

Deep Learning : Theory and Applications

Valentin LEVEAU - Post-doctoral fellow at INRIA/Zenith team

Deep Learning is a particular form of Machine Learning

- We now are good at mimicking some part of intelligence : **Learning**
- (Machine) Learning = Learning from examples to do a given task and generalize to new examples.
- Goal = predict some variables given others.
- Capture statistical relationships / structure between observed variables.

AI
Machine Learning
Deep Learning

Deep Learning gets inspiration from biology

- Learning several levels of abstraction of the input signal (compositionality)
- For Image : find the progressive transition from pixels to labels

Some Words about bio-inspiration (Yann LeCun)

- Do we need to copy biology to get truly intelligent systems ?
- Brain is just a possible instance of intelligent device.
- Evolution took a long time to design our cognitive functions.

L'Avion III de Clément Ader, 1897 (Musée du CNAM, Paris)

• We should rather understand the underlying principles of intelligence to build another instance of cognitive system. (e.g. aerodynamics for flying systems).

Outline

1. What are we fighting against?

Invariances + Curse of dimensionality

Priors to learn good data representation (toward deep representation learning)

2. Learning procedures for deep architectures

From Artificial Neural Networks → Deep Convolutional Neural Networks (ConvNet) Recent advances : why ConvNet got famous so late ?

Applications

3. Unsupervised Learning

Outline

1. What are we fighting against?

Invariances + Curse of dimensionality

Priors to learn good data representation (toward deep representation learning)

2. Learning procedures for deep architectures

From Artificial Neural Networks → Deep Convolutional Neural Networks (ConvNet) Recent advances : why ConvNet got famous so late ?

Applications

3. Unsupervised Learning

Classification in high dimensional spaces

• Find a function that maps high dim input variables to output variables

$$\{x_i, y_i = f(x_i)\}_{i \le n}$$

• Simple solution: Linear Model

$$f(\mathbf{x}_{\mathbf{i}}) = sign(\mathbf{W}^T \mathbf{x}_{\mathbf{i}})$$

• Equivalent to finding an hyperplane that separates the data

Problem n°1 : Highly Nonlinear Structure (S. Mallat)

 $\begin{array}{l} Classes\\ Level \ sets \ of \ f(x)\\ \Omega_t = \{x \ : \ f(x) = t\} \end{array}$

Reduce dimensionality of the problem (S.Mallat)

• f(x) can be approximated from examples $\{x_i, f(x_i)\}_i$ by

local interpolation if f is regular and there are close examples:

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

• To cover $[0,1]^d$ at a distance 10^{-1} we need 10^d points Problem: $||x - x_i||$ is always large

Huge variability inside classes

Reduce dimensionality of the problem (S. Mallat)

- If level sets Ω_t are not parallel to a linear space
 - Linearise them with a change of variable $\Phi(x)$
 - Then reduce dimension with linear projections
- Difficult because Ω_t are high-dimensional, irregular, known on few samples.

 Ω_{2}

Find Non Linear Invariant in the data (S. Mallat)

1. Find a change of variable $\Phi(x)$

- linearization separation
- 2. Find a linear projection: $\langle \Phi(x), w \rangle = \sum_k w_k \phi_k(x)$

• How and when is possible to find such a Φ ?

Several strategies to go non linear (Cover's Theorem)

The probability that P samples of dimension N are linearly separable goes to zero very quickly as P grows larger than N (Cover's theorem, 1966).

- Problem: there are 2^P possible dichotomies of P points.
- Only about N are linearly separable.
- If P is larger than N, the probability that a random dichotomy is linearly separable is very, very small.

