that Y ⊆ CVout follows directly by the definition
of Y. To prove that Z ⊆ CVin, consider some C ∈ Z, which means that either
|V (C)| > w · f1(w) or |NG(V (C))| > w. In the first case, C ∈ CVin, because of
A. In the second case, assume towards a contradiction, that C ∈ CVout. Notice
that

∑
i∈[r]\{j} α(i, j) ≥ |δG(C,V(j))| Also, |δG(C,V(j))| = |δG(C, ∂G(V(j)))|. By

the second inclusion relation of B, |δG(C, ∂G(V(j)))| = |δG(C, S)|. Take also in
mind that |δG(C, S)| ≥ NG(V (C)). All together we have a contradiction because
w ≥

∑
i∈[r]\{j} α(i, j) ≥ |δG(C,V(j))| ≥ |δG(C, S)| ≥ NG(V (C)) > w which is a

contradiction that completes the proof of the claim. 3

Let C+out = {G+[V (C)] | C ∈ Cout}. From above two claims we obtain that
Y ⊆ Cout ⊆ Y ∪ W̃. This, together with (4), imply that the set C+out will be one
of the choices for the set Q in Line 11 of shcla-solver(I, S). Notice that |Q| =
|V (∪∪∪∪∪∪∪∪∪Cout)| + |NG(V (∪∪∪∪∪∪∪∪∪Cout))| which, because of (2), is equal to |V (G) \ V(j)| +
|∂G(V(j))|. As A holds for V, it follows that |V (G) \V(j)| ≤ w · f1(w). Moreover,
|∂G(V(j))| ≤ |δG(V (∪∪∪∪∪∪∪∪∪CVout), S)| ≤ |δG(V (G)\V(j),V(j))| =

∑
i∈[r]\{j} α(i, j) ≤ w.

We conclude that |Q| ≤ w · (f1(w) + 1). Because of this, the choice Q := C+out in
Line 3 will make the algorithm pass the first test of Line 13.

Let now V∗ = V ∩Q and observe that this intersection does not remove any
vertex from the parts of V that are different than V(j) while from V(j) it removes
vertices that belong either to S or to the graphs of C(G\S) that do not intersect
Q. Using the fact that V is a solution for (I, S) and the definition of λj,S , one
can easily observe that V∗ ∈ sol(GQ, r, λj,S |Q, α). Therefore, the algorithm may
choose this solution V∗ in the second test of Line 13, extend it to V in Lines 15
and 16, and output V as a solution for (I, S) as required. This finish the proof
of the correctness of the algorithm.

For the running time observe first that GQ is the union of at most w con-
nected graphs, therefore it has at most w connected components. Recall also
that f1(w) = 2O(w·logw). From Lemma 1, the set sol(GQ, r, λj,S |Q, α) can be

constructed in |Q|O(w) · 2O(w·log r) = (2O(w·logw))O(w) · 2O(w·log r) = 2O(w2·logw)

steps. Notice now that the choices of Line 11 are possible only when |Y+| ≤ w.
Moreover, from Observation 4, |W̃+| ≤ 2O(w). In total, |Y+| + |W̃+| = 2O(w),

thus there are 2O(w2) choices for the set Q in Line 11. As the classification of
the connected components of G \ S in to the sets W, Y, and Z can be done in
O(w · n) steps, the claimed running time follows. �
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B Applications

In this appendix we present the applications of our FPT-algorihtm fir the LA
problem. Each subsection is devoted to a particular problem and contains all the
necessary definitions and TFPT reductions to the List Allocation problem.

B.1 A parameterization of Min-Sum-Multiway Cut

The Min-Sum-Multiway Cut problem is formally defined as follows:

Min-Sum-Multiway Cut
Input: An undirected graph G, w, r ∈ Z≥0, and a set T ⊆ V (G), with |T | = r.
Parameter: w · r.
Output: A partition {P1, . . . ,Pr} of V (G) such that for every i ∈ [r], it holds
that |Pi ∩ T | = 1 and |δG(Pi, V (G) \ Pi)| ≤ w, or a correct report that no such
partition exists.

Theorem 2. There exists an algorithm that, given as input an instance (G,T,w, r)

of Min-Sum-Multiway Cut, solves this problem in 2O((wr)2 logwr) · n4 · log n
steps.

Proof: Given a quadruple I = (G,T,w, r), we fix a bijection µ : V (T ) → [r]
and we define λ : V (G)→ 2[r] such that

λ(x) =

{
[r] if x ∈ V (G) \ T
{µ(x)} if x ∈ T

We now define a family U(I) of instances of LA containing every (G, r, λ, α)

for which α :
(
[r·w]
2

)
→ Z≥0 such that ∀i ∈ [r],

∑
j∈[r]\i |δG(α(i), α(j))| ≤ w.

Notice that I is a YES-instance of Min-Sum-Multiway Cut if there exists
some I ′ ∈ U(I) that is a YES-instance of LA. This is a TFPT-reduction to the
LA problem as |U(I)| = 2O(rw) and the result follows by Theorem 1. �

B.2 Edge Cutting into Many Components

Consider the following problem:

Edge cutting into many Components
Input: A tuple (G,w, r) where G is an undirected graph and w, r ∈ Z≥0.
Parameter: w.
Output: A set F ⊆ E(G) such that |F | ≤ w and G \ F contains at least r con-
nected components, or a correct report that such a set does not exist.

Theorem 3. There exists an algorithm that, given an input (G,w, r) of the

Edge cutting into many Components problem, solves the problem in 2O(w2 logw)·
n4 · log n steps.



