
Algorithms for Imprecise Probability
Part II

Cassio P. de Campos1 and Fabio G. Cozman2

1Rensselaer Polytechnic Institute
Troy, NY, USA

2Engineering School, University of São Paulo
São Paulo, SP, Brazil

SIPTA School, July, 2008

Agenda

Introduction

Algorithms and approximation methods (for strong extensions)

Sequential decision making

Overview

I Part I: algorithms without independence (previous talk...).

I Part II: algorithms with independence (this talk).

Overview (some more)

I Part I: algorithms without independence (previous talk...).
I Part II: algorithms with independence (this talk).

I Basics about strong/epistemic independence.
I Credal networks under strong independence

(exact/approximate inference).
I Sequential decision making.

Reminder: stochastic independence

1. X and Y are independent when

P({Y ∈ B}|{X ∈ A}) = P({Y ∈ B})

whenever P({X ∈ A}) > 0.

2. X and Y are independent when

P({Y ∈ B} ∩ {X ∈ A}) = P({Y ∈ B}) P({X ∈ A}) .

General stochastic independence

1. Variables {Xi}ni=1 are independent if

E [fi (Xi)| ∩j 6=i {Xj ∈ Aj}] = E [fi (Xi)] ,

for
I all functions fi (Xi)
I all events ∩j 6=i{Xj ∈ Aj} with positive probability.

2. That is, for all functions fi (Xi),

E

[
n∏

i=1

fi (Xi)

]
=

n∏
i=1

E [fi (Xi)] .

Or, for all sets of events {Ai}ni=1,

P(∩n
i=1{Xi ∈ Ai}) =

n∏
i=1

P({Xi ∈ Ai}) .

Strong independence

I X and Y are strongly independent when K (X ,Y) is the
convex hull of a set of distributions satisfying strict
independence.

I Equivalently (for closed credal sets):
X and Y are strongly independent iff for any bounded
function f (X ,Y),

E [f (X ,Y)] = min (EP [f (X ,Y)] : P = PXPY) .

Epistemic independence

I Walley proposes a different concept: Y is epistemically
irrelevant to X if for any bounded function f (X),

E [f (X)|Y ∈ B] = E [f (X)] for nonempty {Y ∈ B}.

I Walley’s clever idea: “symmetrize” irrelevance (this is actually
a strategy by Keynes).

I X and Y are epistemically independent if Y is epistemically
irrelevant to X and X is epistemically irrelevant to Y .

Strong 6= Epistemic

I Two binary variables X and Y .

I P(X = 0) ∈ [2/5, 1/2] and P(Y = 0) ∈ [2/5, 1/2].

I Epistemic independence of X and Y : K (X ,Y) is convex hull
of

[1/4, 1/4, 1/4, 1/4], [4/25, 6/25, 6/25, 9/25],

[1/5, 1/5, 3/10, 3/10], [1/5, 3/10, 1/5, 3/10],

[2/9, 2/9, 2/9, 1/3], [2/11, 3/11, 3/11, 3/11],

Exercise

Write down the linear constraints that must be satisfied by
K (X ,Y) in the previous example.

Credal networks (epistemic)

I Directed Acyclic Graph with “epistemic” Markov condition:
each variable is epistemically independent of non-descendants
given its parents.

I Local credal sets K (X |pa(X)) defined through convex
constraints.

I Largest joint credal set satisfying all assessments: epistemic
extension (not standard!).

I VERY difficult to handle.

I Does not even respect d-separation!

Small example

I Take 4 binary variables.

I Markov chain: W → X → Y → Z .

I Impose the “epistemic” Markov condition.

I Joint credal set K (W ,X ,Y ,Z) has 6.000.000 vertices.

I There is an approach based on multilinear programming.

Multilinear program

I Multilinear program constructed in steps.

I For each new variable, constraints for all “previous” variables
are built.

I Then each new variable introduces a set of constraints.

Credal networks (strong extensions)

I Directed Acyclic Graph with strong Markov condition: each
variable is strongly independent of non-descendants given its
parents.

I Local credal sets K (X |pa(X)) defined through convex
constraints.

I Largest joint credal set satisfying all assessments: strong
extension.

Agenda

Introduction

Algorithms and approximation methods (for strong extensions)

Sequential decision making

Reminder: Parameterization

We have convex constraints on parameters:

I p(A),

I p(B|a), p(B|¬a),

I p(C |a), p(C |¬a),

I p(D|b, c), p(D|¬b, c), p(D|b,¬c), p(D|¬b,¬c),

I p(E |c), p(E |¬c),

and we want to optimize an objective function.

