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Introduction to Remote Sensing, Opportunities & Challenges
Data Fusion & Remote Sensing
Deep Learning (DL) for Remote Sensing
DL-Based Data Fusion for Land Cover Mapping:
- Combine Single-Sensor Data

- Combine Multi-Source Time Series Data

Perspectives
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Introduction

Gathers global measurements of atmospheric, terrestrial,
and oceanic conditions enabling accurate weather forecast-
ing including the prediction of severe weather events, such
as hurricanes and blizzards, days in advance.

Nowadays, many earth observation
satellite missions exist:
- Sentinel [Senti] S y—
- LandSat-8 [LandSat] oo et g e
- SPOT 6/7[Spot]

our understanding of the global carbon cycle.

Will measure the thickness of ice sheets to help scientists
develop a better scientific understanding of the Earth system
and its response to natural or human-induced changes.

Studies the Polar Mesospheric Clouds that form about 50
miles above the Earth's surface which have been suggested
to be indicators of global climate change.

Validated advanced land imaging 3
instruments and unique spacecraft technologies. Measures sea state and ocean winds. “
Data is used to improve ocean models

and weather prediction.

Acquired images have different:
. . Observation
- spatial resolution (0.5 — 30 meters) N\ Satellites
- radiometric content (spectral bands) oy v R ——
- temporal resolution (every 5 — 365 days) Colds cammorsl i eslin Ex ! =\ o oo ot f ot e .

imagery used in resource management, land use and commercial applications.
mapping and global development. .

v
4

» ‘ 1\
THEMIS/Artemis (Fobruary 2007 Launch) ICON (2017 Launch)

Studied the physics of geomagnetic storms into the Will study the Earth's upper atmosphere and how the Sun
Earth’s magnetosphere. Originally 5 satellites; two were influences ionospheric variability to help improve forecasts of
moved into orbit near the Moon. extreme space weather and its influence on human activity.

HUGE quantity of Satellite Images
Describing Earth Phenomena at
different scales

AVg!'n|>.u~.>chl| @ cirad @ ﬂ 3
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= Why EOD is an Opportunity

Earth Observation Data can have practical influence on different domains:

y i&‘ =N - ol .
Continental Surface }‘ !}’ ity ";
analysis Nl S A

[o-10% [[J10-25% [ 25-50% [l so-75% B 75-100%

Climate Changes
Analysis

AVg!'n|>.lx->chl| @ cirad @ & 4
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~~ " Why EOD is an Opportunity

Analyze, Mining and Exploit EOD data can also
improve practices on:

® Forestry characterization

® Lithological classification and mineral
mapping

Food Risk prevention

Environmental monitoring

Urban development

Wildlife and Habitat Monitoring

This is why Satellite imagery analytics
is becoming more IMPORTANT

'ﬁ!:9|5'||"~T0(:|l @ cirad @ E 5
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2 Introduction to RS

A Satellite Image:
A data cube that describes a spatial area by means of several spectral bands

o = SpectrurV I
i UL /" bands
Rt 0 10 = "zu s T80 : 3-0 rOWS
Spectral Bands ' —
Spatial
columns

SgroparisTech @ cirad @ E h
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=2 Introduction to RS

A Satellite Image:
A data cube that describes a spatial area by means of several spectral bands

= SpectrurV L
: My Spatial Spectral
i U\ /| bands
T es e - ge 80 wo rows
Spectral Bands ' —
Spatial
columns

Type of information:

- Optical Images (Multi-Spectral / Hyperspectral)
- Radar Images (phase, amplitude, etc...)

- LIDAR ( point clouds)

- Etc...

HaroParisTech @ cirad @ ﬂ 5
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Introduction to RS

EOD allows also to collect Very High Resolution
Images (VHR) i.e. Spot6/7 (at 1.5m), Pléiades (.
5m), WorldView3 (.3m) at Low Temporal
Frequency (once or twice per year)

VHSR data are useful to obtain fine
resolution information to characterise
spatial pattern and spatial texture

-gml 1stech @ cirad @ E 7
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Introduction to RS

EOD allows also to collect Very High Resolution
Images (VHR) i.e. Spot6/7 (at 1.5m), Pléiades (.
5m), WorldView3 (.3m) at Low Temporal
Frequency (once or twice per year)

VHSR data are useful to obtain fine
resolution information to characterise
spatial pattern and spatial texture

Avﬂ!'nl’.11~>Tecll ‘cimd @ &

EOD allows to collect Satellite Image Time
Series (SITS) at High Spatial Resolution
(Sentinel ~10m) and High Temporal
Frequency (every 5/10 days)

The same geographical area is observed over

1 T T T T T 1 T T T Ll
J F M A M J Ji A S 0 N D
Landsat Time Series 2009

SITS data are useful to analyze
spatio-temporal phenomena (trends
and changes) over the time
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s Sentinel Missions

Sentinel Missions belong to the Copernicus Programme
Copernicus Programme is provided by the ESA (European Space Agency)

Provide Remote Sensing data at High Spatial/Temporal Resolution of the Earth

Different kind of sensors for different uses:
Sentinel 1: two satellites, operating day and night
performing C-band synthetic aperture radar imaging.

Sentinel 2: two satellites placed in the same sun-
synchronous orbit supplying optical information.

Sentinel 3: measure sea surface topography, sea and
land surface temperature, and ocean and land surface
colour.

Sentinel 4 & Sentinel 5: air quality & aerosols.

SaroparisTecn @ cirad @ ﬂ |
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“" sentinel 1

Two satellites (Sentinel 1A and Sentinel 1B) operating day
and night performing C-band synthetic aperture radar
Imaging

Especially useful to monitor soil and structural properties
(i.e. rugosity and humidity)

An image every 5/6 days more or less with information
about two polarization (VV and VH).

A spatial resolution of 10m or 20m

Images can be arranged to create (radar) Satellite Image
Time Series

i'gl() stech @ cirad @ & 9
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Two satellites (Sentinel 2A and Sentinel 2B) placed in the
same sun-synchronous orbit supplying optical information

Especially useful to observe surface reflectance with 13
bands:

- 4 bands at 10m of spatial resolution (Red, Green, Blue,
NIR)

- 6 bands at 20m of spatial resolution (Vegetation Red
Edge, Narrow Nir, SWIR)

- 3 bands at 60m of spatial resolution (dedicated to
atmospheric correction mainly)

An image every 5 days more or less (from mid-2018) and

an image every 10 days more or less (from December
2015).

Images can be arranged to create (optical) Satellite
Image Time Series

é!gml arisTech @ cirad @ & 1 O
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= To Sum=Up on Sentinel

Optical and Radar images available, more or less, every 5/10 days
Complementary source of information freely available inside and outside Europe
Some limitations:

- Cloud phenomena can affect optical images and reduce the temporal frequency

- Rain or heavy humidity phenomena can influence the radar signal

Huge amount of data available all around the world to monitor spatio-temporal
phenomena at high spatial resolution

... but, spatial resolution of 10m is not adapted for every task

Saroparistech @ cirad @ U,‘ .
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Satellite imagery analytic is challenging
due to EOD diversity

'é!gi!"(zlin-‘-T(‘.(:ll @ cirad @ & 12
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Satellite imagery analytic is challenging
due to EOD diversity

Heterogeneity:
- Spatial (Different resolutions)
- Temporal (time steps not always constant)
- Acquisition Sensor (Optical Images, Radar
Images, DEM, LiDAR, etc..)
- Very High Spatial vs High Temporal Resolution
(VHR & SITS)

é'&ml arisTech @ cirad @ & 1 2
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Satellite imagery analytic is challenging
due to EOD diversity

Heterogeneity:
- Spatial (Different resolutions)
- Temporal (time steps not always constant)
- Acquisition Sensor (Optical Images, Radar
Images, DEM, LiDAR, etc..)
- Very High Spatial vs High Temporal Resolution
(VHR & SITS)

...and also Data Quality (from pre-processing to
information extraction)

...and Ground Truth (or annotation) to build
predictive models.

