



European Research Council Established by the European Commission

# Shape-from-Template

#### Adrien Bartoli ALCoV-ISIT, Clermont-Ferrand

with Florent Brunet, Toby Collins, Vincent Gay-Bellile, Abed Malti, Mathieu Perriollat, Daniel Pizarro, Richard Hartley, and others

Keynote given at ORASIS, Amiens, June 2015





# Primary Goal: Passive Single-Image 3D Reconstruction



# 3D Reconstruction: to Recover 3D Shape from 2D Images







Escaping Criticism by del Caso, 1874



### **3D** Reconstruction: Active Methods







Escaping Criticism by del Caso, 1874



by Matt West, 2006



#### Structured lighting



Image by Visnjic, 2010 Using Kinect



Dancing with invisible light By Penven, 2010, using Kinect

#### Time-of-Flight



Reprinted from [Maier-Hein et al, MIA 2013]

# **3D Reconstruction: Passive Visual Cues**



Escaping Criticism by del Caso, 1874



# **3D Reconstruction: Multiple Images**



Example: Shape-from-Motion (SfM) for rigid scenes

A computer algorithm for reconstructing a scene from two projections

H. C. Longuet-Higgins Laboratory of Experimental Psychology, University of Sussex, Brighton BN1 9QG, UK

[Longuet-Higgins, Nature 1981]





Reprinted from Bundler's website [Snavely et al, IJCV 2007]

# 3D Reconstruction: Single Image, Manually



[Sturm et al, BMVC 1999]

[Criminisi et al, IJCV 2000]

### 3D Reconstruction: Single Image, Visual Cues



# 3D Reconstruction: Single Image, Visual Cues



# **3D Reconstruction: Visual Cues and Memory**



Escaping Criticism by del Caso, 1874



# 3D Reconstruction: Single Image, Visual Cues and Memory



# Shape-from-Template

Early steps: [Salzmann et al, BMVC'05 ; Perriollat et al, BMVC'08]



### Shape-from-Template



# Shape-from-Template



# Shape-from-Template for Paintings





# Shape-from-Template's Scope

- Passive, single-image
- Object-specific
- Known reference shape
- Matchable appearance
- Large shape space, simple physics-based deformation law



# Large Shape Space, Simple Physics-Based Deformation Law





#### Real-Time Shape-from-Template



11 fps, Nvidia GTX 1500 cores

# Application in Augmented Reality









# **Application in Human-Computer Interaction**



# Lecture's Plan

 $\varphi, \nabla \varphi$  **1.** Modeling



2. Registration



3. Reconstruction



4. More examples, applications



5. Discussion, future work

# Shape-from-Template's Steps



# **Differential Geometric Setup**



# **Differential Problem Statement**



#### Non-convex variational problem

# **Differential Geometric Setup**



#### Registration, Reconstruction



# Shape-from-Template Workflow



# Lecture's Plan

 $\varphi$ ,  $\nabla \varphi$  1. Modeling

2. Registration



3. Reconstruction



4. More examples, applications



5. Discussion, future work

# Image Registration: to Find Correspondences between Images









Absence



**External occlusions** 



Self-occlusions





Wide-baseline

Need for dedicated methods inspired from optical flow and warp estimation

# **Registration: Feature-based vs Color-based**

Absence







Wide-baseline



Feature-based



SIFT keypoints [Lowe, IJCV'04]

More convex

Color-based



More accurate

SSD

# The Color-Based Formulation is Highly Nonconvex



# Using Features to Initialize and Color to Refine

**1** - Feature-based wide-baseline initialization



2 - Feature-based densification (convex)



#### 3 - Color-based refinement (non-convex)



# Image Registration, in a Nutshell



# Image Registration, in a Nutshell



Local consistency [Pizarro et al, IJCV'12]









Densification [Bookstein, PAMI'89]

[Pizarro et al, IJCV'12]















Self-occlusion aware densification [Pizarro et al, IJCV'12]

Partial self-occlusion detection



Color-based refinement

[Gay-Bellile et al, PAMI'10]









# Image Registration, Results



# Image Registration, Results


# Lecture's Plan

 $\varphi$ ,  $\nabla \varphi$  1. Modeling



2. Registration



3. Reconstruction



4. More examples, applications



5. Discussion, future work

# Step 2: 3D Reconstruction



# **Thin-Shell Isometry**







For 
$$\varphi$$
 continuous  
 $d(\mathbf{p}, \mathbf{q}) = d_G(\varphi(\mathbf{p}), \varphi(\mathbf{q}))$  on  $\Omega^2$ 



For  $\varphi$  differentiable  $\nabla \varphi^{\mathsf{T}} \nabla \varphi = \mathbf{I}$  on  $\Omega$ 

