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Introduction

An image is represented as a matrix

I =


· · · · · ·
...

...

· · · · · ·


m×n

A video can either be represented as a set of matrices or a 3D tensor

Importance
Linear algebra (Matrix properties and calculations) is a fundamental tool
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Introduction

Consider the image restauration problem :
Given an observed noisy image In, we want to decompose it into a
noise-free image I corrupted by a degradation function G, and a noise
component N

In = GI + N

If, we can solve this decomposition problem, we can get the noise
free image.

The difficulty is to find the best such decomposition (under reasonable
constraints)

Useful tools includes : PCA, SVD, etc.
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Introduction

Consider the image denoising problem :

In = I + N
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Matrices

What is a matrix ?

A matrix is one way of
describing (or representing) a
linear transformation between
two vector spaces.

A general m × n matrix A
represents a linear
transformation from Rn to Rm.

The matrix acts on vectors x ∈ Rn to produce vectors y ∈ Rm as y = Ax.
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Linear System

Basic questions

Does the system Ax = b has a solution ?

If yes, how many solution(s) ?

How to find the solution(s) ?

For example, can we solve the following system ?[
1 1
1 1

]
x =

[
1
1

]
How many solutions, if any ?
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Column space and nullspace

Column space
The column space of A , denoted by C(A) and also called range or span of
A , is the subspace of Rm such that :
y ∈ C(A) if and only if y = Ax for some x ∈ Rn.

Nullspace
The nullspace of A , denoted by N(A) and also called kernel, is the
subspace of Rn such that :
x ∈ N(A) if and only if Ax = 0.

C(A) is equals to the set of all linear combinations of the columns of
A

N(A) is exactly the set of vectors which are orthogonal to all the row
vectors of A .
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Rank of a matrix

Rank
The rank of a matrix is the dimension of its column space.

rank(A) � dim(C(A)).

The rank is the most fundamental notion about a matrix

The rank of A is equal to the maximum number of linearly idependent
columns (or rows) of A

What are the rank of the following matrices ?[
1 2
2 1

]
;

[
1 2
1 2

]
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Rank of a matrix

Rank theorem
if A is an m × n matrix, then rank(A) + dimN(A) = n.

Figure : The big picture of linear algebra (from G. Strang)
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Solving linear systems

The main problem in linear algebra : solve Ax = b

One can solve Ax = b iff b ∈ C(A)

The rank of A tells everything

Table : A is m × n matrix of rank r

r = m = n Ax = b has a unique solution
r = n < m Ax = b has either 0 or a unique solution
r = m < n Ax = b has ∞ many solutions
r < m, r < n Ax = b has either 0 or ∞ solutions
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Solving linear systems

What if b < C(A) ?

Find x ∈ Rn such that
‖ r ‖2=‖ Ax − b ‖2 is minimum.

Linear Least Squares (LLS)

Project b onto C(A), and solve
A x̂ = p

The "best" (minimum mean
square error) is solution to the
normal equation :
AT A x̂ = AT b

If AT A is invertible, then the
LLS solution is given by

x̂ = (AT A)−1AT b
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Eigen-decomposition

Eigenvalues/Eigenvectors
Given a square n × n matrix A , we say that λ ∈ C is an eigenvalue of A
and x ∈ C in the corresponding eigenvector if

Ax = λx, x , 0.

Properties of eigenvalues

The rank of A is equal to the number of non-zero eigenvalues.

If A is a non-singular matrix (all of its eigenvalues are non-zero) then
1/λi is an eigenvalue of A−1 with associated eigenvector xi .
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Eigen-decomposition

Properties of eigenvalues

The sum of the eigenvalues of A is equal to its trace

trace(A) =
n∑

i=1

Aii =
n∑

i=1

λi .

The determinant of A is equal to the product of its eigenvalues

det(A) = |A | =
n∏

i=1

λi .
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Eigen-decomposition

Properties of eigenvalues

Different eigenvalues⇒ linearly independent eigenvectors

λi , λj ⇒ xi and xj are independent

If A has n different eigenvalues, then A can be diagonalized as

A = SΛS−1 = [x1, . . . , xn]


λ1

. . .

λn

 [x1, . . . , xn]−1

Powers of A are easily obtained as Ak = SΛk S−1

useful to solve recurrent equations such as uk+1 = Auk

useful to exponentiate the matrix : eA =
∑∞

k=0
Ak

k !

If A is symmetric, then we can write A = SΛST

If the eigenvalues of A are not all different, it may or may not be
possible to diagonalize A .
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Singular value decomposition

SVD : generalization of eigenvalues/eigenvectors concept for non-square
matrices

Any general m × n matrix A of rank r can be decomposed as

A = UΣVT

with

U an orthogonal m ×m matrix : UUT = I

Σ a diagonal m × r matrix : Σ =


σ1

. . .

σr

0


V an orthogonal n × n matrix : VVT = I
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Singular value decomposition

Any general m × n matrix A can be decomposed as : A = UΣVT

Figure : Geometric interpretation of SVD.
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The usefulness of SVD

Probably the most important tool.

A = UΣVT

Solving linear systems : Ax = b
x̂ = A±b, where A± is the pseudo-inverse of A given by

A± = V diag(1/σ1, . . . , 1/σr) UT

Solving homogeneous systems : Ax = 0
x̂ = the right singular vector corresponding to the smallest sigular
value.
x̂ = V( :, end), in MATLAB notation.

