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Summary

1 Part one: presentation of perceptually inspired color
enhancement models;

2 Part two: introduction to variational principles in imaging,
with the noticeable example of histogram equalization;

3 Part three: variational framework for perceptual models.
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Outline 1

Part one: presentation of
perceptually inspired color

enhancement models
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Scope of these models

The human visual system (HVS) has some powerful properties
that we will examine. Computational models of color
perception are interesting for two main reasons
(cross-fertilization):

1 Being able to reproduce/imitate these features can help
enhancing cameras hardware and software, image quality,
algorithms for tracking in large camera networks, and so on;

2 Modeling the computation performed by the HVS can guide or
at least give some hints to neuroscientists, biologists and
psychologists for their experiments.
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Scope of PICE models

Anticipation of a result:

Figure: Left: Original image. Right: Image filtered by a PICE algorithm.
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A plethora of PICE models

The job performed by the HVS is very complex;

In literature, one can find tens of models that try to directly
implement some of the HVS features in order to perform
perceptual color correction;

These models are, in general, very difficult to compare, so we
have a plethora of algorithms that generates confusion.
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Why a variational framework for perceptual models of
color images?

Job performed in collaboration with (in alphabetical order):

Marcelo Bertalḿıo;
Vicent Caselles;
Rodrigo Palma-Amestoy.

Motivation: building a general ‘house’ for perceptual color
enhancement models where existing algorithms can be
analyzed in terms of important image features and compared.
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Two (non mutually exclusive) choices: phenomenology or
neuroscience?

When we deal with HVS properties we can choose to study
them through...

1 Neurophysiological (‘microscopical’) properties;

2 Phenomenological (‘macroscopical’) properties (the global
result of neurodynamics);

We chose to consider phenomenological features.
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4 fundamental phenomenological features of the HVS

There is a common agreement on the fact that the 4 most
important phenomenological features of the HVS are:

1 Adaptation to the average luminance level;

2 Local contrast enhancement;

3 Color constancy;

4 Weber-Fechner’s law.
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Summary of the most important phenomenological
features of color vision (1)

Adaptation to the average luminance level: the radiance
of a natural visual scene can span up to 10 orders of
magnitude, but neurons can only deal with signals which span
up to 2 orders of magnitude around the average
luminance level of the scene;

The dynamic range shrinking is already performed before light
hits the retina by:

Cornea;
Crystalline lens;
Aqueous and Vitreous Humor;
Macula.
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Summary of the most important phenomenological
features of color vision (1)

Figure: A simplified representation of the human eye.
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Summary of the most important phenomenological
features of color vision (1)

When photons hit the retina, they activate rods and cones
that transduce electromagnetic energy into electric current
by changing their electric potential according to the
‘Michaelis-Menten’s formula’.

Figure: Prototypical shape of rods (left) and cones (right).
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Summary of the most important phenomenological
features of color vision (1)

Michaelis-Menten’s formula:

r(I ) =
∆V

∆Vmax
=

I γ

I γ + I γS
� I , (1)

where

∆Vmax: highest difference of potential that can be generated
by the cell;
γ: constant (measured as 0.74 for the rhesus monkey);
IS : luminous intensity at which the photoreceptor response is
half maximal, semisaturation level or adaptation level.
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Summary of the most important phenomenological
features of color vision (2)

Local contrast enhancement: to (partially) remedy the loss
of information, we extracted local infos through saccadic
movements;

Figure: Locality of vision.

Vision is a local process: the color of a certain point is
determined not only by its absolute intensity, but also from the
intensity distribution of the surrounding points (induction).
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Summary of the most important phenomenological
features of color vision (2)

Figure: Top: Colored simultaneous contrast. Bottom: Grayscale
simultaneous contrast. In both pictures, the inner gray squares have
exactly the same physical luminance, however, their perceived luminance
is very different.
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Summary of the most important phenomenological
features of color vision (2)

Figure: Left: Mach bands effect. Right: real and appearent luminance
pattern.
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Summary of the most important phenomenological
features of color vision (2)

Post-retinal cells and neurons are responsible for local contrast
enhancement.

