Information Theory SALZA

Marion Revolle, François Cayre and Nicolas Le Bihan

GIPSA-Lab | DIS | CICS
April $28^{\text {th }}, 2017$

Information Theory (without probabilities) WORK IN PROGRESS!

Marion Revolle, François Cayre and Nicolas Le Bihan

GIPSA-Lab | DIS | CICS
April $28^{\text {th }}, 2017$

Probabilistic framework (discrete distributions)

Entropy

Let $\mathcal{X}=\left(x, p_{X}, \mathcal{A}\right)$ a discrete r.v., its entropy reads :

$$
H(X)=-\sum_{i=1}^{|\mathcal{A}|} p_{X}[x=i] \log _{2} p_{X}[x=i]
$$

Probabilistic framework (discrete distributions)

Entropy

Let $\mathcal{X}=\left(x, p_{X}, \mathcal{A}\right)$ a discrete r.v., its entropy reads:

$$
H(X)=-\sum_{i=1}^{|\mathcal{A}|} p_{X}[x=i] \log _{2} p_{X}[x=i]
$$

Relative entropy
Also let $\mathcal{Y}=\left(y, p_{\mathscr{Y}}, \mathcal{A}\right)$ another discrete r.v.. Provided $\forall i, p_{y}[y=i] \neq 0$, the relative entropy (KL-divergence) reads :

$$
D_{K L}(X \| \mathcal{Y})=\sum_{i=1}^{|\mathcal{A}|} p_{X}[x=i] \log _{2} \frac{p_{X}[x=i]}{p_{Y}[y=i]}
$$

Issues with probabilities

Robust estimation of p_{X}, p_{Y}

- Need enough data;
- When using parametric distributions, truth may suffer.

Issues with probabilities

Robust estimation of p_{X}, p_{Y}

- Need enough data;
- When using parametric distributions, truth may suffer.

The model shadows the data

- Is information only in the model?

Algorithmic framework

Entropy $H(X) \rightsquigarrow$ Kolmogorov complexity $K(x)$
Let $x \in \mathcal{A}^{N}, K(x)$ is defined as :
"The length of a shortest program to output x on a universal Turing machine".

Algorithmic framework

Entropy $H(X) \rightsquigarrow$ Kolmogorov complexity $K(x)$
Let $x \in \mathcal{A}^{N}, K(x)$ is defined as :
"The length of a shortest program to output x on a universal Turing machine".

Relative entropy $D_{K L}(X \| \mathcal{Y}) \rightsquigarrow$ Relative complexity $K(x \mid y)$
Also let $y \in \mathcal{A}^{M}, K(x \mid y)$ is defined as :
"The length of a shortest program to output x on a universal Turing machine, when y is known."

Algorithmic framework

Entropy $H(X) \rightsquigarrow$ Kolmogorov complexity $K(x)$
Let $x \in \mathcal{A}^{N}, K(x)$ is defined as :
"The length of a shortest program to output x on a universal Turing machine".

Relative entropy $D_{K L}(X \| \mathcal{Y}) \rightsquigarrow$ Relative complexity $K(x \mid y)$
Also let $y \in \mathcal{A}^{M}, K(x \mid y)$ is defined as :
"The length of a shortest program to output x on a universal Turing machine, when y is known."

But I don't have a universal Turing machine...
You have something quite close. It is called your PC.
Or anything with (plenty of) memory and a if branching instruction.

How did it all start? Information distances!

Definition (Maximum Information Distance [Bennett et al., 1998])

$$
E_{1}(x, y)=\max \{K(x \mid y), K(y \mid x)\} .
$$

Will go back to this later.

How did it all start? Information distances !

Definition (Maximum Information Distance [Bennett et al., 1998])

$$
E_{1}(x, y)=\max \{K(x \mid y), K(y \mid x)\} .
$$

Will go back to this later.

Definition (Normalized Information Distance [Li et al., 2004])

$$
\operatorname{NID}(x, y)=\frac{\max \{K(x \mid y), K(y \mid x)\}}{\max \{K(x), K(y)\}}
$$

How did it all start? Information distances !

Definition (Maximum Information Distance [Bennett et al., 1998])

$$
E_{1}(x, y)=\max \{K(x \mid y), K(y \mid x)\} .
$$

Will go back to this later.

