
Texture synthesis Algorithms: Fourier transform, patches,
wavelet transform, and deep neural networks

Bruno Galerne
bruno.galerne@univ-orleans.fr

Institut Denis Poisson, Université d’Orléans, Université de Tours, CNRS

Module Image de l’École Doctorale I2S
Cours “Algorithmes de synthèse de textures”

Mercredi 17 avril 2019

Outline

Texture synthesis

Using Fourier transform
Discrete Fourier transform of digital images
Random phase noise (RPN)
Asymptotic discrete spot noise (ADSN)
RPN and ADSN as texture synthesis algorithms

Using texture patches

Using wavelet transform
Heeger-Bergen algorithm
Portilla and Simoncelli

Using deep neural networks

Outline

Texture synthesis

Using Fourier transform
Discrete Fourier transform of digital images
Random phase noise (RPN)
Asymptotic discrete spot noise (ADSN)
RPN and ADSN as texture synthesis algorithms

Using texture patches

Using wavelet transform
Heeger-Bergen algorithm
Portilla and Simoncelli

Using deep neural networks

What is a texture?
A minimal definition of a texture image is an “image containing repeated
patterns” [Wei et al., 2009].
The family of patterns reflects a certain amount of randomness, depending
on the nature of the texture.
Two main subclasses:

I The micro-textures.

I The macro-textures, constitued of small but discernible objects.

Textures and scale of observation

Depending on the viewing distance, the same objects can be perceived
either as

I a micro-texture,
I a macro-texture,
I a collection of individual objects.

Micro-texture Macro-texture Some pebbles

Texture synthesis

Texture Synthesis: Given an input texture image, produce an output texture
image being both visually similar to and pixel-wise different from the input
texture.

The output image should ideally be perceived as another part of the same
large piece of homogeneous material the input texture is taken from.

Texture synthesis: Motivation

I Important problem in the industry of virtual reality (video games, movies,
special effects,. . .).

I Periodic repetition is not satisfying !

Texture synthesis algorithms

Two main kinds of algorithm:

1. Texture synthesis using statistical constraints:
Algorithm:
1.1 Extract some meaningful “statistics” from the input image (e.g. distribution of

colors, of Fourier coefficients, of wavelet coefficients,. . .).
1.2 Compute a “random” output image having the same statistics: start from a

white noise and alternatively impose the “statistics” of the input.
Properties:

+ Perceptually stable
- Generally not good enough for macro-textures

2. Neighborhood-based synthesis algorithms (or “copy-paste” algorithms):
Algorithm:

I Compute sequentially an output texture such that each patch of the output
corresponds to a patch of the input texture.

I Many variations have been proposed: scanning orders, grow pixel by pixel or
patch by patch, multiscale synthesis, optimization procedure,. . .

Properties:
+ Synthesize well macro-textures
- Can have some speed and stability issue, hard to set parameter...

Texture synthesis algorithms

Two main kinds of algorithm:

1. Texture synthesis using statistical constraints:
Algorithm:
1.1 Extract some meaningful “statistics” from the input image (e.g. distribution of

colors, of Fourier coefficients, of wavelet coefficients,. . .).
1.2 Compute a “random” output image having the same statistics: start from a

white noise and alternatively impose the “statistics” of the input.
Properties:

+ Perceptually stable
- Generally not good enough for macro-textures

2. Neighborhood-based synthesis algorithms (or “copy-paste” algorithms):
Algorithm:

I Compute sequentially an output texture such that each patch of the output
corresponds to a patch of the input texture.

I Many variations have been proposed: scanning orders, grow pixel by pixel or
patch by patch, multiscale synthesis, optimization procedure,. . .

Properties:
+ Synthesize well macro-textures
- Can have some speed and stability issue, hard to set parameter...

Texture synthesis algorithms

Two main kinds of algorithm:

1. Texture synthesis using statistical constraints:
Algorithm:
1.1 Extract some meaningful “statistics” from the input image (e.g. distribution of

colors, of Fourier coefficients, of wavelet coefficients,. . .).
1.2 Compute a “random” output image having the same statistics: start from a

white noise and alternatively impose the “statistics” of the input.
Properties:

+ Perceptually stable
- Generally not good enough for macro-textures

2. Neighborhood-based synthesis algorithms (or “copy-paste” algorithms):
Algorithm:

I Compute sequentially an output texture such that each patch of the output
corresponds to a patch of the input texture.

I Many variations have been proposed: scanning orders, grow pixel by pixel or
patch by patch, multiscale synthesis, optimization procedure,. . .

Properties:
+ Synthesize well macro-textures
- Can have some speed and stability issue, hard to set parameter...

Texture synthesis by phase randomization

We begin with Random Phase Noise (RPN) and
Asymptotic Discrete Spot Noise (ADSN)
[Galerne, Gousseau and Morel, 2011 (a)]
[Galerne, Gousseau and Morel, 2011 (b)]

I It belongs to the first category: texture synthesis by statistical
constraints.

I Here the “statistics” are the moduli of the Fourier coefficients.

Texture synthesis by phase randomization

I Successful examples with micro-textures

Texture synthesis by phase randomization
I Failure examples with macro-textures

I Perceptual evaluation only: There is no “perception distance”

Outline

Texture synthesis

Using Fourier transform
Discrete Fourier transform of digital images
Random phase noise (RPN)
Asymptotic discrete spot noise (ADSN)
RPN and ADSN as texture synthesis algorithms

Using texture patches

Using wavelet transform
Heeger-Bergen algorithm
Portilla and Simoncelli

Using deep neural networks

Framework

I We work with discrete digital images u ∈ RM×N indexed on the set
Ω = {0, . . . ,M − 1} × {0, . . . ,N − 1}.

I Each image is extended by periodicity:

u(k , l) = u(k mod M, l mod N) for all (k , l) ∈ Z2.

I Consequence: Translation of an image:

Discrete Fourier transform of digital images

I Image domain: Ω = {0, . . . ,M − 1} × {0, . . . ,N − 1}
I Fourier domain Ω̂: the frequency 0 is placed at the center:

Ω̂ =

{
−M

2
, . . . ,

M
2
− 1
}
×
{
−N

2
, . . . ,

N
2
− 1
}
.

Definition:
I The discrete Fourier transform (DFT) of u is the complex-valued im-

age û defined by:

û(s, t) =
1

MN

M−1∑
k=0

N−1∑
l=0

u(k , l)e−
2iksπ

M e−
2iltπ

N , (s, t) ∈ Ω̂.

I |û|: Fourier modulus of u.
I arg (û): Fourier phase of u.

Symmetry property:
I Since u is real-valued, û(−s,−t) = û(s, t).
⇒ the modulus |û| is even and the phase arg (û) is odd.