Reminder: Network topology

(a) Polytree (b) Multi-connected

Inferences

We will mainly deal with the following problem:

p(q|e) = min
p∈K(X)

p(q|e).

or
p(q|e) = max

p∈K(X)
p(q|e).

where q is an instantiation for Q (query variables) and e is an
instantiation for E (observation variables) such that Q,E ⊆ X and
Q ∩ E = ∅.
This is known as the belief updating problem in credal networks.

Basic result

I Every lower/upper expectation is attained at a vertex of the
strong extension.

I Every lower/upper conditional expectation is attained at a
vertex of the strong extension (discarding zero probabilities).

Cano–Cano–Moral transformation
A first approach is to use CCM transformation and to apply a
MAP inference. Advantages:

I We can straightforward employ existent MAP techniques to
solve the problem.

Disadvantages:
I Extreme points of credal sets must be available.

I Large number of extreme points generate hard MAP instances.

I Instances of MAP problems are “close to” worst-case
scenarios w.r.t. number of MAP variables.

I The worst-case for MAP inferences happens when half of
variables are MAP variables, which is exactly our situation.

Exercises

I Evaluate p(a|e) using the following credal network.

p(a) ∈ [0.1, 0.3], p(c |a) = 0.5, p(c |¬a) = 0.8, p(e|c) ∈
[0.6, 0.9], p(e|¬c) = 0.5, p(b|¬a) ∈ [0.1, 0.5], p(d |b, c) ∈
[0.1, 0.5], p(d |¬b, c) = 0.2 and other parameters are vacuous.

I Translate the credal network into a Bayesian network using
the CCM transformation.

I Find a parameterization that respects the credal network and
maximizes the entropy in each local conditional distribution.

The key insight

I To obtain exact inferences, it is necessary to “translate” a
credal network into an optimization problem.

I No “easy” alternative in general (no “propagation” scheme
that works in general is known).

I This translation may exploit the structure of the network.

I Approximate inferences can mimic the “propagation” schemes
that are used in Bayesian networks.

Translating credal networks...

1. Andersen & Hooker’s method.

2. Symbolic variable elimination.

3. Bilinear formulation (for some cases).

Andersen and Hooker’s algorithm

The idea is to solve a non-linear program where:
I Optimization variables are the atoms of the problem (all

possible worlds)
I There are an exponential number of them w.r.t the number of

random variables.

I Use constraints that define the local credal sets.
I Summations of atoms define them.

I Include also all independence relations implied by the Markov
condition.

I The amount of such constraints can also be exponential.

Hard to deal even with small networks
This idea spends a huge computational effort.

Different idea: Symbolic Variable Elimination

Query example: p(d)

I Multi-linear problem: max p(d) subject to
I Bucket A:

∑
A p(A)p(B|A)p(C |A) = p(B,C) for all B,C .

I Bucket B:
∑

B p(B,C)p(d |B,C) = p(C , d), for all C .
I Bucket C :

∑
C p(C , d) = p(d).

I p(·) are the optimization variables. They are subject to these
constraints plus local constraints of the credal network.

Symbolic Variable Elimination I

Query example: p(a|d)

I Multi-linear problem: max t subject to
I Constraint of t: tp(d) = p(a, d) and t ∈ [0, 1].
I To relate p(d): use constraints of previous slide.
I Bucket A: p(B|a)p(C |a)p(a) = p(a,B,C) for all B,C .
I Bucket B:

∑
B p(a,B,C)p(d |B,C) = p(a,C , d), for all C .

I Bucket C :
∑

C p(a,C , d) = p(a, d).

Symbolic Variable Elimination II

I Exactly same procedure as in Bayesian networks, but it is run
symbolically to generate multi-linear constraints.

I Complexity is the same as in Bayesian networks, that is,
exponential in the induced width (or tree-width) of the
network: maximum clique size in the moralized graph.

I Graph moralization: marry parents (include edges connecting
parents of common children) and remove arc directions.

I Multi-linear programming techniques may be employed to find
exact and approximate solutions.

Bilinear formulation

I Same general idea of the variable elimination: to produce
multi-linear constraints that define the query to later on apply
optimization techniques.

I Differently from variable elimination, variables are processed in
a top-down ordering using conditional auxiliary probabilities.

I Complexity is proportional to the path-width instead of
tree-width.