Approximating a matrix A
The best rank k approximation of A is Â =

∑k
i=1 σiuivT

i .

Many more ...
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SVD applications

SVD is a fundamental tool for data analysis and is often used in computer
vision and machine learning applications

Image compression

Image denoising

Pattern classification

Transformations estimations

etc

Désiré Sidibé (Le2i) LIRMM - Module Image 27/04/2016 21 / 137



SVD applications

Image denoising

A noisy image X can be decomposed as : A = UΣVT =
∑r

i=1 σiuivT
i ,

where each uivT
i is a rank one approximation of X .

A noiseless approximation of X is obtained by truncating the sum at k
terms : X̂ =

∑k
i=1 σiuivT

i .

k = 10 k = 50 k = 100

Figure : Image denoising with SVD.
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SVD applications

Image denoising

It is better to work with local patches

Denoise each local patch with SVD

k = 1 k = 2 k = 10

Figure : Image denoising with SVD on local patches.
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SVD applications

Epipolar geometry
Epipolar geometry gives a constraint between corresponding points
if a 3D point X of the scene is projected onto x and x′ in the two views,
then the image points x and x′ must satisfy the epipolar constraint :

xT Fx′ = 0,

where x =

xy
1

, x′ =

x
′

y′

1

 and F =

f11 f12 f13

f21 f22 f23

f31 f32 f33

.
F is called the fundamental matrix.
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SVD applications

Epipolar geometry

Each pair of points (x, x′) yields one equation : xT Fx′ = 0

The epipolar constraint equation is linear in the entries of F and it can
be rewritten as :

· · · · · ·
...

...

xx′ xy′ x yx′ yy′ y x′ y′ 1
...

...

· · · · · ·





f11

f12
...
...

f33


= 0

With a sufficient number of correspondences in general position it is
possible to determine F .

No knowledge about the cameras or scene structure is necessary to
find F .
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SVD applications

Homography estimations

Following the same idea as in the case of fundamental matrix
estimation,
each pair of points (x, x′) yields one equation : x′ × (Hx) = 0
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PCA

What is PCA ?

Most common answer would be ’an algorithm for dimensionality
reduction’
Yes, but :

Where does the algorithm comes from ?
What’s the underlying model ?

PCA is actually many different things (models)
latent variable model (Hotelling, 1930s)
variance maximization directions (Pearson, 1901)
optimal linear reconstruction (Kosambi-Karhunen-Loève transform in
signal processing)

It just turns out that these different models lead to the same algorithm
(in the linear Gaussian case)
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PCA

What is PCA ?

Goal of PCA
The main goal of PCA is to express a complex data set into a new set a
basis vectors that ’best’ explain the data

So, PCA is essentially a change of basis
We want to find the most meaningful basis to re-express the data
such that

the new basis reveals hidden structure
the new basis removes redundancy

Most of the time, we would like a lower dimensional space.
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PCA algorithm

The algorithm

Given a set of set of N data samples xi ∈ R
d such that

∑
i xi = 0

1 Compute the sample covariance matrix C =
1
N
∑N

i=1 xixT
i Note that C

is a d × d matrix.
2 Compute eigen-decomposition of C : C = UΛUT

U is an orthogonal d × d matrix : U = [u1,u2, . . . ,ud ]
Λ is a diagonal matrix : Λ = diag(λ1, λ2, · · · , λd).

3 Since C is symmetric, its eigenvectors u1,u2, . . . ,ud form a basis of
Rd .

The eigenvectors u1,u2, . . . ,ud are called principal components
The corresponding eigenvalues λ1 > λ2 > · · · > λd give the importance
of each principal axis.
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PCA algorithm

The PCA algorithm is pretty simple

First, center the data (if it is not)
∑

i xi = 0

Then, compute the sample covariance matrix and its eigenvectors

Finally, each sample point xi can be represented in the new basis
(projection onto the eigenspace) as

yi = UT xi

We claim that the new representation makes the data un-correlated,
i.e. Cov(yi , yj) = 0 if i , j.
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PCA algorithm

We claim that the new representation makes the data un-correlated

Why ?
The sample covariance of the transformed data is

Cnew =
1
N

N∑
i=1

yiyT
i =

1
N

N∑
i=1

(UT xi)(UT xi)
T

=
1
N

N∑
i=1

UT xixT
i U = UT

 1
N

N∑
i=1

xixT
i

U
= UT CU = UT (UΛUT )U = (UT U)Λ(UT U)

= Λ

Hence, when projected onto the principal components, the data is
decorreletad.
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PCA algorithm

Dimensionality reduction

We usually want to represent our data in a lower dimensional space
Rk , with k � d.

We achieve this by projecting onto the k principal axes which
preserve most of the variance in the data

From the previous analysis, we see that those axes correspond to the
eigenvectors associated with the k largest eigenvalues

U =

 | | |

u1 u2 . . . ud

| | |


d×d

⇒ Uk =

 | | |

u1 u2 . . . uk

| | |


d×k

The projected data is then yi = UT
k xi , yi ∈ R

k .
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PCA algorithm

Dual PCA

Suppose we are working with images, each of size M × N

We represent an image as a vector x ∈ Rd , with d = MN

The sample covariance is given C = 1
N XXT

C is a d × d matrix

When the images have high resolution, d is large and so is C

Imagine computing the eigenvalues/eigenvectors of a
1000000 × 1000000 matrix with MATLAB !

