

</>





ÉCOLE PUBLIQUE D'INGÉNIEURS CENTRE DE RECHERCHE



Christophe Rosenberger



# OUTLINE



- A short presentation of the GREYC Lab
- Notions on Biometrics
- Focus on fingerprint
- Fingerprint quality assessment
- Protection of fingerprints





## **RESEARCH LAB**

Research in Digital Science

computer security, biometrics, cryptography, machine learning, electronics, image processing, artificial intelligence, Web science...







# **GREYC RESEARCH LAB**

















# **GREYC RESEARCH LAB**

Research Group in Computer science, Automatics, Image processing and Electronics of Caen

## Staff

- 7 CNRS researchers
- 21 Full professors
- 58 Associate professors
- 42 PhD students
- 15 Administrative and technical staffs
- 30 non permanent staffs





# **GREYC RESEARCH LAB**



#### 7 research groups:

- AMACC: Computation models, Randomness, Cryptography, Complexity
- CODAG: Constraints, Data mining, Graphs
- HULTECH: Human Language technologies
- MAD: Models, Agents and Decisions
- IMAGE: Image
- ELEC: Electronics
- E-Payment & Biometrics





# **E-PAYMENT & BIOMETRICS UNIT**



#### **Research activities in computer security**

#### Members

2 full professors, 5 associate professors, 12 PhD students, 2 post-docs, 5 R&D engineers



#### **RESEARCH TOPICS**

#### TRUST

Codes & applied cryptography Architectures & applications with secure element Random data & information security

#### BIOMETRICS

Definition of biometric systems Evaluation of biometric systems Protection of biometric data







## INTRODUCTION

BIOMETRICS

Automatic identification of an individual or verification of its identity by using morphological or behavioral characteristics







## **BIOMETRICS**

#### **Biometric modalities**

**Biological analysis**: EEG signal, DNA...

#### **Behavioural analysis**:

Keystroke dynamics, voice, gait, signature dynamics...

## **Morphological analysis**:

Fingerprint, iris, palmprint, finger veins, face, ear...









## **ILLUSTRATIONS**













## **APPLICATIONS**

## Applications

- Physical access control (buildings),
- Logical access control (computer, information..),
- Identity control (police, frontiers...),
- E-Government,
- Equipment,
- Machines...









**Biometric sample:** analog or digital representation of biometric characteristics prior to biometric feature extraction

**Biometric reference:** one or more stored biometric samples, biometric templates or biometric models attributed to a biometric data subject and used as the object of biometric comparison



Biometric sample

**Biometric reference** 

 $T = \{m_1, \dots, m_n\}$ 

With 
$$m_i = (x_i, y_i, \theta_i, T_i)$$

 $(x_i, y_i)$ : minutiae location  $\theta_i$ : minutiae orientation  $T_i$ : minutiae type



**Enrollment:** act of creating and storing a biometric reference data record

**Verification:** process of confirming a biometric claim through a biometric comparison

**Identification:** process of searching against a biometric enrolment database to find and return the biometric reference identifier(s) attributable to a single individual



## **BIOMETRIC SYSTEM**







#### AR database

A.M. Martinez and R. Benavente, "The AR face database", CVC Tech. Report, 24, 1998.

- 120 individuals: 65 men and 55 women,
- 26 images per individual,
- 2 sessions spaced of 2 weeks







# Distribution of legitimate and impostor scores

- 1. Computation of scores
- 2. Plotting the frequency of each value

**Legitimate scores**: comparison between a sample and the reference of the same user

**Impostor scores**: comparison between a sample and the reference of a different user

Individuals



#### **Distribution of legitimate and impostor scores:**



## **Acquisition metrics**

- Failure To Acquire Rate
  - ✓ FTAR
  - ✓ Problem during capture
  - ✓ Physical incapacity
  - $\checkmark\,$  Sensor does not work

## Failure To Enroll Rate

- ✓ FTER
- ✓ Insufficient biometric quality
- $\checkmark\,$  User does not want to enroll himself