Bilinear procedure

Query example: p(d)

I Bilinear problem: max p(d) subject to
I A: p(d) =

∑
A p(A)p(d |A).

I B: p(d |A) =
∑

B p(B|A)p(d |A,B) for all A.
I C : p(d |A,B) =

∑
C p(C |A)p(d |B,C) for all A,B.

I Note that p(d |A) and p(d |A,B) are auxiliary optimization
variables.

Bilinear formulation

Disadvantage:

I Path-width is usually greater than tree-width.

I Let wp be the path-width and wt the tree-width of a graph. It
is known that wp ≤ wt log wt , but that is still much greater,
as the algorithms are exponential in these numbers...

exp(wt) << wwt
t = exp(wt log wt)

Advantages:

I All non-linear terms have only two factors.

I One of them is a network parameter! Linear integer
programming can be used when extreme points of credal sets
are known.

I Path-width and tree-width are equivalent in polytrees.

Inference is not always hard: 2U

Marginal queries in binary polytree credal networks are treated by
the 2U algorithm.

2U is a propagation algorithm with ideas similar to belief
propagation in Bayesian networks.

Very simple example

p(a) ∈ [0.1, 0.5], p(b|a) ∈ [0.6, 0.9], p(b|¬a) ∈ [0.5, 0.6],
p(c|b) ∈ [0.3, 0.5], p(c |¬b) ∈ [0.7, 0.8],

p(a) = 0.5, p(a) = 0.1

p(b) = max
p′(a)∈{p(a),p(a)}

∑
A

p(b|A) · p′(A)

p(b) = max
p′(a)∈{0.1,0.5}

(0.9 · p′(a) + 0.6 · (1− p′(a)))

p(b) = max{(0.9·0.1+0.6·0.9) = 0.63; (0.9·0.5+0.6·0.5) = 0.75} = 0.75

Very simple example

p(a) ∈ [0.1, 0.5], p(b|a) ∈ [0.6, 0.9], p(b|¬a) ∈ [0.5, 0.6],
p(c|b) ∈ [0.3, 0.5], p(c |¬b) ∈ [0.7, 0.8],

p(a) = 0.5, p(a) = 0.1

p(b) = min
p′(a)∈{p(a),p(a)}

∑
A

p(b|A) · p′(A)

p(b) = min
p′(a)∈{0.1,0.5}

(0.6 · p′(a) + 0.5 · (1− p′(a)))

p(b) = min{(0.6·0.1+0.5·0.9) = 0.51; (0.6·0.5+0.5·0.5) = 0.55} = 0.51

Very simple example

p(a) ∈ [0.1, 0.5], p(b|a) ∈ [0.6, 0.9], p(b|¬a) ∈ [0.5, 0.6],
p(c|b) ∈ [0.3, 0.5], p(c |¬b) ∈ [0.7, 0.8],

p(b) = 0.75, p(b) = 0.51

p(c) = min
p′(b)∈{p(b),p(b)}

∑
B

p(c |B) · p′(B)

p(c) = min
p′(b)∈{0.51,0.75}

(0.3 · p′(b) + 0.7 · (1− p′(b)))

p(c) = min{(0.3 · 0.51 + 0.7 · 0.49); (0.3 · 0.75 + 0.7 · 0.25)}

And so on for p(c), p(d), p(d).

2U

With evidence, back-propagation is necessary.

X receives messages from parents and children, and propagate to
nodes that have not received messages yet.

2U updating equations

L2U

Loopy 2U is an extension of 2U to work with multi-connected
networks. The idea is to employ

I Loopy belief propagation.

I 2U algorithm for dealing with intervals.

In practice, convergence is fast and error rate is small, although
there is no theoretical guarantee.

L2U results

Other methods

I A/R+ and A/R++.

I Iterative Local Search.

I Probability tree-based inference.

I Branch-and-bound on vertices.

I ... and others!

Remember the key insight:

...necessary to “translate” a credal network into an optimization
problem.

A/R+
Approximate algorithm for polytrees (not necessarily binary).

I C receives intervals [p(A), p(A)] for each value of A and
[p(B), p(B)] for each value of B.

I It computes
p(C) = maxp p(c) = maxp

∑
A,B p(c |A,B)p(A)p(B) and

p(C) = minp p(c) using those intervals and the credal sets
K (C |A,B).

I And propagates [p(C), p(C)] (for all C) to children.