é!{iml arisTech @ cirad @ B 1 2
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~ Heterogeneity & Data Fusion

Due to the huge amount of different sensors, today available,
Data Fusion is a very important and hot topic in Remote Sensing Community

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine 4(4): 6--23, 2016

SaroparisTech @ cirad @ & .
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Due to the huge amount of different sensors, today available,
Data Fusion is a very important and hot topic in Remote Sensing Community

Data Fusion process (for Remote Sensing Data) [Schmitt16] :

- MATCHING AND COREGISTRATION (i.e. align together sources via coordinate
transformations and unit adjustments)

- FUSION BY ESTIMATION (the step in which data are really fused together):
- Combine multiple images covering the same area to reduce uncertainty

- Combine together multiple images with complementary spatio/spectral
information

- Combine images with shared information: i.e. combine multiple VHR images
for 3-D reconstruction

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine 4(4): 6--23, 2016

%{ln Tech @cirad @ ”,‘ 13
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Heterogeneity & Data Fusion

Fusion can happen at different levels

[Schmitt16]

Observation-Level Fusion Feature-Level Fusion Decision-Level Fusion

Data 1

Data 2

Data Fusion
Result

Data1 Data2 Data1 Data2

Feature Feature
Set 1 Set 2

Feature Feature
Set 1 Set 2

Inter- Inter-
mediate mediate
Result 1 , Result 2

Data Fusion Data Fusion
Result Result

FIGURE 3. The three types of data fusion are compared side by side: observation level, feature level, and decision level.

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine 4(4): 6--23, 2016

MarolarisTech @ cirad @ u
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Satellite imagery analytic is challenging
due to EOD diversity
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Satellite imagery analytic is challenging
due to EOD diversity

Heterogeneity:
- Spatial (Different resolutions)
- Temporal (time steps not always constant)
- Acquisition Sensor (Optical Images, Radar
Images, DEM, LiDAR, etc..)
- Very High Spatial vs High Temporal Resolution
(VHR & SITS)
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Satellite imagery analytic is challenging
due to EOD diversity

Heterogeneity:
- Spatial (Different resolutions)
- Temporal (time steps not always constant)
- Acquisition Sensor (Optical Images, Radar
Images, DEM, LiDAR, etc..)
- Very High Spatial vs High Temporal Resolution
(VHR & SITS)

...and also Data Quality (from pre-processing to
information extraction)

...and Ground Truth (or annotation) to build
predictive models.
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Nowadays, Machine Learning techniques are a
standard tool in Remote Sensing analytics
[Holloway18]:

- Deal with huge amount of data

- Automatically build predictive methods

- Group together similar areas

- Detect Objects of Interest

[Holloway18] J. Holloway, K. Mengersen: Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review. Remote Sensing 10(9): 1365 (2018)
[LeCun15] Y. LeCun, Y. Bengio and G. Hinton. “Deep Learning” In Nature 52(8): 436-444 (2015). )
1 6 =arolarislech ‘CII’Gd @ stes
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Nowadays, Machine Learning techniques are a
standard tool in Remote Sensing analytics
[Holloway18]:

- Deal with huge amount of data

- Automatically build predictive methods

- Group together similar areas

- Detect Objects of Interest

Recent Trends ‘Deep Learning
Methods’ [LeCun15]:
- Inspired by human brain
- Layers architecture
- Applications in different domains:
+ Speech Recognition
+ Image Recognition
+ Natural Language Processing

[Holloway18] J. Holloway, K. Mengersen: Statistical Machine Learning Methods and Remote Sensing for Sustainable Development Goals: A Review. Remote Sensing 10(9): 1365 (2018)
[LeCun15] Y. LeCun, Y. Bengio and G. Hinton. “Deep Learning” In Nature 52(8): 436-444 (2015). )
1 6 =arolarislech @ cirad @ stea)
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Machine Learning

Class labels
(Classification)

Real Number
(Regression)

é!gm[ arisTech @ cirad @ & 1 7
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Class labels
(Classification)

<

Real Number
(Regression)

Object Recognition

v

{Dog, Cat, Sheep, Bear, Lion, ...}

sky

Semantic Segmentation

v

person

Sentiment Classification

v

_é'_gg:pl’.xx-schll @ cirad @ & 17
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Learning representation

Traditional Machine Learning systems leverage feature engineering to represent the data:
- Text Analysis: Bag of Words
- Image Analysis: Hog (Histogram of Oriented gradient), SIFT (Scale Invariant Feature
Transform)

Simple Trainable
Classifier
(SVM, RF, NB, ...)

Hand-Crafted
Features

::gm Tech @ cirad @ E 18
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" Learning representation

Traditional Machine Learning systems leverage feature engineering to represent the data:
- Text Analysis: Bag of Words
- Image Analysis: Hog (Histogram of Oriented gradient), SIFT (Scale Invariant Feature
Transform)

g

-
o — |

m“;&
s;sc-
s

Simple Trainable
Classifier
(SVM, RF, NB, ...)

Hand-Crafted
Features

v

v

Deep Learning approaches learn internal representations (new
features) without necessity of hand-crafted features

Trainable Feature
Extractor

A 4

» Trainable Classifier

Deep Learning Model

‘:lg-un stech @ cirad @ E 18
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Learning representation

Deep Learning allows to: Convolutional Neural Network

Learn different level of
features from low-level
to high-level in a kind of
hierarchical organisation

mwum_.m.umt mqh-lmet_. Trainable
Feature Feature Feature Classifier

Can share the low-level
representation for many
different tasks

i!g!:pl’-unsT(‘.Ch @ cirad @ ﬂ 19
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- Learning representation

Deep Learning allows to: Convolutional Neural Network

Learn different level of
features from low-level
to high-level in a kind of
hierarchical organisation

Lowuvol_ﬂvdvleml mqh-uv-ey_. Trainable
Feature Feature Feature Classifier

Can share the low-level
representation for many
different tasks

Deep Learning, nowadays, is used in many domains:
Computer Vision (Object Detection and Segmentation, Image SuperResolution, Image Classification)

Natural Language Processing (NLP) and Speech
Robotics and Al
Music and arts!

_é'_gg:pl’.xx-schll @ cirad @ & 19
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Scene Classification

Feature Extractar

o=

_ Rightights
ntersities

VGG ImageNet pre-trainged parameters
! Convalutons Red Ll

- Max Fooling

Remate Sensing nage i

Fully Conrected+Rell

Softmax

Satellite Image Time Series Analysis

hidden ridden cetput
Liywer ayet layer

input
stack

TRemek Kemels
SR XN N} N < X7 % K

reelure |

[incut || lcor-ret) WlRoooire Il comssspsamoing [lltusion Illsum

'y:n--.\r] (\,r«:mJ

-gml’u stech @ cirad

= 20

rFOny
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Fonge 2 Foorre 3

[ Cultures maraichéres
[] Canne & sucre

[ Vergers

[ Plantations forestiéres
[ Prairies

Il Forét

[] Savane arbustive

Il Savane herbacée

[ Roches nues

I Zones urbanisées

I Cultures sous serre
[ Surfaces en eau

Il Ombres dues aux reliefs

Land Cover Mapping

slhavathicxtos

e

Calegoey

Hyperspectral Classification and Retrieval
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Three popular Deep Learning base blocks in Remote Sensing are:
- Convolutional Neural Network (CNNs)

- Recurrent Neural Networks (RNNs)
- Convolutional Recurrent Neural Networks (ConvRNNSs)

21
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Three popular Deep Learning base blocks in Remote Sensing are:
- Convolutional Neural Network (CNNs)

- Recurrent Neural Networks (RNNs)
- Convolutional Recurrent Neural Networks (ConvRNNSs)

CNNs
RNNs E; I
® & &) ® ®) ' SEIXDE K 1S 128 128 &
IIT? L1 ! i WeII suited neural networks to model
é; . ;:5 B é - é [ é; (mainly) spatial-autocorrelation via

Convolution
Well suited neural networks to

model temporal correlation
via recurrent operations

NaroParistech @ cirad @ E
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CNNs
CNNs are a special type of neural network whose hidden units are only
connected to local receptive field.

The number of parameters needed by CNNs is much smaller than a Fully
Connected counterpart.

MaroParistech @ cirad @ L

22
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CNNs
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'Earth

Deep Learning &
Observation (EO) Data

CNNs are a special type of neural network whose hidden units are only
connected to local receptive field.

The number of parameters needed by CNNs is much smaller than a Fully
Connected counterpart.