24 E. Kim, S. Oum, C. Paul, I. Sau, and D. M. Thilikos

Proof: In the introduction we explained, by a straightforward TFPT-reduction
to List Allocation that the above problem can be solved in 2O(w2 logw) · n4 ·
log n steps in the case where G is a connected graph. For the general case,
assume that |C(G)| = m and run this algorithm for each Ci ∈ C(G), for w′ ∈ [w]
and r′ ∈ [w + 1]. This permits us, for every C ∈ C(G), to set up a function
fC : {0, . . . , w} → [w+ 1] such that fC(x) is the maximum number of connected
components that may appear when we remove from Gi a set of at most x edges.
We say that two connected components C and C ′ of G are equivalent if fC = fC′

and this equivalence relation partitions C(G) into 2O(w·logw) equivalent classes.
As no more than w graphs may intersect a certificate of a solution of the problem,
an equivalent instance (G′, w, r′) is created if G′ is the graph occuring from G
after removing from each equivalent class with more than w elements all by w
of them. Also r′ = r − m∗ where m∗ is the number of connected components
that where removed. Observe now that m′ = |C(G′)| = 2O(w·logw) and that if
r′ > m′+w, then (G′, w, r′) is a NO-instance. From now on we can assume that
r′ = 2O(w·logw).

Let now T be the set containing all possible tuples (w1, . . . , wm′) such that∑
i∈[r′] wi ≤ w and assume that C(G′) = {C ′1, . . . , C ′m′}. It is easy to see that

(G′, w, r′) is a YES-instance if an only if there exists some (w1, . . . , wm′) in
T such that

∑
i∈[m′] fCi

(wi) ≥ r′. The claimed running time follows as |T | =

2O(w2·logw). �

B.3 Bounded List Allocation

In this section we study the parameterized complexity of the following enhance-
ment of the List Allocation problem. As we mentioned in the introduction,
this problem is useful for the algorithm that we describe for the Cutting a
Specific Number of Vertices problem. Also, this problem will also be use-
ful for the TFPT-reductions of Subsection B.5.

Bounded List Allocation (BLA)
Input: A tuple I = (G, r, q, λ, α, β) where G is a graph, r, q ∈ Z≥1, λ : V (G) →
2[r+q], α :

(
[r+q]

2

)
→ Z≥0, and β : [q]→ N≥0.

Parameter: w =
∑
α+

∑
β.

Output: An r-allocation V of V (G) such that

1. ∀{i, j} ∈
(
[r+q]

2

)
, |δG(V(i),V(j))| = α(i, j),

2. ∀v ∈ V (G),∀i ∈ [r], if v ∈ V(i) then i ∈ λ(v), and

3. |V(r)| = β(i),

or a correct report that such an r-allocation does not exist.

We need the following result.

Proposition 3 (Kirousis et al. [22]). For every w ∈ Z>0, every graph G
where |E(G)| ≥ w · (|V (G)| − 1) contains a w-connected subgraph.
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Given a graph H and a w ∈ Z>0, we say that a subgraph H of G is a w-edge-
connected core of G if every connected component of H is w-edge-connected and
H has a maximal number of edges.

Lemma 10. For every w ∈ Z>0, every graph G where |E(G)| ≥ w · (|V (G)|−1)
contains a unique w-edge-connected core that can be found in O(n4) steps.

Proof: The claimed w-edge-connected core exists because of Proposition 3. The
algorithm that finds it repetitively removes from G edges of min-cuts of size at
most w− 1 (each can be found in O(n3) steps according to [28]) until this is not
possible anymore (isolated vertices, when appearing during this procedure, are
removed). �

Lemma 11. There is an O(n4)-step algorithm that given in instance I = (G, r, q,
λ, α, β) of BLA, outputs an equivalent instance I ′ = (G′, r, q, λ′, α, β).

Proof: Let H be the (w + 1)-edge-connected core of G, that can be computed
in O(n4) steps, according to the procedure of Lemma 10. For each C ∈ C(H)
such that |V (C)| ≥ w+ 1, compute LC = ∩x∈V (C)λ(x) identify in G all vertices
of V (C) to a single vertex vC . We denote by G∗ the resulting graph. Also we
construct the graph G′ by introducing, for each C ∈ C(H), a new edge eC with
multiplicity w + 1 in G∗, and and identifying vC with one of the endpoints of
eC . Finally we define λ′ : V (G′)→ 2[r+q] such that

λ′ = λ|V (G)\V (∪∪∪∪∪∪∪∪∪C(H)) ∪
⋃

C∈C(H)

{(x, LC) | x ∈ V (eC)}.

Using the properties of edge connectivity, it can be proved that the result-
ing graph G∗ does not contain any (w + 1)-edge-connected subgraph, there-
fore, from Proposition 3 G′ has O(w · n(G′)) edges. It remains to verify that
I = (G′, r, q, λ, α, β) is an equivalent intense.

Suppose that V is a solution of BLA for I = (G, r, q, λ, α, β). Observe first
that all the connected components of H that have more than w vertices are
allocated into the first r (unbounded) boxes. Moreover, all the vertices of a
connected component of H should belong in the same part of V, otherwise the
removal of at most w edges would be able to separate different parts of V. These
two facts imply that I ′ = (G′, r, q, λ′, α, β) is a YES-instance of BLA.

Assume now that V ′ is a solution of BLA for I ′ = (G′, r, q, λ′, α, β). As the
endpoints of each eC should go altogether to one of the first r parts of a V ′ we can
enhance V to a solution solution V for I by assigning each connected component
C in C(H) of more than w vertices to the same box as the one containing eC . �

Given a set R ⊆ Z≥0 and an integer x ∈ Z≥0. we denote by R ⊕ x then set
ocuring from R if we add x to all the elements of R.

Lemma 12. If there exists an algorithm that solves BLA that runs in 2O(w·logw)·
n4 · log n steps.
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Proof: We give an TFPT-reduction of BLA to LA.
We assume that ∀i ∈ [q] β(i) > 0, otherwise this instance is equivalent to

some instance that has a smaller q and where this condition holds.
Given an instance I = (G, r, q, λ, α, β) of BLA, we build the instance I ′ =

(G′, r′, λ′, α′) of LA as follows: We first define Gs to be the graph obtained by
subdividing once each edge of G. In Gs we denote by Vs the subdivision vertices
and we denote by τ : E(G) → Vs the bijection mapping each edge of E(G) to
the vertex of Vs that subdivided it. The graph G′ is obtained by adding in Gs a
set Vp of new vertices and making each one of them adjacent to exactly one of
the original vertices of G. We denote by ρ : V (G) → Vp the bijection mapping
each v ∈ V (G) to its unique neighbor in Vs. This completes the construction of
G′.

