

Module Image 2018

mercredi 28 mars, institut de botanique - 163, rue Auguste Broussonnet

Modèles thermiques, cinématiques et mécaniques pour l'interprétation des images

Partie 2

Exemples d'application de la thermographie IR en mécanique des matériaux

B. Wattrisse & A. Chrysochoos LMGC, UMR 5508, CNRS Université de Montpellier

Très bref historique ...

1805, Gough, caoutchouc naturel

1857, Joule, métaux vs. caoutchouc, µcalorimètre (a)

1900, Charbonnier & Galy Aché, métaux en compression + µcalorimètre

1933, Taylor & Quinney, 1933, métaux en torsion → µcalorimètre

1965, Scanner IR Agema IR Systems

1975, J.J. Moreau, P. Germain, N.Q. Son & B. Halphen, MSG/TPI

1976, Saix, XC38, flexion, radiomètre (¹)

1978, naissance de FLIR

1982, LMA, Thèse de P. Brémond, fatigue, fissure, PVC, Aga 780 (2)

1982, Lemaître & Chaboche, Greco 47 GDE

(a) (Joule, 1857) J.P. Joule, On some thermodynamic properties of solids, *Phil. Mag. 4th Ser.* 14, p.227 (1857)

2

Très bref état des lieux ...

Renouvelé 2 fois !

- 18 5,7,13,15,17 11

16

21

10

12

2

14

20

6

1992 QIRT Quantitative InfraRed Thermography

Bilan d'énergie ... à la sauce mécanique

Sources de chaleur

Taux d'énergie interne $\rho \dot{e} = \rho C \dot{T} + (\sigma^{\mathsf{r}} : \dot{\varepsilon} + A \dot{\alpha}) - (T \sigma^{\mathsf{r}}_{T} : \dot{\varepsilon} + T A_{T} \dot{\alpha})$ $= \rho C \dot{T} + w_e^{\Box} + w_s^{\Box} - w_{thc}^{\Box}$ « thc » = thermomechanical couplings Equation de la chaleur $\rho C \dot{T} + \text{div} \mathbf{q} = \sigma^{\text{ir}} : \dot{\epsilon} - \mathbf{A} \cdot \dot{\alpha} + T \sigma^{\text{r}}_{T} : \dot{\epsilon} + T \mathbf{A}_{T} \cdot \dot{\alpha} + r_{\text{e}}$ cinématique d_1 nécessaire Commentaires C.2: q = -k.gradT C.3: $\dot{T} = \frac{\partial T}{\partial t} + \frac{\mathbf{v}}{\mathbf{v}} \nabla T$ C.1: chaleur spécifique

Exemple « élémentaire » de bilan d'énergie

(i) $\mathcal{A} \neq \mathcal{B}$ (ii) $\sum_{\mathcal{A}} = \sum_{\mathcal{B}}$ (iii) $\mathcal{A} = \mathcal{B}$

(*i*)
$$W_{def} = \int_{t_{\mathcal{A}}}^{t_{\mathcal{B}}} \sigma : \dot{\varepsilon} dt = \int_{t_{\mathcal{A}}}^{t_{\mathcal{B}}} d_1 dt + \int_{t_{\mathcal{A}}}^{t_{\mathcal{B}}} (\rho \dot{e} - \rho C \dot{T} + W_{thc}^{\Box}) dt$$

(*ii*) Boucle d'hystérésis : $W_{def} = A_h$ (chargement uniaxial)
(*iii*) Charge-décharge = cycle thermodynamique $W_{def} = \int_{t_{\mathcal{A}}}^{t_{\mathcal{B}}} d_1 dt + \int_{t_{\mathcal{A}}}^{t_{\mathcal{B}}} W_{thc}^{\Box} dt$

Dispositif expérimental

Beaucoup d'aspects matériels, métrologiques, traitement d'images ont été vus dans la 1^{ère} partie du cours

Un minimum de radiométrie IR

Objectifs : mesurer des températures de surface pour « identifier » les sources

Moyen : caméra IR matricielle

détecteur : délivre un signal électrique (V) lié à la puissance rayonnée (W) exitance : flux global émis par la cible par unité de surface (W.m⁻²) ... pour une bande passante donnée

$$\mathsf{R} = \int_{\Delta_{\lambda}} \frac{\partial R(\lambda, T)}{\partial \lambda} d\lambda \qquad \text{exitance spectrale} \\ \text{varie avec } T \,!$$

Une situation sympa ...