Complex layer terminology

Next layer

i

Simple layer terminology

Next layer

Convolutional Layer

Pooling stage

A

Detector stage:
Nonlinearity

e.g., rectified linear

A

Convolution stage:

Affine transform

A

|

CNN has three main stages:

Pooling layer

1) Convolution Stage

'\

2) Non-linearity Stage

Detector layer: Nonlinearity

e.g., rectified linear

3) Pooling Stage

A

Convolution layer:
Affine transform

Commonly, a normalisation stage is added

|

Input to layer

arisTech @ cirad @ E

f

Input to layers

between 1) and 2)
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CNN can be employed to perform:
- Image Classification
- Semantic Segmentation

Image Classification

"""

The input is an image and the output
IS a label for the whole image

In Remote Sensing, the image
classification is also employed to
perform patch-based classification

Tech @ cirad @ E

23

Semantic Segmentation

The input is an image, the output is an
Image with a label for each input pixel

The common architecture for Semantic
Segmentation is called AutoEncoder
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RNNs

RNNs are a special type of neural network characterised by recurrent connections.
The output of the network at time t is exploited by the network itself at time t+1

Nowadays, two different RNNs model are mainly employed:
e LSTM (Long-Short Term Memory)
e GRU (Gated Recurrent Unit)

:'L!_m Tech @cirad @ L—
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RNNs

RNNs are a special type of neural network characterised by recurrent connections.
The output of the network at time t is exploited by the network itself at time t+1

Nowadays, two different RNNs model are mainly employed:
e LSTM (Long-Short Term Memory)
e GRU (Gated Recurrent Unit)

Such kind of network are heavily '”; @ \L % =0 :fH : * Ay ...,-,.]‘;
exploited in Natural Language ] D 1‘ re =0 (W [heo,20])
Processing and Speech Recognition [ Rl {' he = tanh (W - [ry % he_p, 2]
or other kind of 1-D signal [ (o — ) he = (1= ) % he_y + 2 * hy

groparistecn @ cirad @ E o4
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RNN can be employed to perform:

Time Series Classification

O 0O 0O O O

Y.

The input is a multidimensional
Time Series and the output is
the classification label

MaroParistech @ cirad @ ”!.!

- Signal Classification
- Time Series Analysis

25

Per-Time classification

m e

@9
v @-@-@- - ~@-@
Q'A’C} OO

The input is a multidimensional
Time Series and the output is a
label per timestamps
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RNN can be employed to perform:
- Signal Classification
- Time Series Analysis

Per-Time classification
Time Series Classification

00 0O O o 0 O

MY
The input is a multidimensional The input is a multidimensional
Time Series and the output is Time Series and the output is a
the classification label label per timestamps

In Remote Sensing, RNN models are especially employed for Satellite
Image Time Series or Hyperspectral data

ﬁ'&l"'(.f‘ stech @ cirad @ E o5
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ConvRNN

ConvRNNs are neural network models that combine Convolutional and Recurrent Neural
Network together to manage spatio-temporal information characterised by spatial as well as
temporal correlations.

The ConvRNN Unit is a recurrent unit that integrates convolutional filters.
The output of the network at time t is exploited by the network itself at time t+1

[Shi15] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-c. Woo: Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. NIPS 2015: 802-810

groparistecn @ cirad @ E o6
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ConvRNN

ConvRNNs are neural network models that combine Convolutional and Recurrent Neural
Network together to manage spatio-temporal information characterised by spatial as well as
temporal correlations.

The ConvRNN Unit is a recurrent unit that integrates convolutional filters.
The output of the network at time t is exploited by the network itself at time t+1

ConvRNN can be derived considering both: e e
* LSTM (Long-Short Term Memory) . """  —

e GRU (Gated Recurrent Unit)
In which the inner kernel is replaced by convolutional filters

[Shi15] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, W.-c. Woo: Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. NIPS 2015: 802-810

Saroparistech @ cirad @ U,‘ -
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ConvRNN can be employed to perform:

ConvRNN - Semantic Segmentation for Time Series
- Spatio-Spectral Analysis
- Change Detection
Semantic Segmentation Spatio-Spectral Analysis
for Time Series
, @ [[Convistm ] -
Ve TG
o] [ior] Cen] [oan ]
: I:;llllltl'.ll'fl lil;llllvl -%E | mf_‘ lgi?l_l.%fl I:i}_.l - )
—— P -
The input is a Time Series of The input is an hyper spectral
Images and the output is the signal with spatial context and
classification label for each pixel the output is a label

SaroparisTech ¥ cirad @ & .
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ConvRNN can be employed to perform:

ConvRNN - Semantic Segmentation for Time Series
- Spatio-Spectral Analysis
- Change Detection
Semantic Segmentation Spatio-Spectral Analysis
for Time Series
B -
¥ o[
\ N (o] [Lor] | l.I Logr, =
ST TEzzal™
———— L B
The input is a Time Series of The input is an hyper spectral
Images and the output is the signal with spatial context and
classification label for each pixel the output is a label

In Remote Sensing, ConvRNN models are especially employed for Satellite
Image Time Series or Hyperspectral data

::gm Tech @ cirad @ E 27
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Sparsely vs Densely Annotated Data

In classical Computer Vision we have (mainly) two scenarios:
- A label associated to each image (image classification)
- A label associated to each pixel (semantic segmentation)

groparistecn @ cirad @ E o8
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Sparsely vs Densely Annotated Data

In classical Computer Vision we have (mainly) two scenarios:
- A label associated to each image (image classification)
- A label associated to each pixel (semantic segmentation)

On the other hand, in Remote Sensing we have (mainly) two scenarios:
- A label associated to each pixel (semantic segmentation)
- A label associated to a (small) sets of segments/objects in a geographical area

Saroparistech @ cirad @ U,‘ -
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Sparsely vs Densely Annotated Data

In classical Computer Vision we have (mainly) two scenarios:
- A label associated to each image (image classification)
- A label associated to each pixel (semantic segmentation)

On the other hand, in Remote Sensing we have (mainly) two scenarios:
- A label associated to each pixel (semantic segmentation)
- A label associated to a (small) sets of segments/objects in a geographical area

Sparsely

Densely
Annotated

Annotated

The white pixels are:
- A specific class -> Densely Annotated
- No knowledge about the class -> Sparsely Annotated

28
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Encoder Decoder
av + BN + ReLU + pooling upsampling + coav + BN + ReLU

(Very High Spatial Resolution)
VHSR + DEM [Audebert17]

[Chen17] Y. Chen, C. Li, P. Ghamisi, X. Jia, Y. Gu: Deep Fusion of Remote Sensing Data for Accurate Classification. IEEE GRSL 14(8): 1253-1257 (2017)

Deep Learning &
EO Data Fusion

Sentinel-2 Time Series
at High Spatial Resolution

e,

T1 T2 T3 Tn

mn | —

25 x 25 patch extracted from
Spot 6/7 VHSR image

Time Series + VHSR [Benedetti18]

CNN

RNN Auxiliary
Classifier
Fusion Classifier]

CNN Auxiliary
Classifier

P-Feature

d o & P-CNN (Panchromatic) —}I

]

L gl VS-CNN (Muitispectral) »I

MS-Features

d/r

Pan + MS information from VHSR
[Gaetano18]

[Audebert17] N. Audebert, B. Le Saux, S. Lefévre: Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks. ISPRS J. of Photogrammetry and Rem. Sens. 140, 20-32 (2018)
[Benedetti18] P. Benedetti, D. lenco, R. Gaetano, K. Ose, R. G. Pensa, S. Dupuy: M3Fusion: A Deep Learning Architecture for Multi-{Scale/Modal/Temporal} satellite data fusion. IEEE JSTARS (2018)
[Gaetano18] R. Gaetano, D. lenco, K. Ose, C. Cresson: MRFusion: A Deep Learning architecture to fuse PAN and MS imagery for land cover mapping CoRR abs/ (2018)

[lenco19] D. lenco, R. Gaetano, R. Interdonato, K. Ose and D. Ho Tong Minh: Combining Sentinel-1 and Sentinel-2 time series via RNN for object-based Land Cover Classification. IGARSS (2019).

[Cresson191 R. Cresson. D. lenco. R. Gaetano, K. Ose and D. Ho Tong Minh: Optical images gap filling with deep convolutional autoencoder. IGARSS (2019).

SaroParisTech @cirad @ !!!

