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Or, perhaps...

Structural Assessments

in the Theory of Credal Sets
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Overview

1. A review of some basic definitions: credal sets, lower
expectations and probabilities, decision making, and
the like.

2. Structural assessments: vacuity, uniformity,
exchangeability.

3. A brief review of stochastic (conditional) independence.

4. Confirmational/strict/strong/epistemic/Kuznetsov/others
independence.

5. Comparison.

6. A look into the messy world of zero probabilities.
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Easy warm-up

Possibility space Ω with states ω; events are subsets of
Ω.

Random variables and indicator functions.
Bounded function X : Ω → <.
Special type: indicator function of event A:

Denoted by A as well.
A(ω) = 1 if ω ∈ A; 0 otherwise.
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Buying/selling variables

Buy X for α: X − α.

Sell X for β: β − X.

Must satisfy: β > α.

Pay less than E[X].

Sell for more than E[X].
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Fair prices

Suppose that E[X] = E[X] for some X.

Then E[X]
.
= E[X] is the fair price of X.

What if all variables had fair prices?

What would the resulting expectation functional satisfy?
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Axioms for expectations

EU1 If α ≤ X ≤ β, then α ≤ E[X] ≤ β.

EU2 E[X + Y ] = E[X] + E[Y ].
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Axioms for expectations

EU1 If α ≤ X ≤ β, then α ≤ E[X] ≤ β.

EU2 E[X + Y ] = E[X] + E[Y ].

Some consequences:

1. X ≥ Y ⇒ E[X] ≥ E[Y ].

2. E[αX] = αX.
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Supremum buying/infimum selling prices

If one holds a set of expectations for X: willing to pay
up to inf E[X] for X.

Likewise: willing to sell X for more than sup E[X].

So, naturally:

E[X] = inf E[X] (lower expectation),

E[X] = sup E[X] (upper expectation).
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Familiar properties

E[X] ≥ inf X;

E[αX] = αE[X] for α ≥ 0;

E[X + Y ] ≥ E[X] + E[Y ].
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Probabilities

Expectation E[A] indicates
how much we expect A to “happen.”

Definition: The probability P (A) is E[A].

Properties of a probability measure:
PU1 P (A) ≥ 0.
PU2 P (Ω) = 1.
PU3 If A ∩ B = ∅, P (A ∪ B) = P (A) + P (B).
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Conditional expectations/probabilities

Conditional expectation of X given B,

E[X|B] =
E[BX]

P (B)
if P (B) > 0.

Bayes rule: If P (B) > 0, then

P (A|B) =
P (A ∩ B)

P (B)
.
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Credal sets

A credal set is a set of probability measures
(distributions).

A credal set is usually defined by a set of assessments.

Example:

1. Ω = {ω1, ω2, ω3}.

2. P (ωi) = pi.

3. p1 > p3, 2p1 ≥ p2, p1 ≤ 2/3 and p3 ∈ [1/6, 1/3].

4. Take points P = (p1, p2, p3).
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Some geometry

1. Ω = {ω1, ω2, ω3}.

2. P (ωi) = pi.

3. p1 > p3, 2p1 ≥ p2, p1 ≤ 2/3 and p3 ∈ [1/6, 1/3].

4. Take points P = (p1, p2, p3).
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(5/6, 0, 1/6)

(2/3, 0, 1/3)

(1/2, 0, 1/2)

(2/3, 1/3, 0) (1/3, 2/3, 0)

(0, 5/6, 1/6)

(0, 2/3, 1/3)
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Baricentric coordinates

p1 p2

p3

P1

P2(1/2, 0, 1/2) (0, 1/2, 1/2)

(1/3, 0, 2/3)

(1/2, 1/2, 0)

P1 = (2/3, 1/12, 1/4)

P2 = (5/18, 1/6, 5/9)

The coordinates of a distribution are read on the lines
bissecting the angles of the triangle.
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Exercise

Consider a variable X with 3 possible values x1, x2 and x3.
Suppose the following assessments are given:

p(x1) ≤ p(x2) ≤ p(x3) ;

p(xi) ≥ 1/20 for i ∈ {1, 2, 3};

p(x3|x2 ∪ x3) ≤ 3/4.

Show the credal set determined by these assessments in
baricentric coordinates.
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Back to credal sets

Credal set with distributions for X is denoted K(X).

Given credal set K(X):
E[X] = infP∈K(X) EP [X].

E[X] = supP∈K(X) EP [X].

For closed convex credal sets, lower and upper
expectations are attained at vertices.

A closed convex credal set is completely characterized
by the associated lower expectation.

That is, there is only one lower expectation for a
given closed convex credal set.
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Exercise

A closed convex credal set is completely characterized
by the associated lower expectation.

But given a lower expectation, many credal sets
generate it.

Usually only the maximal closed convex set is chosen.

