

DINFO Dipartimento di Ingegneria dell'Informazione Department of Information Engineering

Advances on Multimedia Forensics Compression-based traces

Prof. Alessandro Piva Dept. of Information Engineering University of Florence (Italy) alessandro.piva@unifi.it

Coding-based techniques

- Forensic techniques that detect tampering in compressed images
- They explicitly leverage statistical correlations introduced by the JPEG lossy compression scheme.
- Consecutive applications of JPEG introduce different fingerprint with respect to a single compression.

JPEG Image Compression Standard

- JPEG Joint Photographic Experts Group
 - a joint ISO/CCITT committee, organized in 1986, worked toward establishing the first international digital image compression standard for continuous-tone (multilevel) still images, both grayscale and color.
 - Became an international standard in 1992
- Allow for lossy and lossless encoding
 - Part-1 DCT-based lossy compression
 - average compression ratio 15:1
 - Part-2 Predictive-based lossless compression

JPEG Baseline System

- A JPEG compliant decoder has to support a minimum set of requirements, the implementation of which is referred to as **baseline implementation.**
- It is lossy
- It must be able to decompress image using sequential DCT-based mode.
- For baseline compression the bit depth must be *B*=8. ; as a more general situation, the image samples are assumed to be unsigned quantities in the range [0, 2^{B-1}].
- (Additional features are supported in the extended implementation of the standard).

JPEG Baseline encoder

Color Space conversion

- The uncompressed image is usually stored in 24 bit/pixel RGB
 -- that is, 8 bits each of Red, Green and Blue.
- There is usually a clear visual correlation between R, G and B subchannels the 3 pictures.
- To achieve better compression ratios, it is common to decorrelate the RGB fields into separate luminance (Y) and chrominance (Cb, Cr) components .

Color Space conversion

- Y=0.299(R-G) + G + 0.114(B-G)
- Cb=0.564(B-Y)
- Cr=0.713(R-Y)
- An unfiltered image with subpixels arranged as {Y,Cb,Cr,Y,Cb,Cr,Y...) is called 4:4:4 format, since there are 4 Y's for every 4 Cb's and 4 Cr's:
- e.g. for a 720x480 pixel image, 4:4:4 format implies that each of the 3 components is 720x480 bytes.

Color Spatial Downsampling

 Human eye is more sensitive to luminance than chrominance: size can be reduced by subsampling the (Cb,Cr) fields.

Level offset

- The image samples are assumed to be unsigned quantities in the range [0, 2^{B-1}]. The level offset subtract 2^{AB-1} from every sample value
- Produce signed quantities in the range [-2^{B-1}, 2^{B-1}-1].
- The purpose of this is to ensure that all the DCT coefficients will be signed quantities with a similar dynamic range.

Partitioning

- In each image buffer, the data is partitioned into 8x8 blocks, from left to right and top to bottom.
- These blocks do not overlap, and if the image dimensions are not multiples of 8, the last row and/or column of the image is duplicated as needed.
- Minimum Coded Unit (MCU) contains four Y 8x8 blocks followed by one Cb 8x8 block and one Cr 8x8 block:

JPEG Baseline encoder

- 2D DCT is then performed on each 8x8 block
 - The DCT is performed independently for each block: this is why, when a high degree of compression is requested, JPEG gives a "blocky" image result

$$F(u,v) = \frac{C(u)C(v)}{4} \sum_{x=0}^{7} \sum_{y=0}^{7} f(x,y) \cos\left(\frac{2(x+1)u\pi}{16}\right) \cos\left(\frac{2(y+1)v\pi}{16}\right)$$

- f(x,y): 2-D sample value,
$$C(x) = \begin{cases} 1/\sqrt{2} & x=0\\ 1 & otherwise \end{cases}$$

- F(u,v): 2-D DCT coefficient

the DCT was chosen because of its decorrelation features, image independence, efficiency of compacting image energy, and orthogonality (which makes the inverse DCT very straightforward).

• FDCT takes the 8x8 image block, i.e. a 64-point discrete signal, and decomposes it into 64 orthogonal basis signals.

 ouput of FDCT is the set of 64 "DCT coefficients" whose values can be regarded as the amount of 2D spatial frequencies contained in the input:

 $= 1203 \cdot 1 + 123 \cdot 1 - 26 \cdot 1 + 9 \cdot 1 + 6 \cdot 1 + 4 \cdot 1 - 4 \cdot 1 - 1 \cdot 1 + 1 \cdot 1 + 1 + 1 \cdot 1 + 1 + 1 \cdot 1 + 1 \cdot$

 In performing a DCT on an 8x8 image block, we are correlating the block with each of the 64 DCT basis functions and recording the relative strength of correlation as coefficients in the output DCT matrix.