Figure: Composition of retinal layers.
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Measuring (a)chromatic induction: Wallach’s experiment

Figure: Wallach’s classical experiment (1948): RT is changed from one
value to another and the observer is asked to tune the luminance of DM

to have perceptual match with DT .
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Measuring (a)chromatic induction: Rudd-Zemach’s model

Rudd-Zemach’s model (2005): perceptual match when

w1 log
DM

RM
+ w2 log

RM

B
= w1 log

DT

RT
+ w2 log

RT

B
,

w1: induction weight between the barycenters of the inner circle
and the ring
w2: induction weight between the barycenters of inner circle and
the background

Solving w.r.t. logDM we have

logDM = logDT +

(
1− w2

w1

)
logRM −

(
1− w2

w1

)
logRT .

Linear relationship in logarithmic scale, interpolating the slope from

experiments they measured the induction weights: as expected:

w2 < w1, i.e. induction decreases with distance.
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Summary of the most important phenomenological
features of color vision (3)

Color constancy: our perception of colors is very stable with
respect to change of illuminant conditions, we use this
feature all the time;

Color constancy works when we are embedded in a visual
scene and adapted to the illumination conditions, it
doesn’t work when we’re looking at a picture on a digital
screen;

So, we can’t eliminate the color cast of a digital picture just
by looking at it on a digital screen!
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Summary of the most important phenomenological
features of color vision (3)

Figure: Left: Image with color cast. Right: output of a
perceptually-inspired color correction algorithm.

This is one of the reasons why perceptually-inspired color
correction algorithms are useful.
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Summary of the most important phenomenological
features of color vision (3)

The simplest image formation model is:

I (x) = λ · ρ(x) (in each chromatic channel RGB)

λ: illuminant, ρ(x): reflectance of the point x ;

Perfect color constancy implies that:

λ1 · ρ(x) ∼ λ2 · ρ(x)

where ∼ means ‘perceptually indistinguishable’.

22/82



Summary of the most important phenomenological
features of color vision (3)

Human color constancy is not perfect, and λ has a certain
influence on us;

In perfect color constancy models, the most important thing is
to be able to compute λ to retreive ρ(x), the ‘intrinsic color’
(not correct, there is no such thing, color depends on
context!);

Searching for λ starting from I (x) = λ · ρ(x) is an ill-posed
problem that has no solution, so we must break the ambiguity
by adding some hypothesis, e.g. white patch and gray world.
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White patch hypothesis

White Patch (WP) hypothesis: there is a ‘white patch’ WP in
the visual scene with perfect reflectance, i.e. ρ(x) = 1, then

∀x ∈WP : I (x) = λ = Imax

Thus, if the WP hypothesis holds true: ρ(x) = I (x)
Imax

for all
points x .

The WP hypothesis is often violated, e.g. by homogeneous
surfaces, plus λ may vary with x!
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The original Retinex model of Land (1964)

Edwin Land, the inventor of the polaroid mechanism, localized
the WP hypothesis and searched for the patch with highest
intensity on paths, giving birth to the (in)famous Retinex
model.

Figure: Edwin Herbert Land.
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Gray world hypothesis - Buchsbaum (1980)

Gray World (GW) hypothesis: the average reflectance in a
visual scene is gray (1/2 in normalized scale 0−1);

Using this hypothesis:

Ī =
1

N

∑
x

I (x) =
1

N

∑
x

λρ(x) = λ
1

N

∑
x

ρ(x) = λ · 1

2
;

Hence, λ = 2Ī and ρ(x) = I (x)

2Ī
for each point of the scene;

Again, the GW hypothesis is often violated, e.g. by
homogeneous surfaces, plus λ may vary with x!
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The ACE algorithm

Developed at the university of Milan in 2003;

It implements a local version of the GW hypothesis;

In some cases the results of ACE and Retinex are comparable,
in some others one prevails over the other with respect to
ability to remove color cast, detail enhancement, etc.

