Deep Learning : Theory and Applications

Valentin LEVEAU - Post-doctoral fellow at INRIA/Zenith team




Deep Learning is a particular form of Machine Learning

e We now are good at mimicking some part of intelligence : Learning
e (Machine) Learning = Learning from examples to do a given task and

generalize to new examples.

e Goal = predict some variables given others.

Al

Machine Learning

e (Capture statistical relationships / structure

between observed variables.

Deep LearningJ
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Deep Learning gets inspiration from biology

e Learning several levels of abstraction of the input signal (compositionality)

e ForImage : find the progressive transition from pixels to labels

hidden layer 1 hidden laver 2  hidden layer 3

Simple visual forms

input laver
adges, corners

High level objecu
descriptions,
faces, objects

e
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Some Words about bio-inspiration (Yann LeCun)

e Do we need to copy biology to get truly intelligent . /

systems ?
e Brainisjust a possible instance of intelligent device.

e FEvolution took a long time to design our cognitive

fU nctions. L'Avion III de Clément Ader, 1897
(Musée du CNAM, Paris)

e We should rather understand the underlying principles
of intelligence to build another instance of cognitive

system. (e.g. aerodynamics for flying systems).
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Outline

1. What are we fighting against ?

Invariances + Curse of dimensionality

Priors to learn good data representation (toward deep representation learning)
2. Learning procedures for deep architectures

From Artificial Neural Networks — Deep Convolutional Neural Networks (ConvNet)
Recent advances : why ConvNet got famous so late ?

Applications
3. Unsupervised Learning
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Classification in high dimensional spaces

e Find a function that maps high dim input variables to output variables

{zi, yi = f(xi)}ign

e Simple solution: Linear Model

f(x3) = Sign(WTXi)

o Equivalent to finding an hyperplane that separates the data
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Problem n®1 ngthNonlmearStructure (S. Mallat)

Classes
Level sets of f(x)

o fl@) =1t}




Reduce dimensionality of the problem (S.Mallat)

e f(x) can be approximated from examples {x;, f(x;)}: by

local interpolation if f is regular and there are close examples:
T 1

e To cover [0,1]¢ at a distance 10~! we need 10¢ points Huge variability

0 d=2
0O O O O O O
» o0 0 oo O 0

-
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Problem: ||z — z;|| is always large inside classes

=4

Find invariants




Reduce dimensionality of the problem (S. Mallat)

e If level sets (2; are not parallel to a linear space
- Linearise them with a change of variable ®(x)

- Then reduce dimension with linear projections

e Difficult because {2; are high-dimensional, 1rregular

—

known on few samples. Q,

-QS
s ()
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Find Non Linear Invariant in the data (S. Mallat)

1. Find a change of variable ®(x) linearization
separation

2. Find a linear projection: (®(x),w) = >, wi ¢r(x)

®(xr) € RY
Data: = € R? (@)
. V : hyperplane

e How and when is possible to find such a ® 7
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Several strategies to go non linear (Cover's Theorem)

The probability that /7 samples of dimension N are linearly separable goes to zero
very quickly as PP grows larger than N (Cover’s theorem, 1966).

il (Ja.u,b feparable)

¥ Problem: there are 2% possible
dichotomies of P points.

W Only about N are linearly separable.

B If P is larger than N, the probability that
a random dichotomy is linearly separable is
very, very small.



Several strategies to g0 non linear

e Feature Augmentation: Polynomial mapping

— Adding all cross products of the original variables X, X2

e Problem: The order of the polynom might be high $. ¢, ¢)3 ‘h’

— Gives rise to impractical feature's dimension size

e Tiling the space + Kernel Methods: X
o Decision function is a linear combination of different position in the feature space

o Kernel: Just put bumps where data live

u—Zu LA % 4 R——

* MNew York Unawv

Yann LeCun




Several strategies to g0 non linear

e Produce handcrafted intermediate representation of images
Problem: Decide manually which kind of features are good for the different tasks

e R R e e R R e e Rmm M e e R R e e M e e e ey,

Low-Level Mid-Level
Representation Representation
(BoW, Fisher
(SIFT, GIST, Veotors,
ConvNet...) ConvNet,...)
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Several strategies to g0 non linear