DINFO

• For example, the coefficient in the output DCT matrix at (2,1) corresponds to the strength of the correlation between the basis function at (2,1) and the entire 8x8 block.

- The coefficients corresponding to high-frequency details are located to the right and bottom of the DCT block, and usually have zero or near-zero amplitude.
- it is precisely these weights which we try to nullify with Quantization -- the more zeroes in the block, the higher the compression that is achieved.

139	144	149	153	155	155	155	155	235.6	-1.0	-12.1	-5.2	2.1	-1.7	-2.7
144	151	153	156	159	156	156	156	-22.6	-17.5	-6.2	-3.2	-2.9	-0.1	0.4
150	155	160	<mark>16</mark> 3	158	156	156	156	-10.9	-9.3	-1.6	1.5	0.2	-0.9	- 0 .6
159	161	162	160	160	159	159	159	-7.1	-1.9	0.2	1.5	0.9	-0.1	0.0
159	160	161	162	162	155	155	155	- 0 .6	-0.8	1.5	1.6	-0.1	-0.7	0.6
161	161	161	161	160	157	157	157	1.8	-0.2	1.6	- 0 .3	-0.8	1.5	1.0
162	162	161	16 3	162	157	157	157	-1.3	-0.4	- 0 .3	-1.5	-0.5	1.7	1.1
162	162	161	161	163	158	158	158	-2.6	1.6	-3.8	-1.8	1.9	1.2	-0.6

1.3

-1.2

-0.1

0.3

1.3

-1.0

-0.8

-0.4

Image pixels

• Example of block with low activity

925.5	-11.1	4.4	-1.8	-1.0	1.9	1.4	-0.3
4.3	-1.3	4.4	2.5	2.6	1.0	-0.7	0.6
4.0	-3.6	-0.7	3.5	1.7	-0.2	-1.6	1.0
-2.1	0.3	-0.1	-3.5	1.7	0.6	0.6	-0.6
-1.2	-0.6	0.2	3.3	1.3	-3.6	1.3	-0.8
-0.9	1.2	3.8	2.0	3.5	0.7	-0.9	-0.6
1.9	-1.0	-0.9	-1.3	0.1	0.9	1.4	1.2
-0.9	1.0	-0.8	-3.0	0.3	1.3	0.0	-0.4

Image

pixels

• Example of block with high activity

350.5	251.0	109.0	0.8	-17.7	-26.1	-6.7	-3.7
7.0	-47.2	-43.6	-11.3	4.5	15.1	5.1	5.1
30.8	-58.4	-52.0	-26.3	25.0	14.2	6.4	-1.7
35.7	14.0	17.1	12.4	0.3	-6.1	-3.0	1.4
26.0	-19.7	-3.5	10.7	13.7	-3.1	-5.1	-1.1
20.0	18.6	20.0	7.5	-5.7	-6.5	-2.5	-3.1
-6.0	-23.6	-12.4	2.4	1.6	0.5	1.7	2.2
-3.0	-1.8	0.3	0.0	1.3	1.2	1.9	1.2

Image

pixels

• From the 64 DCT coefficients it is possible to reconstruct a 64-point signal through the inverse DCT (or IDCT).

$$f(x, y) = \sum_{u=0}^{7} \sum_{v=0}^{7} \frac{C(u)C(v)}{4} F(u, v) \cos\left(\frac{2(x+1)u\pi}{16}\right) \cos\left(\frac{2(y+1)v\pi}{16}\right)$$

- If FDCT and IDCT could be computed with perfect accuracy and if the DCT coeffs were not quantized, the original signal could be exactly recovered.
- In principle, the DCT introduces no loss to the source image samples; it merely transforms them to a domain in which they can be more efficiently encoded.