Moreover, the number N of images is usually much smaller then d.

The dual PCA algorithm is a small size trick.
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PCA algorithm

Dual PCA

Let X be the d × N data matrix X = [x1, x2, . . . , xN], xi ∈ R
d

The sample covariance can be computed as C = 1
N XXT

If N � d, then it is better to work with C′ = 1
N XT X

C′ is an N × N matrix
Let C′ = U′Λ′U′T be the eigen-decomposition of C′

We have Λ = Λ′, i.e. eigenvalues of C and C′ are equal
We have ui = Xu′i , for all i

Working with C′ is computationally less expensive if N � d.
We get eigenvectors of C′ : u′i , i = 1, . . . ,N
And those of C, the principal components we care about, are given as
ui = Xu′i .

The matrix C′ = 1
N XT X is called the Gram (or Gramian) matrix.

Désiré Sidibé (Le2i) LIRMM - Module Image 27/04/2016 35 / 137



PCA algorithm

Connection with SVD

PCA & SVD
There is a direct link between PCA and SVD

Let X be the d × N data matrix X = [x1, x2, . . . , xN]

The sample covariance can be computed as C = 1
N XXT

The eigenvectors of C are the principal components

The SVD of X is given as X = UΣVT ,
where U is orthogonal d × d and V is orthogonal N × N.

The columns of U are eigenvectors of XXT

So, the columns of U are the principal components
The sigular values of X are ordered as the eigenvalues of C, since
σ2

i = λi

The columns of V are the ’dual’ principal components

SVD gives it all !
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Other facts about PCA

It can be shown that the principal axes found as described above (i.e.
the matrix U) form the best set of orthogonal basis vectors which
minimizes the average reconstruction error

U = argmin
W

1
N

N∑
i=1

‖xi −WT xi‖F

For each data point xi , the projection yi = UT
k xi is the best

k-dimensional approximation to xi (best in the mean square error
sense)

The principal axes are axes of maximum variance
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PCA based image denoising

Assume the noise is uniformly spread out over all directions

Assume the image lies in a low dimensional subspace

Extract local patches from the image and compute an orthogonal
basis using PCA

Can denoise each patch by projection onto the first K principal
components
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PCA based image denoising

First K principal components (PCs) capture data image structures

Similar to wavelet based denoising

First 16 PCs Last 16 PCs
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PCA based image denoising

Input image Denoised image
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PCA based saliency detection

Visual saliency is an attention mechanism that helps to focus on ROI
rather than processing the entire image
It is a widely studied problem in computer vision :

An image region is considered salient if it differs from its neighbour
Features used can be : color, edge, torientation, exture, motion, etc.

Orientation Color

Figure : Popout effect.
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PCA based saliency detection

PCA provides a very simple and effective solution (Margolin et al. 2013)
The saliency of a patch is computed as the L1 norm of the pacth
projected onto the PCA axes :

P(x) =
K∑

k=1

|αk
x |.

Figure : PCA-based saliency detection (images from Margolin et al. CVPR 2013).
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Kernel PCA

Kernel methods
General idea : Map the data to a higher dimensional space (features
space) in which, we hope, we can use a linear method
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Kernel PCA

A word about kPCA

Introduced by Schoelkopf, Smola and Mueller in 1999.

The key observation is that the eigenvectors of C can be written as a
linear combination of the sample data points uk =

∑
i α

(k)
i xi , with

α(k) ∈ RN.

The second key observation is that, the coefficients of the linear
combination are solutions to the eigenvalue problem Kα(k) = λ(k)α(k)

where K is the N × N Gram matrix defined by Kij = xT
i xj .

K is sometimes called the inner product matrix or the kernel matrix

Kernel PCA corresponds to dual-PCA in the features space
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Kernel PCA

A word about kPCA

Given a set of set of N data samples xi ∈ R
d

1 Compute the Gram matrix Kij = xT
i xj

2 Find the eigenvectors of K : Kα(k) = λ(k)α(k)

3 The principal components are given by uk =
∑

i α
(k)
i xi

4 Each data point xi is projected onto the eigenspace as

uT
k xi =

∑
j

(α
(k)
j xj)

T xi =
∑

j

α
(k)
j (xT

j xi) =
∑

j

α
(k)
j Kji
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Kernel PCA

A word about kPCA

kPCA
We only need the Gram matrix K

We can replace xi → φ(xi) (mapping)

And define Kij = φ(xi)
Tφ(xj)

And do the same calculations

Kernel Trick
φ can be any mapping function (usually mapping the data to higher
dimension)

The kernel trick is we don’t need to map the data explicitly as long as
we can compute the matrix K using some well defined kernel !
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Kernel PCA

Example

Assume data in R2, i.e. xi = [x1, x2]T

We wish to map the data into a higher dimensional space (R6) and
find the principal axes in that space. We use

φ(xi) = [1,
√

2x1,
√

2x2,
√

2x1x2, x2
1 , x

2
2 ]T

Now let define a polynomial kernel as k(x, y) = (1 + xT y)2 ;
then k(x, y) = φ(x)Tφ(y).