## Authentication metrics (algorithm)

- False Match Rate
  - ✓ FMR
  - $\checkmark\,$  Ratio of impostors accepted
- False Non Match Rate
  - ✓ FNMR
  - ✓ Ratio of genuine users refused



### **Authentication metrics (system)**

- False Acceptation Rate
  - ✓ FAR
  - ✓  $FAR(\theta) = (1 FTAR).FMR(\theta)$
- False Rejection Rate
  - ✓ FRR
  - ✓  $FRR(\theta) = (1 FTAR).FNMR(\theta) + FTAR$
- Equal Error rate
  - ✓ EER
  - ✓ EER=FAR( $\theta^*$ )=FRR( $\theta^*$ )









FMR = FNMR = EER





- Enrollment (multi-modal biometric)
  - 36,000 enrollment stations, 87K certified operators
  - 11 models of certified devices
  - 200 Million enrolled
  - 400 Million planned for FY '13
  - 1M/day enrollment rate
  - 100 trillion person matches/day
- Biometric Verification
  - 8 PoC
  - Two pilot programs underway





Source: Raj Mashruwala, "Scenario Testing of Mobile Fingerprint Verification System", NIST International Biometric Performance Conference 2012.





# Source: Raj Mashruwala, "Scenario Testing of Mobile Fingerprint Verification System", NIST International Biometric Performance Conference 2012.

FRR @ FAR 10^-4 On one scanner





## FINGERPRINT

## History

cquisition

Representations

Reduction

Comparison

Conclusion











## Use of the fingerprint thumb for commercial exchanges (Babylon -3000 before JC)

1902: first use of fingerprint to solve a crime



Alphonse Bertillon







1970-1980: first automatic fingerprint recognition systems

1982: starting to have a digital fingerprint database in France



# **ACQUISITION**



- Off-line acquisition
  - Ink technique
  - Latent fingerprints

## On-line acquisition

Optical sensors

- ...

- Silicon-based sensors



#### Latent fingerprint

#### Plain fingerprint

## ACQUISITION



#### Illustration

| I. R. THUMB                              | 2.R. FORE                  | 3. R. MOC        | XE              | 4.R. RING       | S.R. UITLE                 |
|------------------------------------------|----------------------------|------------------|-----------------|-----------------|----------------------------|
| • 100                                    |                            |                  |                 | 9 L RNG         |                            |
|                                          |                            | Paraces          | or of HOME      |                 | d the 4 frames R. HAND     |
| Plan inpression of the 4 ingent C. rowso |                            | LIFT ROHT        |                 | - run rup runo  |                            |
|                                          |                            |                  |                 |                 |                            |
| Impretations taken by -                  | Name, Rack, Rumber Date to | kan Supervisor's | Signature & No. | Ren/Exhibit No. | Coded Checked Input Search |



## ACQUISITION

#### Sensors

#### Sensor technologies

- Capacitive
- Thermal
- Optical
- Ultrasonic



## REPRESENTATION



#### **Henry classification**



## REPRESENTATION



#### Description

Level 1: ridges

Level 2: minutiae (crossover, delta, bifurcation, ridge ending, core)

Level 3: pores



## REPRESENTATION

#### **Minutiae extraction**

Orginal image



Binarised image



Minutiae extraction







**Texture:** A fingerprint can be represented by texture features







#### **Secure element:** used to store the reference template and for the on-card-comparison







Secure element: necessary to select minutiae (memory and computation limitations)



Fingerprint Image representation



## REDUCTION

#### Methods in the literature:

- □ Random selection,
- □ Truncation: keep only the first minutiae in the template (ISO/IEC 19794-2),
- Barycenter: keep only the minutiae closest to the CORE point (Grother and Salomon 2007),
- Evolutive barycenter: iterative version of the barycenter approach (Vibert et al. 2015),
- □ K-means: sub-sampling of minutiae (Vibert et al. 2015),
- □ Minutiae Reduction by Genetic Algorithm (MRGA) (Vibert et al. 2018).
# **REDUCTION**

**Illustrations:** 



(a) Truncation



(b) Random



(c) Barycenter



(d) Evolutive



(e) K-Means





(f) MRGA

# **REDUCTION**



#### **Comparative study:**



Vibert, C. Charrier, J.-M. Le Bars, C. Rosenberger, "Towards an Optimal Template Reduction for Securing Embedded Fingerprint Devices", International Conference on Information Systems Security and Privacy (ICISSP), 2018.