Discrete Fourier transform of digital images

I Image domain: Ω = {0, . . . ,M − 1} × {0, . . . ,N − 1}
I Fourier domain Ω̂: the frequency 0 is placed at the center:

Ω̂ =

{
−M

2
, . . . ,

M
2
− 1
}
×
{
−N

2
, . . . ,

N
2
− 1
}
.

Definition:
I The discrete Fourier transform (DFT) of u is the complex-valued im-

age û defined by:

û(s, t) =
1

MN

M−1∑
k=0

N−1∑
l=0

u(k , l)e−
2iksπ

M e−
2iltπ

N , (s, t) ∈ Ω̂.

I |û|: Fourier modulus of u.
I arg (û): Fourier phase of u.

Symmetry property:
I Since u is real-valued, û(−s,−t) = û(s, t).
⇒ the modulus |û| is even and the phase arg (û) is odd.

Discrete Fourier transform of digital images

I Image domain: Ω = {0, . . . ,M − 1} × {0, . . . ,N − 1}
I Fourier domain Ω̂: the frequency 0 is placed at the center:

Ω̂ =

{
−M

2
, . . . ,

M
2
− 1
}
×
{
−N

2
, . . . ,

N
2
− 1
}
.

Definition:
I The discrete Fourier transform (DFT) of u is the complex-valued im-

age û defined by:

û(s, t) =
1

MN

M−1∑
k=0

N−1∑
l=0

u(k , l)e−
2iksπ

M e−
2iltπ

N , (s, t) ∈ Ω̂.

I |û|: Fourier modulus of u.
I arg (û): Fourier phase of u.

Symmetry property:
I Since u is real-valued, û(−s,−t) = û(s, t).
⇒ the modulus |û| is even and the phase arg (û) is odd.

Discrete Fourier transform of digital images
Symmetry property:

I |û|: Fourier modulus of u is even.
I arg (û): Fourier phase of u is odd.

Visualization of the DFT:

Image u Modulus |û| Phase arg (û)

I Interpretation of frequency content

Computation:
I The Fast Fourier Transform algorithm computes û in O(MN log(MN))

operations.
I Efficient FFT implementation: FFTW library, a C/C++ library (used in

Matlab).

FFTW = Fastest Fourier Transform in the West

Discrete Fourier transform of digital images
Symmetry property:

I |û|: Fourier modulus of u is even.
I arg (û): Fourier phase of u is odd.

Visualization of the DFT:

Image u Modulus |û| Phase arg (û)

I Interpretation of frequency content

Computation:
I The Fast Fourier Transform algorithm computes û in O(MN log(MN))

operations.
I Efficient FFT implementation: FFTW library, a C/C++ library (used in

Matlab).

FFTW = Fastest Fourier Transform in the West

Discrete Fourier transform of digital images
Symmetry property:

I |û|: Fourier modulus of u is even.
I arg (û): Fourier phase of u is odd.

Visualization of the DFT:

Image u Modulus |û| Phase arg (û)

I Interpretation of frequency content

Computation:
I The Fast Fourier Transform algorithm computes û in O(MN log(MN))

operations.
I Efficient FFT implementation: FFTW library, a C/C++ library (used in

Matlab).

FFTW = Fastest Fourier Transform in the West

Modulus and phase of a digital image

Exchanging the modulus and the phase of two images:
[Oppenheim and Lim, 1981]

Image 1 Image 2

Modulus of 1
& phase of 2

Modulus of 2
& phase of 1

I Geometric contours are mostly contained in the phase.

Modulus and phase of a digital image

Exchanging the modulus and the phase of two images:
[Oppenheim and Lim, 1981]

Image 1 Image 2

Modulus of 1
& phase of 2

Modulus of 2
& phase of 1

I Geometric contours are mostly contained in the phase.

Modulus and phase of a digital image

Exchanging the modulus and the phase of two images:
[Oppenheim and Lim, 1981]

Image 1 Image 2

Modulus of 1
& phase of 2

Modulus of 2
& phase of 1

I Textures are mostly contained in the modulus.

Modulus and phase of a digital image

Exchanging the modulus and the phase of two images:
[Oppenheim and Lim, 1981]

Image 1 Image 2

Modulus of 1
& phase of 2

Modulus of 2
& phase of 1

I Geometric contours are mostly contained in the phase.
I Textures are mostly contained in the modulus.

Random phase textures

I We call random phase texture any image that is perceptually invariant to
phase randomization.

I Phase randomization = replace the Fourier phase by a random phase.
I Definition: A random field θ : Ω̂→ R is a random phase if

1. Symmetry: θ is odd:

∀(s, t) ∈ Ω̂, θ(−s,−t) = −θ(s, t).

2. Distribution: Each component θ(s, t) is
I uniform over the interval]− π, π] if (s, t) /∈

{
(0, 0) ,

(M
2 , 0
)
,
(
0, N

2

)
,
(M

2 ,
N
2

)}
,

I uniform over the set {0, π} otherwise.

3. Independence: For each subset S ⊂ Ω̂ that does not contain distinct
symmetric points, the r.v. {θ(s, t)|(s, t) ∈ S} are independent.

I Property: The Fourier phase of a Gaussian white noise X is a random
phase.

I (Lazy) simulation: In Matlab, theta = angle(fft2(randn(M,N))).
I Random phase textures constitute a “limited” subclass of the set of tex-

tures.

Random Phase Noise (RPN)

I Texture synthesis algorithm: random phase noise (RPN): [van Wijk, 1991]

1. Compute the DFT ĥ of the input h

2. Compute a random phase θ using a pseudo-random number generator

3. Set Ẑ =
∣∣∣ĥ∣∣∣ eiθ (or Ẑ = ĥeiθ)

4. Return Z the inverse DFT of Ẑ

Original image h Modulus
∣∣∣ĥ∣∣∣ RPN associated with h

Discrete spot noise [van Wijk, 1991]

I Let h be a discrete image called spot.
I Let (Xk) be a sequence of random translation vectors which are i.d.d.

and uniformly distributed over Ω.
I The discrete spot noise of order n associated with h is the random

image

fn(x) =
n∑

k=1

h(x − Xk).

(translations with periodic boundary conditions)

Spot h n = 10 n = 102 n = 103 n = 104 n = 105

Limit of the DSN model ?

?

Spot h n = 104 n = 105 n = +∞

I For texture synthesis we are more particularly interested in the limit of the
DSN: the asymptotic discrete spot noise (ADSN).

I The DSN of order n, fn(x) =
∑

k h(x − Xk), is the sum of the n i.i.d.
random images h(· − Xk).

I Central limit theorem for random vectors:...