Exercise: Given the assessments in the previous
exercise, find two credal sets that yield the same lower
expectation.
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Common ways to generate credal sets I

From partial preferences:

X � Y means “X is preferred to Y .”

Axiomatize � as partial order.

Then:

X � Y iff EP [X] > EP [Y ] for all P ∈ K.

Credal sets with identical vertices produce the same �.

Focus has been on unique maximal credal set that
represents �.

Smaller credal sets have no “behavioral”
significance.

Independence Conceptsin Imprecise Probability – p.19/120



Common ways to generate credal sets II

From one-sided betting:

Variables are gambles.

Buy/sell gambles using E[X] and E[X].

Some constraints, such as
∑n

i=1 αi(Xi − E[Xi]) ≥ 0 for αi ≥ 0.

Credal set is produced by the set of dominating
expectations:

{E : E[X] ≥ E[X]}.

Several credal sets produce the same lower
expectations.

But only maximal closed one is given “behavioral”
significance.
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Decision making with credal sets

Set of acts A, need to choose one.
There are several criteria!

Γ-minimax:
arg max

X∈A
E[X] .

Maximality: maximal elements of the partial order �.
That is, X is maximal if

there is no Y ∈ A such that EP [Y − X] > 0 for all P ∈ K.

E-admissibility: maximality for at least a distribution.
That is, X is E-admissible if

there is P ∈ K such that EP [X − Y ] ≥ 0 for all Y ∈ A.
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Comparing criteria

Three acts: a1 = 0.4; a2 = 0/1 if A/Ac; a3 = 1/0 if A/Ac.
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E[ai]

P (A) ∈ [0.3, 0.7].

Γ-minimax: a1; Maximal: all of them; E-admissible: {a2, a3}.
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Exercise

Credal set {P1, P2}:

P1(s1) = 1/8, P1(s2) = 3/4, P1(s3) = 1/8,

P2(s1) = 3/4, P2(s2) = 1/8, P2(s3) = 1/8,

Acts {a1, a2, a3}:

s1 s2 s3

a1 3 3 4

a2 2.5 3.5 5

a3 1 5 4.

Which one to select?
And if we take convex hull of credal set?
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Overview

1. Some basic (mostly known) definitions: credal sets,
lower expectations and probabilities, decision making,
and the like.

2. Structural assessments: vacuity, uniformity, exchangeab ility.

3. A brief review of stochastic (conditional) independence.

4. Confirmational/strict/strong/epistemic/Kuznetsov/others
independence.

5. Comparison.

6. A look into the messy world of zero probabilities.
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Structural assessments

What is it?

An assessment that alone constrains a large (possibly
infinite) number of expectations.

A simple example: vacuity.

A credal set K(X) is vacuous when it contains every
possible distribution for X.
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Vacuity

Suppose K(X) is vacuous.

Then:

E[f(X)] = min
ω∈Ω

f(X(ω)), E[f(X)] = max
ω∈Ω

f(X(ω)).

An ε-contaminated credal set is a “mixture” of a precise
distribution and a vacuous credal set:

(1 − ε)P0 + εQ, any Q.
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Uniformity

Every ω is subject to identical assessments.

Extreme case: vacuity.

Extreme case: uniform distribution.

Intermediate case: P (ωi) ∈ [1/4, 1/2].
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Exercise

Urn with m > 0 balls, numbered from 1 to m

r balls are red and m − r balls are black.

n samples with replacement.

ω is a numbered sequence produced this way.

mn possible numbered sequences.

Assume uniformity: P (ω) ≥ (1 − ε)m−n.

What is the lower probability that k balls are red?
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Exchangeability

A basic structural assessment.

To simplify, take categorical variables X = [X1, . . . , Xm].

Denote by πm a permutation of integers {1, . . . ,m},
and by πm(i) the ith number in the permutation.

Denote
{X = x}

.
= ∩m

i=1{Xi = xi},

and
{πmX = x}

.
= ∩m

i=1{Xπm(i) = xi}.
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Definition of exchangeability

Variables X1, . . . , Xm are exchangeable when

E[{X = x} − {πmX = x}] = 0

for any permutation πm.

That is, the order of variables does not matter: trading
{X = x} for {πmX = x} does not seem advantageous.
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Walley’s exchangeability theorem

We have

0 = E[{X = x} − {πmX = x}]

≤ E[{X = x} − {πmX = x}]

= −E[{πmX = x} − {X = x}] = 0.

Hence every distribution in the credal set K(X1, . . . , Xm)
satisfies

P (X = x) = P (πmX = x) for any permutation πm.