Just intervals are propagated in each node. They approximate the
exact credal sets. Solution is an outer approximation.

A/R++

A/R+: [p(C), p(C)] can be written as

αC ≤ p(C) ≤ βC ,

Possible extension: instead of propagating just those intervals,
choose additional linear constraints (linearly independent).

I Only useful for non-binary variables.

Just as A/R+, the result is an outer approximation.

Exercises

I Show that A/R+ provides outer approximations for the credal
belief updating problem.

I In polytrees, which reformulation usually produces a simpler
optimization program: variable elimination or the bilinear
translation idea? Explain your answer.

I Show that no additional constraints is useful while treating
binary networks. Provide a useful constraint that could be
propagated in a ternary credal network.

Iterative Local Search

Simple idea:

I Choose a Bayesian network that comply with the credal
network constraints.

I Allow parameters of a single node to vary and take the best
solution.

I Evaluations can be performed using any Bayesian network
inference for each extreme point of local credal sets.

I Extreme points need to be known, although it is possible to
overcome this limitation.

I Iterate on nodes until the solution does not improve.

Good approximate results. It provides an inner approximation.

Outer approximation using probability trees
I Create transparent variables to describe the extreme points of

the separately specified credal sets.
I Represent probability tables using probability trees (extended

to deal with intervals).
I Use a Bayesian network inference but performing calculations

over probability trees, while keeping trees small by pruning
probability values that are close to each other.

I The idea is to represent those similar values by small intervals
and perform computations with them.

(g) Probability tree (h) Collapsed node

Branch-and-bound on vertices

I Suppose local credal sets are separately specified and consider
a decision tree where each level corresponds to a local credal
set of the network.

I Each node of this tree has as many children as vertices in the
local credal set. Choosing a path means fixing a local credal
set in one of its vertices.

I A leaf of this tree has precise values for all local credal sets
and so it is easy to compute the objetive function.

B&B procedure: search this tree for the best solution. At each
node,

I Use an inner approximation to look for a better solution.
I Use an outer approximation to bound the best possible

solution.
I If the outer value of a given subtree is worse than the current

value, this subtree does not need to be evaluated.

B&B

p(a) ∈ [0.1, 0.5], p(b|a) ∈ [0.6, 0.9], p(b|¬a) ∈ [0.5, 0.6],
p(c|b) ∈ [0.3, 0.5], p(c |¬b) ∈ [0.7, 0.8],

Other approximate methods

I B&B on vertices.
I Simulated Annealing.
I Genetic Algorithms.

I Approximate optimization methods that are able to handle
multi-linear constraints.

I Multi-linear Local search.
I MINOS: projected Lagrangian method and reduced-gradient

method.
I SNOPT: sparse Sequential Quadradic Programming algorithm.
I IPOPT: Primal-Dual Interior Point Filter Line Search

Algorithm.
I and much more...

I Approximate methods that handle linear integer programming.

Case-study: Probabilistic Propositional Logic Networks

I Appeared first as Bayesian Logic (Andersen and Hooker 1994).

I Nodes are associated to propositions.

I The graph encodes (in)dependence relation among
propositions.

I Probabilistic propositional sentences are not restricted to
parameters of the network.

I E.g. p(φ) + p(ψ) ≤ 0.7, where φ = b∨d and ψ = (a∨¬e)∧ c .

(i) Network structure (j) Augmented network

PPL networks: extra nodes

I p(φ) + p(ψ) ≤ 0.7, where φ = b ∨ d and ψ = (a ∨ ¬e) ∧ c .
I The conditional probability distributions at nodes φ and ψ are

the true-tables of the corresponding logical sentences.
I Now we perform a credal network inference using a symbolic

algorithm to relate the marginal probabilities p(φ) and p(ψ)
to other network parameters. This will generate a collection of
multi-linear constraints that we include in the optimization
problem, together with the constraints p(φ) + p(ψ) ≤ 0.7.

I Conditionals are treated similarly. E.g. for p(φ|ψ) ≥ 0.2, we
perform a symbolic query to relate p(φ|ψ) and other network
parameters.

Exercise: simple PPL manipulation

I Three boolean variables A,B,C .

I Logical sentence: ψ = a ∨ c .

I Probabilistic logic sentence: p(φ) ≤ 0.3, where φ = ¬a ∨ b.

I Local credal sets K (A),K (B|a),K (B|¬a),K (C).