Definition (Normalized Information Distance [Li et al., 2004])

$$
\operatorname{NID}(x, y)=\frac{\max \{K(x \mid y), K(y \mid x)\}}{\max \{K(x), K(y)\}}
$$

Applicability
Binary objects of arbitrary sizes.

Issues with this framework

Length of "a shortest program"
Not computable on a universal Turing machine.

Issues with this framework

Length of "a shortest program"
Not computable on a universal Turing machine.

Approximating $K(x)$
Length of compressed data (length of decompressor code is constant).

$$
K(x) \simeq C(x)
$$

Highly questionable. May work well in practice.

Issues with this framework

Length of "a shortest program"
Not computable on a universal Turing machine.

Approximating $K(x)$
Length of compressed data (length of decompressor code is constant).

$$
K(x) \simeq C(x)
$$

Highly questionable. May work well in practice.

Lacking a pure conditional estimate...
Let $x y$ denote the concatenation of two strings x and y.

$$
K(x \mid y) \simeq C(x y)-C(y)
$$

First practical embodiment

The intuition behind
Let z be another string (x, y, z defined over \mathcal{A}):

- Intuitively : if $C(x y)<C(x z)$ then y is closer to x than z;
- Recall approx. : $K(x \mid y) \simeq C(x y)-C(y)$.

First practical embodiment

The intuition behind
Let z be another string (x, y, z defined over \mathcal{A}) :

- Intuitively : if $C(x y)<C(x z)$ then y is closer to x than z;
- Recall approx. : $K(x \mid y) \simeq C(x y)-C(y)$.

Definition (Normalized Compression Distance [Li et al., 2004])

$$
\operatorname{NCD}(x, y)=\frac{C(x y)-\min \{C(x), C(y)\}}{\max \{C(x), C(y)\}} .
$$

What people do when they don't want to start from scratch.

Issues when using a real-word compressor

Built-in compressor limitations [Cebrián et al., 2005]

- Length of block in Burrows-Wheeler transform (bzip2);
- Length of sliding window in LZ77 (gzip : 32KiB, lzma : 4GiB).

Issues when using a real-word compressor

Built-in compressor limitations [Cebrián et al., 2005]

- Length of block in Burrows-Wheeler transform (bzip2);
- Length of sliding window in LZ77 (gzip : 32KiB, lzma : 4GiB).

Computing $C(x y)$ is another approximation
Does not guarantee that only data from y will be used to encode x.

- Even with lzma;
- [Ziv and Merhav, 1993] factorization would be best (below).

Issues when using a real-word compressor

Built-in compressor limitations [Cebrián et al., 2005]

- Length of block in Burrows-Wheeler transform (bzip2);
- Length of sliding window in LZ77 (gzip : 32KiB, lzma : 4GiB).

Computing $C(x y)$ is another approximation
Does not guarantee that only data from y will be used to encode x.

- Even with lzma;
- [Ziv and Merhav, 1993] factorization would be best (below).

Breaking another dogma : departing from pure data compression

- Limited only by machine specs (CPU, RAM, 32/64 bits) ;
- Much cleaner computations.

What did we implement?

Estimates for classical operators

- $K(x), K(x \mid y)$;
- $K(x, y)$: "length of a shortest program to encode x and y, plus a means to separate the two".

What did we implement?

Estimates for classical operators

- $K(x), K(x \mid y)$;
- $K(x, y)$: "length of a shortest program to encode x and y, plus a means to separate the two".

Universal normalized semi-distance
Compute a semi-distance between arbitrary binary objects.

What did we implement?

Estimates for classical operators

- $K(x), K(x \mid y)$;
- $K(x, y)$: "length of a shortest program to encode x and y, plus a means to separate the two".

Universal normalized semi-distance
Compute a semi-distance between arbitrary binary objects.

Algorithmic directed information estimates
Enables model-free causality inference.

What did we implement?

Estimates for classical operators

- $K(x), K(x \mid y)$;
- $K(x, y)$: "length of a shortest program to encode x and y, plus a means to separate the two".

Universal normalized semi-distance
Compute a semi-distance between arbitrary binary objects.

Algorithmic directed information estimates
Enables model-free causality inference.

Building on the Lempel-Ziv family with an unbounded buffer Unbounded (up to sizeof (size_t)) : semi-infinite sliding window.