Their direct equations are very difficult to compare.
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Retinex Vs. ACE

Retinex equations:

ACE equations
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Summary of the most important phenomenological
features of color vision (4)

Weber-Fechner’s law of contrast perception: a
dark-adapted human observer is put in a dim room in front of
a white screen on which a narrow beam of light is thrown in
the center of the visual field;

The luminous intensity I of the beam is increased very slowly
and the observer is asked to tell whether he/she could
perceive an intensity change called JND for Just Noticeable
Difference, ∆L.

Approximately it holds that:
∆I

I
= const. , which implies

greater sensitivity to variations in dim light conditions.

29/82



Resume of the first part

The HVS has important features:

Adaptation to the average luminance level
local spatial contrast enhancement
color constancy
Weber-Fechner’s law for intensity contrast perception.

Models that try to implement directly (some of) these
properties are really difficult to compare and to analyze in
terms of image features as contrast of tone dispersion;

We will see in the third part that, embedding these models in
a variational framework, we can better understand their
property and compare them easily;

But first...we must introduce the variational calculus...after a
well deserved coffee break...
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Outline 2

Part two: introduction to
variational principles in image

processing and computer vision
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Variational models in digital image processing

Remember Fermat’s optimization principle of ordinary
Calculus: Maxima and minima of smooth functions ~x 7→ f (~x)
can be located only at points where gradient is 0;

The directional derivatives Dv f (~x) along every direction v in
the extremals ~x must be 0.

32/82



The image function

The image function:

~I : Ω −→ [0, 1]× [0, 1]× [0, 1]
x 7→ (IR(x), IG (x), IB(x))

where:

Ω: spatial support of the image;

x = (x1, x2): pixel position in Ω;

Ic(x): normalized intensity of the pixel in the Red, Green and
Blue channel, respectively;

For simplicity we will avoid the subscript c and write simply
I (x).
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Variational models in digital image processing

Variational methods in imaging don’t deal directly with image
functions, but with functionals of image functions;

A functional E maps a function to a real number;

F space of image functions, then

E : F −→ R
I 7→ E (I )

Fermat’s condition f ′(~x) = 0 is substituted by δE (I ) = 0,
where δ is called first variation or Gateaux derivative
(generalization of directional derivative).
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Directional derivative Vs. First variation

Directional derivative of a function f : Rn → R:

Dv f (x0) = lim
h→0

f (x + hv)− f (x)

h
≡ d

dh

∣∣∣∣
h=0

f (x + hv);

Dv f (x0) = 0, ∀v ∈ Rn , Stationarity.

First variation of a functional E : F → R:

δE (I , J) = lim
h→0

E (I + hJ)− E (I )

h
≡ d

dh

∣∣∣∣
h=0

E (I + hJ).

δE (I , J) = 0, ∀J ∈ F , ‘Euler-Lagrange equations’.
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Min and Argmin of a functional

Let I ∗ ∈ F such that:

E (I ∗) = min
I∈Ω

E (I )

Then, we write:
I ∗ = argmin E (I )

In a convex context the Euler-Lagrange equations determine
the minima, in general they are just necessary conditions for
minima.
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Variational models in digital image processing

Resuming:

Image Function I : Ω→ [0, 1] Energy Functional E : F → R
Domain: x ∈ Ω Domain: I ∈ F

Range: I (x) ∈ [0, 1] Range: E (I ) ∈ R
Stationarity: I ′(x) = 0 Stationarity: δE (I ) = 0

Riesz representation theorem: under some suitable
hypothesis every continuous linear functional can always be
represented as a suitable integral (or finite sum).
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Variational models in digital image processing

A variational model in imaging consists in the selection of a
suitable functional whose extremization induces some
desired effects on an image

Examples:

Mumford-Shah functional for image segmentation;

Total variation functional for denoising;