By defining K such that Kij = k(xi , xj), we don’t need to explicitly map
each data point in R6.
We can work with the point in R2 and still get the eigenvectors in the
mapped space

That’s the power of the kernel trick
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Kernel PCA

A word about kPCA

Thus, kPCA allows us to compute eigenvectors is a higher
dimensional space without visiting it �

Another common kernel is the radial basis function (RBF) which maps
data to an infinite dimensional space

k(x, y) = exp(−γ‖x − y‖2)

Mapping data to higer dimensional space can be useful for
classification purposes.

However, the choice of the kernel is delicate.
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Probabilistic PCA

A word about PPCA

Standard PCA (and kPCA) does not provide a probabilistic
interpretation
PPCA is a probabilistic formulation of PCA from a Gaussian latent
variable model

We seek W, σ2 and µ such that

x = Wy + µ + ε,

with y ∼ N(0, I) and ε ∼ N(0, σ2I)
We have, from this model, that

x ∼ N(µ,WWT + σ2I)

Introduced by Tipping and Bishop in 1999.

Désiré Sidibé (Le2i) LIRMM - Module Image 27/04/2016 50 / 137



Probabilistic PCA

A word about PPCA

The parameters of the model are obtained via maximum likelihood
(ML) estimation
The ML estimate of µ is given by the mean of the data :

µML =
1
N

N∑
i=1

xi

The ML estimate for σ2 is given by

σ2
ML =

1
d − k

d∑
j=k+1

λj

The ML estimate for W is given by

WML = Uk (Λk − σ
2I)1/2R
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Probabilistic PCA

A word about PPCA
The ML estimate for W is given by

WML = Uk (Λk − σ
2I)1/2R

columns of Uk are the k dominant eigenvectors of the sample
covariance

Λk is diagonal and contains the corresponding k largest eigenvalues

R is an arbitrary orthogonal matrix

When R = I and σ2 → 0, PPCA = PCA

PPCA is derived iteratively (using EM algorithm) and can deal with
missing data
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Multidimensional PCA

Why multidimensional PCA ?

Applying PCA to multidimensional data, e.g. 2D data

The 2D image is vectorized

Results in high dimensional vectors to work with
An image of size 512 × 512 becomes a vector of size 262, 144
A 3D volume of size 512 × 512 × 128→ 28.106-D vector !

The natural spatial correlation is removed N
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Multidimensional PCA

MPCA
MPCA uses the full 2D or 3D nature of the data

2D-PCA (in PAMI 2004)

Given a set of images A1,A2, . . . ,AM of size m × n

Compute the image covariance matrix

G =
1
M

∑
i

(Ai − Āi)
T (Ai − Āi)

G is an nonnegative n × n matrix and its d largest eigenvectors are
used to extract features from A as Yk = AXk , k = 1, . . . , d.

The set of projected features vectors are used to form an m × d matrix
which represents image A

B = [Y1,Y2, · · · ,Yd ]
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Multidimensional PCA

2D-PCA (in PAMI 2004)

Find d dominant eigenvectors of G : Xk , k = 1, . . . , d

Project image image A onto the eigenspace : Yk = AXk

Use the obtained features to approximate the image :
B = [Y1,Y2, · · · ,Yd ]

If U = [X1,X2, . . . ,Xd ], then B = AU.

Note A is m × n and B is m × d, d � n.

The image can be reconstructed as Ā = VUT =
∑d

k=1 Yk XT
k
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Multidimensional PCA

2DPCA was shown to be better than PCA (using vectorized images)
for face recognition
However, it does not use full 2D structure of the data

It projects the 2D image only in one direction and ignore the other one

MPCA uses tensor representation and projects a 2D (3D) tensor as a
2D (3D) tensor of smaller size.
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Multidimensional PCA

Tensors

An Nth-order tensor is an N-dimensional array with N modes
The number of dimensions of a tensor is its order
Each dimension of the tensor is called a mode

Figure : An 3rd order tensor and its three modes (from Lu et al. 2008).
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Multidimensional PCA

Thus MPCA find N projections matrices, one in each mode of the
tensor

MPCA is solved by performing PCA in each mode of the tensor
iteratively

For dimensionality reduction, the projection axes are sorted
(weighted) and features are extracted using the ’best’ axes.
The method is appealing

But, requires lot of memory for large size data
It is not computationaly expensive (not much more than PCA)
A Matlab package exists (http ://www.comp.hkbu.edu.hk/∼haiping/)

Désiré Sidibé (Le2i) LIRMM - Module Image 27/04/2016 58 / 137



Multidimensional PCA

Video saliency with MPCA
How to extend the PCA-based saliency method (Margolin et al. 2013)
to deal with videos ?