In words: Exchangeability implies elementwise
exchangeability.
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Exercise

What is the largest credal set that satisfies exchangeability
of two binary variables?
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Exercise

What is the largest credal set that satisfies exchangeability
of two binary variables?
p1 = P (X = 0, Y = 0), p2 = P (X = 1, Y = 1),
p3 = P (X = 1, Y = 0) = P (X = 0, Y = 1).

p1 p2

p3
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Exercise

Suppose we have 4 binary variables that are
exchangeable.

What are the conditions on the probabilities
P (X1 = x1, X2 = x2, X3 = x3, X4 = x4)?
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Exercise

Suppose we have 4 binary variables that are
exchangeable.

What are the conditions on the probabilities
P (X1 = x1, X2 = x2, X3 = x3, X4 = x4)?

Here they are:

One success: P (0001) = P (0010) = P (0100) = P (1000).

Two successes: P (1001) = P (1010) = P (1100) =
P (0101) = P (0110) = P (0011).

Three successes:
P (1110) = P (1101) = P (1011) = P (0111).
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Exercise

Suppose we have 4 binary variables that are
exchangeable.

Suppose P (0000) = 1/10 and P (1111) = 1/2.

Draw the credal set.
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Exercise

Suppose we have 4 binary variables that are
exchangeable.

Suppose P (0000) = 1/10 and P (1111) = 1/2.

Draw the credal set.

Set of triplets [P (0001) , P (0011) , P (0111)] satisfying

P (0001) ≥ 0, P (0011) ≥ 0, P (0111) ≥ 0,

4P (0001) + 6P (0011) + 4P (0111) = 1 − (1/2 + 1/10) = 2/5.

Independence Conceptsin Imprecise Probability – p.37/120



Exercise

Suppose we have 4 binary variables that are
exchangeable.

Suppose P (0000) = 1/10
and P (1111) = 1/2.

Draw the credal set.

P (0001)

P (0011)

P (0111)

1/10

1/15

1/10
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Facts about exchangeability

Any subset of exchangeable variables is exchangeable.

Exchangeability is a “convex” concept.

For X1, . . . , Xm, what matters is

P

(

m
∑

i=1

Xi = r

)

.

For each r,

(

m

r

)

probabilities with identical value

P
(
∑n

i=1 Xi = r
)

(

m

r

) .
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Representation for binary variables

Consider m exchangeable variables, and take initial n
variables.

Then P (X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0) is
equal to

m−n+k
∑

r=k

(

m − n

r − k

)

(

m

r

) P

(

n
∑

i=1

Xi = r

)

.
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de Finetti’s theorem (binary variables)

Take m → ∞:
Then P (X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0) is
equal to

∫ 1

0
θk(1 − θ)n−kdF (θ).

Here θ is the probability of {X1 = 1}, and the distribution
function F (θ) acts as a “prior” over θ.

So: we have a credal set K(θ).

Moreover: this credal set is convex!
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Exercise

Draw the credal set K(X,Y ) given the structural
assessments:

X and Y are exchangeable.

X and Y are the first two variables in a sequence of
three exchangeable variables.

X and Y are the first two variables in a sequence of five
exchangeable variables.

X and Y are the first two variables in a sequence of
infinitely many exchangeable variables.
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Overview

1. Some basic (mostly known) definitions: credal sets,
lower expectations and probabilities, decision making,
and the like.

2. Structural assessments: vacuity, uniformity,
exchangeability.

3. A brief review of stochastic (conditional) independence.

4. Confirmational/strict/strong/epistemic/Kuznetsov/others
independence.

5. Comparison.

6. A look into the messy world of zero probabilities.
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Now, stochastic independence

1. X is stochatically irrelevant to Y when:

E[f(Y )|{X ∈ A}] = E[f(Y )]

for any bounded function f , whenever P ({X ∈ A}) > 0.

2. Definition is symmetric!

3. So, take it to mean
stochastic independence of X and Y .
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Symmetry

1. X is irrelevant to Y iff

P ({Y ∈ B}|{X ∈ A}) = P ({Y ∈ B})

whenever P ({X ∈ A}) > 0.

2. X is irrelevant to Y iff

P ({Y ∈ B} ∩ {X ∈ A}) = P ({Y ∈ B}) P ({X ∈ A}) .

Independence Conceptsin Imprecise Probability – p.45/120



Complete definition

Variables {Xi}
n
i=1 are independent if

E
[

fi(Xi)| ∩j 6=i {Xj ∈ Aj}
]

= E[fi(Xi)] ,

for

all functions fi(Xi)

all events ∩j 6=i{Xj ∈ Aj} with positive probability.
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Other forms

Independence of variables {Xi}
n
i=1 is equivalent to:

For all functions fi(Xi),

E

[

n
∏

i=1

fi(Xi)

]

=
n
∏

i=1

E[fi(Xi)] .

For all sets of events {Ai}
n
i=1,

P (∩n
i=1{Xi ∈ Ai}) =

n
∏

i=1

P ({Xi ∈ Ai}) .
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Independence for events

1. A and B are independent

P (A|B) = P (A) whenever P (B) > 0;

or, equivalently,

P (A ∩ B) = P (A) P (B) .