Limit of the DSN model ?

?

Spot h n = 104 n = 105 n = +∞

I For texture synthesis we are more particularly interested in the limit of the
DSN: the asymptotic discrete spot noise (ADSN).

I The DSN of order n, fn(x) =
∑

k h(x − Xk), is the sum of the n i.i.d.
random images h(· − Xk).

I Central limit theorem for random vectors:...

Limit of the DSN model ?

?

Spot h n = 104 n = 105 n = +∞

I For texture synthesis we are more particularly interested in the limit of the
DSN: the asymptotic discrete spot noise (ADSN).

I The DSN of order n, fn(x) =
∑

k h(x − Xk), is the sum of the n i.i.d.
random images h(· − Xk).

I Central limit theorem for random vectors:...

Basics of Gaussian random vectors
Gaussian random vectors in 1D:

I Y = (Y1, . . . ,YN)T ∈ RN is a Gaussian random vector if every linear
combination of the component of Y has a Gaussian distribution :

∀α ∈ RN , 〈Y , α〉 ∼ N (m, σ2) for some m and σ2.

I The expectation µ ∈ RN of Y is the vector µ = E(Y), i.e. for all
i ∈ {1, . . . ,N}, µi = E(Yi).

I The covariance of Y is the matrix C ∈ RN×N such that

C(i, j) = Cov(Yi ,Yj) = E((Yi − µi)(Yj − µj)).

I The covariance is symmetric and positive

∀α = (α1, . . . , αN) ∈ RN ,

N∑
i,j=1

αiαjC(i, j) ≥ 0 (this is just Var(〈Y , α〉) ≥ 0)

I Gaussian vector distributions are characterized by their expectation µ
and covariance matrix C, one denotes the distribution by N (µ,C).

I If C is invertible, Y ∼ N (µ,C) has density

fY (x) =
1√

(2π)N det(C)
exp

(
−1

2
(x − µ)T C−1(x − µ)

)

Basics of Gaussian random vectors

Theorem (Central limit theorem for random vectors)
If (Xn)n≥1 is a sequence of iid random vectors with expectation µ and , then((∑n

k=1 Xk
)
− nµ

√
n

)
n

converges in distribution to N (0,C).

Gaussian random vectors and linear application:

I If Y1 ∈ RN has distribution N (µ1,C1) and A ∈ RM×N then
Y2 = AY1 ∈ RM is Gaussian with

E(Y2) = AE(Y1) = Aµ and Cov(Y2) = A Cov(Y1)AT = AC1AT .

Simulation Gaussian random vectors:
Given a mean vector µ and a covariance matrix C :

1. Compute a matrix A such that C = AAT

(eg Cholesky decomposition or squareroot of C)

2. Generate a Gaussian white noise vector X ∼ N (0, IN)
(randn in Matlab)

3. Return Y = µ+ AX .

Basics of Gaussian random vectors

Theorem (Central limit theorem for random vectors)
If (Xn)n≥1 is a sequence of iid random vectors with expectation µ and , then((∑n

k=1 Xk
)
− nµ

√
n

)
n

converges in distribution to N (0,C).

Gaussian random vectors and linear application:

I If Y1 ∈ RN has distribution N (µ1,C1) and A ∈ RM×N then
Y2 = AY1 ∈ RM is Gaussian with

E(Y2) = AE(Y1) = Aµ and Cov(Y2) = A Cov(Y1)AT = AC1AT .

Simulation Gaussian random vectors:
Given a mean vector µ and a covariance matrix C :

1. Compute a matrix A such that C = AAT

(eg Cholesky decomposition or squareroot of C)

2. Generate a Gaussian white noise vector X ∼ N (0, IN)
(randn in Matlab)

3. Return Y = µ+ AX .

Basics of Gaussian random vectors

Theorem (Central limit theorem for random vectors)
If (Xn)n≥1 is a sequence of iid random vectors with expectation µ and , then((∑n

k=1 Xk
)
− nµ

√
n

)
n

converges in distribution to N (0,C).

Gaussian random vectors and linear application:

I If Y1 ∈ RN has distribution N (µ1,C1) and A ∈ RM×N then
Y2 = AY1 ∈ RM is Gaussian with

E(Y2) = AE(Y1) = Aµ and Cov(Y2) = A Cov(Y1)AT = AC1AT .

Simulation Gaussian random vectors:
Given a mean vector µ and a covariance matrix C :

1. Compute a matrix A such that C = AAT

(eg Cholesky decomposition or squareroot of C)

2. Generate a Gaussian white noise vector X ∼ N (0, IN)
(randn in Matlab)

3. Return Y = µ+ AX .

Basics of Gaussian random vectors

Gaussian random vectors in 2D:
I Same story with the pixel indexes for the coordinates : Y = (Y (x))x∈Ω.
I The covariance matrix has two indexes : C = (C(x , y)x,y∈Ω.
I For (even small) images, in general the covariance matrix cannot be

stored ! One needs to limit to simple models : sparse covariance,
stationary distributions,. . .

Stationary random vectors in 2D:

I A random vector Y is stationary if Y and its translations have the same
distribution.

I If Y is stationary then E(Y) is a constant vector (E(Y (x)) = E(Y (y)))
and

C(x , y) = C(x − y , 0)

is a “circulant matrix”. Then the covariance can be stored in a single
image c(x) = C(x , 0) so that

C(x , y) = c(x − y), x , y ∈ Ω.

Limit of the DSN model ?

?

Spot h n = 104 n = 105 n = +∞

I For texture synthesis we are more particularly interested in the limit of the
DSN: the asymptotic discrete spot noise (ADSN).

I The DSN of order n, fn(x) =
∑

k h(x − Xk), is the sum of the n i.i.d.
random images h(· − Xk).

I Central limit theorem for random vectors:

The sequence of random images
(

fn − nE(h(· − X1))√
n

)
n∈N∗

converges

in distribution towards the Gaussian random vector Y = (Y (x))x∈Ω with
zero mean and covariance Cov(h(· − X1)).

Limit of the DSN model ?

?

Spot h n = 104 n = 105 n = +∞

I For texture synthesis we are more particularly interested in the limit of the
DSN: the asymptotic discrete spot noise (ADSN).

I The DSN of order n, fn(x) =
∑

k h(x − Xk), is the sum of the n i.i.d.
random images h(· − Xk).

I Central limit theorem for random vectors:

The sequence of random images
(

fn − nE(h(· − X1))√
n

)
n∈N∗

converges

in distribution towards the Gaussian random vector Y = (Y (x))x∈Ω with
zero mean and covariance Cov(h(· − X1)).

Limit of the DSN model ?

?