Figure : Different options.
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Multidimensional PCA

Video saliency with MPCA
MPCA takes into account the spatio-temporal structure of the video
and provides good results

Figure : Sidibé et al. 2016
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Bag-of-Words

A bit of history

The Bag-of-Words (BoW) concept comes from text/documents
retrieval community
Assume you have to organize web pages into categories

Categories include Sports, Movies, Cooking
Your goal is to asssign each new webpage to one of these categories
You look for certain words in the webpages
For example, you might count how many times the word ’game’
appears in the webpage, or how many times the word ’recipe’ appears.
Then, you can assign a category based on the frequency of the words

The set of words is called a dictionary

And each webpage is represented by a bag of words from the
dictionary
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Bag-of-Words

A bit of history

Analysing a set of N documents, each represented by

xn = [xn
1 , . . . , x

n
D ]T ,

where xn
i counts how many times word i appears in document n

D is typically very large and x will be very sparse

The term-frequency (TF) is defiend as

tfn
i =

xn
i∑

i xn
i

The inverse-document frequency (IDF)is given by

idfi = log
N

# of documents that contain term i
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Bag-of-Words

A bit of history

Analysing a set of N documents, each represented by

xn = [xn
1 , . . . , x

n
D ]T ,

where xn
i counts how many times word i appears in document n

The term-frequency - inverse document frequency (TF-IDF) is given
by

xn
i = tfn

i × idfi

TF-IDF gives high weight to terms that appear often in a document,
but rarely amongst documents.
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Bag-of-Words

A bit of history

This is the idea that was introduced to the computer vision community
in the context of image category recognition
The two seminal papers are :

1 "Video Google : a text retrieval approach to object matching in videos",
Sivic and Zisserman, ICCV 2003

2 "Visual categorization with bag of keypoints", Csurka et al., ECCV
Workshop 2004

Paper 1 introduced the concept of visual vocabulary and used TF-IDF
for retrieval

Paper 2 introduced the concept of bag of features (later commonly
used as BoW)
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Bag-of-Words

Key issues

How to construct a visual dictionary ?
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Bag-of-Words

Key issues

Vocabulary size ?

Sampling strategy ?

Clustering/Quantization ?

Unsupervised vs Supervised ?
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BoW representation

Local Features

Many local features can be used
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BoW representation

Sampling strategy

Keypoints detection
Detect a set of keypoints (Harris, SIFT, etc)

Extract local descriptors around each keypoint
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BoW representation

Sampling strategy

Dense sampling
Divide image into local patches

Extract local features from each patch
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BoW representation

Clustering/Quantization

For each image Ii we extract a set of low level descriptors and
represent them as a feature matrix Xi :

Xi =


| | |

f1
i f2

i . . . fNi
i

| | |

 ,
where f1

i , . . . , f
Ni
i are the Ni descriptors extracted from Ii .

We then put together all descriptors from all training images to form a
big training matrix X :

X =
[
X1 . . . XN

]
.

X is a matrix of size d ×M, with M =
∑N

i=1 Ni and d the dimension of
the descriptor.
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BoW representation

Clustering/Quantization

To simplify the notation, we will just write the set of descriptors from
the training images as

X =

 | | |

f1 f2 . . . fM

| | |

 .
Create a dictionary by solving the following optimization problem

min
D

M∑
m=1

min
k=1...K

‖fm − dk ‖
2,

where D = [d1, . . . ,dK ] are the K clusters centers to be found and ‖.‖
is the L2 norm of vectors.

D is the visual dictionary or codebook.
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BoW representation

Clustering/Quantization

The optimization problem

min
D

M∑
m=1

min
k=1...K

‖fm − dk ‖
2,

is solved iteratively with K-means algorithm.

K-means
1 Initialize the K centers (randomly)
2 Assign each data point to one of the K centers
3 Update the centers
4 Iterate until convergence
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BoW representation

Clustering/Quantization

K-means algorithm results in a set of K cluster centers which form the
dictionary

D =

 | | |

d1 d2 . . . dK

| | |


d×K
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BoW representation

Features coding

Given the dictionary D

Given a set of low-level features Xi from image Ii

Xi =


| | |

f1
i f2

i . . . fNi
i

| | |


Encode each local descriptor fl

i using the dictionary D
Find al such that

min
al
‖fl

i − Dal‖
2 s.t . ‖al‖0 = 1, al � 0
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BoW representation

Features coding

Encode each local descriptor fl
i using the dictionary D
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BoW representation

Features pooling

The coding of image Ii results in a matrix of codes A

A =

 | | |

a1 a2 . . . aK

| | |


K×Ni

,

where each al satisfies ‖al‖0 = 1, al � 0

The pooling step transforms A into a single signature vector x̂i

x̂i = pooling(A)
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BoW representation

Features pooling

A popular choice for pooling is to compute a histogram

x̂i =
1
Ni

Ni∑
l=1

al

The final vector just encodes the frequency of occurrence of each
visual words.
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BoW representation

Summary : Basic BoW framework

1 Extract a set of local features from all images

X =

 | | |

f1 f2 . . . fM

| | |


d×M

2 Create a visual dictionary by clustering of the set of local features

D =

 | | |

d1 d2 . . . dK

| | |


d×K

3 Given D, encode each local feature from an image Ii , by assigning it

to its closest word : A =

 | | |

a1 a2 . . . aK

| | |


K×Ni

4 Finally, compute the final representation of Ii : x̂i =
1
Ni

∑Ni
l=1 al
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BoW representation

Improvements : Features coding

Represent each local feature fl
i as a linear combination of the words.

fl
i =

K∑
p=1

α
p
i dp s.t .

K∑
p=1

α
p
i = 1, αp

i ≥ 0.

Désiré Sidibé (Le2i) LIRMM - Module Image 27/04/2016 81 / 137



BoW representation

Improvements : Features coding

Hard assignment

Assign each local feature fl
i to

its closest word

al =



0
...

1
...