We set r′ = (r + q) + q +
(
r+q
2

)
, P = {r + 1, . . . , r + q}, P+ = P ⊕ r,

S = {(r + q) + q + 1, . . . , (r + q) + q +
(
r+q
2

)
} we fix a bijection µ :

(
r+q
2

)
→ S,

and we define λ′ : V (G′)→ [r′] such that

λ′(x) =


λ(x) if x ∈ V (G)
{µ(a, c) | (a, c) ∈ λ(y)× λ(z)} if x ∈ Vs

(we set {y, z} = τ−1(x))
λ(ρ−1(x)) \ P ∪ ((λ(ρ−1(x)) ∩ P )⊕ r) if x ∈ Vp

Also, we define α′ :
(
[r′]
2

)
→ Z≥0 such that

α′(x, y) =

 b(i) if {x, y} = {i, i+ r} for some i ∈ P
α(µ−1(y)) if x ∈ [r + q] and y ∈ S
0 otherwise

Let V be a solution for I. We define a solution V ′ for I ′ such that

• ∀i∈[r] V ′(i) = V(i) ∪ p(V(i)),

• ∀i∈P V ′(i) = V(i),

• ∀i∈P+ V ′(i) = ρ(V(i)), and

• ∀i∈S V ′(i) = {x ∈ Vs | if {a, c} = µ−1(i) and {y, z} = τ−1(x) then V(a)

contains one of the two vertices in {y, z} and V(c) contains the other},

and observe that V ′ is a solution for I ′.

Let now V ′ be a solution for I ′. The definition of λ′ implies the following

V (G) ⊆
⋃

i∈[r+q]

V ′(i), (6)

Vs =
⋃
i∈S
V ′(i), (7)⋃

i∈P+

V ′(i) ⊆ Vp. (8)

Out first step is to prove that ∀i∈P |V ′(i)| = β(i). For this let i ∈ P . Notice
that the set Fi = δG′(V ′(i),V ′(i+r)) contains α′(i, i+ r) = β(i) edges, each with
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one endpoint in V ′(i) and one endpoint in V ′(i+r). From (8) and the fact that
vertices in Vp have degree 1 in G′ we obtain that |V ′(i+r)| ≥ b. We also claim that
there is no other vertex of Vp in V ′(i+r). Indeed, if x is such a vertex, then ρ−1(x)
should belong in V ′(i) because i is the only index in P for which α′(i, i+ r) > 0,
a contradiction to the fact that |F | = b. We just proved that

|V ′(i+r)| = β(i). (9)

Using again the fact that i is the only index in [r+ q] for which α′(i, i+ r) > 0,
we have that ρ−1(V ′(i+r)) ⊆ V ′(i). In order to prove the equality, assume to the
contrary that V ′(i) contains a vertex z of G′ where z 6∈ ρ−1(V ′(i+r)). By (6),
z ∈ V ′(i) implies that z ∈ V (G). Let j be the index in [r′] for which ρ(z) ∈ V ′(j).
From the fact that α(i, j) > 0 and (7) we obtain that j ∈ P+. By the definition
of λ′, j ∈ P+ and the the fact that α(i, j) > 0 imply that j = i+ r. This means
that ρ(z) ∈ V ′(i+r), which implies that z ∈ ρ−1(V ′(r+1)), a contradiction. This
finish the proof that ρ−1(V ′(i+r)) = V ′(i). As |ρ−1(V ′(i+r))| = |V ′(i+r)|, from (9)
we conclude that |V ′(i)| = β(i).

Ir remains now to consider the (r + q)-allocation V = {V ′(1), . . . ,V ′(r+q)} ∩
V (G). Clearly V is an r-allocation of V (G) where, from (6), |V(i)| = β(i), for
every i ∈ P . Using the second line of the definition of α′, it is easy to verify that
V is a solution of BLA for the instance I.

Notice now that |V (G′)| = |V (G)|+ |E(G)| and w′ =
∑
α′ = 2 ·

∑
α+

∑
β =

O(w). Also, because of Lemma 11, we can assume that |E(G)| = O(w · |V (G)|).
As |V (G′)| = O(w · |V (G)|), the result now follows applying the algorithm of
Theorem 1 on I ′. �

B.4 A parameterization of List Digraph Homomorphism

Let G and H be directed graphs where G is simple and H may have loops but
not multiple directed edges. Let also λ : V (G) → 2V (H). We denote by E1(H)
the loops of H and by E2(H) the edges of H between distinct vertices. An
λ-list H-homomorphism of G is a function χ : V (G) → V (H) such that for
every v ∈ V (G), χ(v) ∈ λ(v), and such that for every u, v ∈ V (G), it holds
that (u, v) ∈ E(G) → (χ(u), χ(v)) ∈ E(H). Given a list H-homomorphism
χ of G and an edge e = {a, b} ∈ E2(H) we define the χ-arc charge of e as
the set C(e) = {(u, v) ∈ E(G) | χ(u) = a and χ(v) = b}. Given a function
α : E2(H) → Z≥0, we say that χ is α-arc-specified if |C(e)| = α(e), for every
e ∈ E2(H).

Arc-Specified List Digraph Homomorphism (ASLDH)
Input: A tuple (G,H, λ, α) where G is a digraph, H is a digraph with possible
loops and without multiple directed edges, α is a function from E2(H) to Z≥0,
and λ is a function from V (G) to 2V (H).
Parameter: w =

∑
α.

Output: An α-arc-specified λ-list H-homomorphism of G, or a correct report
that no such λ-list H-homomorphism exists.
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Lemma 13. There is an O(n4)-step algorithm that given in instance I = (G,H,
λ, α) of ASLDH, outputs an equivalent instance I ′ = (G′, H, λ′, α) of the same
problem where |E(G′)| = O(w · |V (G′)|).