Yann LeCun

Several strategies to go non linear

Feature Augmentation: Polynomial mapping

 \rightarrow Adding all cross products of the original variables

Problem: The order of the polynom might be high

 \rightarrow Gives rise to impractical feature's dimension size

- Tiling the space + Kernel Methods:
 - Decision function is a linear combination of different pos Ο
 - Kernel: Just put bumps where data live Ο

sition in the feature space

$$\sum_{i=1}^{N} \alpha_i K(X, X^i)$$
 consisten – p. 24/3

cognition - p. 24/36

New York Universit

Yann LeCun

Several strategies to go non linear

• Produce handcrafted intermediate representation of images

Problem: Decide manually which kind of features are good for the different tasks

Several strategies to go non linear

Produce handcrafted intermediate representation of images

→ Toward **Representation Learning**

Outline

1. What are we fighting against?

Invariances + Curse of dimensionality

Priors to learn good data representation (toward deep representation learning)

2. Learning procedures for deep architectures

From Artificial Neural Networks → Deep Convolutional Neural Networks (ConvNet) Recent advances : why ConvNet got famous so late ?

Applications

3. Unsupervised Learning

The manifold hypothesis of the data (Y. Bengio)

- examples concentrate near a lower dimensional "manifold
- Evidence: most input configurations are unlikely

 \rightarrow We need to find such authorized directions of variations in the input space \rightarrow Put probability mass where data live

Distributed representation (Y. Bengio)

- Factor models, PCA, RBMs, Neural Nets, Sparse Coding, Deep Learning, etc.
- Each parameter influences many regions, not just local neighbors
- # of distinguishable regions grows almost exponentially with # of parameters
- GENERALIZE NON-LOCALLY
 TO NEVER-SEEN REGIONS

Multi Task Learning (Y. Bengio)

- Better to share factors across tasks, modalities, etc
- Better generalization because Explanatory factor are likely to be meaningfull

Do we rather need deep or large architecture ?

(nría_

Sparse representation (Y. Bengio)

- Just add a sparsifying penalty on learned representation (prefer 0s in the representation)
- Information disentangling (compare to dense compression)
- More likely to be linearly separable (high-dimensional space)
- Locally low-dimensional representation = local chart
- Hi-dim. sparse = efficient variable size representation

= data structure

Outline

1. What are we fighting against?

Invariances + Curse of dimensionality

Priors to learn good data representation (toward deep representation learning)

2. Learning procedures for deep architectures

From Artificial Neural Networks → Deep Convolutional Neural Networks (ConvNet) Recent advances : why ConvNet got famous so late ?

Applications

3. Unsupervised Learning

Perceptron : Simple Elementary Neural Unit

Multi Layer Perceptron

• 2 layers architecture :

Innia

- Layer 1: several units in parallel + non-linearities
- Layer 2 : final linear classifier unit

Multi Layer Perceptron

- The non linearities are crucial !!!
 - Linear combinations of linear combinations = Linear combinations (useless) $\mathbf{W}_{N}(\mathbf{W}_{N-1}(....(\mathbf{W}_{1}(\mathbf{W}_{0}\mathbf{x}_{i}))...)) = \mathbf{\tilde{W}}\mathbf{x}_{i}$
 - Allow to bend the space to get samples linearly separable (click the curved space)

Deep Learning at scale

• A lot of parameters

Energy Landscape and Gradient Descent

Illustration: batch gradient descent vs stochastic gradient descent

Backpropagation of the gradient

To compute all the derivatives, we use a backward sweep called the **back-propagation algorithm** that uses the recurrence equation for $\frac{\partial E}{\partial X_{i}}$ Energy Е C(Xn, Y) $\frac{\partial E}{\partial X_n} = \frac{\partial C(X_n, Y)}{\partial X_n}$ E/dXn Fn(Xn-1, Wn) $\frac{\partial E}{\partial X_{n-1}} = \frac{\partial E}{\partial X_n} \frac{\partial F_n(X_{n-1}, W_n)}{\partial X_{n-1}}$ E/dXn-1 Xn-1 Xi dE/dXi $\frac{\partial E}{\partial W_{-}} = \frac{\partial E}{\partial X_{-}} \frac{\partial F_n(X_{n-1}, W_n)}{\partial W_{-}}$ Fi(Xi-1, Wi) dE/dWH dE/dXi-1 Xi-1 X1 dE/dX1 F1(X0, W1) xot desired output Y input X [LeCun et al. 89]

Backpropagation of the gradient

Generalization : find the "good" model capacity

[Understanding deep learning requires rethinking generalization. C. Zhang et al. ICLR17]

Regularization

- Objective: constraint the hypothesis space to be smaller
- <u>Another formulation</u>: Put some mess in the learning algorithm so that it does not converge to bad local minima

 \rightarrow We can see this as two player playing against each other

Regularization: common examples (L1/L2)

Convolutional Neural Network

Global architecture (LeNet5)

Translation Invariance with ConvNets

Replace dot product by a convolution

Translation Invariance with ConvNets

Integrate some spatial structure with local receptive fields ...