29



%tetls Deep Learnln_g &
EO Data Fusion

P-Feature

Sentinel-2 Time Series
at High Spatial Resolution d q P-CNN (Panchromatic) # I

RNN Auxilial
e — D
TMT2T3 Tn d
C/
L g VS-CNN (Multispectral) o0 2

MS-F
ONN CNN Auxiliary eatures
Classifier

d/r

]

Encoder Decoder m | —

wv + BN + ReLU + pooling upsampling + coav + BN + ReLU

25 x 25 patch extracted from
Spot 6/7 VHSR image

(Very High Spatial Resolution) - e 4 : Pan + MS information from VHSR
VHSR + DEM [Audebert17] Time Series + VHSR [Benedetti18] (Gaetano18]

AuX Combied AUX
Classifier v assitier vclassifier

S2 (t)
_ L == predicted

Botlleneck |:. > “ > a

P Encoder conv.
[> Decoder conv.
[ Conv. output

H yp e rS p e Ct ra I + D E M [C h e n 1 7] RADAR Time Series OPTICAL Time Series [ Stacked features

Sentinell & Sentinel2 Satellite Image Sentinell & Sentinel2 Satellite Image
Time Series Classification [lenco19] Time Series Restoration [Cresson19]

[Chen17] Y. Chen, C. Li, P. Ghamisi, X. Jia, Y. Gu: Deep Fusion of Remote Sensing Data for Accurate Classification. IEEE GRSL 14(8): 1253-1257 (2017)

[Audebert17] N. Audebert, B. Le Saux, S. Lefévre: Beyond RGB: Very High Resolution Urban Remote Sensing With Multimodal Deep Networks. ISPRS J. of Photogrammetry and Rem. Sens. 140, 20-32 (2018)
[Benedetti18] P. Benedetti, D. lenco, R. Gaetano, K. Ose, R. G. Pensa, S. Dupuy: M3Fusion: A Deep Learning Architecture for Multi-{Scale/Modal/Temporal} satellite data fusion. IEEE JSTARS (2018)
[Gaetano18] R. Gaetano, D. lenco, K. Ose, C. Cresson: MRFusion: A Deep Learning architecture to fuse PAN and MS imagery for land cover mapping CoRR abs/ (2018)

[lenco19] D. lenco, R. Gaetano, R. Interdonato, K. Ose and D. Ho Tong Minh: Combining Sentinel-1 and Sentinel-2 time series via RNN for object-based Land Cover Classification. IGARSS (2019).
[Cresson191 R. Cresson. D. lenco. R. Gaetano, K. Ose and D. Ho Tong Minh: Optical images gap filling with deep convolutional autoencoder. IGARSS (2019).
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DL & EO Data Fusion:
Applications Examples

MRFusion: A DL approach to fuse
PAN and MS for LC mapping

4
Single-Sensor Data Fusion on SPOTG: ar |
- Panchromatic Image (1.5m) I_l =

- Multi-Spectral Image (6m)
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DL & EO Data Fusion:
Applications Examples

MRFusion: A DL approach to fuse .
PAN and MS for LC mapping " _"’I

7
Single-Sensor Data Fusion on SPOTG6: "" I|| _>-'
- Panchromatic Image (1.5m) =

- Multi-Spectral Image (6m) ar

TWINNS: fuse Radar/Optical Time

[OQeee O O]

Series for LC Mapping via DL

Multi-Sensor Multi-Temporal Data Fusion

BRI EEEIEERL

- Sentinel 1 Time Series Images (10m)
- Sentinel 2 Time Series Images (10m)

HaroParisTech @ cirad @ & 20
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TERRITOIRE ENVIRONNEMENT TELEDETECTION

CHRENU ‘UN
NFORMATION SPATIALE

MRFusion: A DL approach to fuse PAN and
MS for LC mapping [Gaetano18]

[Gaetano18] R. Gaetano, D. lenco, K. Ose, R. Cresson: "A Two-Branch CNN Architecture for Land Cover Classification of PAN and MS Imagery". Remote Sensing 10(11): 1746 (2018)
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N tEtlS MRFusion: A DL approach to fuse
ORUIDMERIE . PAN and MS fOr LC mapplng

Different Data fusion scenario [Schmitt16]:
- Single-Sensor Data Fusion
- Multiple-Sensor Data Fusion
- Temporal Data Fusion
- Machine Learning-Based Data Fusion
- And so on....

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine
4(4): 6--23, 2016
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N tEtlS MRFusion: A DL approach to fuse
ORUIDMERIE . PAN and MS fOr LC mapplng

Different Data fusion scenario [Schmitt16]:
- Single-Sensor Data Fusion
- Multiple-Sensor Data Fusion
- Temporal Data Fusion
- Machine Learning-Based Data Fusion
- And so on....

Single-Sensor Data Fusion on SPOTG:
- Panchromatic Image (1.5m)
- Multi-Spectral Image (6m)

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine
4(4): 6--23, 2016
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N tetls MRFusion: A DL approach to fuse
PAN and MS for LC mapping

Different Data fusion scenario [Schmitt16]:
- Single-Sensor Data Fusion
- Multiple-Sensor Data Fusion
- Temporal Data Fusion
- Machine Learning-Based Data Fusion

- And soon....
Single-Sensor Data Fusion on SPOTG:
- Panchromatic Image (1.5m)
- Multi-Spectral Image (6m)
To this end, we conceive a Deep Learning ¢
approach leveraging: a

- Convolutional Neural Network (PAN) % 5
- Convolutional Neural Network (MS) I|| _"’

d/r

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine
4(4): 6--23, 2016
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% tetls MRFusion: A DL approach to fuse
S PAN and MS for LC mapping

MRFusion: Single-Sensor Multi-Resolution data fusion architecture

P-Features

q P-CNN (Panchromatic) #

d/r

IR W ViS-CNN (Multispectral) [ 2

MS-Features
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% tetls MRFusion: A DL approach to fuse
S PAN and MS for LC mapping

MRFusion: Single-Sensor Multi-Resolution data fusion architecture

P-Features

q P-CNN (Panchromatic) #

IR W ViS-CNN (Multispectral) [ 2

MS-Features

d/r

d = patch size on the PAN image
r = spatial ratio between PAN and MS (i.e. in SPOTG6 is 4)
c = number of channels in the MS image

.é!gi!"(')l-‘.n-r-.chh ‘Cir(]d @ & 33



% tetls MRFusion: A DL approach to fuse
Em—— PAN and MS for LC mapping

CNNs for Spatial Information

ied xd 128 128 256 256 512 512@1
PAN-CNN . . .
MaxPooling(2x2, MaxPooling( | Conv(512, | GlobalMa
Conv(128, 7x7) s=2) Conv(256, 3x3) | 2x2, s=2) 3x3) Pooling
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% tetls MRFusion: A DL approach to fuse
Em—— PAN and MS for LC mapping

CNNs for Spatial Information

ied xd 128 128 256 256 512 512@1
PAN-CNN . . .
MaxPooling(2x2, MaxPooling( | Conv(512, | GlobalMa
Rel u Conv(128, 7x7) s=2) Conv(256, 3x3) | 2x2, s=2) 3x3) Pooling

Batch Norm.
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% tetls MRFusion: A DL approach to fuse
e PAN and MS for LC mapping

CNNs for Spatial Information

ied xd 128 128 256 256 512 512@1
PAN-CNN . .
MaxPooling(2x2, MaxPooling( | Conv(512, | GlobalMa
Rel u Conv(128, 7x7) s=2) Conv(256, 3x3) | 2x2, s=2) 3x3) Pooling
Batch Norm.
4@d/r x d/r 256 1024 1024 @1

Conv(1024, GlobalMax

Conv(256, 3x3) Conv(512, 3x3) 3x3) Pooling
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N tetls MRFusion: A DL approach to fuse
o PAN and MS for LC mapping

Ent-To-End Process from scratch

One CNN Module dedicated for each source (PAN and MS)

Multi-Scale and Multi-Source data fusion automatically managed by the architecture
This architecture avoids the use of Pansharpening or Interpolation preprocessing

The classification is performed at finer resolution (1.5m)

Saroparistech @ cirad @ U.‘
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“Ntetis

TERRITOIRE ENVIRONNEMENT TELEDETECTION
NFORMATION SPATIALE

Reunion Island Dataset:

