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Metabolic functions, cont'd

Inferring metabolic functions

In principle, this can be inferred from the nucleic acid sequence content,
e.g., as encoded by a gene or a genome
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Metabolic functions, cont'd

Inferring metabolic functions
In principle, this can be inferred from the nucleic acid sequence content,
e.g., as encoded by a gene or a genome
» we do this systematically using PRIAM?! — a set of profiles (PSSMs)
for protein modules covering the Swiss-Prot database

> idea : an rps-blast of the profiles against a protein sequence delivers
a set of enzymes (ECs) with associated (presence) probabilities

The evolution of metabolic functions
We then want to explore evolutionary scenarios of these functions in
order to understand the dependencies between them
» we do a study on HOGENOM 62 — a database of homologous gene
families

IPRIAM: PRofils pour I'ldentification Automatique du Métabolisme (priam.prabi.fr)
2pbil.univ-lyon1.fr/databases/hogenom
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Hogenom Families

There are 296 917 families in HOGENOM 6

» of which 10 699 (3.60% of the 296 917) families® have an EC
assignment (P(EC) > 0.5) , i.e., at least one of its sequences has an
EC assigned

First question :
How is EC assignment distributed amongst these 10 699 families?

3note that we restrict to families with a tree on at least 3 sequences
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Families with one and two EC assignements

Of the 10 699 families with at least one EC assignment, no family has
more than 24 ECs assigned to it, while

» 9120 : 85.2% of the families have a single EC assignment, and
» 1156 : 10.8% of the families have exactly two EC assignments

that is, 10 278 : 96.0% of the (10 699) families with any EC assignment
have either one or two EC assignments

Families with one EC assignment :
What is the distribution of the percentage of sequences assigned the EC?
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Families with one and two EC assignements, cont'd

Families with one EC assignment :
In fact, of the 9120 families with one EC assignment, 3249 : 35.6% of
these families are completely assigned with its EC

> this is 30.4% of the (10 699) families with any EC assignment

Families with two EC assignments :
What is the distribution of the Jaccard index,

AN B
|AUB|

of the pair of EC assignments for a family, where A (resp., B) is the set
of sequences assigned with one (resp., the other) EC?
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Families with two EC assignments

In fact, of the 1156 families with two EC assignments, 318 : 27.5%
(resp., 309 : 26.7%) have Jaccard index 0 (resp., 1)



Families with two EC assignments

In fact, of the 1156 families with two EC assignments, 318 : 27.5%
(resp., 309 : 26.7%) have Jaccard index 0 (resp., 1)

» What about the families in the middle?
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Hogenom Organisms

The gene families of HOGENOM 6 fall into 1471 organisms (compose
1471 genome sequences)

» for which there is a (an ultrametric) species tree on 1460 of these
organisms

» from which we consider a subtree on 1452 organisms, due to
incomplete genome sequences, or non-species (i.e., mitochondria,
plasmids or nucleomorphs)

For a collection of protein sequences (as encoded by the genome of an
organism), the PRIAM search tool

» screens the sequences with the PRIAM profiles (using rps-blast) to
get a set of hits, with associated proabilities, for each profile

» applies a set of EC-specific logical rules to the (sets of) hits of all
profiles that concern the given EC to infer an overall probability for
each enzyme in the collection (i.e., organism)

Here we apply PRIAM search to the organisms of HOGENOM 6
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Evolutionary scenarios of metabolic functions

Construction
A given EC x is at each leaf of the species tree with a certain probability

» use MapNH* to infer gain (resp., loss) probabilities p,(x), b € BB of
this EC x on the branches 5 of the species tree

Analysis
We combine the probabilities on the branches of the tree to obtain
> p(x) = >, Po(x) 1 the overall gain (resp., loss) probability of EC
x on the tree,

> p(x,y) = > e Po(x) - po(y) : the overall joint gain (resp., loss) of
ECs x and y on the tree

Compute the mutual information (MI) for each pair of ECs x and y :

p(x',y')
i) = 2 2 » Iog( (x’ )p(y’)>

x'e{xx}y'e{y.y}

“biopp.univ-montp2.fr/forge/testnh
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Community Analysis of Mutual Information