What conditional information ? [Revolle et al., 2016]

Let x and y be two strings

What conditional information ? [Revolle et al., 2016]

Let's encode x knowing y, LZ style

What conditional information ? [Revolle et al., 2016]

Definition (Set of allowed references : \mathcal{R})
Where to draw references (below) from.
$x \mid y: \mathcal{R}=$ past of y

- $x \mid y$: Usual LZ77 factorization when $x=y$;
\rightarrow Estimation of self-complexity.

What conditional information? [Revolle et al., 2016]

Definition (Set of allowed references : \mathcal{R})
Where to draw references (below) from.
$\left.x\right|^{+} y: \mathcal{R}=$ all of y

- $x \mid y$: Usual LZ77 factorization when $x=y$;
- $\left.x\right|^{+} y$: Usual Ziv-Merhav factorization;
\rightarrow Estimation of conditional complexity.

What conditional information? [Revolle et al., 2016]

Definition (Set of allowed references : \mathcal{R})
Where to draw references (below) from.
$x-\mid y: \mathcal{R}=$ past of both x and y

- $x \mid y$: Usual LZ77 factorization when $x=y$;
- $\left.x\right|^{+} y$: Usual Ziv-Merhav factorization;
- x - $\mid y$: Previously undefined;
\rightarrow Estimation of directed algorithmic information.

What conditional information? [Revolle et al., 2016]

Definition (Set of allowed references : \mathcal{R})
Where to draw references (below) from.
$\left.x_{-}\right|^{+} y: \mathcal{R}=$ past of x and all of y

- $x \mid y$: Usual LZ77 factorization when $x=y$;
- $\left.x\right|^{+} y$: Usual Ziv-Merhav factorization;
- x - $\mid y$: Previously undefined;
- $\left.x\right|^{+} y$: Previously undefined;
\rightarrow Estimation of x and y joint complexity.

What conditional information? [Revolle et al., 2016]

Definition (Set of allowed references : \mathcal{R})
Where to draw references (below) from.

Collectively referred to as : $x \geq y$

- $x \mid y$: Usual LZ77 factorization when $x=y$;
- $\left.x\right|^{+} y$: Usual Ziv-Merhav factorization;
- $x_{-} \mid y$: Previously undefined;
- $\left.x\right|^{+} y$: Previously undefined;
- x ly : Derive generic properties.

Generic factorization

Definition (Factorization symbols)

- References: (I, d)
\rightarrow Copy $I \geq 2$ literals from \mathcal{R}.
Note : $d=$ "distance" in \mathcal{R} (we do not use it).
- Literals : $(1, d)$
\rightarrow Output $I=1$ literal of value d.

Generic factorization

Definition (Factorization symbols)

- References : (I, d)
\rightarrow Copy $I \geq 2$ literals from \mathcal{R}.
Note : $d=$ "distance" in \mathcal{R} (we do not use it).
- Literals : $(1, d)$
\rightarrow Output $I=1$ literal of value d.

Definition (Generic factorization and $\mathcal{L}_{x i y}$)

$$
x<y \rightsquigarrow\left(l_{1}, d_{1}\right) \ldots\left(I_{n}, d_{n}\right) .
$$

$\mathcal{L}_{x<y}=\left\{I_{1}, \ldots, I_{n}\right\}$: set of lengths produced during the factorization.

Some more definitions

Definition (Set value)
Let $f: \mathbb{N}^{\star} \rightarrow \mathbb{R}$ be a mapping and let \mathcal{S} be a finite set of non-zero natural numbers. The image of \mathcal{S} by f is defined as :

$$
|\mathcal{S}|_{f}=\sum_{s \in \mathcal{S}} f(s)
$$

Note : $|\mathcal{S}|=|\mathcal{S}|_{\mathbb{1}_{\mathcal{S}}}$ denotes $\operatorname{Card}(\mathcal{S})$.

Some more definitions

Definition (Set value)
Let $f: \mathbb{N}^{\star} \rightarrow \mathbb{R}$ be a mapping and let \mathcal{S} be a finite set of non-zero natural numbers. The image of \mathcal{S} by f is defined as :

$$
|\mathcal{S}|_{f}=\sum_{s \in \mathcal{S}} f(s) .
$$

Note : $|\mathcal{S}|=|S|_{\mathbb{1}_{\mathcal{S}}}$ denotes $\operatorname{Card}(S)$.

Definition (Admissible function)
A function $f: \mathbb{N}^{\star} \rightarrow[0,1]$ is said to be admissible iff it is monotonically increasing.