2. For all subsets of events {Ai}
n
i=1,

P (∩i{Xi ∈ Ai}) =
∏

i

P ({Xi ∈ Ai}) .
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Weak law of large numbers

1. Remember Chebyshev inequality:

P (|X − E[X] | ≥ t) ≤
V [X]

t2
,

2. Apply inequality to X̄ =
∑

i Xi/n:

P
(

|X̄ − µ| ≥ ε
)

≤
σ2

nε2
,

3. The larger the n, the smaller this probability!

∀ε > 0, lim
n→∞

P
(

|X̄ − µ| ≥ ε
)

= 0

4. There are other versions with different assumptions.
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(Finite) strong law of large numbers

Finitistic version:
for all ε > 0,
there is integer N

such that for every positive integer k,

P

(

∃n ∈ [N,N + k] :

∣

∣

∣

∣

∑n
i=1 Xi

n
− µ

∣

∣

∣

∣

> ε

)

< ε.
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Strong law of large numbers

In a sequence of variables X1, . . . , Xn, the mean converges
to the expectation with probability one:

P

(

lim
n→∞

∑n
i=1 Xi

n
= µ

)

= 1.

1. It requires countable additivity; that is,

P (∪n
i=1Ai) =

∞
∑

i=1

P (Ai) .

2. It is really a strong result.
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The graphoid properties

Proposed as a way to encode the intuitive meaning of
“independence”:

Symmetry: (X⊥⊥Y |Z) ⇒ (Y ⊥⊥X |Z)

Decomposition: (X⊥⊥(W,Y ) |Z) ⇒ (X⊥⊥Y |Z)

Weak union: (X⊥⊥(W,Y ) |Z) ⇒ (X⊥⊥W |(Y, Z))

Contraction:
(X⊥⊥Y |Z) & (X⊥⊥W |(Y, Z)) ⇒ (X⊥⊥(W,Y ) |Z)

Satisfied by many structures (graphs, lattices, etc).
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Other graphoid properties

Often added:

Redundancy: (X⊥⊥Y |X)

Often added (true when probabilities are positive):

Intersection
(X⊥⊥W |(Y, Z)) & (X⊥⊥Y |(W,Z)) ⇒ (X⊥⊥(W,Y ) |Z)

Not discussed further in this talk.
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Exercise

Prove decomposition, weak union and contraction for
stochastic independence.
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Overview

1. Some basic (mostly known) definitions: credal sets,
lower expectations and probabilities, decision making,
and the like.

2. Structural assessments: vacuity, uniformity,
exchangeability.

3. A brief review of stochastic (conditional) independence.

4. Confirmational/strict/strong/epistemic/Kuznetsov/oth ers
independence.

5. Comparison.

6. A look into the messy world of zero probabilities.
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Strict independence

X and Y are strictly independent if for all P ∈ K(X,Y ),

P (X ∈ A|Y ∈ B) = P (X ∈ A) whenever P (Y ∈ B) > 0.

That is, elementwise stochastic independence.

This concept violates convexity (presumably has no
“behavioral” justification).
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Failure of convexity

Example of Jeffrey’s:

Binary variables X and Y , strictly independent.

K(X,Y ): convex hull of P1 and P2,

P1(X = 0) = P1(Y = 0) = 1/3, P2(X = 0) = P2(Y = 0) = 2/3

Take P1/2 = P1/2 + P2/2 (by convexity, P1/2 ∈ K(X,Y )).

However,

P1/2(X = 0, Y = 0) = P1(X = 0)P1(Y = 0)/2 +

P2(X = 0)P1(Y = 0)/2

= 5/18 6= 1/4

= P1/2(X = 0)P1/2(Y = 0).
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Independence surface for two events

P (A ∩ B) P (A ∩ Bc)

P (Ac ∩ B)

1 1

1
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Confirmational independence

I. Levi, the pioneer on convex credal sets, detected this
problem with strict independence.

His proposal: Y is confirmationally irrelevant to X if

K(X|Y ∈ B) = K(X) for nonempty {Y ∈ B},

His position: use strict independence if needed, but
take convex hull (does not affect partial preferences...).
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Strong independence

X and Y are strongly independent when K(X,Y ) is the
convex hull of a set of distributions satisfying strict
independence.

Equivalently (for closed credal sets):
X and Y are strongly independent iff for any bounded
function f(X,Y ),

E[f(X,Y )] = min (EP [f(X,Y )] : P = PXPY ) .
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Type-1/2 products and others

Walley and Fine (1982) called this expression an
independent product when restricted to indicators:

E[A(X,Y )] = min (EP [A(X,Y )] : P = PXPY ) .