Cible : corps noir capable d' absorber tout rayonnement incident, ∀ φ, ∀ λ,
 (i.e. pas de réflexion, pas de transmission)

 Atmosphère : petite distance, air sec, transparent aux IR, transmission parfaite. (i.e. ce qui est émis par la cible, est reçu par le détecteur)

... où s'appliquent directement les lois du rayonnement

Gaussorgues]

<u></u>

$$\frac{\partial R_{cn}(\lambda, T)}{\partial \lambda} = \frac{2\pi h c^2 \lambda^{-5}}{\exp(\frac{hc}{\lambda kT}) - 1}$$

- R: exitance spectrale, W.m⁻³
- *h*: Planck, 6,66.10³⁴ J.s
- k: Bolzmann, 1,38.10²³ J.K⁻¹
- c: lumière, 3.10⁸ m.s⁻¹
- T: température, K
- Loi de Stefan-Boltzmann

 $R_{cn} = \sigma_s T^4$

 σ_s : constante de Stephan

$$\sigma_s = \frac{2\pi^5 k^4}{15c^2 h^3} = 5,6710^{-8} W.m^{-2}.K^{-4}$$

Cible et environnement quelconques ça se complique un peu !

• conservation de l'énergie $\mathcal{A}(\lambda) + \mathcal{R}(\lambda) + \mathcal{T}(\lambda) = 1$

• équilibre « thermodynamique » ... $\mathcal{A}(\lambda) = \varepsilon(\lambda)$

Rôle de l'incidence du rayonnement

ε : émissivité

 $[\]phi$: angle observation

émissivité sphère diélectrique

émissivité de l' eau à λ =10 µm

Jusqu'à 45-50 degré, corps lambertiens ... $\partial \epsilon / \partial \phi \approx 0$ Risque faibles : éprouvettes planes \perp axe optique de la caméra + corps gris à forte émissivité (peinture)

$$R_{\Delta_{\lambda}}(T) \approx \varepsilon R_{cn_{\Delta_{\lambda}}}(T)$$

Une caméra IR en quelques chiffres

Cedip MW (4-8 µm)

Codage : 14 bits Fréq. Acq. : 50 images/seconde Résolution spatiale : 100 µm/pix

Image : 320×240 pixels

NETD : 20 mK à l'ambiante

NETD : (noise equivalent temperature difference) Différence de Température Equivalente à la valeur efficace du Bruit mesuré sur le thermosignal

Etalonnage : constructeur

-2 scènes thermiques uniformes (Φ_1 et Φ_2)

feuille blanche + main ...

- 50 % de la dynamique des capteurs (partie linéaire)
- opérations NUC et BPR

Etalonnage : laboratoire

Calibration pixel à pixel

- nécessité d' 1 corps noir plan (20 mK) + 30 k€ (+ 40-120 k€ de caméra !)
- stabilité thermique de la caméra (4-5 h) et de la salle d'essai ...
- étalonnage pixel à pixel (polynôme de degré 5)
- précision 20 mK et plus de remplacement de «bad pixel»
- à refaire dès que l'on modifie un paramètre (temps d'intégration, taille des images, objectif, ...)

Heat rate assessments

Heat equation averaged over the thickness of a thin, flat sample

$$\rho C \left(\frac{\partial \bar{\theta}}{\partial t} + v_x \frac{\partial \bar{\theta}}{\partial x} + v_y \frac{\partial \bar{\theta}}{\partial y} + \frac{\bar{\theta}}{\tau_{th}} \right) - k \left(\frac{\partial^2 \bar{\theta}}{\partial x^2} + \frac{\partial^2 \bar{\theta}}{\partial y^2} \right) = \bar{w}_h^{-1}$$

$$1980-90$$

- Direct estimate of heat sources using noisy and discrete thermal data
 - Image processing has evolved with the increasing performance of IR cameras

Estimate of the partial derivative operators

thermal data projection onto spectral solutions (1990)

Main refs: IJES : 2000 EXP-MECH : 2007 JoMMS : 2010 EXP-MECH : 2014 QIRT : 2017

POD: pre-filtering of thermal fields (1D : 2014 - 2D : 2017) 20

convolutive filtering by DFT (2000)

mono-detector

CCD cameras

local l.sq. fitting (2004)

Ô temps ! suspend ton vol ...