- Spot6 image

- 13 Land Cover Classes

- PAN Image 44374 x 39422
- MS Image 11094 x 9856

g&!r() arislech ‘Cir'ﬂd @ L.‘

Data Description

Class Label # Objects | # Pixels
1 Crop Cultivations 168 50061
2 Sugar cane 167 50100
3 Orchards 167 50092
4 Forest plantations 67 20100
5 Meadow 167 50100
6 Forest 167 50100
7 Shrubby savannah 173 50263
8 Herbaceous savannah 78 23302
9 Bare rocks 107 31587
10 Urban areas 125 36046
11 Greenhouse crops 49 14387
12 Water Surfaces 96 2711
13 Shadows 38 11400
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“Setis

TERRITOIRE ENVIRONNEMENT TELEDETECTION
NFORMATION SPATIALE

Reunion Island Dataset:

- Spot6 image

- 13 Land Cover Classes

- PAN Image 44374 x 39422
- MS Image 11094 x 9856

Gard Dataset:

- Spot6 image

- 8 Land Cover Classes

- Pan image 24110 x 33740
- MS image 6028 x 8435

MaroParistech @ cirad @ L—

Data Description

Class Label # Objects | # Pixels
1 Crop Cultivations 168 50061

2 Sugar cane 167 50100

3 Orchards 167 50092

4 Forest plantations 67 20100

5 Meadow 167 50100

6 Forest 167 50100

7 Shrubby savannah 173 50263

8 Herbaceous savannah 78 23302

9 Bare rocks 107 31587

10 Urban areas 125 36046

11 Greenhouse crops 49 14387

12 Water Surfaces 96 2711

13 Shadows 38 11400
Class Label # Objects | # Pixels
1 Cereal Crops 167 50100
2 Other Crops 167 50098
3 Tree Crops 167 50027
4 Meadows 167 49997
D Vineyard 167 50100
6 Forest 172 50273
7 Urban areas 222 50275
8 Water Surfaces 167 50100

36



Data Description

TERRITOIRE ENVIRONNEMENT TELEDETECTION
NFORMATION SPATIALE

Reunion Island Site

Indian Ocean
East of Madagascar Gard Site
South of France
East of Montpellier

i{iml arisTech @ cirad E .



% tetlS Experimental Settings

T FTL

Data splits:
30% of objects used as Train data and 70% of objects used as TEST
Results are averaged over 10 random splits 30%/70%

Competitors:
- Random Forest applied on the pixel or patch information
- CNN approach applied on Pansharpened image
- DMIL[Liu18] a deep learning method recently introduced to combine PAN and MS for land
cover mapping

Deep Learning approaches are fed by patches:
- 32 x 32 patch size for the PAN information
- 8 x 8 patch size for the MS information

Evaluation Measures (On Test Data):
Accuracy (Global Accuracy)
F-Measure (it helps to take into account unbalance class distribution)
Kappa Measure

[Liu18] X. Liu, L. Jiao, J. Zhao, J. Zhao, D. Zhang, R. Liu, S. Yang, X. Tang: Deep Multiple Instance Learning-Based Spatial-Spectral
Classification for PAN and MS Imagery. IEEE Trans. Geoscience and Remote Sensing 56(1): 461-473 (2018)
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% tetlS Comparison Results

Accuracy F-Measure Kappa
RF(PIXEL) 24.87 £ 0.2 23.66 £ 0.2 0.1719 £+ 0.0024
RF(PATCH) || 72.22 + 1.31 71.53 £ 1.4 0.6943 + 0.0144
CNNpg 74.49 £ 1.20 | 74.25 £1.24 | 0.7195 £+ 0.0131
DMIL 69.40 £ 1.11 | 69.34 £ 1.12 | 0.6637 £ 0.0121
MRFusion 79.65 &+ 0.87 | 79.56 = 0.91 | 0.7764 + 0.0096

Reunion Island Results

Accuracy F-Measure Kappa

RF(PIXEL) 20.91 = 0.16 | 25.52 = 0.11 0.1532 £ 0.18
RF(PATCH) || 69.93 + 0.76 | 69.55 4+ 0.77 0.6564 £ 0.87
CNNpg 66.14 == 0.78 | 65.80%= 0.77 | 0.6131 = 0.0089
DMIL 61.96 £ 1.00 | 61.76 = 1.01 | 0.5652 &= 0.0115
MR Fusion 70.48 = 0.55 | 70.19 &= 0.67 | 0.6627 £ 0.0063

Gard Results

JaroparisTech @ cirad @ M .



tetlS Comparison Results

TERRITOIRE ENVIRONNEMENT TELEDETECTION
INFORMATION SPATIALE

| 1 1
2 2 2
3 3 3
4 a 4
s s S
6 6 [06 o
7 7 7
= H los ©
9 9 9
10 10 10
1n 1 02 n
12 12 12
13 13 13
0.0
1 2 3 4 5 6 7 8 9 1011 1213 1 2 3 4 5 6 7 8 9 1011 12 13 1 2 3 4 5 6 7 8 9 101 12 13
(a) (b) (c)
1.0
loa
- 0.6
»o‘

(d) (e) (f)

Figure 6: Confusion matrices of the Deep Learning approaches on the Reunion Island dataset ( CN Nps (a), DMIL (b) and
M RFusion (c) ) and on the Gard dataset ( CNNpg (d), DMIL (e) and M RFusion (f) ).
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tetlS Map Details on

some particular extracts

VHSR Image

)
[ ] Cereal Crops [__| Other Crops

M
[ Urban Areas

[] Tree Crops [ ] Meadows [__] Vineyard

I Forest

] water
Table VIII: table caption GARD
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tetlS Map Details on

W oo some particular extracts

VHSR Image M RFusion

[ Crop Cultivations [_] Forest plantations [__] Shrubby savannah [l Urban areas B Shadows
(] Sugar cane [ Meadow Il Herbaceous savannah [l Greenhouse crops
[ Orchards B Forest [ Bare rocks [] water Surfaces

SgrorarisTe Table IX: table caption REUNION 42



% tEtlS TWINNS: fuse Radar/Optical Time
Series for LC Mapping via DL

Different Data fusion scenario [Schmitt16]:
- Single-Sensor Data Fusion
- Multiple-Sensor Data Fusion
- Temporal Data Fusion
- Machine Learning-Based Data Fusion
- And so on....

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine
4(4): 6--23, 2016
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% tEtlS TWINNS: fuse Radar/Optical Time
Series for LC Mapping via DL

Different Data fusion scenario [Schmitt16]:
- Single-Sensor Data Fusion
- Multiple-Sensor Data Fusion
- Temporal Data Fusion
- Machine Learning-Based Data Fusion
- And so on....

Multiple-Sensor Data Fusion on S1/S2:
- Sentinel 1 Time Series (10m)
- Sentinel 2 Time Series (10m)

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine
4(4): 6--23, 2016
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% tetls TWINNS: fuse Radar/Optical Time
Series for LC Mapping via DL

Different Data fusion scenario [Schmitt16]:
- Single-Sensor Data Fusion
- Multiple-Sensor Data Fusion
- Temporal Data Fusion
- Machine Learning-Based Data Fusion

- And so on....