#### Algorithms

- Minutiae-based matching
  - The most popular and widely used technique. Minutiae-based matching consists in finding the alignment that results in the maximum number of minutiae pairings.
- Correlation-based matching
  - Two fingerprints are superimposed and the correlation between corresponding pixels is computed for different alignments.
- Ridge feature-based matching
  - Other features of the fingerprint ridge pattern (e.g., *local orientation* and *frequency*, *ridge shape*, *texture information*) may be extracted more reliably than minutiae in *low-quality images*.









#### Minutiae matching





#### Minutiae matching: baseline algorithm





#### Minutiae matching: baseline algorithm

The space of transformations consists of quadruples ( $\Delta x$ ,  $\Delta y$ ,  $\theta$ , s), where each parameter is discretized (denoted by the symbol <sup>+</sup>) into a finite set of values:

$$\begin{split} \Delta x^+ &\in \left\{ \Delta x_1^+, \Delta x_2^+, ..., \Delta x_a^+ \right\} \quad \Delta y^+ &\in \left\{ \Delta y_1^+, \Delta y_2^+, ..., \Delta y_b^+ \right\},\\ \theta^+ &\in \left\{ \theta_1^+, \theta_2^+, ..., \theta_c^+ \right\} \quad s^+ \in \left\{ s_1^+, s_2^+, ..., s_d^+ \right\}. \end{split}$$

At the end of the accumulation process, the best alignment transformation  $(\Delta x^*, \Delta y^*, \theta^*, s^*)$  is then obtained as

$$\left(\Delta x^{*}, \Delta y^{*}, \theta^{*}, s^{*}\right) = \arg \max_{\Delta x^{*}, \Delta y^{*}, \theta^{+}, s^{*}} \mathbf{A}\left[\Delta x^{+}, \Delta y^{+}, \theta^{+}, s^{+}\right]$$

Computational complexity:  $O(m \times n \times c \times d)$ 

for each 
$$\mathbf{m}_i$$
,  $i = 1..m$   
for each  $\mathbf{m}'_j$ ,  $j = 1..n$   
for each  $\theta^+ \in \{\theta_1^+, \theta_2^+, ..., \theta_c^+\}$   
if  $dd(\theta'_j + \theta^+, \theta_i) < \theta_0$   
for each  $s^+ \in \{s_1^+, s_2^+, ..., s_d^+\}$   
 $\left\{ \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} x_i \\ y_i \end{bmatrix} - s^+ \cdot \begin{bmatrix} \cos \theta^+ & -\sin \theta^+ \\ \sin \theta^+ & \cos \theta^+ \end{bmatrix} \begin{bmatrix} x'_j \\ y'_j \end{bmatrix}$   
 $\Delta x^+, \Delta y^+ = \text{quantization of } \Delta x, \Delta y \text{ to the nearest bin}$   
 $\mathbf{A}[\Delta x^+, \Delta y^+, \theta^+, s^+] = \mathbf{A}[\Delta x^+, \Delta y^+, \theta^+, s^+] + 1$   
}



#### Minutiae matching: algorithms in the literature

**Local minutiae matching** consists of comparing two fingerprints according to local minutiae structures.

**Local structures** are characterized by attributes that are invariant with respect to global transformations (e.g., translation, rotation, etc.) and therefore are suitable for matching without any a priori global alignment.

Matching local minutiae structures is usually faster and more robust to distortion, but less distinctive.