# Zeroth Order Methods



Main result: shape-wise solution of a convex relaxation

[Perriollat et al, IJCV'11; Salzmann et al, PAMI'11; Brunet et al, CVIU'14; Östlund et al, ECCV'12]

Zeroth Order Methods: Inextensibility Relaxation and the Maximum Depth Heuristic



This translates to SOCP but does not extend to other types of deformation

#### [Bartoli et al, CVPR'12]



# **First Order Methods**



Let  $\gamma \in C^1(\Omega, \mathbb{R})$  be the **depth function** 

3D reconstruction is rewritten as a **first-order quadratic PDE system in**  $\gamma$ 

#### $\|\tilde{\eta}\|_2^2 \nabla \gamma^\top \nabla \gamma + \gamma^2 \nabla \eta^\top \nabla \eta + \gamma (\nabla \gamma^\top \eta^\top \nabla \eta + \nabla \eta^\top \eta \nabla \gamma) = \mathbf{I}$

Main result: exact point-wise non-holonomic solution

Implication: isometric Shape-from-Template is uniquely solvable in perspective imaging and solvable up to discrete ambiguities in affine imaging

[Bartoli et al, CVPR 2012, PAMI 2015]

# First Order Methods

Isometric developable

 $\|\tilde{\eta}\|_{2}^{2}\nabla\gamma^{\top}\nabla\gamma + \gamma^{2}\nabla\eta^{\top}\nabla\eta + \gamma(\nabla\gamma^{\top}\eta^{\top}\nabla\eta + \nabla\eta^{\top}\eta\nabla\gamma) = I$ 

Isometric non-developable object  $\|\tilde{\eta}\|_{2}^{2}\nabla\gamma^{\mathsf{T}}\nabla\gamma + \gamma^{2}\nabla\eta^{\mathsf{T}}\nabla\eta + \gamma(\nabla\gamma^{\mathsf{T}}\eta^{\mathsf{T}}\nabla\eta + \nabla\eta^{\mathsf{T}}\eta\nabla\gamma) = \nabla\Delta^{\mathsf{T}}\nabla\Delta$ 

Conformal

 $\|\tilde{\eta}\|_{2}^{2}\nabla\gamma^{\top}\nabla\gamma+\gamma^{2}\nabla\eta^{\top}\nabla\eta+\gamma(\nabla\gamma^{\top}\eta^{\top}\nabla\eta+\nabla\eta^{\top}\eta\nabla\gamma)=\nu\nabla\Delta^{\top}\nabla\Delta$ 

Isometric (infinitesimal) weak-perspective

 $(\|\nabla \gamma\|_2^2 + \gamma^2) \nabla \eta \nabla \eta^\top + \alpha^2 \nabla \gamma^\top \nabla \gamma = \nu \nabla \Delta^\top \nabla \Delta$ 

Isometric, unknown focal length

 $(f^2 \|\nabla \gamma\|_2^2 + \gamma^2) \nabla \eta \nabla \eta^\top + \alpha^2 \nabla \gamma^\top \nabla \gamma = \nu \nabla \Delta^\top \nabla \Delta$ 



3.8% relative error

# Non-flattenable Objects



# Lecture's Plan

 $\varphi$ ,  $\nabla \varphi$  1. Modeling

![](_page_45_Picture_2.jpeg)

2. Registration

![](_page_45_Picture_4.jpeg)

3. Reconstruction

![](_page_45_Picture_6.jpeg)

4. More examples, applications

![](_page_45_Picture_8.jpeg)

5. Discussion, future work

**Rigid AR** 

![](_page_46_Picture_1.jpeg)

![](_page_47_Figure_0.jpeg)

#### Pose: 6 parameters

![](_page_48_Picture_1.jpeg)

![](_page_48_Picture_2.jpeg)

Computation tools:

- Keypoints
- Homographies
- RANSAC

Gives:

- Correspondence
- 3D shape

Facilitates:

- Retexturing
- Augmentation

![](_page_48_Picture_13.jpeg)

![](_page_48_Picture_14.jpeg)

# Deformable AR

![](_page_49_Picture_1.jpeg)

# Deformable AR

![](_page_50_Picture_1.jpeg)

# Rigid vs Deformable AR

![](_page_51_Picture_1.jpeg)

#### Reconstruction

![](_page_52_Picture_1.jpeg)

Ground-truth (Rigid Shape-from-Motion) Shape-from-Template

# Augmentation

![](_page_53_Picture_1.jpeg)

# Real-Time Reconstruction

![](_page_54_Picture_1.jpeg)

# Human-Computer Interaction, Template

![](_page_55_Picture_1.jpeg)

![](_page_55_Picture_2.jpeg)