Quadratic functional for regulator mechanisms;

and so on. . .
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Example from imaging: variational denoising

J: image corrupted with additive noise: J = I + n;

I : uncorrupted (unknown) image, n: noise image;

Noise generates high gradients, so we want to minimize them
in order to denoise the image;

Quadratic denoising functional:

E (I ) =
1

2

∫
Ω

(
|∇J(x)|2 + λ|I (x)− J(x)|2

)
dx ;

Total variation:

E (I ) =

∫
Ω

(
|∇J(x)|+ λ

2
|I (x)− J(x)|2

)
dx .
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Example from physics: motion of Newtonian particles in a
conservative field

Problem: trajectory ~q(t) of a particle, in a conservative field, in
time [t0, t1]

Lagrange functional:

L(~q(t)) =

∫ t1

t0

[T (~q(t))− V (~q(t))] dt

T (~q(t)) = 1
2m‖~̇q(t)‖2: particle’s kinetic energy

V (~q(t)): particle’s potential energy, it depends on particle’s

position and on the forces ~F acting on it

Argmin of L(~q(t)): ~q(t) satisfying the differential equation

~F (t) = m~̈q(t), ∀t ∈ [t0, t1] Newton’s law!

Interpretation: the motion of a Newtonian particle minimizes the
difference between its actual (kinetic) and potential energy between
t0 and t1!40/82



Classical histogram equalization

We will show that a particularly important variational
functional is that related to histogram equalization;

For a ‘continuous’ digital image, if λ ∈ [0, 1] is a generic
intensity level, then the normalized histogram of I computed
in λ is:

h(λ) =
1

|Ω|
Area{x ∈ Ω | I (x) = λ} λ ∈ [0, 1],

It’s the occurrence probability of the level λ in the image,
that is, how many times the level λ appears in the image.
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Classical histogram equalization

Figure: Histograms of a low contrast (first column) high contrast (second
column) image.
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Classical histogram equalization

The normalized cumulative histogram of I computed in λ,
H(λ), is:

H(λ) =
1

|Ω|
Area{y ∈ Ω | I (x) ≤ λ} λ ∈ [0, 1],

the probability to find a pixel with intensity ≤ λ;

Of course, the relationship between h and H is:

H(λ) =

∫ λ

0
h(t) dt , H ′(λ) = h(λ) ,

i.e. H is the integral function of h in the interval [0, 1] and
the first derivative of H in each level gives the histogram of
that level.
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Classical histogram equalization

An image is said to be equalized if it has the same
occurrence probability for all levels, i.e. if h(λ) ≡ k , the value
of k can be determined by integrating h:

1 =
h is normalized!

∫ 1

0
h(λ) dλ =

∫ 1

0
k ds = k

∫ 1

0
ds = k ,

which implies k = 1 (1 must not be interpreted as a
probability of 100%, but 100%

|Ω| since the histogram is

normalized).

The equalization condition on the histogram h(λ) ≡ 1 can be

traduced to the condition H(λ) =
∫ λ

0 dλ = λ on the
cumulative histogram.
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Classical histogram equalization

Figure: Histogram and cumulative histogram of an equalized image.
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Classical histogram equalization

Many times, an image does not have a balanced number of
intensities over the range [0, 1]: some values appear many
times (where the histogram has a peak), others less
frequently and some level may never appear;

If an image has equalized histogram, then all the levels appear
with the same frequency of occurrence;

Such an image carries a larger amount of (quantitative, not
necessarily qualitative) information.
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Classical histogram equalization

Figure: A famous picture of Ansel Adams before (left) and after (right)
histogram equalization. Of course in the digital domain a perfect
equalization is almost never impossible to achieve, so that approximations
must be considered.
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Classical histogram equalization

Classical histogram equalization amounts to the
transformation

λ 7−→
ϕ

µ = H(λ) : Histogram equalization ;

Thus, classical histogram equalization is implemented by
changing each level λ of the original image into the value µ of
the normalized cumulative histogram H in λ;

Histogram equalization can produce nice results, but it can
also destroy images. Typically in low-key images, for which
the cumulative histogram of dark levels is already close to 1,
so that contrast of bright levels can even be decreased by
histogram equalization!
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Classical histogram equalization

Figure: Effect of histogram equalization (right) on a low key image (left).
Notice that the histogram of the ‘equalized’ image on the right starts
exactly at the level defined by the normalized cumulated histogram in the
level 0 of the original image.
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Classical histogram equalization

What about histogram equalization in color images?