- In lossy compression coefficients are mapped into a smaller set of possible values, thus discarding information which is not visually significant.
- The quantization unit performs this task of a many-to-one mapping of the DCT coefficients (is not reversible!)
 - possible outputs are limited in number, and are integers, no longer reals: we can use fewer bits to encode them
 - Many quantized DCT coefficients are zero, making them suitable for efficient coding.
- principal source of lossiness in DCT-based encoders

- Each of the 64 DCT coeffs is quantized with a corresponding element of a 8x8 Quantization Table **Q**, which must be specified by the application (or user) as input to the encoder.
- Same quantization matrix for all blocks of the image

$$F^{Q}(u,v) = Round\left(\frac{F(u,v)}{Q(u,v)}\right)$$

F(u,v) original DCT coefficientF^Q(u,v) DCT coefficient after quantizationQ(u,v) quantization value

- Q(u,v) can be any integer value from 1 to 255.
- Smaller Q(u,v) means a smaller step size and hence more precision and less compression
- Different quantization step sizes for different frequencies
 - larger entries in Q for higher frequencies
- Color more compressed than luminance.
- Standard tables chosen according to psychophysical studies:

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

DINFO

The Luminance Quantization

The Chrominance Quantization

17	18	24	47	99	99	99	99
18	21	26	66	99	99	99	99
24	26	56	99	99	99	99	99
47	66	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99

- Default quantization table
 - "Generic" over a variety of images
- Proprietary quantization tables
 - Many image processing tools (e.g. Photoshop) adopt custom Q tables
- scaled versions of "default" quantization table
 - Q(u,v) values multiplied with a scaling factor.

$$F^{Q}(u,v) = Round\left(\frac{F(u,v)}{Scale_{factor} * Q(u,v)}\right)$$

Usually the Scale_{factor} is derived from a quality factor Q specified by the user.

A simple example

DC

187	188	189	202	209	175	66	41
191	186	193	209	193	98	40	39
188	187	202	202	144	53	35	37
189	195	206	172	58	47	43	45
197	204	194	106	50	48	42	45
208	204	151	50	41	41	41	53
209	179	68	42	35	36	40	47
200	117	53	41	34	38	39	63

DINFO

915.6	451.3	25.6	-12.6	16.1	-12.3	7.9	-7.3
216.8	19.8	-228.2	-25.7	23.0	-0.1	6.4	2.0
-2.0	-77.4	-23.8	102.9	45.2	-23.7	-4.4	-5.1
30.1	2.4	19.5	28.6	-51.1	-32.5	12.3	4.5
5.1	-22.1	-2.2	-1.9	-17.4	20.8	23.2	-14.5
-0.4	-0.8	7.5	6.2	-9.6	5.7	-9.5	-19.9
5.3	-5.3	-2.4	-2.4	-3.5	-2.1	10.0	11.0
0.9	0.7	-7.7	9.3	2.7	-5.4	-6.7	2.5

8-bit pixel values of the 8x8 image block

DCT values of the 8x8 image block

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Standard quantization table for luminance

Quantized DCT values using the quantization table on the left 23

A simple example

1	57	41	2	0	0	0	0	0
	18	1	-16	-1	0	0	0	0
	0	-5	-1	4	1	0	0	0
	2	0	0	0	-1	0	0	0
	0	-1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0

					-		
181	185	196	208	203	159	86	27
191	189	197	203	178	118	58	25
192	193	197	185	136	72	36	33
184	199	195	151	90	48	38	43
185	207	185	110	52	43	49	44
201	198	151	74	32	40	48	38
213	161	92	47	32	35	41	45
216	122	43	32	39	32	36	58

Quantized DCT values using the & IDCT quantization table on the left

8x8 image block recovered after decoding. Note the difference with the original image block: the compression was lossy !

187	188	189	202	209	175	66	41
191	186	193	209	193	98	40	39
188	187	202	202	144	53	35	37
189	195	206	172	58	47	43	45
197	204	194	106	50	48	42	45
208	204	151	50	41	41	41	53
209	179	68	42	35	36	40	47
200	117	53	41	34	38	39	63

Original 8x8 image block

JPEG Baseline encoder

- Baseline JPEG works with 8x8 image blocks, individually transformed and quantized;
- artifacts appear at the border of neighboring blocks in the form of horizontal and vertical edges.
- Even "light" compression may leave small but consistent discontinuities across block boundaries

• A manipulation can perturbs these blocking artifacts

- Idea: if there is no compression the pixel differences across 8x8 blocks should be similar to those within blocks, whereas if the image is JPEG-compressed, the differences across blocks should be different due to blocking artifacts.
- assume the block grid is known.

•Z. Fan and R. de Queiroz, "Identification of bitmap compression history: JPEG detection and quantizer estimation," *IEEE Trans. on Image Processing*, vol. 12, no. 2, Feb 2003.