Produce handcrafted intermediate representation of images

Bags Of Visual Words [J. Sivic et al 2003] . f \
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Bag of local features thel Vector Quantization ||e | Bag of codes | | BoVW vector

— Toward Representation Learning
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The manifold hypothesis of the data (Y. Bengio)

« examples concentrate near a lower dimensional “manifold
* Evidence: most input configurations are unlikely

— We need to find such authorized directions of variations in the input space
— Put probability mass where data live




Distributed representation (Y. Bengio)

Multi-
Clustering Sub |".1I|ITlUI‘§.%h it
v Sub—partition 2
* Factor models, PCA, RBMs, i N
Neural Nets, Sparse Coding, hea '
Deep Learning, etc.

* Each parameter influences
many regions, not just local /S o
neighbors 7 o 4

* # of distinguishable regions T s ey
grows almost exponentially Non-mutually
with # of parameters €1 €2 3 exclusive features/
attributes create a
e GENERALIZE NON-LOCALLY combinatoria”y |argg
TO NEVER-SEEN REGIONS _ set of distinguiable
O O configurations

input
P —



Multi Task Learning (Y. Bengio)

e Better to share factors across tasks, modalities, etc ....
e Better generalization because Explanatory factor are likely to be meaningfull

Task A Task B Task C

output ( ) ( )

shared
subsets of
factors

input
il hw—




Do we rather need deep or large architecture ?

y=Y oK(X,X") y=FW"'FW°’.X))
=]

Logic gates

2 layers of 4 Formal neurons = universal approximator
RBF units

RBMs & auto-encoders = universal approxima

Theorems on advantage of depth:
[Hastad et al 86 & 91, Bengio et al 2007, Bengio &
Delalleau 2011, Braverman 2011)

Some functions compactly
represented with k layers may

require exponential size with 2
layers
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Sparse representation (Y. Bengio)

Just add a sparsifyi ng penalty on learned representation
(prefer Os in the representation)

» Information disentangling (compare to dense compression)
« More likely to be linearly separable (high-dimensional space)

* Locally low-dimensional representation = local chart
e Hi-dim. sparse = efficient variable size representation
= data structure
Few bits of information Many bits of information

Prior: only few concepts and attributes relevant per example

.h’l&la/—
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> Simple Elementary Neural Unit

(

Perceptron

14

Synaptic terminals ~

=
n

Axon eﬁf\j

-6 -4 -2 0 2 4 6
@ Activation
Fundameantal unit of a Neural MNetwork / function

@‘“ RH‘““'\-\-._ f‘i
— : @
1 if 2 wx >0

autpul = ]

-1 otherwise
3w,
weights i=




Sigmoid TanH

1

o o
()]

Multi Layer Perceptron

e 2 layers architecture :

04

o Layer 1: several units in parallel + non-linearities

o Layer 2:final linear classifier unit

Input Layer Hidden Layer Output Layer
N neurons N neurons KN neurons




Multi Layer Perceptron

« The non linearities are crucial !!!

e Linear combinations of linear combinations = Linear combinations (useless)

WN WN—l Wl W(]Xi :Wxi

« Allow to bend the space to get samples linearly separable (click the curved space)

!
eetistie iyt
PRI, sttt et e u ey



http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Deep Learning at scale

A lot of parameters
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Energy Landscape and Gradient Descent

® Useful for non-convex function !!!
e Problem: lots of local minima ....