# **ILLUSTRATIONS**



#### Minutiae matching: performance on datasets (FVC ONGOING platform)

#### Benchmark FMISO-STD-1.0:

| Published<br>on | Benchmark         | Participant                                             | Туре                       | Algorithm                  | Version | EER 🔺  | FMR1000 | FMR10000 |
|-----------------|-------------------|---------------------------------------------------------|----------------------------|----------------------------|---------|--------|---------|----------|
| 15/05/2011      | FMISO-STD-<br>1.0 | AA Technology Ltd.                                      | Company                    | EMB9200                    | 2.41    | 0,234% | 0,292%  | 0,444%   |
| 24/03/2011      | FMISO-STD-<br>1.0 | UnionCommunity                                          | Company                    | Triple_M_ISO               | 1.2     | 0,234% | 0,361%  | 0,620%   |
| 15/12/2010      | FMISO-STD-<br>1.0 | Suprema, Inc.                                           | Company                    | SFCore                     | 1.0     | 0,258% | 0,346%  | 0,639%   |
| 12/10/2009      | FMISO-STD-<br>1.0 | Tiger IT Bangladesh                                     | Company                    | Tiger ISO                  | 0.1     | 0,317% | 0,447%  | 0,866%   |
| 14/05/2011      | FMISO-STD-<br>1.0 | Institute of Automation, Chinese<br>Academy of Sciences | Academic<br>Research Group | MntModel                   | 1.0     | 0,380% | 0,505%  | 0,819%   |
| 02/04/2010      | FMISO-STD-<br>1.0 | id3 Semiconductors                                      | Company                    | Fingerprint<br>Matcher ISO | 1.0     | 0,559% | 0,783%  | 1,147%   |
| 22/07/2010      | FMISO-STD-<br>1.0 | Biometric System Laboratory                             | Academic<br>Research Group | MCC (Baseline)             | 1.1     | 0,570% | 0,884%  | 1,331%   |
| 26/09/2009      | FMISO-STD-<br>1.0 | APRO TECHNOLOGY<br>(BANGKOK) CO., LTD.                  | Company                    | APF_FMISO                  | 1.1     | 0,582% | 0,801%  | 1,057%   |
| 20/07/2009      | FMISO-STD-<br>1.0 | Neurotechnology                                         | Company                    | MM_FMISO                   | 3.0     | 0,598% | 0,801%  | 1,234%   |
| 30/11/2010      | FMISO-STD-<br>1.0 | Communik8 Ltd                                           | Company                    | Authentik8                 | 1.0     | 1,017% | 2,475%  | 10,473%  |
| 15/09/2010      | FMISO-STD-<br>1.0 | Robert Vanak                                            | Independent<br>Developer   | SourceAFIS                 | 1.3     | 1,334% | 2,002%  | 2,900%   |

# **ILLUSTRATIONS**



### **Minutiae matching:** performance on datasets (FVC ONGOING platform)

### Benchmark FMISO-HARD-1.0:

| Published<br>on | Benchmark          | Participant                                             | Туре                       | Algorithm                  | Version | EER 🔺  | FMR1000 | FMR10000 |
|-----------------|--------------------|---------------------------------------------------------|----------------------------|----------------------------|---------|--------|---------|----------|
| 24/03/2011      | FMISO-<br>HARD-1.0 | UnionCommunity                                          | Company                    | Triple_M_ISO               | 1.2     | 1,103% | 3,157%  | 7,878%   |
| 15/05/2011      | FMISO-<br>HARD-1.0 | AA Technology Ltd.                                      | Company                    | EMB9200                    | 2.41    | 1,113% | 2,076%  | 3,282%   |
| 15/12/2010      | FMISO-<br>HARD-1.0 | Suprema, Inc.                                           | Company                    | SFCore                     | 1.0     | 1,407% | 2,697%  | 4,570%   |
| 14/05/2011      | FMISO-<br>HARD-1.0 | Institute of Automation, Chinese<br>Academy of Sciences | Academic<br>Research Group | MntModel                   | 1.0     | 1,588% | 2,821%  | 3,965%   |
| 22/07/2010      | FMISO-<br>HARD-1.0 | Biometric System Laboratory                             | Academic<br>Research Group | MCC (Baseline)             | 1.1     | 2,315% | 4,876%  | 6,206%   |
| 09/03/2010      | FMISO-<br>HARD-1.0 | id3 Semiconductors                                      | Company                    | Fingerprint<br>Matcher ISO | 1.0     | 2,400% | 4,260%  | 6,605%   |
| 20/07/2009      | FMISO-<br>HARD-1.0 | Neurotechnology                                         | Company                    | MM_FMISO                   | 3.0     | 2,430% | 4,607%  | 6,139%   |
| 26/09/2009      | FMISO-<br>HARD-1.0 | APRO TECHNOLOGY (BANGKOK)<br>CO., LTD.                  | Company                    | APF_FMISO                  | 1.1     | 2,552% | 4,581%  | 5,963%   |