- For each block, compute:
- Z'(x,y)=|A+D-B-C|, Z"(x,y)=|E+H-F-G|,
- where A ~ H are the values of the pixels, and the (x, y) is the coordinate of A in each block.
 - E.g. the coordinate of E: P(E) = P(A) + (4, 4).
 - Examples with (x, y) = (4, 4), (2, 4) and (3, 3) respectively:

compute the histograms H₁, H₁₁ of Z'_(x,y) and Z"_(x,y), then energy K of the difference between H₁ and H₁₁:

 $K_{(x,y)}(n) = |H_{I}(n) - H_{II}(n)|$

DINFO

• where $n \in [0,255*2]$.

 differences are larger across a JPEG block boundary;

•biggest values always occur when P(A) = (4, 4), and when x = 4 or (y = 4).

•When the coordinates of A to D and E to H are all inside a block, then the difference is small.

•K can be compared to a threshold or given as a confidence parameter.

Alessandro Piva

Compression artifacts in frequency domain

forces the value of each DCT coefficient to be an integer multiple of Q(u,v)

F_{g}	_Q (и	,v)) = ,	Roi	und	$\left(\frac{F}{Q}\right)$	(u, v (u, v	$\left(\frac{1}{2}\right)$
						1		
	16	11	10	16	24	40	51	61
	12	12	14	19	26	58	60	55
	14	13	16	24	40	57	69	56
	14	17	22	29	51	87	80	62
	18	22	37	56	68	109	103	77
	24	35	55	64	81	104	113	92
	49	64	78	87	103	121	120	101
	72	92	95	98	112	100	103	99

 Though the process of rounding and truncating the decompressed pixel values perturbs the DCT coefficients, their values typically remain clustered around integer multiples of Q(u,v).

DINFO

Single Compression

• It leaves traces we can find in the histogram computed by collecting from each 8x8 block the DCT coefficients having same frequency (u,v)

The distortion of such a behaviour can be used to detect the presence of tampering.

Tampering of JPEG images

- Any digital manipulation requires that an image be loaded into a photo-editing software program and resaved.
- Since most images are stored in the JPEG format, it is likely that both the original and manipulated images are stored in this format.
- In this scenario, the manipulated image is compressed twice.

Double compression chain

• DCT grids of successive compressions aligned

Double compression chain

• DCT grids of successive compressions not aligned

Tampering in JPEG images

- In previous analysis it has been assumed that all the image exhibits A-DJPG or NA-DJPG.
- But in case of manipulation of a JPEG image, this does not hold,
- Depending on the kind of manipulation (here splicing will be assumed) the tampered image will exhibit mixtures of single compression, A-DJPG or NA-DJPG.

A-DJPEG in tampered JPEG images

• Due to tampering, some blocks are single JPEG, others A-DJPG.

the unchanged region will have DQ effect, while the tampered region will not

NA-DJPEG in tampered JPEG images

• Due to tampering, some blocks are NA-JPEG, others A-DJPG.

A-DJPG: the DQ effect

When an image is double JPEG-compressed with aligned grids, it will undergo the following steps :

Look at histograms of DCT coefficients of a given frequency : h_0 : histogram before DQ, h_2 histogram afterDQ

 $n(x_2)$ number of bins in h_0 contributing to bin x_2 in the DQ histogram h_2 depends on the value x_2 :

$$n(x_{2}) = R(x_{2}) - L(x_{2})$$

$$R(x) = Q_{1}\left(\frac{Q_{2}}{Q_{1}}(x+\frac{1}{2})\right) + \frac{1}{2}$$
where
$$R(x) = Q_{1}\left(\frac{Q_{2}}{Q_{1}}(x-\frac{1}{2})\right) - \frac{1}{2}$$

$$R(x) = Q_{1}\left(\frac{Q_{2}}{Q_{1}}(x-\frac{1}{2})\right) - \frac{1}{2}\left(\frac{Q_{2}}{Q_{1}}(x-\frac{1}{2})\right) - \frac{1}{2}\left(\frac{Q_{2}}{Q_{1}}(x-\frac{1}{2})\right) - \frac{1}{2}\left(\frac{Q_{2}}{Q_{1}}(x-\frac{1}{2})\right) - \frac{1}{2}\left(\frac{Q_{2}}{Q_{1}}(x-\frac{1}{2})\right) - \frac{1}{2}\left(\frac{Q_{2}}{Q_{1}}(x-\frac{1}{2})\right) - \frac{1}{2}\left(\frac{Q_{2}}{Q_{1}}(x-\frac{1}{2})\right) - \frac{1}{2}\left(\frac{Q_{2$$

- $n(x_2)$ is a periodic function, period: $p = Q_1/gcd(Q_1,Q_2)$
 - Gcd: greatest common divisr.
- This periodicity introduces periodic pattern (peaks / valleys) in histograms of double quantized coeffs: this is the DQ effect

- Second compression worst quality than the first one
- When Q₂>Q₁ the histogram can exhibit some periodic pattern of peaks and valley:

histogram with steps $Q_1=2$ and $Q_2=3$. The shaded rectangles show one

period of the histograms.