Proof: Let G̃ be the underlying graph of G (multiplicities of edges of opposite
direction are summed up) and let H be the (w + 1)-edge-connected core of G̃.
For each connected component C of H we identify in G all vertices of C to a
single vertex vC and we update λ to λ′ so that if x 6∈ {vC | C ∈ H(C)}, then
λ′(x) = λ(v) and if x = vC , then λ′(x) = ∪y∈V (C)λ(y). Following the same
arguments as in the proof of Lemma 11, one can see that I ′ = (G′, H, λ′, α) is
an equivalent instance where |E(G′)| = O(w · |V (G′)|). �

Theorem 4. There exists an algorithm that, given as input an instance (G,H,
λ, α) of Arc-Specified List Digraph Homomorphism, returns and answer

to this problem in 2O(w2·logw) · n4 · log n steps.

Proof: Given an instance I = (G,H, λ, α) of Arc-Specified List Digraph
Homomorphism we generate an instance I ′ = (G′, r, λ′, α′) of LA, as follows:

• G′ = (V ′, E′), where

◦ V ′ = V ∪ VF ∪ VL, where V = V (G), VF = {fuv | (u, v) ∈ E(G)}, and
VL = {`uv | (u, v) ∈ E(G)} and

◦ E′ = E ∪ EF ∪ EL, where E = {{fuv, `uv} | (u, v) ∈ E(G)}, EF =
{{u, fuv} | (u, v) ∈ E(G)}, EL = {{`uv, v} | (u, v) ∈ E(G)}.

• r = |V (H)|+ 2 · |E2(H)| and let σ : V (H̃)→ [r] be some bijection where H̃
is the graph obtained from H by subdividing twice each of its arcs that are
not loops. For each arc (x, y) ∈ E2(H), we denote its corresponding path in
H̃ as Pxy, where V (Pxy) = {x, f̃xy, ˜̀

xy, y}.
• λ′ : V (G′)→ [r] such that

λ′(w) =



{σ(x) | x ∈ λ(w)} if w ∈ V

{σ(f̃xy) | x ∈ λ(u) ∧ y ∈ λ(v) ∧ x 6= y} ∪
{σ(x) | x ∈ λ(u) ∩ λ(v) ∧ (x, x) ∈ E1(H)} if w = fuv ∈ VF

{σ(˜̀
xy) | x ∈ λ(u) ∧ y ∈ λ(v) ∧ x 6= y} ∪

{σ(x) | x ∈ λ(u) ∩ λ(v) ∧ (x, x) ∈ E1(H)} if w = `uv ∈ VL.

• w = maxα.

• α′ :
(
[r]
2

)
→ Z≥0 such that

α′(i, j) =


α(x, y) if there exists some (x, y) ∈ E2(H) such that

(i, j) ∈
{

(σ(x), σ(f̃xy)), (σ(f̃xy)), σ(˜̀
xy)), (σ(˜̀

xy), σ(y))
}

0 otherwise.
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Let χ : V (G) → V (H) be an α-arc-specified λ-list H-homomorphism of G.
We construct an r-allocation V of V (G′) as follows:

• for every u ∈ V = V (G), u belongs to the part Vi, where i = σ(χ(u))

• for every fuv ∈ VF , fuv belongs to the part Vi, where

i =

{
σ(χ(u)) if χ(u) = χ(v)

σ(f̃xy) if x = χ(u) 6= y = χ(v)

• for every `uv ∈ VL, `uv belongs to the part Vi, where

i =

{
σ(χ(u)) if χ(u) = χ(v)

σ(˜̀
xy) if x = χ(u) 6= y = χ(v)

It is straightforward to verify that V is a solution for I ′.
Now consider a solution V for I ′. From V, we define a mapping χ : V (G)→

V (H) so that for every u ∈ V , we have χ(u) = σ−1(i) if and only if u ∈
V(i). We claim that χ is an α-arc-specified λ-list H-homomorphism of G. For
this, we investigate χ upon two conditions: firstly, we verify that χ is a λ-list
H-homomorphism, and secondly that χ is α-arc-specified.

Let us prove that χ is a λ-list H-homomorphism. To see that χ(u) ∈ λ(u)
for every u ∈ V (G), let u be in the i-th part of V. Since i ∈ λ′(u), the con-
struction of λ′ implies that σ−1(i) ∈ λ(u), and thus χ(u) ∈ λ(u). To see that
χ is an H-homomorphism, for an arbitrary edge (u, v) ∈ E(G) we shall show
that (χ(u), χ(v)) ∈ E1(H) ∪ E2(H). Let u and v respectively belong to σ(x)-th
and σ(y)-th parts of V, for some x, y ∈ V (H̃). Note that x ∈ λ(u) ⊆ V (H) and
y ∈ λ(v) ⊆ V (H). There are two possibilities: x 6= y or x = y.

Case 1: x 6= y. Since σ is a bijection, this means σ(x) 6= σ(y). From the way we
construct α′, the vertices fuv and `uv can be only allocated into the σ(f̃xy)-th

part and the σ(˜̀
xy)-th part, respectively, in the solution V. Furthermore, the

construction of α′ also implies (x, y) ∈ E2(H).

Case 2: x = y. This means σ(x) = σ(y). The construction of α′ implies fuv and
`uv are allocated into the σ(x)-th part of V as well. This, in turn, means that
σ(x) ∈ λ′(fuv) and σ(x) ∈ λ′(`uv). Recall that λ′(fuv) contains σ(x) only when
(x, x) ∈ E1(H). Hence, (x, y) ∈ E1(H).

Now we verify that χ is α-arc-specified. Consider an arc e = (x, y) ∈ E2(H).
Note that for every directed edge (u, v) in the χ-arc charge C(e), the (u, fuv) of
E(G′) contributes to α′(σ(x), σ(f̃xy)) exactly by one unit. Conversely, for every

edge (u, fuv) of E(G′) which contributes to α′(σ(x), σ(f̃xy)), we have χ(v) = y
and thus the directed arc (u, v) contributes to C(e) by one unit. This establishes
that χ is α-arc-specified.