J(BO!BI) o0-

IE(W,X)

Wi = Wi +p. W

N\

.&L’Zdla/—




lllustration: batch gradient descent

\

1500 2000

1 e,
100
Batch: gradient Stochastic: single-example gradient

x < x—nVF(x) x4 x—nVE(x)
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Backpropagation of the gradient

To compute all the derivatives, we use a backward sweep called the back-propagation

algorithm that uses the recurrence equation for i{?
Energy
E
C(Xn, ¥)
‘ * Ak O0C (Xn,Y
Xn dE/dXn X > HX”_ —! ,('E]XTt :]
dE cim:-:- Wty =
xn_11|[IEdK|1—1 — aE — 5_5' aFﬂ{Xﬂ—II{In)
I X1 dXn OXy
)ﬂ: }_dEd:(i . : 'E'i : 3
Wi = Fi(Xi—1, Wi) > E}_E; - _'I'_iiE fn{xn‘ liHﬂ}
JE/d Wi N - aur TE ﬂ.x TL SH;“
Xi-17 | dE/dXi-1
11
X : 11’IE dX1
..o . * W)

xof desired

input X output Y
[LeCun et al. 89]




Backpropagation of the gradient

To compute all the derivatives, we use a backward sweep called the back-propagation

algorithm that uses the recurrence equation for 5."2?
Energy
" Forward Pass:
R .M zi = fi(Wizi-1)
¥n | | dEidxn Y E = ||EL—t||§
Wn -
dE (ﬂ'mrl: EEl ity )
xn-1§ | 0Eidxn-1 Backward Pass:
1
x) joson or = (g, —t) o f;(Wrzp )
Wi =t Fi(Xi=1, Wi) T ,
E./ el W it - — ; . ! L
1E'dW xi_.l' IdE.dKI_1 5; W]‘—] 51-!—1 O fI (W!:r-;_]_}
I
x1} § deies Weight Update:
W1 = = ——— e ————
amowre=] iw” Weights move co-linearly in ' AR |
ik desied  the direction of input data T S il i

[LeCun et al. 89] I L Y e e e e s




Generalization : find the “good” model capacity

L]
F

—_-_-_"__———-—-

e }

Undjrﬁtting - ——  Overfitting

[Understanding deep learning requires rethinking generalization. C. Zhang et al. ICLR17]




Regularization

« Obijective: constraint the hypothesis space to be smaller

« Another formulation: Put some mess in the learning algorithm so that it does not
converge to bad local minima

Regularization

- Joint optimization of two function: factor
-, == Regularization
IEI;JJ ZE‘{@E—”%:}_& )_H‘ | (f) " term

i=1 -

Learning objective term

— We can see this as two player playing against each other '
. lozzica —



Regularization: common examples (L1/L2)

W, , Wy o

SENS

f w
5
L1 L2

rﬂ;ﬂi VI(f(zi),9;) + AR(f)

.612&&/-



Convolutional Neural Network

Global architecture (LeNet5)

feature maps featurd lqam

c'!
\ imput feature mags
32 x 32 28 « 28

feature extraction

classification




Translation Invariance with ConvNets

Replace dot product by a convolution

Source pixel

Corvolution kemnel
(emboss)

MNew pixel value (destination pixel)

-
‘Lo
]



http://cs231n.github.io/assets/conv-demo/index.html

Translation Invariance with ConvNets

Integrate some spatial structure with local receptive fields ...

... is equivalent to sharing receptive fields parameters

OO0O00
OO0O00
oloJole;

.hz&bf—




Translation Invariance with ConvNets

4 Detects multiple motifs at each
location Fl

& The collection of units looking at
the same patch is akin to a
feature vector for that patch.

8 The result is a 3D array, where
each slice is a feature map.

.h’l&la/—



Backprop with ConvNet

e Weigth sharing for Conv Layers = sum the gradients

AW = 3" AW

(2,y)
e Max pooling : Single depth slice
224x224x64 i
| i 112x112x64 % 11 1|2 )| 4
poo - ; ;
i —~ 7~ max pqol with 2x2 filters
5 6 )7 (8 d stride 2
| B \<\'/> ( > and stride i
| t (3)2|1]0
rarm)
ags downsamplingr = 1 2 3 LiJ>
) = 112 X
. Crzzica — y




Why ConvNet got famous so late /

- Not many theoretical justifications (since recently, but a lot remains to come !’

