
Deep Learning : Theory and Applications
Valentin LEVEAU - Post-doctoral fellow at INRIA/Zenith team

● We now are good at mimicking some part of intelligence : Learning

● (Machine) Learning = Learning from examples to do a given task and

generalize to new examples.

● Goal = predict some variables given others.

● Capture statistical relationships / structure

 between observed variables.

Deep Learning is a particular form of Machine Learning

AI
Machine Learning

Deep Learning

● Learning several levels of abstraction of the input signal (compositionality)

● For Image : find the progressive transition from pixels to labels

Deep Learning gets inspiration from biology

● Do we need to copy biology to get truly intelligent

systems ?

● Brain is just a possible instance of intelligent device.

● Evolution took a long time to design our cognitive

functions.

● We should rather understand the underlying principles

of intelligence to build another instance of cognitive

system. (e.g. aerodynamics for flying systems).

Some Words about bio-inspiration (Yann LeCun)

Outline
1. What are we fighting against ?

 Invariances + Curse of dimensionality

 Priors to learn good data representation (toward deep representation learning)

2. Learning procedures for deep architectures
From Artificial Neural Networks → Deep Convolutional Neural Networks (ConvNet)

Recent advances : why ConvNet got famous so late ?

Applications

3. Unsupervised Learning

Outline
1. What are we fighting against ?

 Invariances + Curse of dimensionality

 Priors to learn good data representation (toward deep representation learning)

2. Learning procedures for deep architectures
From Artificial Neural Networks → Deep Convolutional Neural Networks (ConvNet)

Recent advances : why ConvNet got famous so late ?

Applications

3. Unsupervised Learning

● Find a function that maps high dim input variables to output variables

● Simple solution: Linear Model

○ Equivalent to finding an hyperplane that separates the data

Classification in high dimensional spaces

Problem n°1 : Highly Nonlinear Structure (S. Mallat)

Reduce dimensionality of the problem (S.Mallat)

Reduce dimensionality of the problem (S. Mallat)

Find Non Linear Invariant in the data (S. Mallat)

Several strategies to go non linear (Cover’s Theorem)

Several strategies to go non linear
● Feature Augmentation: Polynomial mapping

→ Adding all cross products of the original variables

● Problem: The order of the polynom might be high
→ Gives rise to impractical feature’s dimension size

● Tiling the space + Kernel Methods:
○ Decision function is a linear combination of different position in the feature space

○ Kernel: Just put bumps where data live

● Produce handcrafted intermediate representation of images

Problem: Decide manually which kind of features are good for the different tasks

Mid-Level
Representation

(BoW, Fisher
Vectors,

ConvNet,...)

Low-Level
Representation

(SIFT, GIST,
ConvNet...)

Classification

Label

Query Image Intermediate Representation pipeline

Several strategies to go non linear

Produce handcrafted intermediate representation of images
Bags Of Visual Words [J. Sivic et al 2003]

Solution: Let the system learn the change of variable

 → Toward Representation Learning

Several strategies to go non linear

Bag of local features Vector Quantization Bag of codes BoVW vector

Outline
1. What are we fighting against ?

 Invariances + Curse of dimensionality

 Priors to learn good data representation (toward deep representation learning)

2. Learning procedures for deep architectures
From Artificial Neural Networks → Deep Convolutional Neural Networks (ConvNet)

Recent advances : why ConvNet got famous so late ?

Applications

3. Unsupervised Learning

The manifold hypothesis of the data (Y. Bengio)

→ We need to find such authorized directions of variations in the input space
→ Put probability mass where data live

Distributed representation (Y. Bengio)

● Better to share factors across tasks, modalities, etc ….
● Better generalization because Explanatory factor are likely to be meaningfull

Multi Task Learning (Y. Bengio)

Do we rather need deep or large architecture ?

Sparse representation (Y. Bengio)

Outline
1. What are we fighting against ?

 Invariances + Curse of dimensionality

 Priors to learn good data representation (toward deep representation learning)

2. Learning procedures for deep architectures
From Artificial Neural Networks → Deep Convolutional Neural Networks (ConvNet)

Recent advances : why ConvNet got famous so late ?

Applications

3. Unsupervised Learning

Perceptron : Simple Elementary Neural Unit

Multi Layer Perceptron
● 2 layers architecture :

○ Layer 1: several units in parallel + non-linearities
○ Layer 2 : final linear classifier unit

Multi Layer Perceptron
• The non linearities are crucial !!!

• Linear combinations of linear combinations = Linear combinations (useless)

• Allow to bend the space to get samples linearly separable (click the curved space)

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

Deep Learning at scale
● A lot of parameters

Energy Landscape and Gradient Descent
● Useful for non-convex function !!!
● Problem: lots of local minima ….