... is equivalent to sharing receptive fields parameters

Translation Invariance with ConvNets

- Detects multiple motifs at each location
- The collection of units looking at the same patch is akin to a feature vector for that patch.
- The result is a 3D array, where each slice is a feature map.

Backprop with ConvNet

• Weigth sharing for Conv Layers = sum the gradients

$$\Delta \mathbf{W}_{\mathbf{k}} = \sum_{(x,y)} \Delta \mathbf{W}_{\mathbf{k}}^{(\mathbf{x},\mathbf{y})}$$

Why ConvNet got famous so late ?

- Not many theoretical justifications (since recently, but a lot remains to come !)
- Too much parameters for little datasets and too slow algorithms and hardwares
- Motivations in Unsupervised Learning (2000-2011)

Why ConvNet got famous so late ?

- Large scale labelled dataset : ImageNet (15 M)
- Hardware acceleration : GPU

What Changed ?

- The **ReLU** non linearity :
- The killer detail : as good (if not better) as unsupervised pretraining !

Fig. 1. The proposed non-linearity, ReLU, and the standard neural network non-linearity, logistic.

What Changed ?

- Dropout
- Batch Normalization(x14 faster !!!)

(a) Standard Neural Net

function Batch normalization $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$

Activation

• VGG Net

Ínnía

• Inception modules

9 Inception modules

Network in a network in a network...

Convolution Pooling Softmax Other

• ResNet modules combined with inception modules (3.1% Top-5 error on IN)

Energy function in High dimension

• Properties of ReLU Networks:

-All the local minima tends to have the same value of the energy function -So we don't care where we start from and where we arrive -Non convexity is a false problem

Energy function in High dimension

- Energy function are actually highly populated by saddle points
- As we get close to the global minimum value of E(), it becomes harder and harder to find directions that goes up rather than down.
- The proportion of going up directions grows exponentially

ConvNet in Practice : HyperParameters

- Hyper parameters
 - Weigth Decay : L2 regularisation
 - Momentum
 - Learning Rate policy
 - Shuffle the data
 - Normalize (cf BN)
 - Dropout

Transfer learning (fine-tuning)

Problem: CNNs require huge training data to learn the millions of parameters Solution: Learn domain specific features by transfer learning

1. Train CNN on a generalist image dataset with millions of images

Transfer learning (fine-tuning)

Problem: CNNs require huge training data to learn the millions of parameters Solution: Learn domain specific features by transfer learning

- 1. Train CNN on a generalist image dataset with millions of images
- 2. Keep the weights of the lowest layers but remove/reset the top layers

Transfer learning (fine-tuning)

Problem: CNNs require huge training data to learn the millions of parameters Solution: Learn domain specific features by transfer learning

- 1. Train CNN on a generalist image dataset with millions of images
- 2. Keep the weights of the lowest layers but remove/reset the top layers
- 3. Feed forward and back-propagate new domain specific images (with usually a different number of classes C)

The power of transfer learning

Transfer learning usually works for any domain

	Trademark Logos	Car models	Paris Buildings	Aircraft models	Bird species	Flower species
GoogLeNet trained from scratch	67.7%	59.3%	55.3%	72.7%	24.4%	59.5%
GoogLeNet pre-trained on ImageNet	87.5%	79.9%	71.3%	88.1%	72.4%	89.5%

Table 1 - accuracy measured on several fine-grained image classification datasets

Even very specific ones:

Rice seeds varieties recognition 100 classes, 1 500 texture images

GoogLeNet trained from scratch	8.8%
GoogLeNet pre-trained on ImageNet	52.4%

GoogLeNet trained from scratch

58.1%

GoogLeNet pre-trained on ImageNet

70.4%

Plant species recognition: Pl@ntNet

Plant species recognition: Pl@ntNet

Localization / Segmentation

Apply convnet with a sliding window over the image at multiple scales

Important note: it's very cheap to slide a convnet over an image

Just compute the convolutions over the whole image and replicate the fully-connected layers

Localization / Segmentation

Localization / Segmentation Start with a tree graphical model

Start with a tree graphical model **MRF** over spatial locations local evidence function observed $\Psi(f,s)$ $\Phi(\widetilde{s},s)$ $\Phi(f)$ $\Psi(s,e)$ compatibility function $\Phi(\tilde{e}, e)$ $\Phi(\widetilde{w}, w)$ $\Psi(e, w)$ $\Phi(f)$ Joint Distribution: latent / hidden $P(f, s, e, w) = \frac{1}{Z} \prod_{i,j} \Psi(x_i, x_j) \prod_i \Phi(x_i, \widetilde{x}_i)$ 73

... And approximate it $b(f) = \Phi(f) \prod (\Phi(x_i) * \Psi(f \mid x_i) + c(f \mid x_i))$

Localization / Segmentation

Pixel Labelling

- Each output sees a large input context:
- 46x46 window at full rez; 92x92 at ½ rez; 184x184 at ¼ rez
- [7x7conv]->[2x2pool]->[7x7conv]->[2x2pool]->[7x7conv]->
- Trained supervised on fully-labeled images

Pixel Labelling

[Farabet et al. 2013]

Metric Learning with Siamese Networks

[Chopra et al. 2005]

Deep Dream

- Force the network to over-interpret what it sees.
- Amplify maximally activated units + backpropagate signal gradient until the input layer.

[Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. K. Xu et al. 2015]

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

[From Bengio&LeCun tutorial NIPS 2015]

a silver car on the road. a flag on the pole. a building with a white roof. people riding a motorcycle. flag on the pole. a tower on a building. a tall pole in the background. the steeple of the tower, a tall building. a house with a roof. the steeple of the tower, a tree in the distance, a white car in the street, a horse pulling a carriage, a silver car. a statue of a man. a large green building, people standing on the sidewalk. people riding a horse, window on a car. red umbrella over the beach, tree on the sidewalk, person wearing white shirt.

girl eating cake. a cake with a white frosting. woman with long brown hair. the girl is wearing a pink dress. the cake is pink. pink and white dress. the cake is on the top of the cake. the face of a woman. the plate is white.

a parked motorcycle. a man on a bicycle. a man riding a bicycle. the back wheel of a bike. front wheel of a bicycle. a window on the building. a red brick building. window on the building.

"Reverse Image Captioning" :

head of a giraffe

red and white sign

white tennis shoes

hands holding a phone

front wheel of a bus

Outline

1. What are we fighting against?

Invariances + Curse of dimensionality

Priors to learn good data representation (toward deep representation learning)

2. Learning procedures for deep architectures

From Artificial Neural Networks → Deep Convolutional Neural Networks (ConvNet) Recent advances : why ConvNet got famous so late ?

Applications

3. Unsupervised Learning

Machine Learning

 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D
 D

- Three types of learning :
 - **Supervised**: Provide the labels Y while learning. Learns to predict Y given input X.
 - <u>Unsupervised</u>: Do not privilege some variables rather than the open of the o
 - <u>Reinforcement</u>: Wait for the machine to produce the good behavior and give it a reward when it does (very long !).