1990, 28 ans déjà !!

caméra Agéma 880, signal vidéo numérisé 2 image/s IBM 80286 Dos 4.1 , DD 60 Mo NETD : 200 mK

carte des températures

1 « point chaud » θ = 3.5 ° C

carte des sources de chaleur

2 fils chauffés par effet Joule puissance : 3. 10⁻² W

Photo d'écran, programmation turbo Pascal

Deux autres modèles thermiques bien commodes

Modèle 1D: intégration dans une section droite, échanges linéaires

$$\rho C\left(\frac{\dot{\overline{\Theta}} + \frac{\overline{\Theta}}{\tau_{th}^{1D}}}{\tau_{th}^{1D}}\right) - k\Delta_{X}\overline{\Theta} = \overline{w}_{h}^{\bullet}$$

Pour $\overline{\theta}$, on prend des thermo - profils moyennés suivant la largeur

$$\overline{\Theta}_{jk} = \frac{1}{(M-m)} \sum_{i=m}^{M} \Theta_{ijk}^{IR}$$

Modèle local 0D : distribution homogène de sources, utilisation de la solution spectrale pour des CL linéaires homogènes ; diffusion = problème différentiel

$$\rho C \left(\dot{\theta} + \frac{\theta}{\tau_{eq}} \right) = W_{h}^{\bullet}$$

Champs discrets et bruités de température

Base spectrale et seuillage

Points délicats :

- calcul numérico-analytique des vvp,
- calcul numérique des projections (a_{kl}) : très long, calcul d'intégrales ...
- méthode limitée au 1D ou 2D stationnaire

Filtrage convolutif « passe-bas »

- choix du filtre : (fréquence de coupure f_c)
- périodisation : temps CPU long

Lissages locaux

Approximation locale du champ de températures

- lissage : $\theta_{\text{lis}}(x=x_0) = a_0 x_0^2 + b_0 x_0 + c_0$
- dérivation : $\Delta_x \theta_{\text{lis}} (x=x_0) = 2 a_0$

Points délicats :

- choix des paramètres :
 - type de fonction d'approximation zone d'Approximation

Proper Orthogonal Decomposition ... some words

POD applications: model order reduction, turbulence models, data compression, ... Hotelling (1933), Karhunen (1946), Loève (1955)

Interest: to approximate a high dimension system by another one of significantly smaller size to determine a basis of orthogonal modes representative of the "most likely accomplishments"

Thermal images:

$$\vartheta(x_i, y_j, t_k) \simeq \sum_{p=1}^P a_p(t_k) \Phi_p(x_i, y_j)$$

where $\Phi_p(x_i, y_i)$ components of the POM, eigen "vector" of the "snapshots" matrix

$$A = \Theta \Theta^T \qquad \qquad A \widetilde{\Phi}_p = \omega_p \widetilde{\Phi}_p$$

Benchmark test: a penalizing case

Material of high thermal diffusivity (pure copper : 10⁻⁴ m²/s)

- High longitudinal heat exchange coefficient (λ_x =170 W/m/K)
- Noise superimposition (rnd / $\delta\theta$ =70 mK)
- Complex heat source distribution ...