SALZA conditional complexity estimate [Revolle et al., 2016]

Definition (SALZA conditional complexity estimate)

Let $|x|$ be the length of x. Given an admissible function f, and two non-empty strings $x \in \mathcal{A}_{x}$ and $y \in \mathcal{A}_{y}$, the SALZA conditional complexity estimate of x given y, denoted $S_{f}(x<y)$, is defined as :

$$
S_{f}(x<y)=\underbrace{\frac{\left|\mathcal{L}_{x<y}\right|-1}{|x|}}_{\begin{array}{c}
Z \\
\text { Usual } \\
\text { compl. }
\end{array}}
$$

SALZA conditional complexity estimate [Revolle et al., 2016]

Definition (SALZA conditional complexity estimate)

Let $|x|$ be the length of x. Given an admissible function f, and two non-empty strings $x \in \mathcal{A}_{x}$ and $y \in \mathcal{A}_{y}$, the SALZA conditional complexity estimate of x given y, denoted $S_{f}(x<y)$, is defined as :

$$
S_{f}(x<y)=\underbrace{\frac{\left|\mathcal{L}_{x<y}\right|-1}{|x|}}_{Z} \underbrace{\left(1-\frac{\sum_{\mathcal{L}_{x y}} I f(I)-\left(\left|\mathcal{L}_{x<y}\right| f-1\right)}{|x|}\right)}_{S} .
$$

Spreading factor

SALZA conditional complexity estimate [Revolle et al., 2016]

Definition (SALZA conditional complexity estimate)

Let $|x|$ be the length of x. Given an admissible function f, and two non-empty strings $x \in \mathcal{A}_{x}$ and $y \in \mathcal{A}_{y}$, the SALZA conditional complexity estimate of x given y, denoted $S_{f}(x<y)$, is defined as :

$$
S_{f}(x<y)=\underbrace{\frac{\left|\mathcal{L}_{x i y}\right|-1}{|x|}}_{Z} \underbrace{\left(1-\frac{\sum_{\mathcal{L}_{x y}} I f(I)-\left(\left|\mathcal{L}_{x<y}\right|_{f}-1\right)}{|x|}\right)}_{S} .
$$

Spreading factor

Lemma : $0 \leq S_{f}(x \imath y)<1$.
Proof : see paper.

Comparing SALZA discriminative power

SALZA vs. LZ complexity alone

Min. length for meaningful refs :
Let $l_{\mathcal{R}}^{0}=\log _{\left|\mathfrak{A}_{\mathcal{R}}\right|}|\mathcal{R}|$.

Generate synthetic
Poisson-distributed lengths.
$\mu=\mathbb{E}\left[\iota_{x<y}\right]$.

Choosing an admissible function

Hard vs. soft

Hard thresholding :
$f_{\mathcal{R}}^{t}(I)=\left\{\begin{array}{l}1 \text { if } I>l_{\mathcal{R}}^{0} \\ 0 \text { otherwise }\end{array}\right.$

Soft sigmoid :

$$
f_{\mathcal{R}}^{S}(I)=\frac{1}{1+e^{-l+l_{\mathcal{R}}^{0}}}
$$

Effect of the unbounded buffer

Constant-quality results : independent of string lengths

Complexity [Revolle et al., 2016]

Definition (SALZA complexity of self)
Let $\mathcal{L}_{x}=\mathcal{L}_{x \mid x}$ be the set of lengths produced during a regular LZ77 factorization.
Given an admissible funtion f and a non-empty string $x \in \mathscr{A}_{x}$, the SALZA complexity of x, denoted $S_{f}(x)$, is defined as:

$$
\begin{aligned}
S_{f}(x) & =S_{f}(x \mid x) \\
& =\left(1-\frac{\sum_{\mathcal{L}_{x}} I f(I)-\left(\left|\mathcal{L}_{x}\right|_{f}-1\right)}{|x|}\right) \frac{\left|\mathcal{L}_{x}\right|-1}{|x|} .
\end{aligned}
$$

Joint complexity [Revolle et al., 2016]

Definition (SALZA joint complexity)

Given an admissible function f, and two non-empty strings $x \in \mathcal{A}_{x}$ and $y \in \mathcal{A}_{y}$, the SALZA joint complexity of x and y, denoted $S_{f}(x, y)$, is defined as:

$$
S_{f}(x, y)=S_{f}\left(y-\left.\right|^{+} x\right)+S_{f}(x)+\log _{\left|\mathfrak{A}_{x}\right|}\left(\frac{|x|}{|y|}\right) .
$$

Note : $S_{f}(x, x)=S_{f}(x)$ because $S_{f}\left(\left.x\right|^{+} x\right)=0$.