E

W

Backpropagation of the gradient

[LeCun et al. 89]

Backpropagation of the gradient

Weights move co-linearly in
the direction of input data

[LeCun et al. 89]

Generalization : find the “good” model capacity

[Understanding deep learning requires rethinking generalization. C. Zhang et al. ICLR17]

Regularization
• Objective: constraint the hypothesis space to be smaller

• Another formulation: Put some mess in the learning algorithm so that it does not
converge to bad local minima

• Joint optimization of two function:

→ We can see this as two player playing against each other

Regularization
term

Regularization
factor

Learning objective term

Regularization: common examples (L1/L2)

Convolutional Neural Network
Global architecture (LeNet5)

Translation Invariance with ConvNets
Replace dot product by a convolution

http://cs231n.github.io/assets/conv-demo/index.html

Integrate some spatial structure with local receptive fields ...

 ... is equivalent to sharing receptive fields parameters

Translation Invariance with ConvNets

Translation Invariance with ConvNets

Backprop with ConvNet
● Weigth sharing for Conv Layers = sum the gradients

● Max pooling :

Why ConvNet got famous so late ?
• Not many theoretical justifications (since recently, but a lot remains to come !)

• Too much parameters for little datasets and too slow algorithms and
hardwares

• Motivations in Unsupervised Learning (2000-2011)

Why ConvNet got famous so late ?
• Large scale labelled dataset : ImageNet (15 M)

• Hardware acceleration : GPU

• The ReLU non linearity :
• The killer detail : as good (if not better) as unsupervised pretraining !

What Changed ?

What Changed ?
• Dropout
• Batch Normalization(x14 faster !!!)

Evolution of the architectures
• LeNet1-5

• AlexNet
[A. Krizhevsky et al. 2012]

Evolution of the architectures
• VGG Net

[K. Simonyan et al. 2014]

Evolution of the architectures
• Inception modules

Evolution of the architectures
• GoogLeNet

[C. Szegedy et al. 2015]

Evolution of the architectures
• ResNet (152 layers, even 1,000 !!!)

[K. He et al. 2015]

Evolution of the architectures
• ResNet modules combined with inception modules (3.1% Top-5 error on IN)

[C. Szegedy et al. 2016]

Energy function in High dimension
• Properties of ReLU Networks:

-All the local minima tends to have the same value of the energy function
-So we don’t care where we start from and where we arrive
-Non convexity is a false problem

Energy function in High dimension
• Energy function are actually highly populated by saddle points
• As we get close to the global minimum value of E(), it becomes harder and

harder to find directions that goes up rather than down.
• The proportion of going up directions grows exponentially

[R. Pascanu et al. 2014]

ConvNet in Practice : HyperParameters
• Hyper parameters

• Weigth Decay : L2 regularisation

• Momentum

• Learning Rate policy

• Shuffle the data

• Normalize (cf BN)

• Dropout

Transfer learning (fine-tuning)

Problem: CNNs require huge training data to learn the millions of parameters
Solution: Learn domain specific features by transfer learning

1. Train CNN on a generalist image dataset with millions of images

Transfer learning (fine-tuning)

Problem: CNNs require huge training data to learn the millions of parameters
Solution: Learn domain specific features by transfer learning

1. Train CNN on a generalist image dataset with millions of images
2. Keep the weights of the lowest layers but remove/reset the top layers

Transfer learning (fine-tuning)

Problem: CNNs require huge training data to learn the millions of parameters
Solution: Learn domain specific features by transfer learning

1. Train CNN on a generalist image dataset with millions of images
2. Keep the weights of the lowest layers but remove/reset the top layers
3. Feed forward and back-propagate new domain specific images (with usually

a different number of classes C)

New output layer

Layer 7

The power of transfer learning
Transfer learning usually works for any domain

Table 1 - accuracy measured on several fine-grained image classification datasets

Even very specific ones:

Rice seeds varieties recognition
100 classes, 1 500 texture images

GoogLeNet trained from scratch 58.1%

GoogLeNet pre-trained on ImageNet 70.4%

Herbaria species recognition
255 classes, 11K herbaria sheets

Trademark Logos Car models Paris Buildings Aircraft models Bird species Flower species

GoogLeNet trained from scratch 67.7% 59.3% 55.3% 72.7% 24.4% 59.5%

GoogLeNet pre-trained on ImageNet 87.5% 79.9% 71.3% 88.1% 72.4% 89.5%

GoogLeNet trained from scratch 8.8%

GoogLeNet pre-trained on ImageNet 52.4%

Plant species recognition: Pl@ntNet

Plant species recognition: Pl@ntNet

+

+
+

Database

Collaborative application

Localization / Segmentation

[Y. LeCun Collège de France]

Localization / Segmentation

Localization / Segmentation

Localization / Segmentation

Pixel Labelling

[Farabet et al. 2013]

Pixel Labelling
[Farabet et al. 2013]

https://drive.google.com/folderview?id=0BxKBnD5y2M8NaGFqLS1pWXRYRGc&usp=drive_web&tid=0BxKBnD5y2M8NclFWSXNxa0JlZTg

Metric Learning with Siamese Networks
[Chopra et al. 2005]

Deep Dream
● Force the network to over-interpret what it sees.