« Too much parameters for little datasets and too slow algorithms and
hardwares

« Motivations in Unsupervised Learning (2000-2011)

-o’zw—



Why ConvNet got famous so late /

» Large scale labelled dataset : ImageNet (15 M)

« Hardware acceleration ; GPU




What Changed ?

« The ReLU non linearity :
* The killer detail : as good (if not better) as unsupervised pretraining !

|=—RelLU
= Logistic

(11

e

Fig. 1. The prdpnsed ﬁon-liném‘iﬁ*, ReLU, and the standard
neural network non-linearity, logistic.




Activation

Ty — UB
2
ch—l—e

Tr; <

-~

function

atch
norma

()

Z; +B=BNypg

Yi & YT

« Batch Normalization(x14 faster !!)

What Changed ?

* Dropout

.
D
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D
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(b) After applying dropout.

(a) Standard Neural Net




Evolution of the architectures

_\.
o Le N et1 _5 .\'1 input I'ca.turcL: mages leaturi maps |-|I|'|IIII
12 x X2 28 x 28 T4 x 14 ;

+ AlexNet

[A. Krizhevsky et al. 2012]
—— feature extraction classification
R \
" \&7 \ dense dense
e Sy 13 13 \13 dense
11 W oHf - ' 3 , !
VOIS 5l — Ko E? N — N ——
nL_-; : 1 y T |13 r ~—T\ |ha T s
5 ~— A 27 - M - . N -
Input ER \ '
22| image 55 384 { 384 \___256 1000
(RGB) \ \ Max
% Max ; o pooling 4096 4096
Stride pooling pocling

) 36
224\ || opa

3
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Evolution of the architectures

I

VGG Net

[K. Simonyan et al. 2014]
Input : Image input
ﬂ!.?.g_ﬂ_._.r"m Conv s Convolutional layer
g
3 N v | |52 = Pool s Max-pooling layer
EIE R ER I GG E
= FC : Fully-connected layer
ok & EF o k&
o = & B & B Softmax | . safrmax layer
= ] e i Ln =] =4
VGEGNet
— &
siiellsllz|lgllellz|lelle sllellzl|e|ls -
s1212 (22112122 ([2]|2]|2([2([=2]|2]]|3]2 2
A
B B B B & Bk
= = = == = == ==
= = = ] = = =
- P ] 3 i = I




Evolution of the architectures

* Inception modules

Filter
concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions i 4 4
1x1 convolutions 1x1 convolutions 3x3 max pooling
Previous layer
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Evolution of the architectures

« GooglLeNet

[C. Szegedy et al. 2015]

Convolution

9 Inception modules Pooling
Other

Network in a network in a network...




weight layer
weight layer

Evolution of the architectures #e

» ResNet (152 layers, even 1,000
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Evolution of the architectures

il Z-

* ResNet modules combined with inception modules (3.1% Top-5 error on IN)

[C. Szegedy et al. 2016]

TR —

:iReIui actiivation;]

1x1 Conv
(32)

[ Relu acti\}ation ]

il

x1 Conv
(256 Linear)

\
3x3 Conv
(32)
—Ti
3x3 Conv 3x3 Conv
(32) (32)

1

1x1 Conv
(32)

T

1x1 Conv
(32)




Energy function in High dimension

* Properties of ReLU Networks:

-All the local minima tends to have the same value of the energy function
-So we don't care where we start from and where we arrive
-Non convexity is a false problem

nhidden
25
50
100
250
500

count

-

loss |
l [Choromanska, Henaff, Mathieu, Ben Arous, LeCun 2015]




Energy function in High dimension

« Energy function are actually highly populated by saddle points

« As we get close to the global minimum value of E(), it becomes harder and
harder to find directions that goes up rather than down.