Joint complexity (cont'd)

How does it perform in practice?
Let $\varepsilon=\left|S_{f}(x, y)-S_{f}(y, x)\right|$.

x	y	$\mathbb{E}[\varepsilon]$	$\operatorname{Var}[\varepsilon]$	$\min (\varepsilon)$	$\max (\varepsilon)$
UDHR	UDHR	$1.43 \mathrm{e}-3$	$1.38 \mathrm{e}-6$	$5 \mathrm{e}-6$	$7.96 \mathrm{e}-3$
DNA	DNA	$1.23 \mathrm{e}-3$	$8.11 \mathrm{e}-7$	$6 \mathrm{e}-6$	$4.98 \mathrm{e}-3$
UDHR	DNA	$6.84 \mathrm{e}-2$	$2.49 \mathrm{e}-6$	$6.28 \mathrm{e}-2$	$7.17 \mathrm{e}-2$

Data :

- UDHR : Universal Declaration of Human Rights (various languages);
- DNA : Mitochondrial DNA samples (various mammal species).

Normalized semi-distance [Revolle et al., 2016]

Recalling the mother of information distances

$$
E_{1}(x, y)=\max \{K(x \mid y), K(y \mid x)\} .
$$

Normalized semi-distance [Revolle et al., 2016]

Recalling the mother of information distances

$$
E_{1}(x, y)=\max \{K(x \mid y), K(y \mid x)\} .
$$

Definition (Normalized SALZA semi-distance)

Given an admissible function f, and two non-empty strings $x \in \mathcal{A}_{x}$ and $y \in \mathcal{A}_{y}$, the normalized SALZA semi-distance, denoted NSD_{f}, is defined as:

$$
\operatorname{NSD}_{f}(x, y)=\max \left\{S_{f}\left(\left.x\right|^{+} y\right), S_{f}\left(\left.y\right|^{+} x\right)\right\}
$$

Note : The triangle inequality may be violated. Not observed during simulations.

Algorithmic directed information

Local Markov condition on DAGs [Janzing and Schölkopf, 2010]

- Parent strings
- Causal mechanism

O Observed string

Let T denote the action of a Turing machine :

$$
x_{j}=T\left(x_{a}, \ldots, x_{b}, s_{j}\right)
$$

Causal algorithmic directed information [Revolle et al., 2016]

Definition (Causal directed information : online applications)

Causal algorithmic directed information [Revolle et al., 2016]

Definition (Causal directed information : online applications)

Causal algorithmic directed information [Revolle et al., 2016]

Definition (Causal directed information : online applications)

Full algorithmic directed information [Revolle et al., 2016]

Definition (Full directed information : offline applications)

Full algorithmic directed information [Revolle et al., 2016]

Definition (Full directed information : offline applications)

Full algorithmic directed information [Revolle et al., 2016]

Definition (Full directed information : offline applications)

NCD/gzip : Mitochondrial DNA

SALZA NSD : Mitochondrial DNA

NCD/gzip : Writing systems (UDHR)

SALZA NSD : Writing systems (UDHR)

Causality inference
An experiment in literature

NCD/gzip : Markov chains $(|\mathcal{A}|=64)$

SALZA NSD : Markov chains $(|\mathcal{A}|=64)$

NCD/gzip : Full books

SALZA NSD : Full books

Sample DAG \#1

$$
\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 1.0 \\
.50 & 0 & 0 & 0 & 0 & 0 & .50 \\
.50 & 0 & 0 & 0 & 0 & 0 & .50 \\
.50 & 0 & 0 & 0 & 0 & 0 & .50 \\
0 & .50 & .50 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & .50 & 0 & 0 & .50
\end{array}\right) \quad\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
.60 & 0 & 0 & 0 & 0 & 0 \\
.60 & 0 & 0 & 0 & 0 & 0 \\
.60 & 0 & 0 & 0 & 0 & 0 \\
0 & .02 & .10 & 0 & 0 & 0 \\
0 & 0 & 0 & .10 & 0 & 0
\end{array}\right)
$$