Multiple-Sensor Data Fusion on S1/S2:
- Sentinel 1 Time Series (10m)
- Sentinel 2 Time Series (10m)

nvGru Auxiliary

Classifier

Sentinel-1 Stream  [&

To this end, we conceive a Deep Learning

approach leveraging:
- Convolutional Neural Network - CNNs

- Conv Recurrent Neural Networks -
convRNNs

e osuuo) Ajjng |

e pay:
Y
@--e9)

[Schmitt16] M. Schmitt and X. X. Zhu, "Data Fusion and Remote Sensing: An ever-growing relationship". IEEE Geoscience and Remote Sensing Magazine
4(4): 6--23, 2016
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“Ntet1S TwiINNs: fuse Radar/Optical Time
Series for LC Mapping via DL

MRFusion: TWIn Neural Networks for Sentinel data

Sentinel-1 Stream ConvGru Auxiliary
Classifier

Convolutional Gated

Y Recurrent Unit +
Attention

Ent-To-End Process a+
(from scratch) X / ~|E
Sentinel-1 Time Series N > <
I MR
Multi-Sensor/ ~ 13|~
Temporal architecture C o a* AN
. onvGru Auxiliary -
Sentinel-2 Stream Class|f|er :: 2
)
Convolutional Gated - |4
o Recurrent Unit + d >
Attention —»a

CNN Auxiliary
N Classifier
| %

Sentinel-2 Time Series N \

Exploit both CNN and convRNN to process the same information to introduce
diversity in the data representation
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e oo s More detail on the (CO nv) RNN branch

GRU with Attention - Temporal Component

AGENCE NATIONALE DE LA RECHERCHE £ $\SS, 6;
SavolarisTech @ cirad stes . ® 5 )
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More detail on the (CO nv) RNN branch

GRU with Attention - Temporal Component Gated Recurrent Unit:
- Lighter architecture than LSTM
2zt = o(Wopxy + Wophe_1 +0,) - Recurrent Unit with gates
re = 0 (Wyatts + Wynhe1 + by) - Widely employed in NLP
ht — Zt @ ht_l _I_ RNN Unit Unfolded structure

| |

2000

(1 — Zt) O tanh(thxt —+ Whr(rt O ht—l) —+ bh)

.

We use DropOut to alleviate overfitting

AV;:!'()[»H <Tech ¥ cirad @ E




Dtetis
More detail on the (CO nV) RNN branch

GRU with Attention - Temporal Component Gated Recurrent Unit:
- Lighter architecture than LSTM
2zt = o(Wopoxe + Wophi_1+ b)) - Recurrent Unit with gates
re = o(Wra + Wynhi—1 + by) - Widely employed in NLP
ht — Zt @ ht_l_l_ RNN Unit Unfolded

n structure

2000

(1 — Zt) ® tanh(thxt —+ Whr(rt ® ht—l) + bh)

,

We use DropOut to alleviate overfitting

Attention Mechanism Va = tanh(H - Wa + ba)

Combine the information A= SoftMazx(v, - ug)
extracted at each

timestamps together

N
rnn feat — Z R hti

N Z p— 1 AGENCE NATIONALE DE LA RECHERCHE £ X\SS,
Yaroraristech @ cirad ste _ n
—.




%tetls M3F: Spatio-Temporal Data
o Fusion via Deep Learning

convRNN Module dedicated to manage Temporal Correlations
CNN Module dedicated to manage Spatial Correlation between different timestamps
Multi-Sensor and Multi-Temporal data fusion automatically managed by the architecture

Dedicated approach to fuse together Multi-Temporal information by Deep Learning

[Hou17] S. Hou, X. Liu, Z. Wang: DualNet: Learn Complementary Features for Image Recognition. ICCV 2017: 502-510




%tetls M3F: Spatio-Temporal Data
Fusion via Deep Learning

convRNN Module dedicated to manage Temporal Correlations
CNN Module dedicated to manage Spatial Correlation between different timestamps
Multi-Sensor and Multi-Temporal data fusion automatically managed by the architecture

Dedicated approach to fuse together Multi-Temporal information by Deep Learning

Auxiliary Classifiers adapted from [Hou17], the goal is to boost the discrimination power of
each set fo features independently

In our context, sources are naturally complementary w.r.t the work proposed in [Hou17]

_ S1 S1 S2 S2
Liotal = qus([cnnfeatv TN feqr CNMM feat s Tnnfeat])

+ Z Z LS,p(p;eat)

s€{S1,52} pe{rnn,cnn}

[Hou17] S. Hou, X. Liu, Z. Wang: DualNet: Learn Complementary Features for Image Recognition. ICCV 2017: 502-510




% tetls Data Description

TERRITOIRE ENVIRONNEMENT TELEDETECTION
NFORMATION SPATIALE

Class Label # Objects | # Pixels
; _ 1 Crop Cultivations 168 50061
Reunion !slano! Dataset: 5 Sugar canc 67 F0100
- 24 Sentinel-1 images (2 bands) 3 Orchards 167 50092
- 34 Sentinel-2 images (10 bands 4 Forest plantations 67 20100
T 5 Meadow 167 50100

+

6 If:]dICGS) _ § Forest 167 50100
- Spatlal Extent: 6656 x 5913 7 Shrubby savannah 173 50263
pixels 8 Herbaceous savannah 78 23302
- 13 Land Cover Classes 9 Bare rocks 107 31587
- - 10 Urban areas 125 36046
(322748 plXGlS / 2656 ObjS) 11 Greenhouse crops 49 14387
12 Water Surfaces 96 2711
13 Shadows 38 11400
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% tetls Data Description

TERRITOIRE ENVIRONNEMENT TELEDETECTION
NFORMATION SPATIALE

Class Label # Objects | # Pixels
; _ 1 Crop Cultivations 168 50061
Reunion !slano! Dataset: 5 Sugar canc 67 F0100
- 24 Sentinel-1 images (2 bands) 3 Orchards 167 50092
- 34 Sentinel-2 images (10 bands 4 Forest plantations 67 20100
T 5 Meadow 167 50100
+
6 Ir.]dICGS) _ § Forest 167 50100
- Spatlal Extent: 6656 x 5913 7 Shrubby savannah 173 50263
pixels 8 Herbaceous savannah 78 23302
- 13 Land Cover Classes 9 Bare rocks 107 31587
- - 10 Urban areas 125 36046
(322748 plXGlS / 2656 ObjS) 11 Greenhouse crops 49 14387
12 Water Surfaces 96 2711
13 Shadows 38 11400
Koumbia Dataset: Class Label # Polygons | # Pixels
- 29 Sentinel-1 images (2 bands) 0 Annual Cropland 671 31075
- 23 Sentinel-2 images (10 bands 1 Fallows o7 1808
+6 indices) 2 Natural Forest 64 15843
_ 3 Savannah 87 25156
- Spatlal Extent: 5253 x 4797 A Grassland 149 12 883
pixels 5 Rocks 29 852
- 7 Land Cover Classes (90123 6 Built up 71 1096
pixels / 1137 objs) / Water 16 1410

Saroparistech @ cirad @ H,‘ -



“Stetis

TERRITOIRE ENVIRONNEMENT TELEDETECTION
INFORMATION SPATIALE

Reunion Island Site Koumbia Site
Indian Ocean Province of Tuy
East of Madagascar Burkina Faso

48
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% tetlS Experimental Settings

NFORMATION SPATIALE

Data splits (Training / Validation / Test):
Reunion Island Dataset: 30% / 20% / 50% (at object level) repeated 10 times
Koumbia Dataset: 50% / 30% / 20% (at object level) repeated 10 times
We consider patches of size 5x5

JaroparisTech @ cirad @ M 45



% tetlS Experimental Settings

NFORMATION SPATIALE

Data splits (Training / Validation / Test):
Reunion Island Dataset: 30% / 20% / 50% (at object level) repeated 10 times
Koumbia Dataset: 50% / 30% / 20% (at object level) repeated 10 times
We consider patches of size 5x5

Ablation Study:
- A version of TWINNS for each source (TWINNS(S1) and TWINNS(S2) )
- A version of TWINNS without Auxiliary Classifiers (TWINNS noAux)
- A version of TWINNS with only the CNN branches (FullCNN)
- A version of TWINNS with only the convRNN branches (FullRNN)

MaroParistech @ cirad @ L
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% tetlS Experimental Settings

ChE r ViK N
NFORMATION SPATIALE

Data splits (Training / Validation / Test):
Reunion Island Dataset: 30% / 20% / 50% (at object level) repeated 10 times
Koumbia Dataset: 50% / 30% / 20% (at object level) repeated 10 times
We consider patches of size 5x5

Ablation Study:
- A version of TWINNS for each source (TWINNS(S1) and TWINNS(S2) )
- A version of TWINNS without Auxiliary Classifiers (TWINNS noAux)
- A version of TWINNS with only the CNN branches (FullCNN)
- A version of TWINNS with only the convRNN branches (FullRNN)

Competitors:
- Multiple Random Forests competitors:
- RF(S1,52)
- RFLr(S1,52)
- A two branch Convolutional LSTM (2ConvLSTM)
- A RF competitor fed with the representation learnt by TWINNS - RF(TWINNS)