- Second compression better quality than the first one
- If $Q_2 < Q_1$ then $n(x_2)=0$ for some x_2 .
- For example, if $Q_1 = 5$, $Q_2 = 2$, then n(5k+1)=0.
- This means that the histogram has periodically missing values:

histogram with steps $Q_1=5$ and $Q_2=2$. The shaded rectangles show one period of the histograms.

- Given an image in JPEG format, we can detect if the image has been double compressed.
- To this end, the histograms of the DCT coefficients are computed.
- If these histograms contain periodic patterns, then the image is very likely to have been double compressed.
- E.g. consider DCT coefficients correspond to DCT frequencies (1, 1) and their histograms

DINFO

A-DJPG Detection & Estimation

• These periodic artifacts are particularly visible in the Fourier domain as strong peaks in the mid and high frequencies.

Patterns depend on the quality parameters. As a result, it is possible to estimate the QFs that have been used. Q₂ can be found from the quantization table stored in the JPEG file. Q₁ can be inferred from the location of the frequency peaks in the Fourier transforms of the DCT coefficient histograms.

Histogram of tampered JPEG image as the superposition of two histograms:

- One shows DQ effect as periodical peaks and valleys (unchanged blocks)
- the other has random bin values (tampered blocks).
- But we don't know a priori which are tampered and unchanged regions.
- We only have total histograms !
- So we have to infer the probability of a block being tampered (H_t) or not (H_u)

- Idea: use Bayesian inference to assign to each DCT coefficient x a probability of being doubly quantized or not.
- Based on the probability distribution of DCT coefficients conditional to the hypothesis of being tampered p(x|H_t) or of being original p(x|H_u)
- These conditional probabilities are estimated from observed histogram of x, h(x), through a proper statistical model .

 $\widetilde{h}(x) \begin{array}{l} \text{Estimated considering the DCT coefficients obtained by} \\ \widetilde{h}(x) \begin{array}{l} \text{recompressing with } Q_2 \text{ a slightly cropped version of the} \\ \text{image under analysis} \end{array}$

 $h_0(x)$ Not available

• Hence, we propose to introduce the following approximation

$$\frac{1}{n(x)} \sum_{L(x) \le u < R(x)} h_0(u) \approx \frac{1}{Q_2} \sum_{L'(x) \le u < R'(x)} h_0(u) \triangleq \tilde{h}(x)$$

where L'(x) = $Q_2 x - Q_2/2$ and R'(x) = $Q_2 x + Q_2/2$, thus bin width R'(x)-L'(x)= Q_2

 The above approximation holds whenever n(x) > 0 and the histogram of the original DCT coefficient is locally uniform. In practice, we found that for moderate values of Q2 this is usually true, except for the center bin (x=0) of the AC coefficients, which have a Laplacian like distribution.

• Thus for each coeff.

$$p(x/H_{t}) = \widetilde{h}(x)$$
$$p(x/H_{u}) = n(x)\widetilde{h}(x)$$

This holds for the histograms of each frequency coefficient

- From the naive Bayesian approach (equiprobable H_t and H_u),
- If a block contributes to the (x)-th bin, then the posterior probability of it being a tampered block is:

$$p(H_t/x) = \frac{p(x/H_t)}{p(x/H_t) + p(x/H_u)} = \frac{1}{1 + n(x)}$$

- With all the available histograms, we can accumulate the probabilities to give the posterior probability of the whole block
- Accumulated probability means:
 - Under the hypothesis that DCT coeffs in block are mutually independent
 - corresponding prob. values are multiplicated

• The probability of a block being tampered is then:

$$p = \frac{1}{1 + \prod_{i \mid x_i \neq 0} n_i(x_i)}$$

- $n_i(x_i)$ indicates function n(x) related to the i-th DCT coefficient
- computation does not take into account coeffs equal to zero.
- only the first low frequency coefficients are used in practice.
- in order to compute *p*, we need a reliable estimate of the quantization table used by the first JPEG compression.