0


,

∑
p

ap
l = 1

Soft assignment

Write each local feature fl
i as a

linear combination (weighted
sum) of the words

al =



α1
l
...

α
p
l
...

αK
l


,

∑
p

α
p
l = 1, αp

l ≥ 0.
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BoW representation

Improvements : Features pooling

average

x̂i =
1
Ni

Ni∑
l=1

al

max

x̂j
i = max

j
(aj

l)

mean absolute value

x̂i =
1
Ni

Ni∑
l=1

|al |
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BoW representation

Improvements : Including spatial information

BoW model ignores the spatial layout of the features in the image

Does not take into account the regularities in image composition

Spatial pyramid : Lazebnik et al. CVPR 2006
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Another view of the problem

Representation over a dictionary
The BoW method can be seen as representing the input images over
a given dictionary.

We represent each image as a linear combination of the elements
of the dictionary.

 | | |

x1 x2 . . . xN

| | |


d×N︸                       ︷︷                       ︸

Input vectors

=

 | | |

d1 d2 . . . dK

| | |


d×K︸                        ︷︷                        ︸

Dictionary


−− αT

1 −−
...

−− αT
K −−


K×N︸                   ︷︷                   ︸

Coefficients of representation

∀i, xi =
K∑

k=1

α
(i)
k dk .
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Another view of the problem

 | | |

x1 x2 . . . xN

| | |

︸                  ︷︷                  ︸
X

=

 | | |

d1 d2 . . . dK

| | |

︸                  ︷︷                  ︸
D


−− αT

1 −−
...

−− αT
K −−

︸             ︷︷             ︸
A

Representation over a dictionary
We want to solve X = DA

We need to constrain the problem (many solutions)
We can impose constraints on

The dictionary D
For example : a set of orthogonal vectors

The representation (matrix of coefficients) A
For example : only a few non-zero elements

Constraints ≡ prior information
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Why Sparsity ?

Consider a simple problem

min
x

(Ax − b)2

 | | |

a1 a2 . . . aN

| | |

︸                  ︷︷                  ︸
N

x1

· · ·

xN

 =

 |b
|

 ∈ Rd

Assuming A is full rank and N > d, there is no unique solution
Many x can achieve the minimum

min
x

(Ax − b)2

Which one do you want ?
We need to impose some constraints on x
For instance, choose the x with the least nonzero elements

arg min
x
‖x‖0, s.t .(Ax − b)2 = 0
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Why Sparsity ?

The more concise, the better (Ockham’s razor)
Sparsity is a good prior for image representation

Images are compressible signals with a compressible representation in
DCT or wavelets bases
JPEG, JPEG 200
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Why Sparsity ?

The image denoising example

min
x

f(x) =
1
2
‖y − x‖2 + G(x)

x→ unknown signal to be recovered
y→ given measurement (noisy image)

G(x)→ prior or regularization term

This is a Bayesian point of view : MAP estimation

The choice of the prior if fundamental

energy G(x) = λ‖x‖2

smoothness G(x) = λ‖L(x)‖2

robust statistics G(x) = λρ(L(x))
total variation G(x) = λ‖∇x‖1
sparse prior G(x) = λ‖x‖0 for x = Dx
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Sparse coding

Sparse coding
The objective of sparse coding is to reconstruct an input vector (e.g. an
image patch) as a linear combination of a small number of vectors
picked from a large dictionary

 | | |

d1 d2 . . . dK

| | |

︸                  ︷︷                  ︸
Dictionary

α
 =

x


Every column of D is called an
atom

The vector α is the
representation of x w.r.t. D

α has few non-zero elements
(sparsity)

Every signal is built as a linear combination of few atoms from D
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Sparse coding

Signal model
Every signal is built as a linear combination of few atoms from D

x = Dα where α is sparse

How to model sparsity ?

Lp norm :

‖α‖
p
p =

k∑
i=1

|αi |
p

As p → 0, we get a count of the
nonzero elements of the vector
α

So our model is
x = Dα s.t. ‖α‖00 < L
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Sparse coding

Back to the image denoising example

The problem

min
x

f(x) =
1
2
‖y − x‖2 + G(x)

can be re-written as

min
α

1
2
‖Dα − y‖22 s.t. ‖α‖00 < L

The vector α is the representation of x : x̂ = Dα̂

Few atoms (L < K ) can be combined to form the true signal, the noise
cannot be fitted well

Denoising ≡ projection of the noisy image onto a low dimensional
space (as with SVD or PCA)
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Sparse coding

Few issues

Assume we build a signal by the relation Dα = x | | |

d1 d2 . . . dK

| | |


α
 =

x


We want to find the signal’s represntation

min
α
‖α‖00 s.t. x = Dα

Uniqueness ?
Why should we necessary get α̂ = α?
It might happen that eventually ‖α̂‖00 < ‖α‖

0
0 ?
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Sparse coding

How to compute α?
Assume we know the dictionary D and x and want to recover α
Solve

min
α
‖α‖00 s.t. ‖Dα − x‖22 < ε

2

This happens to be a combinatorial NP hard problem

Pourquoi ? Recipe for solving this problem

Assume K = 1000 and L = 10 (kwown !), and 1 nano-sec per each LS
We would need ∼8e+6 years to solve this problem ! ! !