The Graph
threshold nodes (isolated) edges | avg. degree
5.0E-3 1124 (+ 1608 = 2732) | 22005 39.2
5.0E-4 974 (+ 1758 = 2732) | 11792 24.2
5.0E-5 836 (+ 1896 = 2732) 6962 16.7
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5.0E-3 1124 (4 1608 = 2732) | 22005 39.2
5.0E-4 974 (+ 1758 = 2732) | 11792 24.2
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The Graph
threshold nodes (isolated) edges | avg. degree
5.0E-3 1124 (+ 1608 = 2732) | 22005 39.2
5.0E-4 974 (+ 1758 = 2732) | 11792 24.2
5.0E-5 836 (+ 1896 = 2732) 6962 16.7
Node Communities (Blondel et al., 2008)
threshold || number | # /w2 ECs | # /w 3 ECs || mean size | max size
5.0E-3 40 22 (55%) 6 (15%) 28.1 335
5.0E-4 43 26 (60%) 7 (16%) 2.7 268
5.0E-5 53 29 (55%) 6 (11%) 15.8 223
Link Communities (Ahn et al., 2010)
threshold || number | # /w2 ECs | # /w 3 ECs || mean size | max size
5.0E-3 5571 | 4480 (80%) | 473 (8%) 31 129
5.0E-4 || 3084 | 2381 (77%) | 318 (10%) 3.0 107
5.0E-5 2043 | 1554 (76%) | 265 (13%) 27 93
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So, what's next?

Reconciled Trees
Perform the same study on a Cyanobacteria dataset reconciled by the
method of Szdll6si et al., (2013)

» we will have (more detailed) evolutionary scenarios for ECs,

> but also ancestral sequences (idea : run PRIAM on these and
compare to the ECs scenarios)

Stoichiometry Analysis
Given a collection of enzymes (ECs), PRIAM can construct a draft
metabolic network, using Kegg pathway data

» construct extant, and ancestral networks

» perform a comparison from a reaction stoichiometry point of view
(Poolman et al., 2007)
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Thank you!

Any questions?
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The goals of this project

We outline a few of the main goals of this project :

1.

to investigate principles of metabolic network evolution : how is
function related to evolution? How is evolution determined by
function?

in the context of the Ancestrome project : to introduce functional
dependencies into the likelihood calculations

evaluating hypotheses about ancestral environments : metabolism
sheds light on environmental factors, which could provide clues on
the events associated with the emergence of ancestral phyla
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Dependencies between metabolic functions

Our goal is to find (and to understand) the dependencies between
different metabolic functions within these evolutionary scenarios
From the evolutionary tree

Determine the (pairwise) relationships between ECs using mutual
information

» the mutual information between two (discrete) random variables X
and Y is defined as :

V=2, 2 ey oe (265:0)

» from here we can build a large graph that represents these pairwise
dependencies, and try to find modules within this graph
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Dependencies between metabolic functions

Our goal is to find (and to understand) the dependencies between
different metabolic functions within these evolutionary scenarios

From the structure of the networks
Conversely, we may detect functional dependencies purely from the
structure of a metabolic network (i.e., at a given node of the species tree)

» from a reaction stoichiometry there exist methods for finding
correlations among subsets of reactions (Poolman et al., 2007)

» from this, we get dependencies between sets of reactions, functions
(their ECs)
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Reconstructing evolutionary scenarios

For each of the individual family and whole genome viewpoints, there are
again two viewpoints on the reconstruction of evolutionary scenarios — in
terms of either

ECs
Apply a method (parsimony or ML) to propagate the ECs to the
ancestral nodes of the tree

» the collection of ECs at the ancestral nodes will then determine the
functions active at these nodes

Nucelic acid sequences

Apply a method (parsimony or ML) to propagate the sequences to the
ancestral nodes of the tree

» we can apply PRIAM search on these ancestral sequences (just like
we did for the extant ones) to get collections of ancestral ECs at the
ancestral nodes
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reaction stoichimetry

s1 So EC 1. A+O — AO
eq | 0.76 045 EC 2. AB+C — A+BC
ey, | 0.39 0.87 ep EC 3. AB+H,O — AOH4-BH

e. | 0.68 0.23 EC 6. | X+Y+ATP — XY+ADP+Pi



reaction stoichimetry

$1 S EC 1. A+0O — AO
e, | 0.76 0.45 EC 2. AB+C — A+BC
ey | 0.39 0.87 e=p EC 3. AB+H;0 — AOH+BH
e. | 0.68 0.23 EC 6. | X+Y+ATP — XY+ADP+Pi

|

. acek. # Ethanol
LS