In general, equalization in the three independent chromatic
channels can be dangerous, since unnatural color can be
generated by the unrelated stretching of the three histograms;

The equalization of only the luminance channel in general
avoids this problem but it can have a minor impact on the
image.
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Classical histogram equalization

Figure: Left: original color image. Center: histogram equalization of the
luminance. Right: histogram equalization of the three independent
chromatic channels.
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From classical to variational histogram equalization

We have seen that a ‘nice’ histogram equalization of color
images is not a trivial task to perform;

We will see that the HVS automatically performs an
equalization of light information, so we could take advantages
of the HVS properties to implement a more sound histogram
equalization.

To understand that, we must embed histogram equalization in
a variational framework and better understand its action on
image features.
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Variational histogram equalization

Result of V. Caselles and G. Sapiro obtained in the paper
‘Histogram modification via differential equations’, J. Diff.
Eq., vol. 135, no. 2, pp. 238266, 1997.

They proved that the a stationary image for this functional

Ehist eq(I ) ≡ 2

∫
Ω

(
I (x)− 1

2

)2

dx − 1

|Ω|

∫∫
Ω2

|I (x)−I (y)| dxdy .

is an image I ∗ with equalized histogram: H(I ∗(x)) = I ∗(x)
∀x ∈ Ω.

Plus, a gradient descent algorithm with I0 = initial image,
converges to a unique (equalized) image, argmin of Ehist eq(I ).
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Meaning of Ehist eq(I )

Ehist eq(I ) ≡ 2

∫
Ω

(
I (x)− 1

2

)2

dx − 1

|Ω|

∫∫
Ω2

|I (x)− I (y)| dxdy ;

Two opposing terms:

The quadratic dispersion (L2 distance) around the middle

gray: D(I ) ≡ 2
∫

Ω

(
I (x)− 1

2

)2
dx

A term that gives a measure of global Michelson contrast:
C (I ) ≡ − 1

|Ω|
∫∫

Ω2 |I (x)− I (y)| dxdy

Min E (I ): optimal balance between global contrast
maximization and minimization of quadratic dispersion
to middle gray, a highly non-trivial result!
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Interpretation of variational histogram equalization in
terms of perceptual features

The Caselles-Sapiro’s result is profound and it can be related
to the perceptual features previously discussed;

In fact, also in human vision we have a balance between
contrast enhancement and control of dispersion around an
average luminance value;

However there are some fundamental differences: human
contrast enhancement is local and color constancy and
Weber-Fechner’s law must be taken into account.
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Break

Coffee break?
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Outline 3

Part three: variational PICE
algorithms and further research

57/82



Variational models of perceptually-inspired contrast
enhancement of color images

Basic idea: define a suitable ‘energy’ functional E of digital
image functions such that its minimum is reached in
correspondence of an optimal image:

The closest image to what we would perceive if we were
embedded in the scene where the picture was taken and

adapted to the illumination conditions.
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Axioms for a perceptually inspired energy functional

Axioms 1: General structure of a perceptually inspired energy. The

general structure of a perceptually inspired color correction energy
functional is

Ew (I ) = D(I ) + Cw (I ),

where

D(I ) =

∫
Ω
d(I (x)) dx ,

being d : R→ R a differentiable function, is called dispersion term
and

Cw (I ) =

∫∫
Ω2

w(x , y) c(I (x), I (y)) dxdy ,

being w : R2 → R+ an induction weight function and c : R2 → R
a differentiable function, is called contrast term.
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Axioms for a perceptually inspired energy functional