Saroparistech @ cirad @ U,‘ v



% tetlS Experimental Settings

F r ViK N
NFORMATION SPATIALE

Data splits (Training / Validation / Test):
Reunion Island Dataset: 30% / 20% / 50% (at object level) repeated 10 times
Koumbia Dataset: 50% / 30% / 20% (at object level) repeated 10 times
We consider patches of size 5x5

Ablation Study:
- A version of TWINNS for each source (TWINNS(S1) and TWINNS(S2) )
- A version of TWINNS without Auxiliary Classifiers (TWINNS noAux)
- A version of TWINNS with only the CNN branches (FullCNN)
- A version of TWINNS with only the convRNN branches (FullRNN)

Competitors:
- Multiple Random Forests competitors:
- RF(S1,52)
- RFLr(S1,52)
- A two branch Convolutional LSTM (2ConvLSTM)
- A RF competitor fed with the representation learnt by TWINNS - RF(TWINNS)

Evaluation Measures (On Test Data):
Accuracy (Global Accuracy)
F-Measure (it helps to take into account unbalance class distribution)
Kappa Measure
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% tetlS Experimental Evaluation

TERRITOIRE ENVIRONNEMENT TELEDETECTION

NFORMATION SPATIALE

Tech @cirad @ E

Ablation Study
F-Measure Kappa Accuracy
TWINNS(S1) 73.22 + 1.23 | 0.6926 £+ 0.0144 | 73.89 £ 1.24
TWINNS(S2) 84.29 £ 1.19 | 0.8159 £+ 0.0143 | 84.26 4+ 1.26
Full CNN 87.69 £ 0.85 | 0.8560 £+ 0.0107 | 87.71 4+ 0.92 Reunion Island
FullRNN 88.23 £ 1.43 | 0.8620 £ 0.0169 | 88.22 4+ 1.45
TWINNSNoAuz || 83.92 £ 1.05 | 0.8109 4+ 0.0117 | 83.84 4+ 0.97
TWINNS 89.87 4+ 0.65 | 0.8814 £ 0.0080 | 89.88 £ 0.69
F-Measure Kappa Accuracy
TWINNS(S1) 80.93 £ 2.18 | 0.7530 £ 0.0283 | 81.84 4+ 2.13
TWINNS(S2) 81.47 £ 4.12 | 0.7563 £ 0.0556 | 81.99 4 4.30
Koumbia FullCNN 86.81 + 2.38 | 0.8303 + 0.0303 | 87.51 4+ 2.29
FullRNN 85.90 +£ 2.72 | 0.8186 £+ 0.0363 | 86.65 & 2.75
TWINNSNoAuz || 81.87 &£ 4.43 | 0.7631 4+ 0.0599 | 82.49 + 4.61
TWINNS 86.65 £ 2.50 | 0.8298 £ 0.0322 | 87.50 & 2.44
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% tetlS Experimental Evaluation

T FTL

Competitors

F-Measure Kappa Accuracy

RF(51,52) 86.10 & 0.58 | 0.8402 £ 0.0065 | 86.42 £ 0.54
RFr(S1,52) 87.73 = 0.58 | 0.8611 £ 0.0069 | 88.27 £ 0.59
2ConvLST M 83.21 = 0.90 | 0.8031 £ 0.0103 | 83.17 £ 0.90
TWINNS 89.87 & 0.65 | 0.8814 £ 0.0080 | 89.88 £ 0.69
RF(TWINNS) | 90.07 + 1.04 | 0.8840 + 0.0124 | 90.10 + 1.07

Reunion Island

F-Measure Kappa Accuracy

RF(51,52) 79.79 + 5.30 | 0.7424 4+ 0.0694 | 81.25 £+ 5.16
RFLr(S1,52) 84.78 £ 2.36 | 0.8079 £ 0.0315 | 86.00 & 2.35
2ConvLST M 85.73 £ 2.24 | 0.8165 £ 0.0276 | 86.48 & 2.08
TWINNS 86.65 = 2.50 | 0.8298 + 0.0322 | 87.50 + 2.44
RF(TWINNS) || 85.79 +£2.62 | 0.8172 + 0.0351 | 86.54 + 2.68

Koumbia
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tetlS Experimental Evaluation

True label

Confusion Matrix
o JUGE 0.1 0.01 0.0 0.110.040.05 0.0 0.0 0.01 0.0 0.0 0.0

0.01{eA=E 0.0 0.0 0.030.01 0.0 0.01 0.0 0.0 0.0 0.0 0.0
> 40.050.08s%= 0.0 0.030.150.01 0.0 0.0 0.0 0.0 0.0 0.0
340.01 0.0 0.0 Ak 0.0 0.28 0.0 0.0 0.0 0.01 0.0 0.0 0.0
4 40.010.050.01 0.0 {X:g/ 0.0 0.010.01 0.0 0.02 0.0 0.0 0.0
5 40.010.020.030.010.01{¢A:3£0.02 0.0 0.0 0.01 0.0 0.0 0.0
6 40-030.020.01 0.0 0.020.158%80.050.010.01 0.0 0.0 0.0
7 40.04 0.0 0.0 0.0 0.070.010.040.060.17 0.0 0.0 0.0

g 40.0 0.0 0.0 0.0 0.0 0.0 0.010.01{¢Ar0.19 0.0 0.01 0.0

g9-0.0 0.0 0.0 0.0 0.00.01 0.0 0.0 0.02{e3=lg 0.0 0.0 0.0

10 {0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.050X:EJ0.24 0.0 0.0

11 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 {e¥=k] 0.0

12 0.0 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.01 0.0 0.0 [WAE

B 49 o A 9 9
Predicted label
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True label

Reunion Island

Confusion Matrix
o 450.170.01 0.0 0.120.060.04 0.0 0.0 0.01 0.0 0.0 0.0

1 4 0.0 9%l 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
> 40.030.09s%5y 0.0 0.040.16 0.0 0.0 0.0 0.01 0.0 0.0 0.0
3-40.0 0.01 0.0 «¥&1 0.0 0.24 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 40.0 0.05 0.0 0.0 ¥A=x10.01 0.0 0.0 0.0 0.02 0.0 0.0 0.0
540.0 0.0 0.010.01 0.0 [¢A<]80.01 0.0 0.0 0.01 0.0 0.0 0.0
6 40-010.030.01 0.0 0.030.18(y480.01 0.0 0.02 0.0 0.0 0.0
7 40.020.02 0.0 0.0 0.070.030.05[#%150.05 0.2 0.0 0.0 0.0
g 40.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 [¢A:0.09 0.0 0.01 0.0
g940.0 0.0 0.0 0.0 0.010.01 0.0 0.0 0.01¢A=fg 0.0 0.01 0.0

10 40.0 0.01 0.0 0.0 0.0 0.05 0.0 0.0 0.01{*¥H0.21 0.0 0.0

11 {0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 [¢¥) 0.0

12 410.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.010.01 0.0 0.01 [vR:t:
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Predicted label

RFLF
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True label

Confusion Matrix
'0.080.03 0.0 0.070.010.02 0.0 0.0 0.01 0.0 0.0 0.0

0.7
1 J0.018% 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 40.040.04[JEE 0.0 0.010.070.01 0.0 0.0 0.0 0.0 0.0 0.0
340.0 0.0 0.0KE 0.0 0.1 0.0 0.0 0.00.010.0 0.0 0.0
440.00.020.01 0.0 & 0.0 0.0 0.01 0.0 0.02 0.0 0.0 0.0
540.0 0.0 0.020.02 0.0 ifPI0.02 0.0 0.0 0.0 0.01 0.0 0.01
6 10.01 0.0 0.02 0.0 0.010.14[¥J0.010.01 0.0 0.0 0.0 0.0
740.05 0.0 0.0 0.0 0.040.010.07[¢X5/0.080.06 0.0 0.0 0.0
g {0.0 0.0 0.0 0.0 0.0 0.00.090.01F0.02 0.0 0.01 0.0
940.0 0.0 0.0 0.0 0.0 0.00.01 0.0 0.02[JEHo0.01 0.0 0.0

10 40.02 0.0 0.0 0.0 0.02 0.0 0.01 0.0 0.020.35{¢)1:) 0.0 0.0

11 40.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 ¥A=kj0.01

12 {0.0 0.0 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.02A=8
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tetls Map Details on

e some particular extracts

VHSR Image RF1r(51,52)