From Lemma 13, we can assume that |E(G)| = O(w · |V (G)|). The claimed
running time follows from Theorem 1, given that

∑
α′ = 3 ·

∑
α = 3 · w and

that |V (G′)| = O(|E(G)|) = O(w · |V (G)|). �



30 E. Kim, S. Oum, C. Paul, I. Sau, and D. M. Thilikos

B.5 An FPT 2-approximation for tree-cut width

B.5.1. A special partitioning problem. Consider the following problem:

Special Partitioning
Input: An undirected graph G, a w ∈ Z≥0, a set B ⊆ V (G), and a weight
function γ : B → [2w] such that

∑
γ ≤ 2w.

Parameter: w.
Output: An (r + 1)-allocation V of V (G), for some r ∈ Z≥0, such that

1. there are at least two non-empty sets in V,

2. |V(r+1)|+ r ≤ w,

3. |γ(B ∩ V(i))| ≤ w for every i ∈ [r], and

4. |δG(V(i), V (G) \ V(i))| ≤ w for every i ∈ [r],

or a correct report that no such (r + 1)-allocation exists.

Given a solution V for some instance of Special Partitioning, we call V(r)

the central part of V, where r = |V|.

Lemma 14. Let w ≥ 2, ρ ≥ 2 and let A = {a1, . . . , aρ} be a set of non-negative
integers such that

∑
i∈[ρ] ai ≤ 2w and ∀i∈[ρ] ai ≤ w. Then there exists a partition

A of A such that 2 ≤ |A| ≤ w and such that for each P ∈ A it holds that∑
x∈P x ≤ w. Moreover, such a partition can be obtained in time O(n log n).

Proof: Any element of A equal to zero can be added to an arbitrary part P
of a given partition without increasing the sum of the elements in P . Hence,
without loss of generality we assume that all elements of A are positive. When
w = 2, a simple case analysis shows that there exists a partition as claimed in
the statement. Therefore we consider the case when w ≥ 3.

First, we order the elements of A in non-decreasing order, therefore we may
assume that a1 ≤ · · · ≤ aρ. This can be done in the claimed running time.

Case 1. aρ−1 + aρ > w. We create a partition A into three parts: the first
part contains aρ, the second part contains aρ−1, and the last one one contains
the remaining elements of A. Observe that for each P ∈ A,

∑
x∈P x ≤ w. In

particular, this holds for the third part consisting of A \ {aρ, aρ−1}, due to the
fact

∑
i∈[ρ] ai ≤ 2w and aρ−1 + aρ > w.

Case 2. aρ−1+aρ ≤ w. We form an arbitrary partition A such that |A| = dρ2e and
|P | ≤ 2 for every P ∈ A. From

∑
i∈[ρ] ai ≤ 2w and the fact that ai ≥ 1, for every

i ∈ [ρ], it follows that |A| = dρ2e ≤ d
2w
2 e ≤ w. Moreover, ai+aj ≤ aρ−1 +aρ ≤ w

for any {i, j} ∈
(
[ρ]
2

)
and thus

∑
x∈P x ≤ w for every P ∈ A. �

Lemma 15. There exists an algorithm for Special Partitioning that runs
in 2O(w4·logw) · n4 · log n steps.
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Proof: Let I = (G,w,B,w) be an instance of Special Partitioning. We
assume that w ≥ 2 as, otherwise I is a NO-instance. In case |C(G)| ≥ 2 and
w(V (C) ∩ B) ≤ w for all C ∈ C(G), then let {C1, . . . , Cρ} = C(G) and ai =
w(B ∩ Ci), i ∈ [ρ]. By applying Lemma 14 for A = {a1, . . . , aρ} we obtain a
partition A = {P1, . . . , Pσ} of A. We then construct an allocation V of V (G)
such that |V| = σ + 1, where for i ∈ [σ], V(i) contains all the vertices of the
members of C(G) whose indices belong in Pi and V(σ+1) = ∅. Observe that V is
a solution for I.

If |C(G)| = 1 or if w(V (C) ∩ B) > w for some C ∈ C(G), then we generate
the collection U(I) containing every instance (G, r, 1, λ, α, β) of BLA satisfying
the following:

• r ∈ [w],

• λ : V (G)→ 2[r+1] such that

λ(x) =

{
[r + 1] if x ∈ V (G) \B
{µ(x)} if x ∈ B

with µ : B → [r + 1] such that for every i ∈ [r], w(µ−1(i)) ≤ w,

• α :
(
[r+1]

2

)
→ Z≥0 such that∑

α > 0 and for every i ∈ [r],
∑

j∈[r]\{i}

α(i, j) ≤ w,

• β(1) ≤ w − r.

In the above construction, keep in mind that
∑
α = O(w2). It is easy to verify

that I is a YES-instance of Special Partitioning if and only if there is some
I ′ ∈ U(I) such that I ′ is a YES-instance of BLA. Notice also that |U(I)| =

(w+1)·2O(w·log r)·2O(w2·logw)·O(w). The claimed running time follows combining
Theorem 1 and Lemma 12. �

B.5.2. The FPT 2-approximation

Tree-cut width. A family of possibly empty subsets X1, . . . , Xw of a finite
set X is a near-partition of X if they are pairwise disjoint and

⋃w
i=1Xi = X.

A tree-cut decomposition of G is a pair (T,X ) which consists of a tree T and
a near-partition X = {Xt ⊆ V (G) : t ∈ V (T )} of V (G). A set in the family
X is called the bag of the tree-cut decomposition. From now on we refer to the
vertices of T as nodes. A node v ∈ T is trivial in (T,X ) if Xt = ∅.

For every edge e = {u, v} of T , let Tu and Tv be the two components in T \ e
which contain u and v respectively. Note that

⋃
t∈V (Tu)

Xt and
⋃
t∈V (Tv)

Xt form

a near-partition of V (G) into two sets. We set

δT (e) = δG(
⋃

t∈V (Tu)

Xt,
⋃

t∈V (Tv)

Xt).



