Naive Credal Classifier 2: an extension of Naive Bayes for delivering robust classifications

G. Corani M. Zaffalon

IDSIA
Switzerland
giorgio{zaffalon}@idsia.ch

SIPTA ’08
Outline

1. Introducing NCC2
 - Background
 - Credal classifiers
 - NCC2

2. Experimental Results
 - Setup and indicators
 - Indeterminate classifications vs posterior probabilities

3. Software demonstration
Naive Bayes Classifier (NBC)

- *Naive* assumption (statistical indep. of the features given the class):
 \[
 \theta_{c|f_1,f_2,...,f_k} \propto \theta_c \prod_{i=1}^{i=k} \theta_{f_i|c}
 \]

Probability computation

\[
\theta_{\text{POST}} \propto \theta_{\text{LIKELIHOOD}} \theta_{\text{PRIOR}}
\]

- *Maximum likelihood* estimators are for instance \(\hat{\theta}_c = n(c)/N\) and \(\hat{\theta}_{f_i|c} = n(f_i|c)/n(c)\).
- *The choice of any specific prior introduces necessarily some subjectivity, even if it is a non-informative one.*
Naive Bayes Classifier (NBC)

- **Naive** assumption (statistical indep. of the features given the class):

\[
\theta_{c|f_1,f_2,...,f_k} \propto \theta_c \prod_{i=1}^{i=k} \theta_{f_i|c}
\]

Probability computation

\[
\theta_{POST} \propto \theta_{\text{LIKELIHOOD}} \theta_{\text{PRIOR}}
\]

- **Maximum likelihood** estimators are for instance \(\hat{\theta}_c = n(c)/N\) and \(\hat{\theta}_{f_i|c} = n(f_i|c)/n(c)\).

- **The choice of any specific prior introduces necessarily some subjectivity, even if it is a non-informative one.**
NBC and prior sensitivity

- NBC computes a single posterior distribution.
- However, the most probable class might depend on the chosen prior, especially on *small data sets*.
- Prior-dependent classifications might be fragile.
- Solution via set of probabilities:
 - Robust Bayes Classifier (Ramoni and Sebastiani, 2001)
 - Naive Credal Classifier (Zaffalon, 2001)
Naive Credal Classifier (NCC) (Zaffalon, 2001)

- Extends Naive Bayes to imprecise probabilities; it specifies a set of priors by adopting the *Imprecise Dirichlet Model*.
- The set of priors is turned into a set of posteriors set via Bayes’ rule.
- NCC returns the classes that are *non-dominated* within the set of posteriors.
Test of dominance and indeterminate classifications

Definition

Class c_1 dominates c_2 if $P(c_1) > P(c_2)$ in any distribution of the posterior credal set.
If no class dominates c_1, then c_1 is non-dominated.

- If there are more non-dominated classes, NCC returns all of them: the classification is indeterminate.
- NCC becomes indeterminate on the instances whose classification would be prior-dependent with NBC.
- Indeterminate classifications proofed to be viable in real world case studies (e.g., dementia diagnosis).
Most classifiers (including NBC) ignore missing data.

This is correct only if data are missing-at-random (MAR).

It is not possible to test the MAR hypothesis on the incomplete data.

However, ignoring Non-MAR missing data can lead to unreliable conclusions.

Missing data can be MAR for some features but not for some others; or can be MAR only in training and not in testing (or vice versa).
NCC2: NCC with conservative treatment of missing data (I)

- NCC2 receives the declaration of which features have Non-MAR missing data and at which stage (learning, testing or both).
- NCC2 ignores MAR missing data.
- NCC2 deals conservatively with Non-MAR missing data.

Conservative treatment of missing data (learning set)

- All possible completions of missing data are seen as possible.
- A set of likelihoods is computed.
- A set of posteriors is computed from a set of priors and a set of likelihoods.
- The conservative treatment of missing data can generate additional indeterminacy.
NCC2: NCC with conservative treatment of missing data (I)

- NCC2 receives the declaration of which features have Non-MAR missing data and at which stage (learning, testing or both).
- NCC2 ignores MAR missing data.
- NCC2 deals *conservatively* with Non-MAR missing data.

Conservative treatment of missing data (learning set)

- All possible completions of missing data are seen as possible.
- A set of likelihoods is computed.
- A set of posteriors is computed from a set of priors and a set of likelihoods.
- The conservative treatment of missing data can generate additional indeterminacy.
Conservative treatment of missing data in the instance to be classified

- All possible completions of missing data are seen as possible, thus giving rise to several *virtual instances*.
- Test of dominance: c_1 should dominate c_2 on *all* the virtual instances.
- A procedure allows to find out the dominance relationships without actually building the virtual instances.
- Conservative treatment of missing data in the instance to classify can generate additional indeterminacy.
NCC2: NCC with conservative treatment of missing data (II)

Conservative treatment of missing data in the instance to be classified

- All possible completions of missing data are seen as possible, thus giving rise to several *virtual instances*.
- Test of dominance: c_1 should dominate c_2 on *all* the virtual instances.
- A procedure allows to find out the dominance relationships without actually building the virtual instances.
- Conservative treatment of missing data in the instance to classify can generate additional indeterminacy.
What to expect from NCC2

By adopting imprecise probabilities, NCC2 is designed to be robust to:

- prior specification, especially critical on small data sets;
- Non-MAR missing data, critical on incomplete data sets.
- However, excessive indeterminacy is undesirable.