Spot h n = 104 n = 105 n = +∞

I For texture synthesis we are more particularly interested in the limit of the
DSN: the asymptotic discrete spot noise (ADSN).

I The DSN of order n, fn(x) =
∑

k h(x − Xk), is the sum of the n i.i.d.
random images h(· − Xk).

I Central limit theorem for random vectors:

The sequence of random images
(

fn − nE(h(· − X1))√
n

)
n∈N∗

converges

in distribution towards the Gaussian random vector Y = (Y (x))x∈Ω with
zero mean and covariance Cov(h(· − X1)).

Asymptotic discrete spot noise (ADSN)

Expectation of the random translations:

E(h(x − X1)) =
∑
y∈Ω

h(x − y)P(X1 = y)

=
∑
y∈Ω

h(x − y)
1

MN

=
1

MN

∑
z∈Ω

h(z)

= mean of h.

I E(h(x − X1)) = m, where m is the mean of h.

Asymptotic discrete spot noise (ADSN)

Covariance of the random translations: Let x , y ∈ Ω,

Cov(h(x − X1), h(y − X1)) = E((h(x − X1)−m)(h(y − X1)−m))

=
∑
z∈Ω

(h(x − z)−m)(h(y − z)−m)P(X1 = z)

=
1

MN

∑
z∈Ω

(h(x − z)−m)(h(y − z)−m)

= Ch(x , y).

I Cov(h(x − X1), h(y − X1)) = Ch(x , y) where Ch is the autocorrelation
of h:

Ch(x , y) =
1

MN

∑
t∈Ω

(h(x − t)−m) (h(y − t)−m) , (x , y) ∈ Ω.

Asymptotic discrete spot noise (ADSN)

I For texture synthesis we are more particularly interested in the limit of the
DSN: the asymptotic discrete spot noise (ADSN).

Expectation and covariance of the random translations:

I E(h(x − X1)) = m, where m is the arithmetic mean of h.
I Cov(h(x − X1), h(y − X1)) = Ch(x − y) where Ch is the autocorrelation

of h:

Ch(x , y) =
1

MN

∑
t∈Ω

(h(x − t)−m) (h(y − t)−m) , (x , y) ∈ Ω.

Definition of ADSN:

I The ADSN associated with h is the Gaussian vector N (0,Ch).

Simulation of the ADSN
Definition of ADSN: the ADSN associated with h is the Gaussian vectorN (0,Ch).

Gaussian white noise:
pixels are independent
and have Gaussian dis-
tribution

Gaussian vector:
pixels have Gaussian
distribution and are
correlated

Convolution product: (f ∗ g) (x) =
∑
y∈Ω

f (x − y)g(y), x ∈ Ω.

Simulation of the ADSN:
I Let h ∈ RM×N be a an image, m be the mean of h and X be a Gaussian

white noise image.

I The random image
1√
MN

(h −m) ∗ X is the ADSN associated with h.

Spot h DSN, n = 105 ADSN

ADSN Simulation
Proof of Y =

1√
MN

(h −m) ∗ X ∼ N (0,Ch).

I Y is obtained from X in applying a linear map. Since X is a Gaussian
vector, Y is also a Gaussian vector.

I One just needs to show that E(Y (x)) = 0 and
Cov(Y (x),Y (y)) = Ch(x , y).

I By linearity, E(Y (x)) =
1√
MN

(h −m) ∗ E(X)(x) = 0.

I Let x , y ∈ Ω,

Cov(Y (x),Y (y)) = E(Y (x)Y (y))

=
1

MN
E

∑
s∈Ω

(h(s − x)−m)X (s)
∑

t∈ΩM,N

(h(t − y)−m)X (t)


=

1
MN

∑
s,t∈Ω

(h(s − x)−m)(h(t − y)−m) E(X (s)X (t))︸ ︷︷ ︸
= 1 if s = t and 0 otherwise

=
1

MN

∑
s∈Ω

(h(s − x)−m)(h(t − y)−m)

= Ch(x , y)

ADSN Simulation
Proof of Y =

1√
MN

(h −m) ∗ X ∼ N (0,Ch).

I Y is obtained from X in applying a linear map. Since X is a Gaussian
vector, Y is also a Gaussian vector.

I One just needs to show that E(Y (x)) = 0 and
Cov(Y (x),Y (y)) = Ch(x , y).

I By linearity, E(Y (x)) =
1√
MN

(h −m) ∗ E(X)(x) = 0.

I Let x , y ∈ Ω,

Cov(Y (x),Y (y)) = E(Y (x)Y (y))

=
1

MN
E

∑
s∈Ω

(h(s − x)−m)X (s)
∑

t∈ΩM,N

(h(t − y)−m)X (t)


=

1
MN

∑
s,t∈Ω

(h(s − x)−m)(h(t − y)−m) E(X (s)X (t))︸ ︷︷ ︸
= 1 if s = t and 0 otherwise

=
1

MN

∑
s∈Ω

(h(s − x)−m)(h(t − y)−m)

= Ch(x , y)

ADSN Simulation
Proof of Y =

1√
MN

(h −m) ∗ X ∼ N (0,Ch).

I Y is obtained from X in applying a linear map. Since X is a Gaussian
vector, Y is also a Gaussian vector.

I One just needs to show that E(Y (x)) = 0 and
Cov(Y (x),Y (y)) = Ch(x , y).

I By linearity, E(Y (x)) =
1√
MN

(h −m) ∗ E(X)(x) = 0.

I Let x , y ∈ Ω,

Cov(Y (x),Y (y)) = E(Y (x)Y (y))

=
1

MN
E

∑
s∈Ω

(h(s − x)−m)X (s)
∑

t∈ΩM,N

(h(t − y)−m)X (t)


=

1
MN

∑
s,t∈Ω

(h(s − x)−m)(h(t − y)−m) E(X (s)X (t))︸ ︷︷ ︸
= 1 if s = t and 0 otherwise

=
1

MN

∑
s∈Ω

(h(s − x)−m)(h(t − y)−m)

= Ch(x , y)

ADSN Simulation
Proof of Y =

1√
MN

(h −m) ∗ X ∼ N (0,Ch).

I Y is obtained from X in applying a linear map. Since X is a Gaussian
vector, Y is also a Gaussian vector.

I One just needs to show that E(Y (x)) = 0 and
Cov(Y (x),Y (y)) = Ch(x , y).

I By linearity, E(Y (x)) =
1√
MN

(h −m) ∗ E(X)(x) = 0.