# **ILLUSTRATIONS**

### Is it possible to generate a fingerprint given a minutiae set?

| SFinGe - Synthetic Fingerprint Genera                                                                  | tor - Licensed to École Nationale Supéri | Step 9 - Fingerprint rotation and translation                                                    |                                                                                                                              |
|--------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| SFinGe web site: http://biolab.csr.unibo.it/sfinge.html<br>BioLab web site: http://biolab.csr.unibo.it |                                          | Rotation<br>-30° 0° +30°<br>Translation<br>-15%<br>0%<br>+15%                                    |                                                                                                                              |
| Generate                                                                                               | Copy image to clipboard                  |                                                                                                  |                                                                                                                              |
| Create database                                                                                        | Save image to file                       | -15% 0% +15%                                                                                     |                                                                                                                              |
| Client mode                                                                                            | Save ISO template to file                | View minutiae                                                                                    | 1111a                                                                                                                        |
| About                                                                                                  | Exit                                     | View full size                                                                                   |                                                                                                                              |
| SFinGe                                                                                                 | software                                 | Use the sliders to apply a global rotation and<br>center can be set by left-clicking on the imag | oply     View original       /or traslation to the fingerprint. The rotation le.       < Précédent       Suivant >   Annuler |





# FINGERPRINT QUALITY ASSESSMENT

Motivations

State of the art

Validation of FQA metrics











#### **Reference template:**

Need of the optimal quality of the reference template, problems can occur such as:

- Intrinsic low quality of the biometric sample
- Bad capture (positioning, pressure, blur...)
- Environmental conditions (humidity, frog, coldness...)









### Benefits of evaluating the quality of biometric data

- Improving performance with a better enrollment
- New capture during verification if quality is insufficient
- Quality can be used as a soft biometric information
- Comparison of biometric sensors



Different types of fingerprint sensors





### A first illustration on fingerprint recognition

#### Selection without quality checking

FAR = 0.41% FRR = 17.36%

#### **NFIQ template selection**

FAR = 0.05% FRR = 14.36%

#### **QMF** template selection

FAR = 0.003% FRR = 4.75%





#### Aspects of quality assessment

- Naturality: Does it look like a fingerprint?
- Fidelity: How the sample represents the acquired fingerprint?
- Utility: Which performance can I expect with this sample?



Samarth Bharadwaj, Mayank Vatsa, Richa Singh, "Biometric quality: a review of fingerprint, iris, and face", EURASIP Journal on Image and Video Processing:34, 2014



#### **Quality assessment of biometric data**

#### Table 1

Different interpretations of quality in biometrics from literature

| Reference              | Modality          | Interpretation of quality in biometrics                                   |
|------------------------|-------------------|---------------------------------------------------------------------------|
| Chen et al.[3]         | Fingerprint       | A global measure of the strength of ridges                                |
| Grother and Tabassi[4] | Fingerprint       | Suitability for automatic matching                                        |
| Youmaran and Adler[5]  | Face              | The decrease in uncertainty of identity due to a given sample             |
| Kryszczuk et al.[6]    | Face              | Conditionally relevant class predictors                                   |
| Beveridge et al.[7]    | Face              | A measurable and actionable predictor of performance                      |
| ISO/IEC standards[13]  | Face              | Biometric data that adheres to best capture practices                     |
| Kalka et al.[8]        | Iris              | The measurement of various degradations known to affect iris recognition  |
| Kumar and Zhang[9]     | Knuckles          | Confidence of generating reliable matching scores from the user templates |
| Poh and Kittler[10]    | General framework | Degree of extractability of recognition features                          |
| BioAPI[14]             | General framework | Biometric data that provides good performance for the intended purpose    |

Samarth Bharadwaj, Mayank Vatsa and Richa Singh, "Biometric quality: a review of fingerprint, iris, and face", EURASIP Journal on Image and Video Processing:34, DOI: 10.1186/1687-5281-2014-34, Springer, 2014.