32 E. Kim, S. Oum, C. Paul, I. Sau, and D. M. Thilikos

The adhesion of (T,X ) is max{|δT (e)| | e ∈ E(T )}.
Given a tree-cut decomposition (T,X ) of G and node t ∈ V (T ), let T1, . . . , T`

be the connected components of T \ t. The torso of G at t is a graph obtained
from G by identifying each non-empty vertex set Zi :=

⋃
b∈V (Ti)

Xb into a single

vertex zi (the multiplicity of the created edges is defined appropriately). For a
graph G and a set X ⊆ V (G), the 3-center of (G,X) is the graph obtained from
G by repetitively dissolving every vertex v ∈ V (G) \X that has two neighbors
and degree 2 and removing every vertex v ∈ V (G) \ X of degree at most 2
and at most one neighbor (dissolving a vertex x of degree two with exactly two
neighbors y and z is the operation of removing x and adding the edge {y, z} –
if this edge already exists then its multiplicity is increased by one).

Given a tree-cut decomposition (T,X ) of G, let Ht be the torso at t and H̄t

be the 3-center of (Ht, Xt). Then the width of (T,X ) equals

max
e∈E(T ), t∈V (T )

{|δT (e)|, |V (H̄t)|}.

The tree-cut width of G, or tcw(G) in short, is the minimum width of (T,X )
over all tree-cut decompositions (T,X ) of G. In the special case when G is 3-
edge-connected, the following observation is not difficult to verify.

Observation 7. Let G be a 3-edge-connected graph and let (T,X ) be a tree-cut
decomposition of G. Consider an arbitrary node t of V (T ) and let T be the set
containing every connected component T ′ of T \ t such that

⋃
s∈V (T ′)Xs 6= ∅.

Then |V (H̄t)| = |Xt|+ |T |, that is |V (H̄t)| = |V (Ht)|.

The following lemma can be easily derived from [30, Lemma 11]. For the sake
of completeness, we present a simple proof of it.

Lemma 16. Given a graph G, let {X1, X2} be a partition of V (G) such that
|δG(X1, X2)| ≤ 2 and let w ≥ 2 be a positive integer. Then if both G[X1] and
G[X2] have tree-width at most w, then G has tree-cut width at most w.

Proof: Let (T i,X i) be a tree-cut decomposition of G[Xi] of width at most w
for i ∈ [2], and consider the tree-cut decomposition (T,X ) such that X = X1∪X2

and T is obtained by the disjoint union of T 1 and T 2 after adding an edge with
one (arbitrarily chosen) endpoint, say t1, in T 1 and another (arbitrarily chosen)
endpoint, say t2, in T 2.

We want to prove that (T,X ) is a tree-cut decomposition of width at most w.
To see this, note first that the adhesion of (T,X ) is at most w since |δT ({t1, t2})| ≤
2 and the adhesion of (T i,X i) is at most w for i ∈ [2]. From |δT ({t1, t2})| ≤ 2,
it follows that for i ∈ [2], the 3-center of (Hti , Xti) of the tree-decomposition
(T,X ) is the same as the 3-center of (Hti , Xti) of the tree-decomposition (T i,X i).
Therefore the width of (T,X ) is at most w. �

A tree-cut decomposition (T,X ) of a graph is normalized if all nodes of T
with degree at most two are non-trivial.
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Observation 8. If (T,X ) is a normalized tree-cut decomposition of G, then
|V (T )| ≤ 2 · |V (G)|.

Lemma 17. Let G be a 3-edge connected graph, w ∈ Z≥2 and let S ⊆ V (G)
be a set containing at least w + 1 vertices such that |δG(S, V (G) \ S)| ≤ 2w.
Let I = (H,w,B,w) be an instance of the Special Partitioning problem such
that H = G[S], B = ∂G(S), and for every v ∈ B, w(v) is the number of edges
in δG(S, V (G) \ S) that have v as an endpoint. If tcw(G) ≤ w, then I is a
YES-instance.

Proof: Let (T,X ) be a normalized tree-cut decomposition of G of width at
most w. For every edge e ∈ E(T ) with endpoints x and y, let Tx and Ty be the
connected components of T which contain the nodes x and y respectively. We
extend the weight function w on B into w′ on V (G) by setting w′(v) = w(v) for
every v ∈ B and w′(v) = 0 otherwise. Also, given a subtree Y of T , we define
w(Y ) as

∑
t∈V (Y )

∑
v∈Xt

w(v). Consider two rules to orient an edge of T , which
may possibly orient an edge in one or two directions, or leave it unoriented.
Given an edge e = {x, y} of E(T ),

Rule 1: orient e from x to y if w(Ty) > w.

Rule 2: orient e from x to y if S ∩
⋃
t∈V (Tx)

Xt = ∅.

Let T be the mixed graph obtained from T by applying Rules 1 and 2 ex-
haustively to the edges of T . We claim that no edge is oriented in two directions.

Claim 6. For every edge e = {x, y} of T , e is oriented either in a single direction
or not oriented in T .

Proof of the Claim: Observe that if Rule 1 orients e from x to y, neither
Rule 1 nor Rule 2 may orient e in the opposite direction. The former is an
immediate consequence of the fact w(Tx) + w(Ty) = |δG(S, V (G) \ S)| ≤ 2w.
Rule 2 does not orient e from y to x either: if Rule 2 does so, we have S ∩⋃
t∈V (Ty)

Xt = ∅ and since the value w(v) is non-zero only when v ∈ S, we

conclude that w(Ty) = 0, a contradiction to the assumption Rule 1 oriented
e from x to y. Moreover, the edge e cannot be oriented in both directions by
Rule 2 since S is non-empty and thus at least one of the sets

⋃
t∈V (Tx)

Xt and⋃
t∈V (Ty)

Xt intersects with S. 3

Since no edge of T is oriented in two directions in T , there is at least one
node, say t, which does not have an out-going edge in T . Let T1, . . . , T` be the
connected components of T \ t. Notice that ` ≥ 1, as |V (G)| ≥ |S| ≥ w + 1.
Consider the following (r + 1)-allocation V of V (H) = S, where r := `.