I Let x , y ∈ Ω,

Cov(Y (x),Y (y)) = E(Y (x)Y (y))

=
1

MN
E

∑
s∈Ω

(h(s − x)−m)X (s)
∑

t∈ΩM,N

(h(t − y)−m)X (t)


=

1
MN

∑
s,t∈Ω

(h(s − x)−m)(h(t − y)−m) E(X (s)X (t))︸ ︷︷ ︸
= 1 if s = t and 0 otherwise

=
1

MN

∑
s∈Ω

(h(s − x)−m)(h(t − y)−m)

= Ch(x , y)

ADSN Simulation

Simulation Gaussian random vectors:
Given a mean vector µ and a covariance matrix C :

1. Compute a matrix A such that C = AAT

(eg Cholesky decomposition or squareroot of C)

2. Generate a Gaussian white noise vector X ∼ N (0, IN)
(randn in Matlab)

3. Return Y = µ+ AX .

Remark:

I Here with
Y =

1√
MN

(h −m) ∗ X ∼ N (0,Ch)

we just showed that the linear operator

A = “convolution by
1√
MN

(h −m)”

satisfies AAT = Ch (as would the Cholesky decomposition).

Differences between RPN and ADSN
Proposition:

I RPN and ADSN both have a random phase.
I The Fourier modulus of RPN is the one of h.
I The Fourier modulus of ADSN is the pointwise multiplication between

∣∣∣ĥ∣∣∣
and a Rayleigh noise.

Spot h RPN Modulus ADSN Modulus

I RPN and ADSN are two different processes.

Spot h RPN An ADSN
realization

Another ADSN
realization

RPN and ADSN associated to texture images

I We add the original mean to RPN and ADSN realizations.
I RPN and ADSN are texture models with same mean and same

covariance than the original image h.
I Some textures are relatively well reproduced by RPN and ADSN.

Original image RPN ADSN

I ... But several developments are necessary to derive texture synthesis
algorithms from sample.

Extension to color images
I We use the RGB color representation for color images.
I Color ADSN: The definition of Discrete Spot Noise extends to color im-

ages h = (hr , hg , hb).
I The color ADSN Y is the limit Gaussian process obtained in letting the

number of spots tend to +∞. It is simulated by:

Y =
1√
MN

(hr −mr 1) ∗ X
(hg −mg1) ∗ X
(hb −mb1) ∗ X

 , X a Gaussian white noise.

I One convolves each color channel with the same Gaussian white noise
X .

Spot h n = 10 n = 102 n = 103 n = 104 color
ADSN

I Phase of color ADSN: The same random phase is added to the Fourier
transform of each color channel.

Extension to color images

I Color RPN: By analogy, the RPN associated with a color image h =
(hr , hg , hb) is the color image obtained by adding the same random
phase to the Fourier transform of each color channel.

Original image h Color RPN
“Wrong RPN”: each channel
has the same random phase

ĥ =

|ĥR |eiϕR

|ĥG|eiϕG

|ĥB|eiϕB

 Ẑ =

|ĥR |ei(ϕR +θ)

|ĥG|ei(ϕG+θ)

|ĥB|ei(ϕB+θ)

 ẐW =

|ĥR |eiθ

|ĥG|eiθ

|ĥB|eiθ



Extension to color images
I Another example with a real-world texture.

Original image h Color RPN “Wrong RPN”

I Preserving the original phase displacement between the color channels
is essential for color consistency.

I ...however for most monochromatic textures, there is no huge difference.

Original image h Color RPN “Wrong RPN”

Avoiding artifacts due to non periodicity

I Both ADSN and RPN algorithms are based on the fast Fourier transform
(FFT).
=⇒ implicit hypothesis of periodicity

I Using non periodic samples yields important artifacts.

Spot h

ADSN

Avoiding artifacts due to non periodicity

I Our solution: Force the periodicity of the input sample.
I The original image h is replaced by its periodic component p = per(h),

see L. Moisan’s course [Moisan, 2011].
I Definition of the periodic component p of h: p unique solution of{

∆p = ∆ih
mean(p) = mean(h)

where, noting Nx the neighborhood of x ∈ Ω for 4-connexity:

∆f (x) = 4f (x)−
∑
y∈Nx

f (y) and ∆i f (x) = |Nx ∩ Ω| f (x)−
∑

y∈Nx∩Ω

f (y).

These two Laplacians only differ at the border:
I ∆: discrete Laplacian with periodic boundary conditions
I ∆i : discrete Laplacian without periodic boundary conditions (index i for

interior)

I p is “visually close” to h (same Laplacian).
I p is fastly computed using the FFT. . .

FFT-based Poisson Solver
Periodic Poisson problem: Find the image p such that{

∆p = ∆ih
mean(p) = mean(h)

In the Fourier domain, this system becomes:{(
4− 2 cos

(2sπ
M

)
− 2 cos

(2tπ
N

))
p̂(s, t) = ∆̂ih(s, t), (s, t) ∈ Ω̂ \ {(0, 0)},

p̂(0, 0) = mean(h).

Algorithm to compute the periodic component:

1. Compute ∆ih the discrete Laplacian of h.

2. Compute m = mean(h).

3. Compute ∆̂ih the DFT of ∆ih using the forward FFT.

4. Compute the DFT p̂ of p defined byp̂(s, t) = ∆̂i h((s,t))

−4+2 cos(2sπ
M)+2 cos(2tπ

N)
for (s, t) ∈ Ω̂ \ {(0, 0)}

p̂(0, 0) = m

5. Compute p using the backward FFT (if necessary).

Periodic component: effects on the Fourier modulus

I p is “visually close” to h (same Laplacian).

Image h
Periodic component

p = per(h)
Smooth component

s = h − p (+m)

Images

Fourier
modulus

I The application per : h 7→ p filters out the “cross structure” of the
spectrum.

Avoiding artifacts due to non periodicity

Spot h

ADSN(h)

ADSN(p)

Synthesizing textures having arbitrary large size
Ad hoc solution: To synthesize a texture larger than the original spot h, one
computes an “equivalent spot” h̃:

I Copy p = per(h) in the center of a constant image equal to the mean of
h.

I Normalize the variance.
I Attenuate the transition at the inner border.

Spot h Equivalent spot h̃ RPN(h) RPN
(

h̃
)

- Not really rigorous... The envelope changes the covariance.

Properties of the resulting algorithms

I Both algorithms are fast, with the complexity of the fast Fourier transform
[O (MN log (MN))].

I Visual stability: All the realizations obtained from the same input image
are visually similar.

Spot h RPN 1 RPN 2 RPN 3

I [ON LINE DEMO]

http://mw.cmla.ens-cachan.fr/megawave/demo/random_phase_noise/

Numerical results: similarity of the textures
I In order to compare both algorithms, the same random phase is used for

ADSN and RPN.

Image h ADSN RPN

I Both algorithms produce visually similar textures.