« The proportion of going up directions grows exponentially

L2y

Taining amwor (W5E)
e e 8 The gradients

-

=
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ConvNet in Practice : HyperParameters

« Hyper parameters

il Z-

«  Weigth Decay : L2 regularisation

 Momentum

* Learning Rate policy

e Shuffle the data

* Normalize (cf BN)

 Dropout

Vs

TR —

—



Transfer learning (fine-tuning)

Problem: CNNs require huge training data to learn the millions of parameters
Solution: Learn domain specific features by transfer learning
1. Train CNN on a generalist image dataset with millions of images

22




Transfer learning (fine-tuning)

Problem: CNNs require huge training data to learn the millions of parameters
Solution: Learn domain specific features by transfer learning

1. Train CNN on a generalist image dataset with millions of images

2. Keep the weights of the lowest layers but remove/reset the top layers

22
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Transfer learning (fine-tuning)

Problem: CNNs require huge training data to learn the millions of parameters
Solution: Learn domain specific features by transfer learning

1. Train CNN on a generalist image dataset with millions of images
Keep the weights of the lowest layers but remove/reset the top layers

Feed forward and back-propagate new domain specific images (with usually
a different number of classes C)

3.

22

1 40005




The power of transfer learning

Transfer learning usually works for any domain

Trademark Logos Car models Paris Buildings Aircraft models Bird species Flower species
GooglLeNet trained from scratch 67.7% 59.3% 55.3% 72.7% 24.4% 59.5%
GooglLeNet pre-trained on ImageNet | 87.5% 79.9% 71.3% 88.1% 72.4% 89.5%

Table 1 - accuracy measured on several fine-grained image classification datasets

Even very specific ones:

Rice seeds varieties recognition Herbaria species recognition ‘%g 'ﬁw . g
100 classes, 1 500 texture images 255 classes, 11K herbaria sheets ‘f{ 7 = W
A TID T
GoogleNet trained from scratch 8.8% GoogLeNet trained from scratch 58.1% % | &" he
% e t
GooglLeNet pre-trained on ImageNet 52.4% | %!ﬂ@ ;f‘.' ’
GooglLeNet pre-trained on ImageNet 70.4% d E’h Bl =




Plant species recognition: Pl@ntNet

IRD=F .
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Pl@ntNet
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Localization / Segmentation

@ Apply convnet with a sliding window over the image at multiple scales

@ Important note: it's very cheap to slide a convnet over an image

» Just compute the convolutions over the whole image and replicate the
fully-connected layers

[Y. LeCun College de France]
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Localization / Segmentation

Start with a tree graphical model

... And approximate it

(f) =l ) [(@lx)xw(f|x)+clf]x))
Start with a tree graphical model i H Pl )W f|x )+l f |,
MRF over spatial locations

local evidence function * o — +clr1 1)
7 = bserved
foalrg L ' ale) S
cofofl w(f, s 3 ol5.s) <
@ O O O @l f) w(f| f) ®/ bl f)
‘-P{s,e]
¥~~compatibility function x | @& +cf|s)
. (G ) O i) \J (z ) .
i e e, w i s LU & (l){f) ‘l-'[f|s:'

Joint Distribution:

=1 X, X oX
P(f,s,e,lt')—ZE[lP( s j:ll._[d)[ % ,]

.&W—

atent / hidden



Localization / Segmentation




Pixel Labelling

# Each output sees a large input context:
» 46x46 window at full rez; 92x92 at 2 rez; 184x184 at V4 rez

P [7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->
» Trained supervised on fully-labeled images

y, Categories

RGBS Input

[Farabet et al. 2013]

Level 2 Upsampled

Laplacian Level 1
Pyrami Feature Featur Level 2 Features
. lrzzica —



Pixel Labelling

[Farabet et al. 2013]



https://drive.google.com/folderview?id=0BxKBnD5y2M8NaGFqLS1pWXRYRGc&usp=drive_web&tid=0BxKBnD5y2M8NclFWSXNxa0JlZTg

Metric Learning with Siamese Networks

[Chopra et al. 2005]
Make this small Make this large 20 . . — . .