V(i) =

{
S ∩

⋃
b∈V (Ti)

Xb for all i ∈ [r]

S ∩Xt for i = r + 1

It remains to show that V is a solution to Special Partitioning for I =
(H,w,B,w). For this we verify that V satisfies the four conditions for an (r+1)-
allocation to be a solution to Special Partitioning. For Condition 1, suppose
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to the contrary that at most one part of V is non-empty. Since S is a non-empty
set, this means that there exists exactly one part, say V(i) for some i ∈ [r + 1],
which is non-empty. Observe that i 6= r+1 since otherwise, S = V(r+1) ⊆ Xt and
Xt contains more than w vertices, contradicting to the assumption that (T,X ) is
a tree-cut decomposition of width at most w. Consider the edge e = {ti, t}, where
ti is the neighbor of t corresponding to the subtree Ti. Due to the assumption
that

⋃
j 6=i V(j) = ∅, we know that e is oriented from t to ti in T , which is a

contradiction to the assumption that t does not have an out-going edge in T .
Regarding Condition 2, note that |V(r+1)| + r ≤ |Xt| + `. Since (T,X ) is a

normalized tree-cut decomposition, we have
⋃
b∈V (Ti)

Xb 6= ∅ for every i ∈ [`].

Hence, Observation 7 and the fact that the width of (T,X ) is at most w implies
that |Xt| + ` ≤ w and thus, Condition 2 is satisfied by V. Condition 3 is also
satisfied since t does not have an out-going edge in T , in particular, Rule 1 does
not orient any edge incident with t outwardly from t.

Lastly, observe that for every i ∈ [r], we have

|δH(V(i), V (H) \ V(i))| ≤ |δG(
⋃

b∈V (Ti)

Xb, V (G) \
⋃

b∈V (Ti)

Xb)| ≤ w,

where the second inequality follows from the fact that the width, and thus the
adhesion, of (T,X ) is at most w. This completes the proof of our claim that V
is a solution to Special Partitioning for I = (H,w,B,w), and thus the proof
of the statement. �

Let G be 3-edge connected graph and let (T,X ) be a tree-cut decomposition
of G with at least two nodes. The internal-width of (T,X ) equals

max
e∈E(T ), t∈V (T )\L(T )

{|δT (e)|, |V (Ht)|}.

We also define Bw(T,X ) = V (T ) \ {t ∈ L(T ) | |Xt| ≥ w}.
Observation 9. Let w ∈ Z≥2. If (T,X ) is a tree-cut decomposition of a 3-edge
connected graph G with internal-width at most w and where Bw(T,X ) = |V (T )|
then tcw(G) ≤ w.

Lemma 18. There exists an algorithm that, given w ∈ Z≥1 and a graph G
where |V (G)| > w, either outputs that tcw(G) > w or outputs a normalized
tree-cut decomposition of G with at least two nodes and internal width at most
2w. The algorithm runs in O(n4) steps.

Proof: The algorithm first computes a partition {X1, X2} of V (G) such that
|δG(X1, X2)| is minimum using the O(n3) algorithm in [28].

Notice that if tcw(G) ≤ w and |V (G)| > w, then every tree-cut decom-
position (T,X ) of G of width at most w contains an edge e of T such that
|δT (e)| ≤ w. Therefore, if |δG(X1, X2)| > w, then the algorithm can safely re-
port that tcw(G) > w. Otherwise the algorithm outputs (T,X ) where T =
({x1, x2}, {{x1, x2}}) and X = {X1, X2}. The lemma follows as (T,X ) has
internal-width at most w ≤ 2w. �
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Algorithm: build-tcd(G,T,X , w)
Input : A 3-edge connected graph G and normalized tree-cut

decomposition (T,X ) of G of at least two nodes and internal-width
at most 2w and B2w(T,X ) 6= V (T ), where w ∈ Z≥2.

Output : Either a normalized tree-cut decomposition (T ′,X ′) of G of
at least two nodes and internal-width at most 2w and where
|B2w(T,X )| < |B2w(T ′,X ′)| or a report that tcw(G) > w.

1. let t be some node in T (V ) \B2w(T,X )
2. let It = (G[Xt], w, ∂G(Xt), w), where for every x ∈ ∂G(Xt), w(x) is the

number of edges in δG(Xt, V (G) \Xt) that contain x as an endpoint.
3. if It is a NO-instance of Special Partition then return that

tcw(G) > w, otherwise, let V the allocation of Xt created from a solution
V∗ for It after discarding from V∗ every empty part that is not the central
one (notice that V is again a solution for It).

4. let (T ′,X ′) be a tree-cut decomposition such that T ′ is obtained from T
after adding r new nodes t1, . . . , tr in it (here, r = |V|).

5. let X ′ = {X ′b | b ∈ V (T ′)} be such that X ′b = Xb for b ∈ V (T ) \ {t},
X ′t = Vr+1, and X ′ti = V(i) for i ∈ [r].

6. return (T ′,X ′)

Lemma 19. The algorithm build-tcd is correct and runs in 2O(w4·logw) · n4 ·
log n) steps.

Proof: If in Line 3 the It is a NO-instance of Special Partition then by
Lemma 17, the algorithm correctly reports that tcw(G) > w. Suppose now that
It is a YES-instance of Special Partition. Clearly the tree-cut decomposition
(T ′,X ′) constructed in Lines 4 and 5 contains at least two nodes. To prove that
(T ′,X ′) is normalized and |B2w(T,X )| < |B2w(T ′,X ′)|, observe that V∗ contains
at least two non-empty sets, therefore either the central part of V is empty and
|V| ≥ 3 or the central part of V is non-empty and |V| ≥ 2.