This is Weichselberger’s definition of mutual
independence.

In his book, Walley (1991) called the general expression
a type-1 product.

...and type-2 products refer to the case of identical
marginals.
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Epistemic irrelevance

Walley also proposes a different concept: Y is
epistemically irrelevant to X if for any bounded function
f(X),

E[f(X)|Y ∈ B] = E[f(X)] for nonempty {Y ∈ B}.

Definition is what Smith refers to as independence in
his pioneering work on medial odds.

If credal sets are closed and convex, then epistemic
irrelevance is identical to Levi’s confirmational
irrelevance.
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Exercise

Consider a finite possibility space.

Suppose K(Y ) is a singleton.

Suppose P (X), K(X|Y ∈ B) are “almost” vacuous in
that P (X ∈ A|·) > 0 is the only constraint.

Show that Y is epistemically irrelevant to X, but X is not
epistemically irrelevant to Y .

This is an extreme case of dilation!

Construct an example that is not so extreme but that
stills fails symmetry.
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Epistemic independence

Walley’s clever idea: “symmetrize” irrelevance (this is
actually a strategy by Keynes).

X and Y are epistemically independent if Y is
epistemically irrelevant to X and X is epistemically
irrelevant to Y .

Quite an intuitive concept that “generates convexity”
automatically.
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Kuznetsov: some interval arithmetic

Kuznetsov (1991) proposed yet another concept.

Actually, he uses strong independence, but proposes a
new concept as a secondary idea.

His concept is based on interval arithmetic.

Denote by EI[X] the interval
[

E[X] , E[X]
]

.

Overload the symbol × to understand a × b as the
product of two intervals when a and b are intervals:

a = [a, a], b = [b, b] ⇒ a × b = [ab, ab, ab, ab].
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Kuznetsov independence

X and Y are Kuznetsov independent if, for any bounded
functions f(X) and g(Y ),

EI[f(X)g(Y )] = EI[f(X)] × EI[g(Y )].

Equivalent formulation is: for any bounded functions
f(X) and g(Y ),

E[f(X)g(Y )] = inf(EPX×PY
[f(X)g(Y )] :

PX ∈ K(X) , PY ∈ K(Y )).
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Exercise

Prove:

Kuznetsov independence implies epistemic
independence.

Epistemic independence does not imply Kuznetsov
independence.
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Strong 6= Epistemic

Two binary variables X and Y .

P (X = 0) ∈ [2/5, 1/2] and P (Y = 0) ∈ [2/5, 1/2].

Epistemic independence of X and Y : K(X,Y ) is convex
hull of

[1/4, 1/4, 1/4, 1/4], [4/25, 6/25, 6/25, 9/25],

[1/5, 1/5, 3/10, 3/10], [1/5, 3/10, 1/5, 3/10],

[2/9, 2/9, 2/9, 1/3], [2/11, 3/11, 3/11, 3/11],
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Exercise

Write down the linear constraints that must be satisfied by
K(X,Y ) in the previous example.
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Strong 6= Kuznetsov

It would be nice if Kuznetsov and strong independence
were equivalent.

But they are not!

(Actually, they are equivalent if one of the variables is
binary.)
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Example

Ternary variables X and Y , credal sets K(X) and K(Y ):

Largest set that satisfies strong independence (strong
extension) has 16 vertices and 24 facets; for instance, a
facet with normal

[−434, 301, 21, 2836,−1154,−1734,−1164, 96, 1116].

This facet cannot be written as f(X)g(Y ) + α.

Intuitively, a Kuznetsov “extension” wraps the strong
extension using only functions f(X)g(Y ).
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A possible variant

X and Y are “independent” if

E
[

f(X)|Y ∈ B′
]

= E
[

f(X)|Y = B′′
]

for any bounded function f(X) and any nonempt
{Y ∈ B′}, {Y ∈ B′′}.

This is not epistemic irrelevance!

It is quite weak. For instance we can have vacuous
credal sets K(X|Y = y) for every y . It seems bizarre to
say that Y is then irrelevant to X.
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Some history

Several variants between 1990/2000... inspired by
intense activity in Dempster-Shafer and possibility
theory.

For each possible definition of conditioning or
product-measure, a concept of independence...

Quick example: Dempster conditioning defines

P (X|DY ) = P (X,Y ) /P (Y )

then we can impose

P (X|DY ) = P (X,Y ) /P (Y ) = P (X) .

Related (mathematically at least) to Shafer’s concept
of cognitive independence
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de Campos and Moral, 1995

Attempt to organize the field.

Their type-2 independence is strong independence

Their type-3 independence obtains when K(X,Y ) is the
convex hull of all product distributions PXPY , where
PX ∈ K(X) and PY ∈ K(Y ).

That is, type-3 independence is simply strong
extension.