Illustration based on G. Sapiro.
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Sparse coding

How to compute α?

min
α
‖α‖00 s.t. ‖Dα − x‖22 < ε

2

We have seen it is an NP hard problem : let’s approximate.

Relaxation methods

Smooth the L0 norm and use
continuous optimization techniques

Greddy algorithms

Build the solution one nonzero
element at a time
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Sparse coding

How to compute α?

Relaxation methods : Replace L0 by L1 norm
Instead of solving

min
α
‖α‖00 s.t. ‖Dα − x‖22 < ε

2

Solve
min
α
‖α‖11 s.t. ‖Dα − x‖22 < ε

2

The new problem is known as Basis-Pursuit (BP)

The new problem is convex (quadratic programing) and can be solved
efficiently

Under certain conditions (on D and L ) both problems are equivalent !
(Candes et al. 2006)
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Sparse coding

How to compute α?

Greedy algorithms : Find one atom at a time

Step 1 : find the atom of D that best matches the signal x

Next step : Given previously found atoms, find the next atom to best fit
the residual

The algorithm stops when ‖Dα − x‖2 < ε

Note : each of the steps just involves solving a least square problem.
Greedy algorithms are known as Matching-Pursuit (MP)
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Sparse coding

We now know how to solve the sparse coding problem

Given the dictionary D and a signal x, find the sparse vector α | | |

d1 d2 . . . dK

| | |


α
 =

x


The next question is : how is the dictionary D obtained ?
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Dictionary learning

Assumption : good behaved images have a sparse representation
⇒ D should be chosen such that it sparsifies the representation

Two options :
1 Choose D from a kwown set of transformation

DCT, wavelet, curvelet, steerable, bandlets, etc

2 Use a universal dictionary
obtained from a large dataset of images (ImageNet)

3 Learn the dictionary from examples
Training
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Dictionary learning

Learning the dictionary from examples

We are given a set of training examples X = [x1, x2, . . . , xN]

We want to find a dictionary D and a sparse codes matrix A such that X


d×N︸              ︷︷              ︸

training data matrix

=

 D


d×K︸              ︷︷              ︸

dictionary

 A


K×N︸               ︷︷               ︸

sparse codes matrix
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Dictionary learning

Learning the dictionary from examples

Our goal is to solve

min
A,D

N∑
j=1

‖Dαj − xj‖
2
2 s.t. ∀j ‖αj‖

0
0 ≤ L

The K-SVD 1 algorithm is one effective technique for dictionary learning

It is an unsupervised dictionary learning technique

It is a generalization of K-means clustering method

1. Aharon, et al., "The K-SVD : An Algorithm for Designing of Overcomplete Dictionaries
for Sparse Representation", IEEE Trans. On Signal Processing, 54(11), pp. 4311-4322,
2006.
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Dictionary learning

K-SVD algorithm
K-SVD is an extension of K-means algorithm

1 Initialize the dictionary D
with random K signals from X (K < N)

2 Given D, find A by sparse coding each column of X
we can use any pursuit algorithm : MP, OMP or BP

3 Update D one atom at a time
∀dk ∈ D select the signals xj ∈ X that use that atom (Xk )
compute the residual for all the examples that use dk , without taking
into account dk itself

Ek = Xk − DA + dkαk

find dk to better fit the residual :

min
dk ,αk

‖αk dT
k − Ek ‖2

this linear system is solved using SVD
4 Go to step 2 and iterate until convergence
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Dictionary learning

K-SVD vs K-means

K-means
Initialize the K centers

Assign each data point to one
of the K centers

Update the centers

Iterate

K-SVD
Initialize the K atoms of D

Sparse code each example
with D

Update the dictionary D

Iterate
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Some applications

Sparse representations have achieved state-of-art results in several
applications

Image denoising

Image super-resolution

Image impainting

Face recognition

PASCAL challenge (image recognition)

Activity recognition in videos

Speech recognition and NLP

etc
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Some applications

Face recognition

From Wright et al., PAMI 2010
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Some applications

Image restoration

From Mairal et al., TIP 2009
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Some applications

Image restoration

From Mairal et al., TIP 2009
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What is Diabetic Retinopathy ?

The most common diabetic eye disease
A leading cause of blindness in Europe and America
> 300 millions people will be affected by 2025 worldwide

Normal vision Vision with DR
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What is Diabetic Retinopathy ?

Diabetic Retinopathy (DR) damages the retinal blood vessels

It is suggested that 80% of people which have diabetes for more than
10 years are affected by DR.

90% of DR cases can be prevented through early detection and
treatment

Early detection of clinical signs is important
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DR diagnosis tools

Fundus camera

OCT camera
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DR detection

DR may not be perceived until it
reaches severe stage

Early DR symptoms include :
Microaneurysms (MAs)
Cotton wool spots
Hemorrhages
Exudates
Drusens
Etc
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DR symptoms

Several lesions may be present in the same image

Désiré Sidibé (Le2i) LIRMM - Module Image 27/04/2016 114 / 137



DR symptoms

Several lesions may be present in the same image
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Context of the work

Telemedical Retinal Image Analysis and Diagnosis (TRIAD) project

University of Tennessee Health Science Center (UTHSC) & Oak Ridge National Laboratory (ORNL)
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Exudates detection