#### **Fingerprint Quality Assessment (FQA)**

Poor quality fingerprint images lead to spurious minutiae





### **Fingerprint Quality Assessment (FQA)**

- Lim et al. 2002: OCL metric weighted combination of local and global quality scores,
- Tabassi et al. 2005: NFIQ metric with Amplitude, frequency, and variance of sinusoid to model valid ridges,
- □ Ko 2007: NBIS metric considering minutiae quality,
- □ Vatsa et al. 2008: Combined response from RDWT for dominant edge information,
- □ El Abed et al. 2013: QMF metric based on texture features, no-reference image quality,
- □ Yao et al. 2015: MSEG metric based on gradient uniformity,
- □ Yao et al. 2015: QMF metric computed on minutiae templates,
- Tabassi 2015: **NFIQ 2.0** metric as a combination of various features.



### NFIQ 1.0 metric:

Quality metric for fingerprints Returns a value between 1 and 5

- 1 means a good quality fingerprint
- 5 means a poor quality fingerprint



E. Tabassi and C.L. Wilson. A novel approach to fingerprint image quality. International Conference on Image Processing (ICIP), p. 37-40, 2005.





#### NFIQ 2.0 metric:



E. Tabassi et al., "The push towards zero error biometrics", NIST International conference of Biometric Performance, 2016



### **NFIQ 1.0**

- » 5 levels.
  - 1(highest) to 5(lowest)
- » 11 features
- Comparison scores of 3 algorithms used for training
- » 3400 training images
- » Neural network
- » ~300 msec per image

# NFIQ 2.0

- » 100 levels
  - 0(lowest) to 100(highest)
- » 14 (69) features
- » Comparison scores of 7 algorithms used for training
- » ~5000 training images
- » Random forest
- » ~ 120 msec per image
- » Actionable quality
  - Flags for blank image, low contrast
- » Design for NFIQ Mobile



#### **GREYC MSEG metric:**



Z. Yao, J-M Le Bars, C. Charrier, C. Rosenberger. Fingerprint Quality Assessment With Multiple Segmentation. In 2015 International Conference on Cyberworlds (CW) IEEE. Scotland, Sweden. Oct. 7, 2015.





Z. Yao, J.-M. LeBars, C. Charrier, and C. Rosenberger. Quality assessment of fingerprints with minutiae delaunay triangulation. In ICISSP - 1st International Conference on Information Systems Security and Privacy. INSTICC, Feb. 2015.



#### Comparison of quality metrics: an illustration





| Dataset    | NFIQ | NFIQ2 | OCL  | QMF   | NBIS  | MSEG  | MQF   |
|------------|------|-------|------|-------|-------|-------|-------|
| FVC2000DB1 | 2    | 65    | 0.73 | 83.81 | 14.16 | 0.44  | 59802 |
| FVC2000DB3 | 4    | 40    | 0.71 | 28.06 | 15.11 | 0.18  | 29804 |
| SFINGEA    | 1    | 69    | 0.90 | 76.09 | 57.46 | 0.83  | 55720 |
| SFINGED    | 3    | 28    | 0.47 | 91.19 | 10    | 0.006 | 43546 |





#### Which metric is the most reliable?



How to validate a metric ?





### Which properties for a validation framework ?

- **Generality:** can be used for any biometric modality;
- **Biometric test:** overall error rate to be considered;
- **Reliability:** computation of statistical measures;
- **Usability**: should be objective, reliable and reproducible.