It now remains to prove that the internal-width of (T ′,X ′) is at most 2w.
Since V is a solution to It, the size of the torso at t in (T ′,X ′) is |V (Ht)| =
|X ′t|+r ≤ |V(r+1)|+r ≤ w. Let us verify that the adhesion of (T ′,X ′) is at most
2w. For this, it suffices to bound the value |δT ′(e)| for the newly created edges
e = {ti, t}, for all i ∈ [r]. Notice first that {Xt \X ′ti , V (G) \Xt} is a partition of
V (G) \X ′ti . We have

|δT
′
({ti, t})| = |δG(X ′ti , V (G) \X ′ti)|

= |δG(X ′ti , Xt \X ′ti)|+ |δG(X ′ti , V (G) \Xt)|
= |δG(V(i), Xt \ V(i))|+ w(∂G(Xt) ∩ V(i)) ≤ 2w,

where the last inequality follows from that V is a solution for It.
Add the running time of the algorithm is dominated by Step 3, the claimed

running time follows. �
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Lemma 20. There exists an algorithm that, given a 3-edge-connected graph G
and a w ∈ Z≥0, either outputs a tree-cut decomposition of G with width at most
2w or reports that no tree-cut decomposition of G with width at most w exists
in 2O(w4·logw) · n5 · log n steps.

Proof: We assume that w ≥ 2 as otherwise we can directly return a negative
answer (recall that if G is 3-edge connected then tcw(G) ≥ 2). We also assume
that |V (G)| > w, otherwise the algorithm directly outputs that tcw(G) ≤ w.
The algorithm applies Lemma 18 and, if the output is a tree-cut decomposition
(T,X ), then repetitively applies build-tcd on (G,T,X ) as long as it receives new
tree-cut decomposition (T ′,X ′) where B2w(T ′,X ′) 6= |V (T ′)|. This procedure
ends either when build-tcd correctly reports that tcw(G) > w or produces
a normalized tree-cut decomposition (T ′,X ′) of G of at least two nodes and
internal-width at most 2w, where |B2w(T ′,X ′)| = |V (T ′)|.

Because of Lemma 19, in the first case the algorithm correctly concludes that
tcw(G) > w and in the second case it outputs a tree-cut decomposition of width
at most 2w, because of Observation 9.

By the same Lemma 19, the output of build-tcd is always normalized and
|B2w(T,X )| < |B2w(T ′,X ′)|. This together with Observation 8, implies that the
algorithm calls build-tcd O(n) times. �

Algorithm: apr-tcw(G,w)
Input : A graph G where |V (G)| ≥ 1 and w ∈ Z≥1.
Output : Either a tree-cut decomposition (T,X ) of G with width at

most 2w or a report that tcw(G) > w.

1. if |V (G)| = 1, then return ((V (G), ∅), V (G))
2. find a partition {X1, X2} of V (G) such that δ = |δG(X1, X2)| is minimum
3. if δ ≥ 3, then return the answer of the algorithm of Lemma 20 applied for

G and w.
4. if, for i ∈ [2], the output of apr-tcw(G[Xi], w) is a tree-cut decomposition

(T i,X i) of G[Xi] with width at most 2w then
5. return the tree-cut decomposition (T,X ) such that T is obtained by

the disjoint union of T 1 and T 1

6. after adding an edge with one (arbitrarily chosen) endpoint in T 1 and
one (arbitrarily chosen)

7. endpoint in T 2 and X = X 1 ∪ X 2.
8. return that tcw(G) > w.

Theorem 5. There exists an algorithm that, given a graph G and a w ∈ Z≥0,
either outputs a tree-cut decomposition of G with width at most 2w or cor-
rectly reports that no tree-cut decomposition of G with width at most w exists in
2O(w4·logw) · n5 · log n steps.
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Proof: The algorithm is the following: If V (G) = ∅, then the algorithm returns
{({x}, ∅), {∅}}. Therefore, we may assume that G contains at least one vertex.
If w = 0, then the algorithm returns that tcw(G) > w. If w = 1, the algorithm
does the following: it returns tcw(G) > w if G contains a cycle and otherwise,
i.e., G is a forest, outputs ((V (G), E(G)), {{u} : u ∈ V (G)}). If now |V (G)| ≥ 1
and w ≥ 2, then the algorithm returns apr-tcw(G,w).

First, we prove the correctness of the algorithm. The correctness is trivially
verified when V (G) = ∅ or w ≤ 1. Hence we consider the case when |V (G)| ≥ 1
and w ≥ 2 and show that apr-tcw(G,w) either outputs a tree-cut decomposition
of G with width at most 2w or correctly reports tcw(G) > w. We observe
that the algorithm apr-tcw(G,w) iteratively decomposes V (G) and recursively
calls apr-tcw(G,w) until either |V (G)| = 1 or G is 3-edge-connected. In case
|V (G)| = 1, it is trivial to see that Line 1 returns a tree-cut decomposition
with width at most 2w. In case when G is 3-edge-connected, apr-tcw(G,w)
returns an output in Line 3, whose correctness is guaranteed by Lemma 20.
Hence, we proceed the correctness proof by induction on |V (G)| and assume
that apr-tcw(G,w) returns a correct output for all input graphs whose number
of vertices is strictly smaller than |V (G)|.

If apr-tcw(G,w) returns a tree-cut decomposition (T,X ) in Line 5, then by
induction hypothesis, (T i,X i) is a tree-cut decomposition of G[Xi] with width
at most 2w, for i ∈ [2]. By Lemma 16 and from w ≥ 2, it follows that (T,X )
has width at most 2w. If apr-tcw(G,w) reports that tcw(G) > w in Line 8,
it means that the tree-cut width of G[Xi] is reported to be strictly larger than
w for some i ∈ [2], which is correct by induction hypothesis. Since the tree-cut
width is closed under taking a subgraph, it follows that tcw(G) > w and thus
the output in Line 8 is correct. This complete the proof of correctness.

The claimed running time is an immediate consequence of the running time
claimed in Lemma 20, the fact that |E(G)| = O(w3 · |V (G)|), and the following
recursion: T (n,w) ≤ T (n1, w) +T (n2, w) +O(n), where ni is the size |Xi| of the
input graph for the subroutine called in Line 4 for i ∈ [2]. The additive factor
O(n) is the running time consumed to compute (T,X ) from (T i,X i) for i ∈ [2]
in Line 5. �
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