Their type-5 independence is a variant on
confirmational irrelevance.
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Type-5 independence

Y is type-5 irrelevant to X if

R(X|Y ∈ B) = K(X) whenever P (Y ∈ B) > 0,

where R(X|Y ∈ B) denotes the set

{P (·|Y ∈ B) : P ∈ K(X,Y ) ;P (Y ∈ B) > 0}.

Then take type-5 independence to be the
“symmetrized” concept.

The set R is often used to defined conditioning (related
to what Walley calls regular extension).

Independence Conceptsin Imprecise Probability – p.75/120



Exercise

Due to de Campos and Moral (1995).

X and Y are binary.

K(X,Y ) is the convex hull of two distributions P1 and P2

such that P1(X = 0, Y = 0) = P2(X = 1, Y = 1) = 1.

Show:

X and Y are strongly independent.

Neither Y is type-5 irrelevant to X, nor X is type-5
irrelevant to Y .
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Couso et al, 1999

In 1999 Couso et al presented an influential review.
Their independence in the selection is strong
independence.
Their strong independence is strong extension.
Their repetition independence refers to Walley’s
type-2 product.

They also discuss non-interactivity and random set
independence (called belief function product by Walley
and Fine, 1982).
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The zoo, so far

Strict independence.

Confirmational, epistemic irrelevance/independence.

Strong independence.

Kuznetsov independence.

Type-5 independence.
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The zoo, so far

Strict independence.

Confirmational, epistemic irrelevance/independence.

Strong independence.

Kuznetsov independence.

Type-5 independence.

Consider:

Epistemic independence is most intuitive (under
convexity).

Strict independence is closer to stochastic
independence (without convexity).

How to justify strong independence?
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Conditional independence

Any concept of independence can be modified to
express conditional independence.

For example, conditional epistemic irrelevance of Y to
X given Z:

E[f(X)|Y ∈ B,Z = z] = E[f(X)|Z = z]

for all bounded functions f(X) and all nonempty
{Z = z}.

Likewise for conditional Kuznetsov/strict/strong
independence of X and Y given Z.

Aside: Moral and Cano (2002) consider three related
forms of conditional strict independence (closer to
extensions...).
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Overview

1. Some basic (mostly known) definitions: credal sets,
lower expectations and probabilities, decision making,
and the like.

2. Structural assessments: vacuity, uniformity,
exchangeability.

3. A brief review of stochastic (conditional) independence.

4. Confirmational/strict/strong/epistemic/Kuznetsov/others
independence.

5. Comparison.

6. A look into the messy world of zero probabilities.

Independence Conceptsin Imprecise Probability – p.81/120



Comparing concepts

There are perhaps too many concepts around.

Idea: verify which concepts satisfy laws of large
numbers.

Not really discriminating: all satisfy forms of laws of
large numbers (recent results by de Cooman and
Miranda).

Other idea: check graphoid properties.
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Reminder: graphoid properties

Symmetry: (X⊥⊥Y |Z) ⇒ (Y ⊥⊥X |Z)

Decomposition: (X⊥⊥(W,Y ) |Z) ⇒ (X⊥⊥Y |Z)

Weak union: (X⊥⊥(W,Y ) |Z) ⇒ (X⊥⊥W |(Y, Z))

Contraction:
(X⊥⊥Y |Z) & (X⊥⊥W |(Y, Z)) ⇒ (X⊥⊥(W,Y ) |Z)
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Exercise

Show that strict and strong independence satisfy all
graphoid properties.
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Failure of contraction

Epistemic independence fails contraction even when all
probabilities are positive.

Thus type-5 independence also fails contraction.

Kuznetsov independence fails contraction even when all
probabilities are positive.

The other graphoid properties are satisfied by these
concepts.

Note: there are different results when probabilities can be

equal to zero!
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Failure of contraction: epistemic indep.

Binary variables W , X and Y .

K(W,X, Y ) is convex hull of three distributions:

W X Y p1(X, Y, W ) p2(X, Y, W ) p3(X, Y, W )

W0 X0 Y0 0.008 0.018 0.0093

W1 X0 Y0 0.072 0.072 0.0757

W0 X1 Y0 0.032 0.042 0.037

W1 X1 Y0 0.288 0.168 0.228

W0 X0 Y1 0.096 0.084 0.09

W1 X0 Y1 0.024 0.126 0.075

W0 X1 Y1 0.384 0.196 0.290

W1 X1 Y1 0.096 0.294 0.195

X and Y are epistemically independent; X and W are
conditionally epistemically independent given Y .

But X and (W,Y ) are not not epistemically independent.
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Failure of contraction: Kuznetsov indep.

