EXERCICES ABOUT IMPRECISE PREDICTIVE INFERENCE ABOUT CATEGORICAL DATA
Bayes Theorem

Assumptions

- a prior $\theta \sim Dir(\alpha)$ for the case $K = 2$
- data a with sampling distribution $a|\theta \sim Mn(n, \theta)$

1) Show that

- $\theta_1|a \sim Beta(a + \alpha)$
- $a_1 \sim BeBi(n; \alpha)$

Hint: Use Bayes' theorem, and the equivalence between $Beta$ and $Diri$ for $K = 2$.

2) Show,

- assuming future data a' sampled independently from the same population, i.e. $a' \sim Mn(n'; \theta)$,
- that $a'_1|a \sim BeBi(n'; a + \alpha)$

Hint: Use Bayes' theorem a second time.
Expressions for the DiMn

Assumptions: Consider a composition $a = (a_1, \ldots, a_K)$, with $\sum_k a_k = n$ whose probability distribution is a Dirichlet-multinomial:

$$a \sim DiMn(n; \alpha)$$

1) Equivalent forms

Show the equivalence between the three forms of the $DiMn$ for a, in terms of

- generalized binomial coefficients
- gamma functions
- ascending factorials

See: Mathematical functions & coefficients

2) Application: Simplify the formula (defined for any integer n and any reals $0 < \alpha < s$)

$$\sum_{a=0}^{n} \binom{n}{a} \alpha^a (s - \alpha)^{n-a},$$
3) Sequences and compositions

Consider the case $K = 2$ and an observed sequence of length $n = 4$, $S = (c_1, c_1, c_2, c_1)$, yielding the counts $a_1 = 3, a_2 = 1$.

- How many sequences yield the same composition in counts? Same question for any composition (a_1, a_2)?

- What is the probability $P(S)$ of sequence S?

- Express $P(S)$ as the ratio of two products. Can you find a graphical interpretation of that result?

Hint: Represent any sequence as a path on a plane with a_1 on the x-axis and a_2 on the y-axis.
Distribution DiMn
Particular cases

Assumptions

- Consider that the composition in counts, over K categories, a follows a $DiMn(n; \alpha)$

1) Special case $\alpha = 1$:

- Show that, in this case, a has a uniform distribution over its domain \mathcal{A}.

- From previous result, deduce the number of possible compositions of size n over K categories, i.e. the cardinal of \mathcal{A}. Express this number as a binomial coefficient.

2) Towards Haldane

- For the case $K = 2$ and $n = 2$, what are the possible compositions a

- For each a, give the expression of $P(a)$

- Calculate this distribution for $\alpha_1 = \alpha_2 = \frac{1}{2}$, for $\alpha_1 = \alpha_2 = \frac{1}{10}$

- What happens if $\alpha_1 = \alpha_2$ tends to 0?
DiMn: pooling and restriction

Assumptions

• Consider \(a \sim \text{DiMn}(n; \alpha) \) for \(K = 3 \), i.e. \(a = a_1, a_2, a_3 \) with fixed \(\sum_k a_k = n \)

• Let \(a_{23} = a_2 + a_3 \) be the count of the pooled category \(c_{23} = (c_2 \text{ or } c_3) \)

1) Express the overall distribution on \(a \), \(P(a) \), as a function of the marginal \(P(a_1, a_{23}) \)

2) What does this entail for the following distributions?

• \(P(a_1, a_{23}) \)

• \(P(a_2, a_3 | a_{23}) \)

3) Recursion: The preceding example can be viewed as (i) defining a tree underlying the set of categories \(C, T = \{c_1, c_{23} = \{c_2, c_3\}\} \), and (ii) “cutting” tree \(T \) at node \(c_{23} \). What would be obtained for \(K = 5 \) categories underlied by tree \(T = \{c_{1234} = \{c_1, c_{234} = \{c_2, c_3, c_4\}\}, c_5\} \)
Bayesian prediction

- Assume the following prior and posterior predictive distributions
 - K is fixed
 - $a \sim DiMn(n; \alpha)$
 - $a' \sim DiMn(n'; a + \alpha)$

- Answer the following questions
 - First, consider the prior prediction for $n = 1$. What is the probability that $a_k = 1$?
 - Now, consider the posterior prediction for $n' = 1$. What is the probability that $a_k' = 1$?
 - Same questions, with assuming also that the prior is a symmetric Dirichlet, i.e. $\alpha_k = \alpha$
 - Now, consider the “bag of marbles” data, with observed data: 1 red, 2 green, 2 light blue, 1 dark blue. Under the same assumptions, what is the probability that $a_{blue}' = 1$ for $n' = 1$?
 - Is there a problem?
Imprecision and s

Assumptions

- Prior uncertainty is modelled by an IDMM(s)
- Denote by B_j the event that next observation will be from category c_j (possibly not elementary)

Questions

- Find the prior lower and upper probabilities, $\underline{P}(B_j)$ and $\overline{P}(B_j)$.
- After observing data a, find the posterior lower and upper probabilities, $\underline{P}(B_j|a)$ and $\overline{P}(B_j|a)$.
- Define the imprecision about an event by $\Delta(\cdot) = \overline{P}(\cdot) - \underline{P}(\cdot)$. What are $\Delta(B_j)$ and $\Delta(B_j|a)$?
- Compute the ratio of these two imprecisions. When is it equal to 2, to 10?
- Apply the preceding results to the “bag of marbles” example, with B_j being the event that the next observation is blue.
Confirming a universal law

Assumptions

• There are K basic categories

• Amongst n observations, all were found to belong to c_1, i.e. $a_1 = n$

• You envisage to collect n' more data, and you consider the hypothesis H_0 that these future data might all be of type c_1 again, i.e. that $a'_1 = n'$.

1) Bayesian answers

• Under a standard Bayesian model, with prior $Diri(\alpha)$, what is the expression $P = P_\alpha(H_0|a)$?

• What is the value of P under Haldane’s model, i.e. $\alpha = 0$?

• What is the value of P under Bayes-Laplace’s model, i.e. $\alpha = 1$, assuming $K = 2$, and then $K = 3$?
• Under Bayes-Laplace’s model, find the expressions of \(P \) for the special cases, \(n' = 1 \), \(n' = n \) and \(n' \to \infty \), assuming either \(K = 2 \) or \(K = 3 \).

2) IDMM answers

• Under the prior IDMM(s), find the lower and upper probabilities of the same event: \(P = \underline{P}(H_0|a) \) and \(P = \overline{P}(H_0|a) \).

• What are these L&U probabilities for an IDMM with \(s = 1 \), \(s = 2 \), and as \(s \to 0 \) or \(s \to \infty \)?

• Under the IDMM with \(s = 1 \), find the expressions of \(\underline{P} \) and \(\overline{P} \) for the special cases, \(n' = 1 \), \(n' = n \) and \(n' \to \infty \).

• Do we need to make assumptions about \(K \)?

• Compare these results with those of part 1.

3) Iguana example:

Bernardo & Smith (1994) consider the example of \(n = 90 \) iguanas all found with the same skin pattern on an island where the overall number of iguanas is estimated to be \(n^* = n + n' = 100,000 \). Find the preceding Bayesian and IDMM(s = 1) answers for that example.