● Amplify maximally activated units + backpropagate signal gradient until the

input layer.

https://www.youtube.com/watch?v=DgPaCWJL7XI

Image Captioning via attention based models
[Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. K. Xu et al. 2015]

Image Captioning via attention based models

Image Captioning via attention based models

http://youtube.com/v/8BFzu9m52sc

Image Captioning via attention based models

“Reverse Image Captioning” :

Outline
1. What are we fighting against ?

 Invariances + Curse of dimensionality

 Priors to learn good data representation (toward deep representation learning)

2. Learning procedures for deep architectures
From Artificial Neural Networks → Deep Convolutional Neural Networks (ConvNet)

Recent advances : why ConvNet got famous so late ?

Applications

3. Unsupervised Learning

● Three types of learning :
○ Supervised: Provide the labels Y while learning. Learns to

predict Y given input X.

○ Unsupervised: Do not privilege some variables rather than

others. Try to catch all the interesting information that is

contained in the data.

○ Reinforcement: Wait for the machine to produce the good

behavior and give it a reward when it does (very long !).

Machine Learning

http://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html

● Learn the generative process of the data: P(X|Theta)

● Manifold Learning:
○ Linear unsupervised model: PCA

○ Non Linear and deep models:

■ Autoencoders

■ Generative Adversarial Networks

Unsupervised Learning

● Project data linearly into lower dimensional space

→ Find the rotation matrix to align data with axis of maximal variance

Principal Component Analysis (PCA)

● Project data linearly into lower dimensional space

→ Find the rotation matrix to align data with axis of maximal variance

● Allows us to keep the structure of data of variable are linearly correlated

Principal Component Analysis (PCA)

X1

X2
Z1

● Learn a model to:
○ Project data into a non linear intermediate embedding (Coding)

○ Reconstruct its own input from the codes (Decoding)

● PCA’s eigen directions span the same space than linear autoencoder’s

Coding function:

Decoding function:

Reconstruction objective:

Autoencoder

min ||X - X_hat||²

h

X X_hat

Autoencoder
● It is more efficient in practice to learn the layer separately.

→ Actually with ReLU, that’s okay.

● Stacked autoencoders:
○ Train the first autoencoder layer to reconstruct the input

○ Use the intermediate representation as input to the next layer and re-apply the process

○ Fine-tune the model to jointly learn the layers

Regularized Autoencoders
● Problem of raw autoencoder: it is likely to learn the identity mapping

● Solution: regularize it to prevent it from doing that:
○ Bottleneck autoencoder

○ Sparse Autoencoder

○ Denoising/Contractive Autoencoder

○ Generative Adversarial Networks (GAN) and Adversarial Autoencoders

BottleNecked Autoencoders
● Force information to concentrate on a few number of latent variables

● If we can reconstruct well from such low dimensional representations, then

we have forced the model to capture useful information

● Problem: we have to assume the dimension of the latent space

Sparse Autoencoders
● Learn an overcomplete representation scheme

● Penalize the model to produce dense codes (L1 penalty)

● Allows the model do choose the intrinsic dimensionality of the data

Denoising Autoencoders
● Learn to reconstruct a corrupted input

● Force the system to learn a vector field that points toward the manifold.

[P. Vincent et al. 2010]

Contractive Autoencoders
● Penalize high curvature of the manifold in the latent space

→ Penalize high values of the terms of the Jacobian of the coder

● Example: Sigmoidal Contractive Autoencoder

● Allows to learn robust features while learning to reconstruct the input
→ Contracts the input space in “interesting” directions of variation = Manifold Learning

[S. Rifai et al. 2010]

Generative Adversarial Network (GAN)
[I. GoodFellow et al. 2014]

CNN Generative Adversarial Network (GAN)
[S. Chopra et al. 2015]

Image Generation with GAN

Image Generation with GAN

Image Generation with GAN

Logic with Deep Learning

Adversarial Autoencoders
● Use adversarial regularisation to force the shape of the distribution in the

latent space.

[A. Makhzani et al. 2015]

Ressources
● Cours de Yann LeCun au Collège de France

● Intervention de Stéphane Mallat au Collège de France

● The Deep Learning Book (The Holy Bible)

https://www.college-de-france.fr/site/yann-lecun/course-2015-2016.htm
https://www.college-de-france.fr/site/yann-lecun/course-2015-2016.htm
https://www.college-de-france.fr/site/yann-lecun/seminar-2016-02-19-15h30.htm
https://www.college-de-france.fr/site/yann-lecun/seminar-2016-02-19-15h30.htm
https://github.com/HFTrader/DeepLearningBook
https://github.com/HFTrader/DeepLearningBook

Questions