Sample DAG \#2

$$
\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 1.0 \\
.90 & 0 & 0 & 0 & 0 & 0 & .10 \\
.50 & 0 & 0 & 0 & 0 & 0 & .50 \\
0 & 0 & .80 & 0 & 0 & 0 & .20 \\
0 & 0 & .80 & 0 & 0 & 0 & .20 \\
0 & 0 & 0 & .90 & 0 & 0 & .10
\end{array}\right) \quad\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
.50 & 0 & 0 & 0 & 0 & 0 \\
.40 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & .30 & 0 & 0 & 0 \\
0 & 0 & .30 & 0 & 0 & 0 \\
0 & 0 & 0 & .10 & 0 & 0
\end{array}\right)
$$

Clustering
Causality inference
An experiment in literature

Drafts from La Réticence by Jean-Philippe Toussaint

Je ne rentrai pas à l'nôtel tout de suite ce soin-1à, je m'eloignal vera 1a grande plage de sable quil a'stendait derrière le village sur plusieurs kilonètres. J'avais đefà latese le village derritere mol, et je longeais le petit chemin de terre quid rerait à la plage, évitant ga et là les graxies flaques d'ean immobies dans les ornières rque la lamiere de la lum belairaient faftienent. Il y avait un phang, dirss 1 'obecurité en bordure du chemin, un
 abinfé, et, continuent de sulvre le chemin la noit: fe commenpai bientôt à entendre le bruit de la mer au loin, le murmure régulier de la mer quif m'apporta peu à peu coume un soulagenent des sens et de 1'esprit. Arrivé sur la plage, j'Btal nes chausaures ot mes chauspettes et je Bonitinuini pleds mus
 froid et funlde du sable sous la plante de mes plefas, le sable noulle qui
 Plage diserteven enfoncant mos pleds à cheque pas davantase dens le sable fu-Ameri.

 hesitranted venaient-meartr- devent
 seng 8 'setivant et me montant ì la tête, puis je déposai 1'sutre pied dens la mon Meerr grealele et res piecs per à peu s'aocoutunérent à la tamérature de 1^{\prime} eaus

 chandande et qui semtepar tisparthete derrière les contours rocheux de

Drafts from La Réticence by Jean-Philippe Toussaint

Je re rentral pes à l^{\prime} hstal tout do suito ce solr-là, je m'éloigrai vers ia grance plage de asble qui a'étendait derrière le village sur pluateurs kilonảtres. J'evais đéja laisse le vilisge derrière mol, et je longeais le petit chemin de terre qui menait à la plage, éviteat cà et là les grardes flaques d'ees radblement f́clairfes par la lune qui s'étaient fornóes dans les omiéres. Il y avait un champ dans 1'obscurité en bordure du chenin, un champ sebendorné et allenoieux que protégealt une viellie clibture tout abtnee, et, contiruant de suivre le chemín désert dans la ruit, je comenģal bientß́t à entenare le bruit de la ner su loín, le murnure réguiler de la mer qui m'spporta peu a peu corme un soulagenent des sens ot de 1'esprit. Arrivé sur 1a plage, j^{\prime} btal mes chansanres et nes chavesettes et je m'avancal'piads mus vers

 the pour m't moprewer toujours plus de 18 sensation de bien-atre me

 cevant noi tout flluminé dans la noit, gut gliesait immobie a lásarizize

Je ne rentrai pas à l'hstel tout de auite ce soir-là, Je s'élolegad vers la grande plage de sable qui a'étendait derrière le village aur plusieur kilonètres. J'svals đ⿰́jà laiseé le village derrière moi, et je longeaís le petit chemin de terre qui menalt à la plage, évitent çà et là les grandes flaques d'esu faiblement élairées par la lure quí a'étaient formées dena les omieres. Il y avait un chasp dara l'obecurite en bonaure at chemin, un champ abendocrés et aileroleux que protágeart une viellle citbure tout abinée, et, continusnt de auive le chemin defsert dass la nuit, je commengai bientot. a entendre le bruit de la mer au loin, le murnure régulier de la ner qui mtapporta peu à peu compe un soulagenent des sens et de 1'eeprit. Arrivé sur la plage, j'ŝtal mes chausures et mes chaussettes et je m'avangai lentement dins la ruit vera le rivage, les pleds mus et mes choussures à la main. Je santals le contact frold du ssble sous la plante do nes pleds, le sable hundide
 dans le sol pour me pénétrer toufoura plus de la sensation de blen-ettre que ne procurait le contact du sable mouillé nournerquate. J'avais fins par m'asseoir au bard de l'esu, et je ne bougeais plus, je regardals la mer en face de noí. Le phare de l'fle de Sasuelo toumait avec régularité dans la muilt, et tout était silencleux autour de mol majering werie. J'étais assis là

 glissalt lentment devant moit tout 11 luming dans 1a guit, qui glissait, imobile à erimen et qui finit par disparaitre enfinise derriere l'ile de Sasselo. Antuctefen

