

Principales Applications

- Fusion d'images multimodales
- Evolution temporelle d'une pathologie

Image Registr G. Malanda

- Comparaisons inter-patients
- Superposition d'un atlas
- Réalité augmentée

Réalité Augmentée

- Recalage pré-opératoire / per-opératoire
- Modalité pré-opératoire
 ✓ Planification, structures internes
- Modalité per-opératoire
 - Reconstruction par stéréovision, télémétrie laser : surface externe = peau
 - ✓ échographie

<section-header><section-header><section-header><text>

4. Superposition d'un Atlas

Approche géométrique/iconique

Détection des primitives = segmentation

La difficulté du recalage est (en partie) rejetée dans l'étape de segmentation ...

- Détection manuelle des amers
- Ajouts d'amers extrinsèques (externes)
 → détection facilitée
- Détection d'amers intrinsèques
- → Problème de la précision de la détection

Chamfer Matching

On dispose

 \checkmark de deux segmentations S_1 et S_2 : contours, surfaces, volumes, .. \checkmark d'une transformation initiale

on calcule une carte de distance à partir de l'une d'entre elles (chamfer distance)

$$d_1(M) \approx \min_{P \in S_1} \|MP\|$$

• critère à minimiser

$$S(S_1, S_2, T) = \left(\frac{1}{2}\right) \sum_{M \in S_2} [d_1(T(M))]^2$$
Image Regeneration
52

Chamfer Matching

■ Recalage multimodal : IRM / TEP
 ✓ IRM 256x256x120 (voxels de 1.3 mm³)
 ✓ TEP 256x256x7 (voxels de 1x1x9 mm³)

On dispose

 \checkmark de deux segmentations S_1 et S_2 : contours, surfaces, volumes, \dots \checkmark d'une transformation initiale T

- Calcul itératif : *Iterative Closest Point* (ICP)
 1. Chaque point P₁ de S₁ est apparié avec le point Q_j de S₂ le plus proche de T(P₁). Q_j = C_{loses}P_{oint}(T(P_i))
 - proche de T(P_i). $Q_j = C_{\text{toese}} P_{\text{oire}}(T(P_i))$ 2. On cherche T qui minimise la somme des distances au carré entre les points appariés

■ critère à minimiser

 $S(S_1, S_2, T) = \left(\frac{1}{2}\right) \sum_{P_i \in S_1} \left\|T(P_i) \operatorname{CP}(T(P_i))\right\|^2$ Image Regarding 64

Radiologie interventionnelle

■ Radiographie 2D et Angiographie 3D

On peut calculer en chaque voxel

$$\begin{split} h^{2}K &= f_{x}^{2}(f_{yy}f_{zz} - f_{yz}^{2}) + 2f_{y}f_{z}(f_{xz}f_{xy} - f_{xx}f_{yz}) \\ &+ f_{y}^{2}(f_{xx}f_{zz} - f_{xz}^{2}) + 2f_{x}f_{z}(f_{yz}f_{xy} - f_{yy}f_{xz}) \\ &+ f_{z}^{2}(f_{xx}f_{yy} - f_{xy}^{2}) + 2f_{x}f_{y}(f_{xz}f_{yz} - f_{zz}f_{xy}) \\ avec \\ h &= f_{x}^{2} + f_{y}^{2} + f_{z}^{2} \end{split}$$

Image Registrati G. Malandain

Courbure Moyenne	
De même:	
$2h^{3/2}H = f_x^2(f_{yy} + f_{zz}) - 2f_y f_z f_{yz}$	
$+ f_y^2 (f_{xx} + f_{zz}) - 2 f_x f_z f_{xz}$	
$+ f_z^2 (f_{xx} + f_{yy}) - 2 f_x f_y f_{xy}$	
avec	
$h = f_x^2 + f_y^2 + f_z^2$	
$k_i = H \pm \sqrt{H^2 - K}$	
Image Registration G. Malandain	100

- Chaque primitive est caractérisée par un petit nombre d'invariants géométriques *k*
- Phase de prétraitement :
 - ✓ pour chaque image, les invariants des primitives géométriques sont utilisés pour stocker celles-ci dans une table de hachage unique de dimension *k*
- Phase de recalage :
 - ✓ les invariants d'une nouvelle image sont comparées à ceux de la table de hachage. Chaque correspondance permet de voter pour un modèle et pour une transformation
 - \checkmark On reconnaît le couple modèle/transformation le plus populaire

Image Regist. G. Maland

Méthodes géométriques

nécessite une étape de segmentation afin d'extraire les primitives

primitives géométriques : point (0D), contour (1D), surface (2D), volume (3D)

cadre fréquent de mise en correspondance :

« Plus Proche Voisin Itéré » (ICP)

Model-based reconstruction

- Set of 2-D independent transformations
- \Rightarrow Inhomogeneous 3-D reconstructed volume

Amélioration des démons (Cachier 02) P. Cachier (2002) a montré qu'on pouvait

modifier légèrement ce critère pour approximer la minimisation alternée de deux énergies : une énergie de similarité quadratique (SSD) et une énergie de régularisation quadratique de la forme :

$$\int \|T_{n+1} - C_{n+1}\|^2 + \sum_{\alpha \in \mathbb{N}^*} \frac{\sigma^{2|\alpha|}}{2^{|\alpha|} \alpha_1! \dots \alpha_d!} (\partial_\alpha T)^2$$

$$(T_{n+1} = G_\sigma \circ C_{n+1})$$
Image Registration
$$(T_{n+1} = G_\sigma \circ C_{n+1})$$