 If we assume that the probability distribution of the observed coefficients for x ≠ 0 can be modeled as a mixture

$$p(x;Q_1,\alpha) = \alpha \cdot n(x;Q_1) \cdot \tilde{h}(x) + (1-\alpha) \cdot \tilde{h}(x)$$

where α is the mixture parameter . Q_1 can be estimated (by trying every possible Q_1 in a limited set of possible values) as

$$\hat{Q}_1 = \arg\min_{Q_1} \sum_{x \neq 0} [h(x) - p(x; Q_1, \alpha_{opt})]^2$$

for each Q_1 , α_{opt} is the optimal parameter in the least square sense:

$$\alpha_{opt} = -\frac{\sum_{x \neq 0} \tilde{h}(x)[n(x;Q_1) - 1] \cdot [\tilde{h}(x) - h(x)]}{\sum_{x \neq 0} \tilde{h}(x)^2[n(x;Q_1) - 1]^2}.$$

To estimate the complete quantization matrix, the above minimization problem is separately solved for each of the 64 DCT coefficients.

 Such probabilities, accumulated over each 8 × 8 block, will provide a DQ probability map allowing us to tell original areas (high DQ prob.) from tampered areas (low DQ prob.).

• Application to realistic forgeries: (a) images under analysis; (b) probability maps (c) original images

• Based on a single feature which depends on the integer

Input : JPEG image I

I is single compressed shift (0,0)

Quality factor QF : known from header Blocks with shift (0,0)

I is double compressed with first compression shift (x,y) and Quality factor QF₁ to be estimated

T.Bianchi, A.Piva, "Detection of Nonaligned Double JPEG Compression Based on Integer Periodicity Maps", IEEE Transactions on Information Forensics & Security, vol. 7, no. 2, April 2012.

- Let us assume that an original image I₁ is JPEG compressed with QF₂, grid aligned with the upper left corner of the image
- then decompressed to obtain the image I₂:

Decompression includes:

- Entropy decoding & Runlength decoding
 - lossless we dont'care
- Dequantization of DCT coefficients
- IDCT

• I₂ can thus be modeled as:

$$\mathbf{I}_2 = \mathbf{D}_{00}^{-1} Q_2 (\mathbf{D}_{00} \mathbf{I}_1) + \mathbf{E}_2 = \mathbf{I}_1 + \mathbf{R}_2$$

 I_2

- I₁ : original image;
- D₀₀ : 8x8 DCT with grid aligned to upper left corner
- Q₂(.) : quantization / dequantization with QF₂
- E₂ : error due to Rounding/Truncating values to 8 bit;
- R₂ : overall error introduced by JPEG w.r.t. the original.

If the original image I₁ was previously JPEG compressed with QF₁ and a grid shifted by (y,x) w.r.t. the upper left corner, starting from an uncompressed image I₀:

I₁ compressed with shift (y,x) and decompressed

• Then I₂ has been doubly compressed and finally decompressed:

- We want now to analyze I₂
- We take I₂ and we apply to it a block DCT with a grid shift (i,j).

0 ≤ i ≤ 7 0 ≤ j ≤ 7

- Blue: grid of second compression with QF₂, shift (0,0)
- Yellow: grid of first compression with QF₁, shift (y,x)
- Green: grid of new block DCT, with shift (i,j)

What happens to the statistics of DCT coefficients present in these blocks ? 3 cases:

Case a)	
(i,j)= (0,0)	

Case b) (i,j)= (y,x) Case c) (i,j) ≠(y,x) (i,j) ≠(0,0)

Blocks aligned with last compression

Blocks aligned with *possible* first compression

• grid aligned to the one of the last compression, i.e. i = 0, j = 0:

$$\mathbf{D}_{ij}\mathbf{I}_{2} = \mathbf{D}_{00}\mathbf{I}_{2} = \mathbf{D}_{00}\left(\mathbf{D}_{00}^{-1}Q_{2}\left(\mathbf{D}_{00}\mathbf{I}_{1}\right) + \mathbf{E}_{2}\right) = Q_{2}\left(\mathbf{D}_{00}\mathbf{I}_{1}\right) + \mathbf{D}_{00}\mathbf{E}_{2}$$

i.e. the green grid is aligned with the blue one

• grid aligned to the one of the first compression, i.e. i = y, j = x:

$$\mathbf{D}_{ij}\mathbf{I}_2 = \mathbf{D}_{yx}\mathbf{I}_2 = \mathbf{D}_{yx}(\mathbf{I}_1 + \mathbf{R}_2) = Q_1(\mathbf{D}_{yx}\mathbf{I}_0) + \mathbf{D}_{yx}(\mathbf{E}_1 + \mathbf{R}_2)$$

i.e. the green grid is aligned with the yellow one

 Grid is aligned to neither of the two compressions, i.e. i ≠ 0,y, j ≠ 0,x:

$\mathbf{D}_{ij}\mathbf{I}_2 = \mathbf{D}_{ij}\mathbf{D}_{00}^{-1}\mathbf{Q}_2\left(\mathbf{D}_{00}\mathbf{I}_1\right) + \mathbf{D}_{ij}\mathbf{E}_2$

i.e. the green grid is not aligned with the yellow and blue ones

In summary, if a block DCT with grid shift (i,j) is applied to I₂, we can have 3 cases:

- when the grid is aligned with the one of the last/first compression, coefficients tend to cluster around the points of the lattices defined byQ₂() and Q₁()
- with a spread due to presence of the error terms []:

$$\mathbf{D}_{ij}\mathbf{I}_{2} = \left\{ \begin{array}{c} Q_{2}(\mathbf{D}_{00}\mathbf{I}_{1}) + [\mathbf{D}_{00}\mathbf{E}_{2}] \\ Q_{1}(\mathbf{D}_{yx}\mathbf{I}_{0}) + [\mathbf{D}_{yx}(\mathbf{E}_{1} + \mathbf{R}_{2})] \\ Q_{1}(\mathbf{D}_{yx}\mathbf{I}_{0}) + [\mathbf{D}_{yx}(\mathbf{E}_{1} + \mathbf{R}_{2})] \\ P_{1}(\mathbf{D}_{yx}(\mathbf{E}_{1} + \mathbf{R}_{2})] \\ P_{2}(\mathbf{E}_{1} + \mathbf{R}_{2}) \\ P_{3}(\mathbf{E}_{1} + \mathbf{R}_{2}) \\ P_{3}$$

NA-DJPEG Bianchi's method

• When the DCT grid is aligned with neither of the two compressions, coeffs usually do not cluster around any lattice:

•No clustering !

$$\mathbf{D}_{ij}\mathbf{I}_{2} = \begin{cases} Q_{2}(\mathbf{D}_{00}\mathbf{I}_{1}) + \mathbf{D} & i = 0, j = 0 \\ Q_{1}(\mathbf{D}_{yx}\mathbf{I}_{0}) + \mathbf{D}_{yx} & \mathbf{E}_{1} + \mathbf{R}_{2}) & i = y, j = x \\ \mathbf{D}_{ij}\mathbf{D}_{00}^{-1}Q_{2}(\mathbf{D}_{00}\mathbf{I}_{1}) + \mathbf{D}_{ij}\mathbf{E}_{2} & \text{elsewhere} \end{cases}$$

We can see this behavior if we make the histogram of the coefficients of same frequency (e.g. the DC coefficient) taken from all the blocks in which we have divided I_2

Histogram of the DC coefficients of each block

Case a) (i,j)=(0,0)

Blocks aligned with last compression

DCT coefficients cluster around the points of a lattice defined by Q_2 , with a spread due to presence of error terms due to the last compression:

Alessandro Piva

Histogram of the DC coefficients of each block

Case b) (i,j) = (x,y)

Blocks aligned with *possible* first compression

DCT coefficients cluster around the points of a lattice defined by Q_1 , with a spread due to presence of error terms due to the first and last compression (higher noise) Alessandro Piva

• Histogram of the DC coefficients of each block

Case c) (i,j) ≠(x,y) (i,j) ≠(0,0)

grid is aligned to neither of the two JPEG compressions

DCT coefficients usually do not cluster around any lattice

- Idea: detect NA-DJPEG by measuring how DCT coefficients cluster around a given lattice for any possible grid shift.
- When NA-DJPEG is detected, the parameters of the lattice also give Q₁ & shift.
- Since the effect is more evident in the DC coefficient , and to keep the detection simple, only the DC coefficient of each block is studied.

- clustering around a lattice can be measured by looking at the the periodicity of the histogram for an integer period Q
- Evaluated by considering its Fourier transform at frequencies which are reciprocal of Q:

$$f_{ij}(Q) \triangleq \sum_{k} h_{ij}(k) e^{-j\frac{2\pi k}{Q}}, \quad Q \in \mathbb{Z} \setminus \{0\}$$

- $H_{ij}(k)$ is the histogram value of DC coeff. for a grid shift (i,j).
- Q : a possible quantization step of DC coefficient.

• The Fourier transform will have a maximum in the amplitude if the shift (i,j) and the quantization scale Q are the same of the parameters of a previous compression.

$$f_{ij}(Q) \triangleq \sum_{k} h_{ij}(k) e^{-j\frac{2\pi k}{Q}}, \quad Q \in \mathbb{Z} \setminus \{0\}$$

What happens to f_{ij}(Q) in presence or in absence of double compression ?