#### **Related works**

- Fitting of a reference or subjective results (Bolle 1999)
   Problem: Not completely reliable, objective and not repeatable.
- Genuine matching error (Grother 2007)
   Shortage: only genuine matching is considered.
- Overall error rate based on sorting samples (Chen 2005)
   Shortage: it is complex to deal with the matching scores of samples.





### **Enrollment selection approach (1/3)**



Z. Yao, C. Charrier, C. Rosenberger, "Utility validation of a new fingerprint quality metric". In International Biometric Performance Testing Conference (IBPC), Gaithersburg, USA, Apr. 2014.





### **Enrollment selection approach (2/3)**



**Enrollment without quality checking** 





### **Enrollment selection approach (3/3)**



X Sample used for enrollment

Other samples used for testing

#### **Enrollment with quality checking**

**Best:** choosing the sample minimizing errors **Worst:** choosing the sample maximizing errors **Quality metric:** choice driven by quality value



### **Comparison of quality metrics**

Performance of quality metric:

$$P = 1 - \frac{(AUC_{metric} - AUC_{best})}{(AUC_{worst} - AUC_{best})}$$





#### **Comparison of quality metrics:** reliability for different datasets (values of P)

| Dataset      | NFIQ  | NFIQ2 | OCL    | QMF   | NBIS  | MSEG  | MQF   | EER   |
|--------------|-------|-------|--------|-------|-------|-------|-------|-------|
| FVC2000DB1   | 71.7% | 70.4% | 79.4%  | 72.8% | 73.7% | 76.5% | 71.5% | 2.1%  |
| FVC2000DB2   | 74.8% | 82.9% | 63.3%  | 69.4% | 80.0% | 79.5% | 68.9% | 1.9%  |
| FVC2000DB3   | 74.5% | 82.8% | 72.1 % | 61.3% | 78.6% | 71.4% | 77.0% | 11.7% |
| FVC2000DB4   | 63.7% | 69.1% | 68.8%  | 61.5% | 56.4% | 69.3% | 69.0% | 8.1%  |
| SFINGE0      | 64.0% | 80.0% | 66.8%  | 68.0% | 66.1% | 74.7% | 77.0% | 10.9% |
| SFINGEA      | 81.1% | 14.5% | 67.4%  | 63.1% | 78.1% | 24.0% | 89.4% | 0.4%  |
| SFINGEB      | 90.9% | 57.7% | 64.6%  | 44.8% | 63.4% | 55.1% | 80.3% | 0.5%  |
| SFINGEC      | 87.1% | 92.7% | 95.7%  | 100%  | 76.3% | 92.2% | 87.7% | 0.8%  |
| SFINGED      | 70.3% | 75.3% | 90.8%  | 71.4% | 71.3% | 61.2% | 70.8% | 11%   |
|              |       |       |        |       |       |       |       |       |
| MEAN FVC2000 | 71.2% | 76.3% | 70.9%  | 66.2% | 72.2% | 74.2% | 71.6% | -     |
| MEAN TOTAL   | 75.3% | 69.7% | 74.3%  | 68.0% | 71.5% | 67.1% | 76.8% | -     |

Z. Yao, J.M. Le Bars, C. Charrier, C. Rosenberger, "Comparative study of digital fingerprint quality assessment metrics". In International Conference on Biometrics (ICB), Australia, February 2018.





# **PROTECTION OF FINGERPRINT**

Motivations

State of the art

Validation of FQA metrics









# SECURITY

#### Why is it necessary ?

Personal data

Difficult to revoke a biometric data

**C**an be captured without any consent

□ Its encryption is not sufficient



## ATTACKS

HOME » FEATURED ARTICLES » Hackers Have Stolen Almost Six Million US Government...

#### Hackers Have Stolen Almost Six Million US Government Fingerprints







The Office of Personnel Management (OPM) has revealed in a statement that when hackers breached its systems earlier this year they made away with approximately 5.6 million fingerprints – a significant increase from the 1.1 million previously reported.

As is now well known, in addition to fingerprint data being stolen the Social Security numbers, addresses, employment history, and financial records of some 21.5 million current and former US government employees was also stolen.