Numerical results: non random phase textures
Image h ADSN RPN

Some other examples of well-reproduced textures...

I We only display the RPN result.

Image h RPN Image h RPN

I Much more examples of success and failures on the IPOL webpage:
http://www.ipol.im/pub/algo/ggm_random_phase_texture_
synthesis/

http://www.ipol.im/pub/algo/ggm_random_phase_texture_synthesis/
http://www.ipol.im/pub/algo/ggm_random_phase_texture_synthesis/

Conclusion
Summary:

I Random phase noise and asymptotic discrete spot noise have been math-
ematically defined and theoretically compared.

I Both corresponding texture synthesis algorithms are fast, visually stable,
and produce visually similar results.

I Both algorithms reproduce relatively well a certain class of textures: the
micro-textures.

Limitations:
I The models are limited to a restrictive class of textures.
I The algorithms are not robust to non stationarities, perspective effects, ...
I The method is global: the whole texture image has to be computed (in

constrast with noise models from computer graphics).

Gaussian textures are a well understood mathematical models: This allows
for several extensions:

I Texture mixing
I Noise models from example in graphics
I Texture inpainting

Mixing of Gaussian textures

I Using optimal transport distance, one can define barycenters between
Gaussian texture models (ie a shortest covariance path between two
covariances).

I This gives a practical and rigorous solution for Gaussian texture
mixing [Xia et al, 2011].

Mixing of Gaussian textures
I Using optimal transport distance, one can define barycenters between

Gaussian texture models (ie a shortest covariance path between two
covariances).

I This gives a practical and rigorous solution for Gaussian texture
mixing [Xia et al, 2011].

I Another example from [Galerne, Leclaire, Moisan, 2017]

Gaussian texture models for 3D graphics
I Gaussian texture models can be extended as procedural noise models

for 3D graphics [Galerne, Leclaire, Moisan, 2017]

Outline

Texture synthesis

Using Fourier transform
Discrete Fourier transform of digital images
Random phase noise (RPN)
Asymptotic discrete spot noise (ADSN)
RPN and ADSN as texture synthesis algorithms

Using texture patches

Using wavelet transform
Heeger-Bergen algorithm
Portilla and Simoncelli

Using deep neural networks

Using texture patches

Switch to powerpoint...

Outline

Texture synthesis

Using Fourier transform
Discrete Fourier transform of digital images
Random phase noise (RPN)
Asymptotic discrete spot noise (ADSN)
RPN and ADSN as texture synthesis algorithms

Using texture patches

Using wavelet transform
Heeger-Bergen algorithm
Portilla and Simoncelli

Using deep neural networks

Heeger-Bergen algorithm

References:
I Original paper:

D. J. Heeger and J. R. Bergen, Pyramid-based texture
analysis/synthesis, SIGGRAPH ’95, 1995

I Article and demo IPOL [Briand et al. 2014].

Statistical constraints:
I Histogram of colors
I Histogram of “wavelet” coefficients at each scale, more precisely the

steerable pyramid transform [Simoncelli et al 1992]

Algorithm:
I Alternating projections into the constraints starting from a white noise

image

Two main tools:
I Steerable pyramid decomposition and reconstruction
I Histogram matching

Steerable pyramid decomposition
Diagram for the steerable pyramid:

I Different filters:
I h0: high-pass filter
I l0 and l : low-pass filters
I b0, b1,. . . ,bQ−1: Q oriented bandlimited filters

I The left part corresponds to the steerable pyramid image decomposition.
I The right part corresponds to the image reconstruction from the pyramid.
I The dark dot illustrates that the multi-orientation analysis contained in

the gray rectangular area is performed on the subsampled images.
I This recursive step is performed until the number of desired pyramid

scales P is reached.

Steerable pyramid decomposition

I Steerable pyramid decomposition of a texture image with two scales and
four orientations.

Original image Associated steerable pyramid

High frequency residual

1st scale of oriented subbands with angle θ = 0, π4 , π2 , and 3π
4

2nd scale of oriented subbands with angle θ = 0, π4 , π2 , and 3π
4

Low frequency residual

Steerable pyramid decomposition of a texture

I Steerable pyramid decomposition of a texture image with two scales and
four orientations.

Original image Associated steerable pyramid

High frequency residual

1st scale of oriented subbands with angle θ = 0, π4 , π2 , and 3π
4

2nd scale of oriented subbands with angle θ = 0, π4 , π2 , and 3π
4

Low frequency residual

Steerable pyramid decomposition

I Filters are defined analytically in polar coordinates in the Fourier domain
e.g.

L(r , θ) = L(r) =


1 if r 6 π

4 ,

cos(π2 log2(4r
π

)) if π4 6 r 6 π
2 ,

0 if r > π
2 ,

I The decomposition corresponds to a (soft) paving of the Fourier domain
(similar to a filter bank of Gabor filters).

Image credits [Wang et al 2014]

Steerable pyramid reconstruction

Image credits [Wang et al 2014]

I The steerable filters are designed so that each stage of the diagram has
a flat system response.

H0(r , θ)2 + L0(r , θ)2 = 1 and
Q−1∑
k=0

Bq(r , θ)2 + L(r , θ)2 = 1.

I Denote by A the matrix of the pyramid decomposition operator, then the
matrix of the reconstruction operator is simply the transpose AT .

I But the flat response ensures that AT A = Id , so that AT is also the
pseudo-inverse of A: A† =

(
AT A

)−1
AT = AT .

I This is important here since the reconstruction operator will be applied to
pyramids that are outside the range A.

Histogram matching

I Example of histogram matching: The histogram of a Gaussian white
noise is matched with the histogram of the Lena image.

Input image Reference image Output image

Histogram matching

I Example of histogram matching of a pyramid image: The histogram of
an oriented pyramid image of a Gaussian white noise is matched with
the corresponding image in Lena’s pyramid

Input image Reference image Output image

Histogram matching
Algorithm 1: Histogram matching

Input : Input image u, reference image v (both images have size M × N)
Output: Image u having the same histogram as v (the input u is lost)

1. Define L = MN and describe the image as arrays of length L (e.g. by reading
them line by line).

2. Sort the reference image v :
3. Determine the permutation τ such that vτ(1) ≤ vτ(2) ≤ · · · ≤ vτ(L).
4. Sort the input image u:
5. Determine the permutation σ such that uσ(1) ≤ uσ(2) ≤ · · · ≤ uσ(L).
6. Match the histogram of u:
7. for rank k = 1 to L do
8. uσ(k) ← vτ(k) (the k -th pixel of u takes the gray-value of the k -th pixel of

v).
9. end

∀k ∈ Ω, uσ(k) ← vτ(k) ⇐⇒ ∀j ∈ Ω, uj ← vτ(σ−1(j))

I Optimal assignment: τ ◦ σ−1 corresponds to the optimal transport plan
between the two discrete measures

∑
k∈Ω δuk and

∑
k∈Ω δvk .