What to expect from indeterminate classifications

- To preserve NCC2 reliability, avoiding too strong conclusions (a single class) on doubtful instances.
- To convey sensible information, dropping unlikely classes.
What to expect from NCC2

By adopting imprecise probabilities, NCC2 is designed to be robust to:

- prior specification, especially critical on small data sets;
- Non-MAR missing data, critical on incomplete data sets.
- However, excessive indeterminacy is undesirable.

What to expect from indeterminate classifications

- To preserve NCC2 reliability, avoiding too strong conclusions (a single class) on doubtful instances.
- To convey sensible information, dropping unlikely classes.
Indicators of performance for NCC2

NCC2

- *determinacy* (% of determinate classifications);
- *single-accuracy* (% of determ. classification that are accurate);
- *set-accuracy* (% of indeterm. classifications that contain the true class);
- *size of indeterminate output*, i.e., avg. number of classes returned when indeterminate.
Indicators for comparing NBC and NCC2

NCC2 vs NBC

- NBC(NCC2 D): accuracy of NBC on instances determinately classified by NCC2.
- NBC(NCC2 I): accuracy of NBC on instances indeterminately classified by NCC2.
- We expect NBC(NCC2 D) > NBC(NCC2 I).
Experiments on 18 UCI data sets

- **MAR setup**: 5% missing data generated via a MAR mechanism; all features declared as MAR to NCC2.
- **Non-MAR setup**: 5% missing data generated via a Non-MAR mechanism; all features declared as Non-MAR to NCC2.
- Average NBC accuracy under both settings: 82%.

NBC vs NCC2
- NBC (NCC2 D): 85% (95%)
- NBC (NCC2 I): 36% (69%)

On each data set and setup:
- NBC (NCC2 D) > NBC (NCC2 I)
- Indeterminate classifications do preserve the reliability of NCC2!

NCC2
- Determinacy: 95% (52%)
- Single accuracy: 85% (95%)
- Set-accuracy: 85% (96%)
- Imprecise output size: $\approx 33\%$ of the classes
Experiments on 18 UCI data sets

- **MAR setup**: 5% missing data generated via a MAR mechanism; all features declared as MAR to NCC2.
- **Non-MAR setup**: 5% missing data generated via a Non-MAR mechanism; all features declared as Non-MAR to NCC2.
- Average NBC accuracy under both settings: 82%.

<table>
<thead>
<tr>
<th>NBC vs NCC2</th>
<th>NCC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBC (NCC2 D):</td>
<td>determinacy: 95%(52%)</td>
</tr>
<tr>
<td>85%(95%)</td>
<td>single accuracy: 85%(95%)</td>
</tr>
<tr>
<td>NBC (NCC2 I):</td>
<td>set-accuracy: 85%(96%)</td>
</tr>
<tr>
<td>36%(69%)</td>
<td>imprecise output size: ≈33% of the classes</td>
</tr>
</tbody>
</table>

On each data set and setup: NBC(NCC2 D) > NBC(NCC2 I)

- Indeterminate classifications do preserve the reliability of NCC2!
Experiments on 18 UCI data sets

- MAR setup: 5% missing data generated via a MAR mechanism; all features declared as MAR to NCC2.
- Non-MAR setup: 5% missing data generated via a Non-MAR mechanism; all features declared as Non-MAR to NCC2.
- Average NBC accuracy under both settings: 82%.

<table>
<thead>
<tr>
<th>NBC vs NCC2</th>
<th>NCC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBC (NCC2 D):</td>
<td>determinacy: 95%(52%)</td>
</tr>
<tr>
<td>85%(95%)</td>
<td>single accuracy: 85%(95%)</td>
</tr>
<tr>
<td>NBC (NCC2 I):</td>
<td>set-accuracy: 85%(96%)</td>
</tr>
<tr>
<td>36%(69%)</td>
<td>imprecise output size: ≈33% of the classes</td>
</tr>
</tbody>
</table>

On each data set and setup: NBC(NCC2 D) > NBC(NCC2 I)

Indeterminate classifications do preserve the reliability of NCC2!
Experiments on 18 UCI data sets

- **MAR setup:** 5% missing data generated via a MAR mechanism; all features declared as MAR to NCC2.
- **Non-MAR setup:** 5% missing data generated via a Non-MAR mechanism; all features declared as Non-MAR to NCC2.
- Average NBC accuracy under both settings: 82%.

NBC vs NCC2

- **NBC (NCC2 D):**
 85% (95%)

- **NBC (NCC2 I):**
 36% (69%)

On each data set and setup: NBC(NCC2 D) > NBC(NCC2 I)

NCC2

- Determinacy: 95% (52%)
- Single accuracy: 85% (95%)
- Set-accuracy: 85% (96%)
- Imprecise output size: ≈33% of the classes

Indeterminate classifications do preserve the reliability of NCC2!
Higher posterior probability of NBC → higher NCC2 determinacy.
At any level of posterior probability, NBC(NCC2 D) > NBC(NCC2 I).
Striking drop on the instances classified confidently by NBC.
Summary

- NCC2 extends Naive Bayes to imprecise probabilities, to robustly deal with small data sets and missing data.
- NCC2 becomes indeterminate on instances whose classification is doubtful indeed.
- Indeterminate classifications preserve the classifier’ reliability while conveying sensible information.
- Bibliography, software and manuals: see www.idsia.ch/~giorgio/jncc2.html
- Software with GUI to arrive soon!