Drafts clustering : Neighbor-Joining

Drafts clustering : UPGMA

Drafts causality inference (full directed information)

Sample problem

Description
Decide between two states (eyes closed/open) based on EEG signals. EEG data exhibits features at known frequencies (α, β, etc.) Data : courtesy [Andrzejak et al., 2001].

Sample problem

Description

Decide between two states (eyes closed/open) based on EEG signals. EEG data exhibits features at known frequencies (α, β, etc.) Data : courtesy [Andrzejak et al., 2001].

The usual approach

Let $s(t)$ be a signal, $s_{\text {min }} \leq s(t) \leq s_{\text {max }}$.
One computes the Power Spectral Density (PSD) :

$$
P S D_{s}(f)=\int_{-\infty}^{\infty} \mathbb{E}[s(t) s(t+\tau)] e^{-2 i \pi f \tau} d \tau
$$

Then, feature extraction, etc.

Fitting the AIT framework

Accessing frequency information
Compute successive residuals R_{f} in Butterworth filter bank.
Note : $s_{\min } \leq R_{f}(t) \leq s_{\text {max }}$, too.

Fitting the AIT framework

Accessing frequency information
Compute successive residuals R_{f} in Butterworth filter bank.
Note : $s_{\text {min }} \leq R_{f}(t) \leq s_{\text {max }}$, too.

Quantization

Signals (usually) have continuous values.
We can only handle discrete alphabets !
Compute complexity over bytes :

$$
x_{f}(t)=\operatorname{Rint}\left(255 \times \frac{R_{f}(t)}{s_{\max }-s_{\min }}\right) .
$$

Note : Many other choices in the literature, sometimes quite involved.

Comparing power vs. complexity [dB] of EEG signals

Comparing power vs. complexity [dB] of EEG signals

Some thoughts on AIT for 2D data

"Copy from the past" in 2D ?
Block matching !
Think of various block sizes in H. 26x standards.

Issue
Handle block residual information.

Acknowledgements and paper draft

Transcripts of Jean-Philippe Toussaint's drafts
Profs. Brigitte Combes and Thomas Lebarbé (Université Grenoble Alpes), heads of the project La Réticence (supported by the CAHIER consortium, TGIR Huma-Num).

Proof-reading of the paper
Many thanks to Steeve Zozor !

Paper draft
http://arxiv.org/abs/1607.05144

References I

Andrzejak, R. G., Lehnertz, K., Mormann, F., Rieke, C., David, P., and Elger, C. E. (2001).

Indications of Nonlinear Deterministic and Finite-dimensional Structures in Time
Series of Brain Electrical Activity : Dependence on Recording Regions and Brain State.

Physical Review E, 64 :061907.
Bennett, C. H., Gacs, P., Li, M., Vitániy, P. M., and Zurek, W. H. (1998).
Information Distance.
IEEE Transactions on Information Theory, 44 :1407-1423.
Cebrián, M., Alfonseca, M., and Ortega, A. (2005).
Common Pitfalls Using the Normalized Compression Distance : What to Watch Out for in a Compressor.

Communications in Information and Systems, 5 :367-384.

References II

Janzing, D. and Schölkopf, B. (2010).
Causal Inference Using the Algorithmic Markov Condition.
IEEE Transactions on Information Theory, 56 :5168-5194.
R Li, M., Chen, X., Li, X., Ma, B., and Vitányi, P. M. (2004).
The Similarity Metric.
IEEE Transactions on Information Theory, 50 :3250-3264.
Revolle, M., Cayre, F., and Le Bihan, N. (2016).
SALZA : Soft Practical Algorithmic Complexity Estimates for Clustering and Causality Inference.
Submitted.
Ziv, J. and Merhav, N. (1993).
A Measure of Relative Entropy Between Individual Sequences with Application to Universal Classification.
IEEE Transactions on Information Theory, 39 :1270-1279.