The minimization of D must provide a control of the
dispersion around µ, the average image intensity, (visual
adaptation) and around the original intensity values
(imperfection of human color constancy);

The minimization of Cw must provide a local contrast
enhancement, locality being induced by the weight function w .
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Selection of the contrast term

Recall that I (x) = λ · ρ(x), λ: illuminant, ρ(x): reflectance

c homogeneous of degree n ∈ N if:

c(λρ(x), λρ(y)) = λn c(ρ(x), ρ(y)) ∀λ ∈ R+

If n = 0, i.e. c is homogeneous function of degree 0, then
c intrinsically disregards the illuminant λ

λ, in general, is not globally homogeneous, but locally yes. . .
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Selection of the contrast term

Spatial contrast between two pixels doesn’t depend on their
order, the function c must be symmetric in the exchange of
its arguments;

Finally, to avoid the inversion of contrast, c must be
monotonically increasing;

Axiom 2. The contrast function c is a monotonically
increasing, homogeneous function of degree 0,
symmetric in the exchange of its arguments.
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The second axioms in the Weber-Fechner domain

A natural function that accomplishes axioms 2 is any
monotone function of

min(I (x), I (y))

max(I (x), I (y))
.

Remarkably, if Weber-Fechner’s law is taken into account, the
basic contrast variable is univocally determined by this
function!

Axiom 2’. c is a monotone function of the basic contrast
variable min(I (x),I (y))

max(I (x),I (y)) , x , y ∈ Ω.

63/82



Modification of Caselles-Sapiro’s functional to take into
account perceptual features

So, in R.Palma, E.Provenzi, M. Bertalḿıo and V. Caselles: ‘A
perceptually inspired variational framework for color
enhancement’, IEEE PAMI, 31 (3), 458-474, March 2009, we
considered this class of contrast functionals

Cϕw (I ) =

∫∫
Ω2

w(x , y)ϕ

(
min{I (x), I (y)}
max{I (x), I (y)}

)
dxdy

w is a spatially decreasing symmetric kernel, i.e. a Gaussian;

ϕ, a functional parameter of the model, it can be any smooth
increasing function.
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The contrast term of a perceptual functional

Cϕw (I ) =

∫∫
Ω2

w(x , y)ϕ

(
min{I (x), I (y)}
max{I (x), I (y)}

)
dxdy

Minimizing cϕ(I (x), I (y)) ≡ min{I (x),I (y)}
max{I (x),I (y)} means decreasing

the minimum and increasing the maximum, i.e. intensifying
contrast;
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ϕ ≡id

C id
w (I ) :=

1

4

∫∫
Ω2

w(x , y)
min(I (x), I (y))

max(I (x), I (y))
dxdy ,

δC id
w (I ) = −1

2

∫
Ω
w(x , y)

I (y)

I (x)2
sign+(I (x)− I (y)) dy

+
1

2

∫
Ω
w(x , y)

1

I (y)
sign+(I (y)− I (x)) dy ;

sign+(t) =

{
1 if t > 0

0 if t ≤ 0
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ϕ ≡ log

C log
w (I ) :=

1

4

∫∫
Ω2

w(x , y) log

(
min(I (x), I (y))

max(I (x), I (y))

)
dxdy ,

δC log
w (I ) = −1

2

∫
Ω
w(x , y)

1

I (x)
sign(I (x)− I (y)) dy ;
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Variational models of perceptually-inspired contrast
enhancement of color images

δC ϕ
w (I ) has dimension -1 in terms of I , so we must search for

a dispersion term whose variation has a coherent dimension;

Good candidate: entropy, i.e

DEα,β(I ) ≡ α
∫

Ω

[
µ log

µ

I (x)
− (µ− I (x))

]
dx

+ β

∫
Ω

[
I0(x) log

I0(x)

I (x)
− (I0(x)− I (x))