Dw* Dw* 151
G, (x,)—G (x,)l| G, (x,)—G_(x,)lI 10}

A A A A 0.5}

G, (x,) G, (x,) G,(x,) G, (x,) 00}

w I

w 2 w 1 W 2

L . .
O oo~ s WwNE O

Similar images (neighbors " Dissimilar images

in the neighborhood graph) (non-neighbors in the
neighborhood graph)
. brzzeca —




Deep Dream

e Force the network to over-interpret what it sees.
e Amplify maximally activated units + backpropagate signal gradient until the

input layer.



https://www.youtube.com/watch?v=DgPaCWJL7XI

Image Captioning via attention based models

[Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. K. Xu et al. 2015]

A
bird

flying
over

14x14 Feature Map

a
body
of
water

L.Input 2. Convolutional 3. RNN with attention 4. Word by
Image  Feature Extraction over the image word

generation
Io’wa,_—




Image Captioning via attention based models

il Z-

TR~

12

A stop sign is on a road with a
mountain in the background.

A dog is standing on a hardwood floor.

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with

a teddy bear.

in the water, trees in the background.

[From Bengio&LeCun tutorial NIPS 2015]




Image Captioning via attention based models

T — ¥ = Ll -
ha row of bikes parked next to =zach other



http://youtube.com/v/8BFzu9m52sc

Image (aptio

=R T
a silver car on the road. a flag on

building with a white roof. people riding a
motorcycle. flag on the pole. a tower on a building.

1ing via attention based models

i
b

[]

a parked motorcycle. a man on a bicycle. a man
riding a bicycle. the back wheel of a bike. front
wheel of a bicycle. a window on the building. a red

the pole. a

y hous girl eating cake. a cake with a white frosting.
a silver woman with long brown hair. the girl is wearing a
car. a statue of a man. a large green building. O s e

people standing on the sidewalk. people riding a 1S Lake )
horse. window on a car. red umbrella over the .

beach. tree on the sidewall




‘Reverse |Mage (aptioning” :

head of a giraffe legs of a zebra red and white sign white tennis shoes hands holding a phone  front wheel of a bus




Outline

1. What are we fighting against ?

Invariances + Curse of dimensionality

Priors to learn good data representation (toward deep representation learning)
2. Learning procedures for deep architectures

From Artificial Neural Networks — Deep Convolutional Neural Networks (ConvNet)
Recent advances : why ConvNet got famous so late ?

Applications
3. Unsupervised Learning
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PLANE

Machine Learning b

e Three types of learning :

o Supervised: Provide the labels Y while learning. Learns to

predict Y given input X.

others. Try to catch all the interesting information that is

contained in the data.

% & - B
g @ .. -. -
- -
o Reinforcement: Wait for the machine to produce the good By P

behavior and give it a reward when it does (very long !). S . *2' =, 8



http://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html

Unsupervised Learning

e Learn the generative process of the data: P(X| Theta)

e Manifold Learning;:

o Linear unsupervised model: PCA
o Non Linear and deep models:
m Autoencoders

m Generative Adversarial Networks

-o’zw—




Principal Component Analysis (PCA)

e Project data linearly into lower dimensional space

— Find the rotation matrix to align data with axis of maximal variance




Principal Component Analysis (PCA)

e Project data linearly into lower dimensional space

— Find the rotation matrix to align data with axis of maximal variance

e Allows us to keep the structure of data of variable are linearly correlated

-0.78 SPY, 0.62 IWM

Oz




Autoencoder

e Learn a model to:

o Project data into a non linear intermediate embedding (Coding)

o Reconstruct its own input from the codes (Decoding)

e PCA's eigen directions span the same space than linear autoencoder’s

Coding function:
h' = f4(x') = 0(Wex' + by)
Decoding function:

%' = gs(h’) = o(Wgh' + by)