Material

#### 256 vertices, 450 facets

#### **Human-Computer Interaction**

![](_page_56_Picture_1.jpeg)

21 fps, Nvidia GTX 1500 cores

# Human-Computer Interaction

![](_page_57_Picture_1.jpeg)

# **Non-Isometric Deformation**

![](_page_58_Picture_1.jpeg)

Conformal deformation

![](_page_58_Picture_3.jpeg)

![](_page_58_Picture_4.jpeg)

Linear elasticity [Malti et al, CVPR 2013, CVPR 2015 ; Haouchine et al, ISMAR 2014] Learnt shape model and shading [Moreno et al, CVPR 2009]

# Laparoscopic Augmented Reality

![](_page_59_Picture_1.jpeg)

# Uterine Fibroids or Myomas

# Benign tumors from the myometrium Microscopic to extremely large size Often several of them

Intramural myomas (type b)

May be invisible in laparoscopy (and hysteroscopy)

![](_page_60_Picture_4.jpeg)

#### Clearly visible in MRI

![](_page_60_Figure_6.jpeg)

#### **Preoperative MRI Preparation**

![](_page_61_Picture_1.jpeg)

![](_page_61_Picture_2.jpeg)

# Augmented Reality Framework

![](_page_62_Figure_1.jpeg)

![](_page_62_Figure_2.jpeg)

# **Two-Step Registration**

![](_page_63_Figure_1.jpeg)

# WBMTR (Wide-Baseline Multi-Texturemap Registration)

![](_page_64_Figure_1.jpeg)

# WBMTR Registration Results

![](_page_65_Picture_1.jpeg)

# WBMTR Registration Results

![](_page_66_Picture_1.jpeg)

# AR-Aided Laparoscopic Myomectomy: Phantom Results

![](_page_67_Picture_1.jpeg)

#### AR-Aided Laparoscopic Myomectomy: Patient-data Results

![](_page_68_Picture_1.jpeg)

# **Generalizing Rigid Pose to Deformations**

![](_page_69_Figure_1.jpeg)

# Uterine Shape-from-Template Results

![](_page_70_Picture_1.jpeg)

![](_page_70_Picture_2.jpeg)

![](_page_70_Picture_3.jpeg)

![](_page_70_Picture_4.jpeg)

![](_page_70_Picture_5.jpeg)

Zeroth order, isometric [Salzmann et al, PAMI'09]

First order, isometric

First order, conformal

# Lecture's Plan

 $\varphi$ ,  $\nabla \varphi$  1. Modeling

![](_page_71_Picture_2.jpeg)

2. Registration

![](_page_71_Picture_4.jpeg)

3. Reconstruction

![](_page_71_Picture_6.jpeg)

4. More examples, applications

![](_page_71_Picture_8.jpeg)

5. Discussion, future work
## Level of Difficulty



Isometry  $\approx$  infinitesimal rigidity

### Relationship to Plane Pose Estimation (PPE)

- Thin-shell isometric SfT
- First order methods  $\approx$  Infinitesimal Plane Pose Estimation (IPPE)
- PPE has a rich history related to P3P and homography estimation
- P3P has up to 4 solutions [Fischler et al, PAMI 1981]
- PnP with n > 3 has a single solution if imaging is not affine but this is often unstable
- IPPE solves PPE by using the plane homography as warp [Collins et al, IJCV 2014]
- It has advantages
  - Simplicity and speed (eigenvalues and eigenvectors of a  $2 \times 2$  matrix)
  - Stability (always returns 2 solutions)

### More Complex Scenes – Use Detection and Recognition



### Some Extensions and Code

#### Multiobject Shape-from-Template [Alcantarilla et al, BMVC 2012]



Stable implementation [Chhatkuli et al, CVPR 2014]

Use the normal, not the depth, in the local solution

For code, see <a href="http://isit.u-clermont1.fr/~ab/Research">http://isit.u-clermont1.fr/~ab/Research</a>

### **Ongoing and Future Work**

- Handle many objects thousands, millions, ...
- Non-isometric deformations solvability, boundary conditions
- Weakly textured objects, combining with shading [Moreno et al, ECCV 2010]

### NRSfM: Non-Rigid Shape-from-Motion

- No template, but more images
- Shape is solvable for three images with an isometric deformation



[Chhatkuli et al, BMVC 2014]





European Research Council Established by the European Commission

# Shape-from-Template

### Adrien Bartoli ALCoV-ISIT, Clermont-Ferrand

with Florent Brunet, Toby Collins, Vincent Gay-Bellile, Abed Malti, Mathieu Perriollat, Daniel Pizarro, Richard Hartley, and others

Keynote given at ORASIS, Amiens, June 2015