Simple PPL manipulation: obtaining an optimization
program

I Nodes φ and ψ have true-tables as conditional distributions:
p(ψ|a, c) = p(ψ|¬a, c) = p(ψ|a,¬c) = 1, p(ψ|¬a,¬c) = 0.
p(φ|a, b) = p(φ|¬a, b) = p(φ|¬a,¬b) = 1, p(φ|a,¬b) = 0.

I p(ψ) = 1 and p(ψ) is related to A and C using constraints.
I Bucket A:

∑
A p(A)p(ψ|A,C) = p(ψ|C) for all C .

I Bucket C :
∑

C p(C)p(ψ|C) = p(ψ).

I p(φ) ≤ 0.3 and p(φ) is related to A and B:
I Bucket A:

∑
A p(A)p(B|A)p(φ|A,B) = p(φ,B) for all B.

I Bucket B:
∑

B p(φ,B) = p(φ).

Agenda

Introduction

Algorithms and approximation methods (for strong extensions)

Sequential decision making

Changing gears: Decision making

I Set of acts A, need to choose one.
I There are several criteria!

I Γ-minimax:
arg max

X∈A
E [X] .

I Maximality: maximal elements of the partial order �. That is,
X is maximal if

there is no Y ∈ A such that EP [Y − X] > 0 for all P ∈ K .

I E-admissibility: maximality for at least a distribution. That is,
X is E-admissible if

there is P ∈ K such that EP [X − Y] ≥ 0 for all Y ∈ A.

I Maximax, interval dominance, etc.

Comparing criteria

Three acts: a1 = 0.4; a2 = 0/1 if A/Ac ; a3 = 1/0 if A/Ac .

6

- P(A)

E [ai]

P(A) ∈ [0.3, 0.7].
Γ-minimax: a1; Maximal: all of them; E-admissible: {a2, a3}.

Exercise

Credal set {P1,P2}:

P1(s1) = 1/8, P1(s2) = 3/4, P1(s3) = 1/8,

P2(s1) = 3/4, P2(s2) = 1/8, P2(s3) = 1/8,

Acts {a1, a2, a3}:
s1 s2 s3

a1 3 3 4
a2 2.5 3.5 5
a3 1 5 4.

Which one to select?

Solution

P1(s1) = 1/8, P1(s2) = 3/4, ; P1(s3) = 1/8, P2(s1) = 3/4, P2(s2) = 1/8, P2(s3) = 1/8.

Acts {a1, a2, a3}:
s1 s2 s3

a1 3 3 4
a2 2.5 3.5 5
a3 1 5 4.

Then:

E1[a1] = 3/8 + 18/8 + 4/8 = 25/8;

E1[a2] = 2.5/8 + 21/8 + 5/8 = 28.5/8;

E1[a3] = 1/8 + 15/8 + 4/8 = 35/8.

E2[a1] = 18/8 + 3/8 + 4/8 = 25/8;

E2[a2] = 15/8 + 3.5/8 + 5/8 = 23.5/8

E2[a3] = 2/8 + 5/8 + 4/8 = 11/8.

A quick discussion

I Limited to finite set of acts.

I Consider Γ-minimax:
I Compute E [ai] for each act.
I Select act with highest E [ai].

I (Considerable minimax theory in Berger’s book (1985).)

Maximality

I Find Γ-minimax solution a0.

I For each other act ai 6= a0, verify whether

EP [a0 − ai] ≥ 0;

for all P; if so, discard ai .

I That is, verify whether

E [a0 − ai] ≥ 0.

E-admissibility

I For each act ai :
I Collect all constraints that must be satisfied by P.
I Add constraints

EP [ai − aj] ≥ 0

for every aj 6= ai .
I If all these constraints can be satisfied for some P, then ai is

E-admissible.

I This scheme can be extended to problems with mixed acts
(Utkin and Augustin 2005).

Exercise

Credal set {P1,P2}:

P1(s1) = 1/8, P1(s2) = 3/4, P1(s3) = 1/8,

P2(s1) = 3/4, P2(s2) = 1/8, P2(s3) = 1/8,

Acts {a1, a2, a3}:
s1 s2 s3

a1 3 3 4
a2 2.5 3.5 5
a3 1 5 4.

Which one to select?
And if we take convex hull of credal set?

Solution

P1(s1) = 1/8, P1(s2) = 3/4, ; P1(s3) = 1/8, P2(s1) = 3/4, P2(s2) = 1/8, P2(s3) = 1/8.