Heat source fields

• $0 \le t \le D$ $\bar{s}^{the} = s_0^{the} \sin(2\pi f_L t)$ cyclique coupling source • $0.1 D \le t \le 0.6 D$ $\bar{s}_L^{dis} = s_L^0 \exp(-a_L [x - p_L y - v_L (t - t_L^0)]^2)$ Lüders' band • $0.6 D \le t \le D$ $\bar{s}_N^{dis} = s_N^0 t^2 \exp(-a_N r^2 (x, y) / [1 - \alpha_N t])$ localization

Noisy temperature fields

- Peak-to-peak signal noise $N_q = 70$ mK
- Regularizing effect of heat diffusion

Lifting of the heat diffusion problem

First POMs and components

$$A\widetilde{\Phi}_p = \omega_p \widetilde{\Phi}_p$$

$$\vartheta(x_i, y_j, t_k) \simeq \sum_{p=1}^P a_p(t_k) \Phi_p(x_i, y_j)$$

Examples of thermo-profile

Laplacian operator estimates

Heat source fields

- filtering induces a slight crushing of thermoprofiles
- and thus a spreading of sources
- Ioss of part of the HS field due to zero-padding

Heat source profiles

continuous lines : given sources ; symbols : reconstructed sources

Direct estimates using FD!

LSQ vs. POD

Exemples illustratifs

Effets thermiques, effets dissipatifs et de couplage

♦ Thermoélasticité

- ♦ Thermo-élasto-plasticité des métaux
- ♦ Pseudoélasticité des AMF
- ♦ Thermo vs. visco. élasticité (DMA)
- \diamond Fatigue à grand nombre de cycles des aciers

Module Image : Modèles thermiques, ... Partie 2 ; BW & AC

35

Gough 1805, Joule 1857, Lord Kelvin, 1880

William Thomson Lord Kelvin (1824-1907)

LMGC

Άş

Essai cyclique (domaine "thermoélastique") R = 0, Δσ = 360 MPa , fréquence = 1Hz Matériau : acier pour emboutissage

Equipe Thermomécanique des Matériaux Laboratoire de Mécanique et de Génie Civil - UMR 5508 Université Montpellier II

Thermoélasticité

ans après

IR thermography

[90-00]

. . .

Matériaux thermo-élasto-plastique

Taylor-Quinney 1933

Essai de traction ondulée | σ̀| = 40 MPa.s⁻¹

Matériau : acier pour emboutissage

Equipe Thermomécanique des Matériaux Laboratoire de Mécanique et de Génie Civil - UMR 5508 Université Montpellier II

Pseudo-élasticité des AMF (transformation de phase)

Energy balance for "pseudoelastic" SMA

 $R_{T} = 0$ non dissipative (intrinsically) + isothermal or adiabatic process $R_{T} = 1$ purely dissipative (intrinsically) process without any coupling effect

strong thermomechanical couplings

Effets du temps et de structure dans les AMF

Thermo. vs. visco. élasticité

Effets thermoélastiques : couplage fort

Effets visqueux : couplage faible

Comparaison des bilans d'énergie

Viscoelasticity vs. thermoelastic coupling

Isothermal linear viscoelasticity : J. Alfrey (48), M. Biot (65), F. Sidoroff (70-75) Equivalence of series and parallel models (e.g. P.T. and Z. models) Introduction of thm couplings [S. Moreau, PhD 03] PMMA, PC

PMMA : Zener wins !

PC : Poynting Thomson wins !

Fatigue (à GNC) des matériaux

Fatigue à grand nombre de cycles

[Boulanger et al., PhD 2004]

Champs (chants ?) de dissipation

Fatigue des aciers

- $\bigcirc m_i: \text{ series of "mini" cycle blocks (3000 cycles) at different stress ranges: energy balance at "constant fatigue state" }$
- *p*_i: large blocks (100 000 cycles) at constant stress range: **energy balance evolution induced by fatigue mechanisms**

highest stress range ≈ fatigue limit

Propriétés de la dissipation (I)

f_L = 30Hz and R_σ = -1

Propriétés de la dissipation (II)

energy safeguard: kinetics of fatigue progress

Quelques conclusions

- □ Imagerie → mesures de champs Matériau vs. Structure
- □ Température, 1^{ère} variable d'état...
 - Effet thermique vs. effet calorimétrique Pas totalement intrinsèque
- Sources de différentes natures Source de couplage: thermo-sensibilité du matériau Source dissipative : dégradation matérielle
- Bilan d'énergie et lois de comportement Énergie « stockée », source de couplage / lois d'état Énergie dissipée / lois d'évolution
- Comportement dépendant du temps
 [d₁ (viscosité)] vs. [couplage thm + d₂ (diffusion)]