τ ◦ σ−1 = argminσ∈ΣL

∑
k∈Ω

|uk − vσ(k)|2

Heeger and Bergen algorithm
Algorithm 2: Heeger-Bergen texture synthesis algorithm for grayscale images
(without extension)

Input : Number of scales P, number of orientations Q, texture image u of
size M × N such that M and N are multiples of 2P , number of
iterations Niter

Output: Texture image v of size M × N
1. Input analysis:
2. Compute and store the steerable pyramid with P scales and Q orientations of

the input texture u.
3. Output synthesis:
4. Initialize v with a Gaussian white noise.
5. Match the gray-level histogram of v with the gray-level histogram of u.
6. for iteration i = 1 to Niter do
7. Compute the steerable pyramid of v .
8. For each of the PQ + 2 images of this pyramid, apply histogram matching

with the corresponding image of the pyramid of u.
9. Apply the image reconstruction algorithm to this new histogram-matched

pyramid and store the obtained image in v .
10. Match the gray-level histogram of v with the gray-level histogram of the

input u.
11. end
12. Return v .

Heeger and Bergen algorithm for color textures

I The Heeger-Bergen algorithm is designed for grayscale images (one
channel).

I The principal limitation comes from the histogram matching algorithm.
I Applying the algorithm to each channel of an RGB image does not work:

Indeed the output color channels are independent !

Input color cube Input texture Output texture Output color cube

I RGB cube visualizatiton from the IPOL paper and demo
[Lisani et al 2011]

I Solution: Change the color space so that the independence of the color
channels is acceptable.

Heeger and Bergen algorithm for color textures
PCA color space of an image:

I Compute the PCA of the colors seen as a point cloud in R3.

Color texture 1st PC 2nd PC 3rd PC

I In general, the dynamic of the texture is mainly contained in the first
principal component.

Independent synthesis in PCA color space:

Input color cube Input texture Output texture Output color cube

Heeger and Bergen algorithm: Results

Heeger and Bergen algorithm: Parameters

Several parameters:
I The number of iterations Niter of the synthesis algorithm.
I The number of scales P of the steerable pyramid decomposition.
I The number of orientations Q of the steerable pyramid decomposition

(not critical when higher than 4).
I The edge handling option (not discussed here...).

Heeger and Bergen algorithm: Parameters
Influence of the number of iterations: From left to right: original image,
result with Niter = 1, 5 and 10.

I Generally 5 iterations is enough for “visual convergence”

Heeger and Bergen algorithm: Parameters
Influence of the number of scales P: Result with P = 1, 4 and 8.

I Generally the maximal number avoid a blotchy artefact due to incoherent
low frequency residual.

Portilla and Simoncelli algorithm

References:
J. Portilla and E. Simoncelli, A parametric texture model based on joint
statistics of complex wavelet coefficients, IJCV, 40 (2000)
A must read paper !
General ideas:

I In Heeger-Bergen the pyramid images are treated independently, but
they are clearly highly correlated.

I Introduce joint statistics within neighborhood pixels, with neighborhood
on spatial grid but also across scales.

I Select a small set of statistics (moments) and show that each of them is
important.

I The texture synthesis is a gradient descent algorithm starting from a
white noise image.

Steerable pyramid decomposition of a texture

I Steerable pyramid decomposition of a texture image with two scales and
four orientations.

Original image Associated steerable pyramid

High frequency residual

1st scale of oriented subbands with angle θ = 0, π4 , π2 , and 3π
4

2nd scale of oriented subbands with angle θ = 0, π4 , π2 , and 3π
4

Low frequency residual

Portilla and Simoncelli

From [Portilla and Simoncelli 2000].

Portilla and Simoncelli

From [Portilla and Simoncelli 2000].

Portilla and Simoncelli

From [Portilla and Simoncelli 2000].

Portilla and Simoncelli

From [Portilla and Simoncelli 2000].

Portilla and Simoncelli

I Very impressive results.
I Stayed state of the art for statistical texture synthesis for a long time.
I Patch-based method were introduced at the same period.
I Here the textures are synthesized with only 710 parameters.

Outline

Texture synthesis

Using Fourier transform
Discrete Fourier transform of digital images
Random phase noise (RPN)
Asymptotic discrete spot noise (ADSN)
RPN and ADSN as texture synthesis algorithms

Using texture patches

Using wavelet transform
Heeger-Bergen algorithm
Portilla and Simoncelli

Using deep neural networks

Gatys et al algorithm

References: L. Gatys, A. S. Ecker, and M. Bethge, Texture synthesis using
convolutional neural networks, in Advances in Neural Information Processing
Systems, 2015

Convolutional Neural Networks (CNN)
I Main idea: Use the feature layers of a trained deep CNN, namely VGG

19 [Simonyan and Zisserman], as statistics.
I VGG 19 [Simonyan and Zisserman] was trained for image classification.
I It only uses 3× 3 convolution kernels followed by RELU (= positive part)

and max-pooling.

I For texture analysis, we only use the “pool” layers.
I We do not use the last “fully connected” layers that perform classification.
I VGG 19 is understood as a multiscale nonlinear transform adapted to

natural images.

Gatys et al algorithm
I Each feature layer is spatially averaged and the Gram matrix is formed

for each layer.
I Texture synthesis consists in minimizing the sum of the squared

Frobenius norm between Gram matrices.

Gatys et al algorithm

I The gradient of the energy is computed using back-propagation routines.
I The authors use a quasi-Newton algorithm: L-BFGS that stands for

Limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm.
I It consists in using a low-rank approximation of the Hessian matrix for

computing the descent direction.

Gatys et al algorithm: Depth influence

Gatys et al algorithm: Results

I MORE RESULTS

http://bethgelab.org/deeptextures/

Gatys et al algorithm

I This algorithm is the current state of the art.
I The computational cost is really high (even with high-end GPUs it takes

minutes).
I A lot of improvements have been proposed, eg by adding term to the

energy or by adding correlation between layers.
I Extension for style transfer with equally impressive results.

Gatys et al for style transfer

Reference: [Gatys et al 2016]

Gatys et al for style transfer
Reference: [Gatys et al 2016]

Gatys et al for style transfer

I Free online service: https://deepart.io/ (wait 20 minutes)
I Lot of results
I Used for the lab webpage?

https://deepart.io/
https://deepart.io/nips/submissions/

Gatys et al for style transfer

I Free online service: https://deepart.io/ (wait 20 minutes)
I Lot of results
I Used for the lab webpage?

https://deepart.io/
https://deepart.io/nips/submissions/

Gatys et al for style transfer and texture synthesis

I Very nice and clean PyTorch implementation:
https://github.com/leongatys/PytorchNeuralStyleTransfer

I But it is very slow on CPU and still slow with high-end GPU (and
memory consuming, e.g. 8 GB of memory for a 1024× 1024 image).