Presence of NA-DJPEG :

 I_2 doubly compressed, first with QF₁ and shift (y,x), next with QF₂ and shift (0,0).

 Both f₀₀(Q₂) and f_{yx}(Q₁) have higher magnitude than other values.

Absence of NA-DJPEG

- I_2 singly compressed, with QF₂ and shift (0,0).
- only $f_{00}(Q_2)$ will have higher magnitude.
- for $Q \neq Q_2$, $f_{ij}(Q)$ changes very little with (i, j).

Problem:

- We don't know which shift was applied in the first possible compression, so we have to try all combinations (i,j)
- Then, for all possible grid shifts (i,j):
 - we apply a block DCT
 - we take all DC coefficients and we quantize them by Q.
 - We compute the magnitude of Fourier transforms
- How to analyze all shifts together ?
- We introduced the Integer Periodicity Map (IPM)

 IPM at the quantization step Q allows us to visualize the values of the FT for each possible grid shift:

- M(Q₂) will always show a peak at the location (0; 0) due to the last compression, since we assume I₂ has been compressed with QF₂ and shift (0,0).
- Note that the value of Q_2 is extracted from the quantization matrix stored in the JPEG file.

If $Q = Q_2$

- We also don't know the value of Q₁ !
- So we can just compute the IPM for each Q in a set of possible values but ≠Q₂, and look at it.
- We will have:
 - Presence of NA-DJPEG: we will find a value Q₁ where
 M(Q₁) has a single entry much greater than the others at the shift of the primary compression (y, x)
 - Absence of NA-DJPEG: M(Q) nearly uniform for every Q ≠ Q₂, since there is only one compression.

- Presence of NA-DJPEG:
- IPM has a peak

- Absence of NA-DJPEG:
- IPM is uniform

 $Q \neq Q_2$, absence of NA-JPEG

IPM does not work when Q₁ = Q₂, since the peak due to the first compression is hidden by the one in (0,0)

• Uniformity of IPM can be measured by its min-entropy:

$$H_{\infty}(Q) \triangleq \min_{ij}(-\log M_{ij}(Q)).$$

- Low $H_{\infty}(Q) \leftrightarrow$ IPM with high peak \leftrightarrow presence of NA-DJPEG
- High $H_{\infty}(Q) \leftrightarrow$ mostly uniform IPM \leftrightarrow absence of NA-DJPEG

(0,0)

(y,x)

7,7)

NA-DJPG Detection & Estimation

input I_2

for each possible shift (i, j) do

compute $D_{ij}I_2$

compute histogram h_{ii}

for $Q = Q_{min}$: Q_{max} do

compute $f_{ii}(Q)$

end for

end for DC coefficient histograms

0 50

Alessandro Piva

DINFO Dipartimento di Ingegneria dell'Informazione Department of Information Engineering

NA-DJPG Detection & Estimation

 $Q \neq Q_1$ (0,0) for each $Q = Q_{min}: Q_{max}$ 0 0 DCT value 50 compute $M_{ij}(Q)$ (y,x) compute $H_{\infty}(Q)$ $Q = Q_1$ Х (7,7) $Q \neq Q_1$ 50 -50 0 DCT value DC coefficient Integer **Periodicity Maps** histograms

- Experimental Dataset
- 1000 original non-compressed TIFF images, central portion NxN (N=128, 256, 512, 1024) is extracted.
- Dataset without NA-DJPEG
 - Simply compressing the original images with QF₂.
- Dataset with NA-DJPEG
 - each original image is compressed with QF_1 , decompressed, cropped by a random shift (i,j) ≠ (0,0), and recompressed with QF_2 .
- QF_1 / QF_2 chosen so DC coeff. has $Q_1=2:16$, $Q_2:1:16$.
- 240000 tampered & 16000 untampered each size

 maximum accuracy for different QF₂ and sizes, as % of correctly classified images, av. over all QF₁

DINFO

 Probability of detection of the proposed detector (%) for a probability of false alarm equal to 1%, for image size 1024x1024.

QF_1 QF_2	50-57	58-67	68-76	77-85	86-95	96
50-57	78.1	86.9	88.6	90.4	92.4	92.1
58-67	62.3	82.6	90.5	93.8	95.5	94.1
68-76	20.3	55.9	86.0	94.4	97.1	97.5
77-85	1.5	7.9	34.7	82.3	98.1	98.6
86-95	1.3	1.3	0.8	9.9	71.7	98.6
I						