Binary variables W , X, and Y

K(W,X, Y ) with four vertices (each is the product of
p(W |Y ) p(Y ) p(X)):

Vertex pi(w0|y0) pi(w0|y1) pi(x0) pi(y0)

p1 0.7 0.4 0.2 0.2

p2 0.7 0.4 0.3 0.3

p3 0.8 0.5 0.2 0.3

p4 0.8 0.5 0.3 0.2

X and Y are Kuznetsov independent; X and W are
conditionally Kuznetsov independent given Y .

But X and (W,Y ) are not Kuznetsov independent.
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Exercise

Show:

Epistemic independence satisfies decomposition and
weak union in finite spaces.

Epistemic irrelevance satisfies: if Y is epistemically
irrelevant to X and W is epistemically irrelevant to X
given Y then (W,Y ) are epistemically irrelevant to X.

Kuznetsov independence satisfies decomposition.
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An application: Markov chains

Take chain W → X → Y → Z.

With stochastic independence, W and Z are
conditionally stochastically given X (among other
relations).

But a Markov condition with epistemic independence
does not guarantee such a relation.

(That is, a variable is epistemically independent of its
predecessors given its parent.)
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Comparing complexity

Little is known about the computational complexity of
various concepts.

Strict/strong independence have been addressed in the
context of credal networks.

Some algorithms are known for epistemic
independence.

It seems that strict/strong independence are “more
tractable” in an informal way.
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The zoo, so far...

Strict independence.

Confirmational, epistemic irrelevance/independence.

Strong independence.

Kuznetsov independence (not very promising).

Type-5 independence (only relevant with zero
probabilities).

Consider:

Epistemic independence is more intuitive (under
convexity).

Strict independence is closer to stochastic
independence (without convexity).

How to justify strong independence?
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Justifying strong independence

Sensitivity analysis interpretation: several experts agree
on stochastic independence.

This is an argument for strict independence.

Is there a justification that uses partial preferences,
lower expectations, credal sets, etc?

A possible idea: changes in assessments (Cozman
(2000), Moral and Cano (2002)).
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Example

Two binary variables X and Y .

P (X = 0) ∈ [2/5, 1/2] and P (Y = 0) ∈ [2/5, 1/2].

Epistemic independence: K(X,Y ) is convex hull of

[1/4, 1/4, 1/4, 1/4], [4/25, 6/25, 6/25, 9/25],

[1/5, 1/5, 3/10, 3/10], [1/5, 3/10, 1/5, 3/10],

[2/9, 2/9, 2/9, 1/3], [2/11, 3/11, 3/11, 3/11],

Suppose we learn that

P (Y = 0) = 4/9.
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Changing assessments

So, we have K(X,Y ) and we learn

P (Y = 0) = 4/9.

If we simply generate

K ′(X,Y ) = K(X,Y ) ∩ {P : P (Y = 0) = 4/9}.

then X and Y are not epistemically independent
anymore.
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Producing strong independence

This is “like” Jeffrey’s rule: we change the marginal,
then see what happens to the other marginal.

Moral and Cano (2002):

Variables X and Y are [fully] strongly independent iff
they are epistemically independent after K(X,Y ) is
combined with an arbitrary collection of compatible

assessments on X and on Y .

A bit strange: after learning new assessments,
shouldn’t we change K(X,Y ) so as to preserve the
epistemic independence?
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Another justification: exchangeability

Consider a vector of m exchangeable binary variables
X = [X1, . . . , Xm].

If we look at the first n variables and let m → ∞, then
P (X1 = 1, . . . , Xk = 1, Xk+1 = 0, . . . , Xn = 0) is

∫ 1

0
θk(1 − θ)n−kdF (θ).

Remember: θ is the probability of {X1 = 1}.

We have a convex credal set K(θ).
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Strong indep. from exchangeability

So, n variables amongst infinitely many exchangeable
variables.

Represented by a convex credal set K(θ) as

P
(

X1,...,k = 1, Xk+1,...,n = 0
)

=

∫ 1

0
θk(1 − θ)n−kdF (θ).

Strong independence obtains if each vertex of K(θ)
assigns probability 1 to a particular value of θ.

We have in fact obtained a type-2 product.
Similar argument works for general variables.
It is possible to extend the argument to general
strong independence (but a bit artificial).
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Back to strict independence

Strict independence is very attractive.

But it violates convexity.

It does not have a “behavioral” interpretation...

Is it true?

NO!

Let’s think about E-admissibility.
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Example

Credal set {P1, P2}:

P1(s1) = 1/8, P1(s2) = 3/4, P1(s3) = 1/8,

P2(s1) = 3/4, P2(s2) = 1/8, P2(s3) = 1/8,

Acts {a1, a2, a3}:

s1 s2 s3

a1 3 3 4

a2 2.5 3.5 5

a3 1 5 4.