]
dx ;

Statistical interpretation of entropy: measure of disorder. So
minimizing the entropy around I0 and the average intensity µ
means constraining the intensity values of the image around
them.
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Variational models of perceptually-inspired contrast
enhancement of color images

By minimizing the energy Eϕw ,α,β(I ) = Cϕw (I ) + DEα,β(I ) we
balance two opposite effects, as in our visual system:

Reduction of the dynamic range towards the average
luminance (performed mainly by the eyes), and attachment to
the original image (imperfection of human color constancy);

Local contrast enhancement (performed by neuron activity
inhibition/excitation);

A gradient descent scheme to find the minimum of Eϕw ,α,β(I )
provides a computational algorithm that corrects color in
digital images in a perceptually-sound way.
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A discrete gradient descent scheme

A convenient method is given by the discrete gradient descent
with respect to log I . The continuous equation is

∂t log I = −δEϕw ,α,β(I )

t is an evolution parameter, log I simply changes the speed of
the gradient descent and consists in using the relative entropy
as a metric, instead of the usual quadratic distance. Useful
because of the logarithmic derivative

∂t log I =
1

I
∂t I ,

which allows restoring the important property of homogeneity
of degree 0 simply multiplying by I both sides of the
Euler-Lagrange equations.

Computational cost O(N2), reduced to O(N logN) with a
suitable approximation.
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Minimum of E log
w ,α,β(I )

The computational equation for ϕ = log:

I k+1(x) =
I k(x) + ∆t

(
α
2 + βI0(x) + 1

2R
log
I k

(x)
)

1 + ∆t(α + β)
,

where

R log
I k

(x) :=

∫
Ω
w(x , y) sign(I k(x)− I k(y))dy .

If we set α = 1, β = 0 and we smooth the signum to a
sigmoid we obtain the equations of ACE! M. Bertalḿıo, V.
Caselles, E. Provenzi, A. Rizzi ‘Perceptual Color Correction
Through Variational Techniques’, IEEE TIP, 2007.

71/82



Minimum of E id
w ,α,β(I )

The computational equation for ϕ =id:

I k+1(x) =
I k(x) + ∆t

(
α
2 + βI0(x) + 1

2R
id
I k

(x)
)

1 + ∆t(α + β)
,

R id
I k (x) :=

∫
Ω
w(x , y)

I k(y)

I k(x)
sign+(I k(x)− I k(y)) dy

−
∫

Ω
w(x , y)

I k(x)

I k(y)
sign+(I k(y)− I k(x)) dy ,

In the paper: M. Bertalḿıo, V. Caselles, E. Provenzi ‘Issues
About Retinex Theory and Contrast Enhancement’, IJCV,
2009, it has been proven that this corresponds to a
symmetric continuous version of Retinex.
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Results

Original image of a tapestry in the Amboise castle with color cast
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Results

Filtered image with the perceptually-inspired variational method
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Results

Image after histogram equalization
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Results

Original image of Lena
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Results

Image of Lena filtered with our algorithm
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Results

Image after histogram equalization
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Histogram comparison

Figure: Left and Right: histograms of the RGB channels of the original
and filtered Lena image, respectively (far from being equalized)
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Applications to art: filling lacunae

We can decrease the perception of lacunae in frescos by
minimizing the perceptual contrast (with Luca Grementieri)

A beautiful fresco of Tiepolo with two artificial lacunae,
painted with different shades of gray.
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Conclusions

1 The powerful ‘view from above’ provided by variational
principles allowed building a general framework for
perceptual models, where they can be compared and their
action on important image features as local contrast and
dispersion can be clearly understood;

2 Within the variational framework, we can embed already
existing models and generate new ones, simply by changing
the analytical shape of the functional parameter ϕ;

3 Thanks to the fundamental result of Caselles-Sapiro, we can
also compare perceptual models with histogram
equalization, understand and overcome its limitations;
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Thanks

Thanks a lot for your attention!
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