I Regarding texture modeling, the number of parameters is huge:
Textures are described by the Gram matrices and the number of
elements in the Gram matrices totals 850k. That is 1000 times more
than Portilla-Simoncelli !

https://github.com/leongatys/PytorchNeuralStyleTransfer

Generative networks for texture synthesis

I A workaround for speeding up synthesis is to train generative forward
networks to mimic Gatys algorithm, as proposed by
[Ulyanov et al. 2016].

I Then synthesis is fast but the texture quality is not as good, and a
network has to be trained for each new image.

On Demand Solid Texture Synthesis Using Deep 3D Networks

I Ongoing work with Jorge Gutierrez (PhD), Julien Rabin and Thomas
Hurtut [Gutierrez et al 2019]: We extend this idea for 3D texture where
the Gatys approach is infeasible.

Input Output

On Demand Solid Texture Synthesis Using Deep 3D Networks

Training framework for the proposed CNN Generator network:

I The generator G(·|θ) with parameters θ processes a multi-scale noise
input Z to produce a solid texture v

I The loss L compares, for each direction d , the feature statistics induced
by the example ud in the layers of the pre-trained Descriptor network
D(·) (loss of Gatys et al).

On Demand Solid Texture Synthesis Using Deep 3D Networks

Schematic of the Generator’s architecture:

I Processes a set of noise inputs Z = {z0, . . . , zK} at K + 1 different
scales using convolution operations and non-linear activations

I The information at different scales is combined using upsampling and
channel concatenation.

On Demand Solid Texture Synthesis Using Deep 3D Networks
Training: Find the parameters θ for a given texture

I Minimize Gatys’ loss for each slice
I Exploit invariance by translation to generate batches of width one voxel

only (“single-slice training scheme”)
I Minimization using 3000 iteration of Adam algorithm

input 10 20 50 100

200 300 500 1000

1500 2000 2500 3000

On Demand Solid Texture Synthesis Using Deep 3D Networks
Generated volume Examples Generated slices

v u1 = u2 = u3 v
1,

N1
2

v
2,

N2
2

v
3,

N3
2

oblique (45◦)

gr
an

ite
be

ef
m

ar
bl

e

On Demand Solid Texture Synthesis Using Deep 3D Networks
Generated volume Examples Generated slices

v u1 = u2 = u3 v
1,

N1
2

v
2,

N2
2

v
3,

N3
2

oblique (45◦)

pe
bb

le
ch

ee
se

hi
st

ol
og

y

On Demand Solid Texture Synthesis Using Deep 3D Networks
I Solid textures can be used to apply textures on surfaces without

parametrization.

On Demand Solid Texture Synthesis Using Deep 3D Networks

I Fast synthesis thanks to the feed forward network (1 sec for 2563)
I On demand synthesis using a pseudo random number generator seed

with spatial coordinates

I Training and synthesis with high resolution images without memory
issues thanks to the single slice strategy.

Bibliographic references I

P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and
Queues, Springer, 1998

T. Briand, J. Vacher, B. Galerne and J. Rabin, The Heeger & Bergen
Pyramid Based Texture Synthesis Algorithm, Image Processing On Line,
2014

B. Galerne, A. Leclaire, and L. Moisan. Texton noise. Computer
Graphics Forum, 2017

B. Galerne, Y. Gousseau, and J.-M. Morel, Random phase textures:
Theory and synthesis, IEEE Trans. Image Process., 2011

B. Galerne, Y. Gousseau, J.-M. Morel, Micro-Texture Synthesis by Phase
Randomization, Image Processing On Line, 2011

L. Gatys, A. S. Ecker, and M. Bethge, Texture synthesis using
convolutional neural networks, in Advances in Neural Information
Processing Systems, 2015

Gatys, L. A., Ecker, A. S., & Bethge, M. (2016, June). Image style
transfer using convolutional neural networks. In Computer Vision and
Pattern Recognition (CVPR), 2016 IEEE Conference on (pp.
2414-2423). IEEE.

Bibliographic references II

Gutierrez, J., Rabin, J., B. Galerne, & Hurtut, T., On Demand Solid
Texture Synthesis Using Deep 3D Networks, submitted

D. J. Heeger and J. R. Bergen, Pyramid-based texture
analysis/synthesis, SIGGRAPH ’95, 1995

J.-L. Lisani, A. Buades, and J.-M. Morel. Image color cube dimensional
filtering and visualization, Image Processing On Line, 2011.

Y. Lu, S.-C. Zhu, and Y. N. Wu, Learning frame models using CNN filters,
in 31th conference on artificial intelligence, 2016.

L. Moisan, Periodic plus smooth image decomposition, J. Math. Imag.
Vis., 2011

A. V. Oppenheim and J. S. Lim, The importance of phase in signals,
Proceedings of the IEEE, 1981

J. Portilla and E. Simoncelli, A parametric texture model based on joint
statistics of complex wavelet coefficients, IJCV, 40 (2000)

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger.
Shiftable multi-scale transforms. IEEE Transaction on Information
Theory, 1992.

Bibliographic references III

K. Simonyan and A. Zisserman, Very deep convolutional networks for
large-scale image recognition, tech report, 2014

D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky, Texture networks:
Feed-forward synthesis of textures and stylized images, in ICML, 2016,
pp. 1349–1357.

Xiang-Yang Wang, Bei-Bei Zhang and Hong-Ying Yang, Content-based
image retrieval by integrating color and texture features, Multimedia
Tools and Applications, 2014

L.-Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk. State of the art in
example-based texture synthesis, Eurographics 2009, 2009.

J. J. van Wijk, Spot noise texture synthesis for data visualization,
SIGGRAPH ’91, 1991.

G.-S. Xia, S. Ferradans, G. Peyré and J.-F. Aujol, Synthesizing and
Mixing Stationary Gaussian Texture Models, SIAM J. on Imaging
Science, 2014.

Merci pour votre attention

	Texture synthesis
	Using Fourier transform
	Discrete Fourier transform of digital images
	Random phase noise (RPN)
	Asymptotic discrete spot noise (ADSN)
	RPN and ADSN as texture synthesis algorithms

	Using texture patches
	Using wavelet transform
	Heeger-Bergen algorithm
	Portilla and Simoncelli

	Using deep neural networks