[ ] Annual Cropland [ | Fallows [ Natural Forest [ | Savannah

B Grassland [ Bare rocks [ Urban areas [ ] Water Surfaces

Koumbia
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tetls Map Details on

e some particular extracts

VHSR Image RFpLr(S1,52) VHSR Image RFLp(51,52)

(f)

(h)
[ ] Annual Cropland [ | Fallows [ Natural Forest [ | Savannah

(h)

B Grassland [ Bare rocks [ Urban areas [ ] Water Surfaces

] Crop Cultivations [] Sugar cane ] Orchards [] Forest plantations 7] Meadow [ Forest [ Shrubby savannah
[l Herbaceous savannah [ Bare rocks |[g] Urban areas [Jil] Greenhouse crops ] Water Surfaces  [Jii] Shadows

Koumbia Reunion Island
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Dtetis

Deep Learning seems a promising tool for task-driven multi source data fusion.
Two Deep Learning examples for data fusion considering land cover mapping:

- MRFusion: fuse together information from the same sensor, PAN and MS images from
SPOT6 image

- TWINNS: fuse together Satellite Image Sentinel-1 and Sentinel-2 time series (Multi-Sensor/
Temporal) for land cover classification

Combine different basic blocks (RNN, CNN, convRNN, Attention, etc...) to manage different
data sources to provide decision-level data fusion frameworks.

H. AGENCE NATIONALE DE LA RECHERCHE 2\SS|




- tetls Current Trend

Different Research directions:

e (Generative Adversarial network Pl

e Spatio - Spectral - Temporal Domain Adaptation

e Hierarchical relationships to regularise the classification (fine-grained
classification)

e Explore more the semi-supervised setting (reduce the human effort)

 Explore more weakly-supervised settings (the model is learned with
weak supervision w.r.t. the task to solve)

* Integrate alternative sources of information: cross-modal (i.e. text or
VGI=Volunteer Geographic Information)

e Data Fusion among different remote sensors (multi-scale, multi-
temporal, etc..)

groparistecn @ cirad @ E 55



Mtetis

e GENErative Adversarial Network

The framework involves:

- A generative network (G) that tries to simulate real examples
- A discriminator network (D) that tries to recognise real vs fake examples

Mainly employed to sample examples from a data distribution

In the remote sensing field, GANs can be exploited to generate new examples to
enrich the training data

An interesting variant are cGANs (Conditional GANs) that constraint the generation process
with a kind of supervision (for instance the label to predict).

'é!{.g"(.)l‘n-‘flb(:ll @ cirad @ B e



%tetls Spatio - Spectro - Temporal Domain
Adaptation

In a (unsupervised) domain adaptation (DA) setting:
- A source domain (S) has labelled examples
- A target domain (T) has no labelled examples

The goal is to transfer the model from S -> T leveraging the labelled examples in S

Saroparistech @ cirad @ & .



%tetls Spatio - Spectro - Temporal Domain
Adaptation

In a (unsupervised) domain adaptation (DA) setting:
- A source domain (S) has labelled examples
- A target domain (T) has no labelled examples

The goal is to transfer the model from S -> T leveraging the labelled examples in S

In Remote Sensing field the source/target domains can be:
e Different sensors: Spot/Pléiades, Spot/Sentinel, Landsat/Sentinel (Spectral DA)
e Different geographical areas (Spatial DA)
e |Information (Images or Time Series) acquired at different time (Temporal DA)

g

T 1 e
oA
€< NN

Source: MNIST Target: SVHN
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N tetlS Hierarchical Relationships

TERRITOIRE ENVIRONNEMENT TELEDETECTION Fi n e - G ra i n ed C I ass if i cati o n

NFORMATION SPATIALE

In many real problems, the label space (classes) can be organised in a
taxonomy or hierarchy.

When such relationships exist in the label space, they can be exploited to
regularise the classification process.

In Remote Sensing (especially in Land Use / Land Cover scenario), classes can
be naturally arranged in taxonomies.

-I
hierosoly stevenii
rood

Such kind of scenario is called: Fine-Grained Classification ~ Bk
Convolvukis .

(a) Hierarchy among dogs

Al Nizwxy
Ao Couny WoDsrowl Doupl s Miboyn Curevic e
_»»’}7’\' 6 - - w . S
: -a-tﬁ' ; #— B
el - : ey
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L0000 A% o7 MYE P ks wias L

Lupinus ". ‘:'r ) 5
. (b) Hicrarchy among aircraft , -
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% tetls Conclusion and Directions

TERRITOIRE ENVIRONNEMENT TELEDETECTION
NFORMATION SPATIALE

Deep Learning seems a promising tool for task-driven multi source data fusion in Remote
Sensing.

Most of the literature in Remote Sensing & Deep Learning exploits (almost) directly results
from Computer Vision but... Remote Sensing has some peculiarity (multi-scale, multi-
sensors, multi-temporal, sparsely annotated data, etc...) -> Necessity for ad-hoc
architectures.

In operational cases, when predictive analysis need to be deployed, some sensors can be
damaged or unavailable. How to develop methods capable to work on misaligned
(between training and test) information sources is mandatory in Remote Sensing.

Many efforts were done in creating and developing physical-based models and now? Data-
Driven models seem overpass previous work but...How to combine physical-based and
(DL) data-driven models in Remote Sensing is a promising direction. Data Assimilation can
be an answer.

. ‘ AGENCE NATIONALE DE LA RECHERCHE s;é“ss%—‘
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W tetls The MDL4EO

(Machine and Deep Learning for Earth Observation)

team @QUMR TETIS

NFORMATION SPATIALE
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Thank you
for your Attention

Gathers global measurements of atmospherc, terrestrial,

and oceanic conditions enabling accurate weather forecast- "

ing including the prediction of severe weather events, such GORIEDET 0D

el ainbodbel i s ! develop a better scientific understanding of the Earth system

and ts response to natural or human-induced changes.
9 W
AIM (aprit 2007 Launch)
Studies the Polar Mesospheric Clouds that form about 50
miles above the Earth's surface which have been suggested
to be indicators of global ciimate change.

AN

OCO-2 (uly 2014 Launch)

Measures giobal CO, concentrations and
geograptic distribution from space, revolutionizing
our understanding of the global carbon cycle.

Coriolis anuary 2003 Launch)
Measures sea state and ocean winds.
Earth Data s used to improve ocean modsls

Observation S
Satellites

/4 Landsat 8 (February 2013 Launch)

8 Coliects global data about Earth's land surfaces
Colects commercial high-resolution Earth e g from space in support of global change research,
imagery used in resource management, % @ land use and commercial applications.

mapping and global development.

——

ICON (2017 Launch)
Studied the physics of geomagnetic storms into the Will study the Earth's upper atmosphere and how the Sun
Earth's magnetosphere. Originall 5 satelites; two were influences ionospheric variabilty to help improve forecasts of
moved into orbit near the Moon. extreme space weather and its influence on human activiy.
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Stetis Thank you
for your Attention

Gathers global measurements of atmospheric, terrestrial,
and oceanic condifions enabling accurate weather forecast-
ing including the prediction of severe weather events, such
as hurricanes and blizzards, days in advance.

the ice sheets i
develop a better scientific understanding of the Earth system
and ts response to natural or human-induced changes.

OCO-2 (uly 2014 Launch)

Measures global CO, concentrations and

geographic distribution from space, revolutionizing AI il 2007 Laumch)

o actareioe] 1he whctiel Barbos cicke Studies the Polar Mesospheric Clouds that form about 50
miles above the Earth's surface which have been suggested

1o be indicators of global climate change.

o

< 3
EO-1 overmber 2000 Launch) {9
oo,
instruments and unique spacecraft technologi < Measures sea state and ocean winds.
Earth Data s used to improve ocean modsls
A and weather prediction.
Observation
Satellites

Collects global data about Earth's land surfaces
Collects commercial high-resolution Earth e from space in support of global change research,
imagery used in resource managerment, % land use and commercial appications.
mapping and global development.

ICON (2017 Launch)
Studied the physics of geomagnetic storms into the Will study the Earth's upper atmosphere and how the Sun
Earth's magnetosphere. Originall 5 satelites; two were influences ionospheric variabilty to help improve forecasts of
moved into orbit near the Moon. extreme space weather and its influence on human activiy.
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