An atlas based exudates detection method 2

2. S. Ali, D. Sidibé, K. Adal, L. Giancardo, E. Chaum, T. P. Karnowski, F. Mériaudeau,
"Statistical atlas based exudate segmentation", Computerized Medical Imaging and Gra-
phics, vol. 37(5), pp. 358-368, 2013
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Microaneurysm detection

A semi-supervised approach for MA detection 3

3. K. Adal, D. Sidibé, S. Ali, E. Chaum, T. Karnowski, F. Mériaudeau,"Automated De-
tection of Microaneurysms Using Scale-Adapted Blob Analysis and Semi-Supervised Lear-
ning", Computer Methods and Programs in Biomedicine, 114(1), pp. 1-10, 2014
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Drusen vs Exudates

Diabetic Macular Edema (DME) is a complication of DR
blurred vision due to swelling of the macula
assessed by detecting exudates

Age related macular degeneration (AMD or ARMD) is a eye condition
related to age

loss of vision in the macula
assessed by detecting drusen
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Drusen vs Exudates

Exudates
small white or yellowish white deposits of lipid

sign of DME

Drusen
variable size yellowish white deposits of lipid

earliest signs of ARMD

Distinguishing between exudates and drusen is important
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Retinal images classification

Main framework used in literature

Pre-processing
vessels segmentation, optic disc removal, etc

Low-level features
Color, texture, edges, etc

Mid-level representation
Clustering, Bag-of-visual-words (BoW)
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Retinal images classification

What we would like to do

Extract discriminative features for retinal images classification

No complex pre-processing
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Sparse features extraction

Extract local patches form the
images

Put each patch as column of the
matrix X

Learn a dictionary D and a
matrix A such that X ' DA
(using K-SVD algorithm)

 X


d×N︸              ︷︷              ︸

training data matrix

=

 D


d×K︸              ︷︷              ︸

dictionary

 A


K×N︸               ︷︷               ︸

sparse codes matrix
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Sparse features extraction

1 Coding
For a given set of features X from an image I, find A X


d×N

=

 D


d×K

 A


K×N

2 Pooling
From A find a single feature vector f

 A


K×N

=⇒


...

fi
...


K×1

∀i, fi = g(Ai,:)

g can be max or average
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Sparse features extraction
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Classification results

Accuracy
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Classification results

Sensitivity
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Classification results

Specificity
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Comparison with Bag of Words approach

Dictionary size
50 100 500 1000

Acc 93.70 (±3.71) 97.50 (±2.84) 99.40 (±0.97) 99.80 (±0.63)
Proposed method Sens 92.40 (±5.33) 96.50 (±5.76) 98.50 (±3.17) 100 (±0)

Spec 96.60 (±3.17) 97.70 (±3.50) 99.70 (±0.95) 99.70 (±0.95)

Acc 93.70 (±2.58) 95.30 (±2.06) 97.20 (±2.04) 97.70 (±2.06)
Bag-of-Words Sens 90.20 (±8.11) 87.30 (±12.59) 92.50 (±6.57) 92.20 (±12.04)

Spec 94.60 (±3.50) 96.60 (±3.50) 98.20 (±1.55) 98.80 (±1.55)

More results in Sidibé et al. Computers in Biology an Medicine, 2015.
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Conclusions

About PCA

PCA is a key technique that everyone should know and understand :)

It is useful in many areas
Many extensions exist :

kPCA : widely used in classification
PPCA : can be used online (streming data) and handle missing data
MPCA : interesting for multi-dimensional data

PCA is closely related to SVD

MPCA is closely related to higher order SVD
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Conclusions

Another view of PCA

PCA can also be viewed as an unsupervised dictionary learning
technique

Given a set of features X, we find a set of vectors (the dictionary) V
such that the data is un-correlated when represented in V

V =

 | | |

v1 v2 . . . vK

| | |


d×K

In general, K � d, so that we reduce the dimensionality of the data

Each feature xi is represented by VT xi
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Conclusions

About dictionaries

PCA finds a set of K vectors such that K ≤ d
When K < d, we say that we have an under-complete dictionary
When K = d, we say that we have a complete dictionary

With the BoW approach, we will usually have large dictionaries, K > d

When K > d, we say that we have an over-complete dictionary
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Conclusions

About Sparse Coding

Sparse coding has shown excellent results in various applications

It relates to current understanding of visual information processing in
HVS

It forms the basis of deep learning architectures (sparse
auto-encoders, etc)
It is been widely used in computer vision and pattern recognition

The concept has been extended to 3D : shape descriptors and object
recognition

Improvements
Structured dictionary learning
Fast optimization algorithms
Other sparsity priors (other than L1 norm)
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Conclusions

A word about compressive sensing

Compressed sensing (CS) is based on the same concepts as sparse
coding but with a different goal

Assume x has been created by x = Dα with α very sparse

Q


 D


α
 =

x

⇒ D̂α = x̂

Q is called the sensing matrix

The goal is to recover α from D̂ and x̂

CS focuses on conditions for the recovery to be perfect

Désiré Sidibé (Le2i) LIRMM - Module Image 27/04/2016 135 / 137



Conclusions

From a broader perspective

Matrix factorization
Decomposing each input example as a linear combination of basis vectors

X ≈ DA

PCA variance maximization
ICA non-Gaussianity (kurtosis) maximization
NMF non-negativity constraints
Sparse coding sparsity constraints
...

Table : Different approaches
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