The good news is that they believe the opportunities for criminals to exploit the fingerprint data is currently limited.

But the bad news is that chances are that won't continue to be the case.



FAA Managers Association > Aviation News > OPM says 5.6 million fingerprints stolen in cyberattack, five tim as many as previously thought

# OPM says 5.6 million fingerprints stolen in cyberattack, five times as many as previously thought

Posted on September 23, 2015

#### By Andrea Peterson

One of the scariest parts of the massive cybersecurity breaches at the Office of Personnel Management just got worse: The agency now says 5.6 million people's fingerprints were stolen as part of the hacks.

That's more than five times the 1.1 million government officials estimated when the cyberattacks were initially disclosed over the summer. The total number of those believed to be caught up in the breaches, which included the theft of the Social Security numbers and addresses of more than 21 million former and current government employees, remains the same.

OPM and the Department of Defense were reviewing the theft of background investigation records when they identified additional fingerprint data that had been exposed, OPM said in a statement.

Read More...

# ATTACKS



Savvy fraudsters could recreate fingerprints from photos CREDIT: REX






#### Attacks on a biometric system: spoofing a fingerprint



**ATTACKS** 





#### LivDet-Finger 2017 Fingerprint Systems Liveness Detection Competition 2017

http://fingerprint2017.livdet.org/

## **PET TECHNOLOGIES**



#### **PET (Privacy Enabling Technologies) schemes:**

- ✓ Secure computing: matching in the encrypted domain [Bringer et al. 2012], [Chabanne et al. 2013]
- ✓ Crypto-biometrics: Fuzzy vault, Secure Sketches [Rathgeb and Uhl 2011]
- ✓ Transformation: BioHashing
  [Teoh et al. 2004]



## BIOHASHING





Jin, Andrew Teoh Beng, David Ngo Chek Ling, and Alwyn Goh. "Biohashing: two factor authentication featuring fingerprint data and tokenised random number." *Pattern recognition* 37.11 (2004): 2245-2255.

## BIOHASHING





Jin, Andrew Teoh Beng, David Ngo Chek Ling, and Alwyn Goh. "Biohashing: two factor authentication featuring fingerprint data and tokenised random number." *Pattern recognition* 37.11 (2004): 2245-2255.



## BIOHASHING

#### **Combining biometrics and passwords:**

| Greyc Biocode |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
|---------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Database      |            | Fingerprint Capture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Biocode                                         |
| Users         |            | And the second se | Normal Barcode Short Barcode Very Short Barcode |
| Username      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FDF5BED618513EFA3B9E64D7C9446E8C                |
|               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FF6DBCD7A5E27EF8ABDA61F7C1643E99                |
| Username      | christophe |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |
| Secret        | azerty     | Secret azerty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 |
|               | Enroll     | Verify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |
|               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                 |

R. Belguechi, E. Cherrier, C. Rosenberger, S. Ait-Aoudia, "Operational Bio-Hash to Preserve Privacy of Fingerprint Minutiae Templates", IET journal on Biometrics, 2013

## **SECURITY ANALYSIS**





R. Belguechi, E. Cherrier, C. Rosenberger, "How to Evaluate Transformation Based Cancelable Biometric Systems?", NIST International Biometric Performance Testing Conference (IBPC), 2012.

# **COPYRIGHT PROTECTION**





M. Barbier, J.-M. Le Bars, C. Rosenberger, "Image Watermarking With Biometric Data For Copyright Protection", International Conference on Availability, Reliability and Security (ARES), International Workshop MFSEC, August, Toulouse, France, 2015.





#### CONCLUSION









## **CONCLUSION**

#### **Biometrics**

- Very interesting topic related to multiple research areas (cryptography, image processing, deep learning, embedded systems...)
- $\checkmark\,$  Many societal and scientific issues to solve
- $\checkmark~$  Hot topic for industry and research



# THANKS

#### Christophe ROSENBERGER Full Professor

christophe.rosenberger@ensicaen.fr





L'École des INGÉNIEURS Scientifiques