Acts {a1, a2, a3}:
s1 s2 s3

a1 3 3 4
a2 2.5 3.5 5
a3 1 5 4.

I Consider P = αP1 + (1− α)P2.

I Then:
EP [a2 − a1] = 10α− 3 ≥ 0; α ≥ 3/10.

I And:
EP [a2 − a3] = −30α + 17 ≥ 0; α ≤ 17/30.

Challenge: many criteria!

I Γ-minimax, maximality, E-admissibility, etc.

I With independence, we must face the multilinear problems
that appear in inference.

I A few models are important: decision trees, influence
diagrams, Markov decision processes.

Digression: the challenges of sequential decision making

Teddy Seidenfeld 2004: p ∈ [0.25, 0.75]; q = 0.5.

Markov decision processes (MDPs)

I MDPs are quite popular in economics, management and
operations research.

I An MDP consists of

1. A state space S .
2. An action space A.
3. Transition probabilities pa(r |s) = Pa(st+1 = r |st = s).
4. Costs ca(s).

I Often represented as graphs where nodes are states.

I Another representation: a transition matrix Pa for each action
a.

Policies and their costs

I A policy specifies an action for each state (possibly indexed by
t).

I A stationary policy is a policy that does not depend on t.

I A policy π1 dominates policy π2 if π1 has total cost smaller
than π2.

I But how to measure “cost” of a policy?

Costs

I Additive cost: just add costs for all transitions.

I Discounted cost: add costs, but with discount γ:

c(s0) + γc(s1) + γ2c(s2) + . . .

I Average cost: add costs, divide by number of transitions.

I Goal state: all costs are ignored, what matters is to reach
some state.

Discounted cost

I The most popular, and easiest to handle, is discounted cost.

I We must find the optimal policy π∗:

π∗ = arg min
π

E

[∞∑
t=0

γtcπ(st)(st)

]
.

I For discounted cost, the optimal policy always exists (not
necessarily true for other costs!).

Basic relation about discounted cost

I Denote by E [π|s] the expected cost when the state is s at
t = 0.

I Then:

E [π|s] = cπ(s)(s) + γ
∑
r∈S

pπ(s)(r |s)E [π|r] .

I How about the optimal policy and the optimal expected cost?

Bellman equation

I Denote by E ∗[s]
I the optimal expected cost when the state is s at t = 0;
I called the value function (it depends only on s!).

I By dynamic programming we obtain:

E ∗[s] = min
a∈A

(
ca(s) + γ

∑
r∈S

pa(r |s)E ∗[r]

)
.

I From the optimal cost, we obtain:

π∗(s) = arg min
a∈A

(
ca(s) + γ

∑
r∈S

pa(r |s)E ∗[r]

)
.

Algorithms

1. Linear programming solution: polynomial algorithm, but rarely
used.

2. Value iteration.

3. Policy iteration.

...and many variants of these.

Factored representations

I Usually MDPs represent states explicitly.

I However, representations in terms of variables are more
compact.

I Factored representations use Bayesian networks to represent
Pa(r |s) (a dynamic Bayesian network indexed by actions).

I There are graphical representations for costs and policies as
well.

MDPIPs

I A Markov decision process with imprecise probabilities
consists of:

1. A state space S .
2. An action space A.
3. Transition credal sets Ka(r |s) = Ka(st+1 = r |st = s).
4. Costs ca(s).

I Proposed in the seventies, analysis restricted to Γ-minimax.
I Proofs of convergence and stationarity are available.
I Bellman equation:

E∗[s] = min
a∈A

max
p∈K

(
ca(s) + γ

∑
r∈S

pa(r |s)E∗[r]

)
.

I Algorithms: versions of value iteration and policy iteration.
I Special cases have been used in planning.

I Factored MDPIPs use credal networks to represent transitions.

Conclusion

I Independence relations introduce nonlinear constraints.

I Inference is usually solved through optimization (many
standard optimization tricks can be applied to these
problems).

I For credal networks:
I 2U is the only pocket of tractability (and Loopy-2U is the most

promising approximation scheme).
I Symbolic variable elimination/bilinear transformation produce

exact answers for medium-sized problems.

I Propositional Probabilistic Logic networks can be dealt with
the same techniques.

I Sequential decision making usually relies on independence
assumptions.

I There are even controversies about criteria.
I In simple cases, reduces to inference.
I Other than that, MDPIPs are ok in some cases.

	Principal
	Introduction
	Algorithms and approximation methods (for strong extensions)
	Sequential decision making