Unsupervised Learning

- Learn the generative process of the data: P(X|Theta)
- Manifold Learning:
 - Linear unsupervised model: PCA
 - Non Linear and deep models:
 - Autoencoders
 - Generative Adversarial Networks

Principal Component Analysis (PCA)

- Project data linearly into lower dimensional space
 - \rightarrow Find the rotation matrix to align data with axis of maximal variance

Principal Component Analysis (PCA)

- Project data linearly into lower dimensional space
 - \rightarrow Find the rotation matrix to align data with axis of maximal variance
- Allows us to keep the structure of data of variable are linearly correlated

Autoencoder

- Learn a model to:
 - Project data into a non linear intermediate embedding (Coding)
 - Reconstruct its own input from the codes (Decoding)
- PCA's eigen directions span the same space than linear autoencoder's

Autoencoder

- It is more efficient in practice to learn the layer separately. \rightarrow Actually with ReLU, that's okay.
- Stacked autoencoders:
 - Train the first autoencoder layer to reconstruct the input
 - Use the intermediate representation as input to the next layer and re-apply the process
- Fine-tune the model to jointly learn the layers

Regularized Autoencoders

- Problem of raw autoencoder: it is likely to learn the identity mapping
- Solution: regularize it to prevent it from doing that:
 - Bottleneck autoencoder
 - Sparse Autoencoder
 - Denoising/Contractive Autoencoder
 - Generative Adversarial Networks (GAN) and Adversarial Autoencoders

BottleNecked Autoencoders

- Force information to concentrate on a few number of latent variables
- If we can reconstruct well from such low dimensional representations, then we have forced the model to capture useful information
- Problem: we have to assume the dimension of the latent space

Sparse Autoencoders

- Learn an overcomplete representation scheme
- Penalize the model to produce dense codes (L1 penalty)
- Allows the model do choose the intrinsic dimensionality of the data

Denoising Autoencoders

[P. Vincent et al. 2010]

- Learn to reconstruct a corrupted input $\tilde{\mathbf{x}}^{\mathbf{i}} \sim C(\tilde{\mathbf{x}}^{\mathbf{i}} | \mathbf{x}^{\mathbf{i}}) = \mathcal{N}(\mathbf{x}^{\mathbf{i}}, \sigma^2 \mathbf{I_d})$
- Force the system to learn a vector field that points toward the manifold.

Contractive Autoencoders

[S. Rifai et al. 2010]

• Penalize high curvature of the manifold in the latent space

ightarrow Penalize high values of the terms of the Jacobian of the coder

$$\sum \mathcal{L}(\mathbf{x}^{\mathbf{i}}, g_{\theta}(f_{\theta}(\mathbf{x}^{\mathbf{i}}))) + \lambda ||\mathbf{J}(\mathbf{x}^{\mathbf{i}})||_{\mathcal{F}}^{2}$$

$$||\mathbf{J}(\mathbf{x}^{\mathbf{i}})||_{\mathcal{F}}^{2} = \sum_{i} \sum_{k} \left(\frac{\partial f_{\theta_{k}}}{\partial \mathbf{x}_{\mathbf{j}}} \right)$$

• Example: Sigmoidal Contractive Autoencoder

$$||\mathbf{J}(\mathbf{x}^{\mathbf{i}})||_{\mathcal{F}}^{2} = \sum_{k} \{ (f_{\theta}(\mathbf{x}^{\mathbf{i}})_{k}(1 - f_{\theta}(\mathbf{x}^{\mathbf{i}})_{k}))^{2} \sum_{j} \mathbf{W_{jk}}^{2} \}$$

Allows to learn robust features while learning to reconstruct the input
→ Contracts the input space in "interesting" directions of variation = Manifold Learning

Generative Adversarial Network (GAN)

[I. GoodFellow et al. 2014]

- [Goodfellow et al. NIPS 2014]
- · Generator net maps random numbers to image
- · Discriminator learns to tell real from fake images.
- Generator can cheat: it knows the gradient of the output of the discriminator with respect to its input

CNN Generative Adversarial Network (GAN)

[S. Chopra et al. 2015]

Innia

Image Generation with GAN

Image Generation with GAN

Image Generation with GAN

Logic with Deep Learning

- [Radford, Metz, Chintala 2015]

Adversarial Autoencoders

[A. Makhzani et al. 2015]

• Use adversarial regularisation to force the shape of the distribution in the

(nría_

Ressources

- Cours de Yann LeCun au Collège de France
- Intervention de Stéphane Mallat au Collège de France
- The Deep Learning Book (The Holy Bible)

Innía

Questions