Reconstruction objective:

min ||X - X_hat||*> |«

L(x,%) = [[x — %[5 X

P d
lrzzce
CLCl—— Layer L,




Autoencoder

e |tis more efficient in practice to learn the layer separately.
— Actually with ReLU, that's okay.
e Stacked autoencoders:

o Train the first autoencoder layer to reconstruct the input
o Use the intermediate representation as input to the next layer and re-apply the process

A o , Fine-tune the model to jointly learn the layers
Y

dafe) yndu)

&
)
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Regularized Autoencoders

il Z-

(@)

O

O

Vs

TR —

Problem of raw autoencoder: it is likely to learn the identity mapping

Solution: regularize it to prevent it from doing that:

Bottleneck autoencoder
Sparse Autoencoder
Denoising/Contractive Autoencoder

Generative Adversarial Networks (GAN) and Adversarial Autoencoders

—



BottleNecked Autoencoders

e Force information to concentrate on a few number of latent variables

e If we can reconstruct well from such low dimensional representations, then

we have forced the model to capture useful information

e Problem: we have to assume the dimension of the latent space

Bottleneck Hidden Layer

<

Output layer

Input
recostruct input

layer

uez,.




Sparse Autoencoders

e Learn an overcomplete representation scheme
e Penalize the model to produce dense codes (L1 penalty)

e Allows the model do choose the intrinsic dimensionality of the data

Output layer

Input
recostruct input

layer

- input: X code: h=W' X

~loss: L(X;W)=|W h—X|| m




Denoising Autoencoders

[P. Vincent et al. 2010]

e Learn to reconstruct a corrupted input X ~ C ‘x ) N(Xl, ngd)
e Force the system to learn a vector field that pomtsmggﬂgerlg the manifold.




Contractive Autoencoders

[S. Rifai et al. 2010]
e Penalize high curvature of the manifold in the latent space

— Penalize high values of the terms of the Jacobian of the coder
D L6, galfoloe)) + NI 5 et 3 = LYy
E_ a0 = 2 5 (e
e Example: Sigmoidal Contractive Autoencoder

1367 = Zi{_ﬁur'_i"}“é("r)ﬁﬁz Wi}

e Allows to learn robust features while learning to reconstruct the input

— Contracts the input space in “interesting” directions of variation = Manifold Learning

-&'zua/-—



Generative Adversarial Network (GAN)

[I. GoodFellow et al. 2014]
[Goodfellow et al. NIPS 2014]

Generator net maps random numbers to image

Discriminator learns to tell real from fake images.

Generator can cheat: it knows the gradient of the output of the
discriminator with respect to its input

Random
B

Vector

Random "

Index

Generator
Network

Training
Set

Discriminator

Netun Real/Fake




(NN Generative Adversarial Network (GAN)




Image Generatlon Wlth GAN







Image Generation with GAN
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Logic with Deep Learning

il Z-

- [Radford, Metz, Chintala 2015]

man man woman
with glasses without glasses without glasses

woman with glasses ‘




Adversarial Autoencoders

[A. Makhzani et al. 2015]
e Use adversarial regularisation to force the shape of the distribution in the

latent space.

qlz|x)

X z ~ q(z)

/AHHHAE 2

Draw samples

£ Adversarial cost
rom p(z) |

for distinguishing

Input o v - S Sanyc v :
P positive samples p(z) 7 - :
from negative samples q(z) . g,
Coraie
TR —

Y
X
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Ressources

Cours de Yann LeCun au College de France

Intervention de Stéphane Mallat au College de France

The Deep Learning Book (The Holy Bible)

Biographie

Bibliographie

Séminaires

Lecon inaugtrale

Audio/vidéo


https://www.college-de-france.fr/site/yann-lecun/course-2015-2016.htm
https://www.college-de-france.fr/site/yann-lecun/course-2015-2016.htm
https://www.college-de-france.fr/site/yann-lecun/seminar-2016-02-19-15h30.htm
https://www.college-de-france.fr/site/yann-lecun/seminar-2016-02-19-15h30.htm
https://github.com/HFTrader/DeepLearningBook
https://github.com/HFTrader/DeepLearningBook

Questions
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