With respect to P1 and P2, a1 and a3 are E-admissible but a2

is not; with respect to the convex hull of {P1, P2}, all acts are
E-admissible.
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That is,

There is a difference between a set of distributions and its
convex hull when one chooses among several acts.
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Seidenfeld cuts

Three acts: a1 = 0.6; a2 = 0/1 if A/Ac; a3 = 1/0 if A/Ac.
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We can “cut” pieces of the probability interval!
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Axiomatizing partial preferences

Can we axiomatize preferences amongst sets of acts,
so as to obtain general credal sets?

Yes. It has been done by Seidenfeld et al (2007) [it
seems first idea by Kyburg and Pittarelli (1992)].

Axioms on rejection functions: for a given set D of acts,
R(D) indicates the acts that are not admissible.

Example: An inadmissible act cannot become
admissible when (a) new acts are added to the set of
acts; (b) inadmissible acts are deleted from the set of
acts.
And so on.
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Producing strict independence

Are events A and B are strictly independent?

Construct five acts a0, . . . , a4:

AB ABc AcB AcBc

a0 0 0 0 0

a1 1 − α −α 0 0

a2 −(1 − α) α 0 0

a3 0 0 1 − β −β

a4 0 0 −(1 − β) β

Test: if we observe that for every α, β ∈ (0, 1) such that
α 6= β we have some act rejected, we can conclude that
A and B are strictly independent.
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Just to close

How about confirmational independence for general
credal sets?

Very weak: fails decomposition/weak union/contraction!

1 2 3 4

P (X = 0|W = 0, Y = 0), P (W = 0, Y = 0) α, 1/4 α, 1/4 α, 1/4 β, β/2
α+β

P (X = 0|W = 0, Y = 1), P (W = 0, Y = 0) α, 1/4 α, 1/4 α, 1/4 β, α/2
α+β

P (X = 0|W = 1, Y = 0), P (W = 0, Y = 0) α, α/2
α+β

α, (1−α)/2
2−(α+β)

α, 1/4 β, 1/4

P (X = 0|W = 1, Y = 1), P (W = 0, Y = 0) α, β/2
α+β

α, (1−β)/2
2−(α+β)

α, 1/4 β, 1/4

5 6 7

P (X = 0|W = 0, Y = 0), P (W = 0, Y = 0) β, (1−β)/2
2−(α+β)

α+β
2

, 1/4 β, 1/4

P (X = 0|W = 0, Y = 1), P (W = 0, Y = 0) β, (1−α)/2
2−(α+β)

α+β
2

, 1/4 α, 1/4

P (X = 0|W = 1, Y = 0), P (W = 0, Y = 0) β, 1/4 α, 1/4 α+β
2

, 1/4

P (X = 0|W = 1, Y = 1), P (W = 0, Y = 0) β, 1/4 β, 1/4 α+β
2

, 1/4

Failure of decomposition and weak union; α, β ∈ (0, 1).
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Overview

1. Some basic (mostly known) definitions: credal sets,
lower expectations and probabilities, decision making,
and the like.

2. Structural assessments: vacuity, uniformity,
exchangeability.

3. A brief review of stochastic (conditional) independence.

4. Confirmational/strict/strong/epistemic/Kuznetsov/others
independence.

5. Comparison.

6. A look into the messy world of zero probabilities.
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Potentially null events

Events may have zero lower probability but nonzero
upper probability (cannot ignore those).

Example of difficulties one may face:
Suppose we refuse to define a conditional credal set
K(X|Y = y) whenever P (Y = y) = 0.
Consider: Y is “irrelevant” to X if

K(X|Y ∈ B) = K(X) whenever P (Y ∈ B) > 0.

But Y may have finitely many values, and for each
value y of Y there is a distribution P in K(Y ) such
that P (Y = y) = 0.

Then Y is irrelevant to any other variable!
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Full conditional measures

The most elegant solution is to consider full probability
measures.

A full probability measure is a function P (·|·) on E × E\∅
where E is an algebra of events, such that

P (A|C) = 1;
P (A|C) ≥ 0 for all A;
P (A ∪ B|C) = P (A|C) + P (B|C) when A ∩ B = ∅;
P (A ∩ B|C) = P (A|B ∩ C)P (B|C) when B ∩ C 6= ∅.

Full probability measures allow P (A|C) to be defined
even if P (C) = 0!
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The Krauss-Dubins representation

We can partition a Ω into events L0, . . . , LK , where
K ≤ N ,

such that the full conditional measure is represented as
a sequence of strictly positive probability measures
P0, . . . , PK , where the support of Pi is restricted to Li.

Example:

A Ac

B bβc1 α

Bc b1 − βc1 1 − α

Here: P (A) = 0, but P (B|A) = β.
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Using full conditional measures

Unsurprisingly, Levi and Walley both adopt full
conditional measures.

A challenge is that full conditional measures seem to
call for finite additivity.

Again, this is the path taken by Levi and Walley.
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A problem with stochastic independence

The usual product definition is now too weak!

Consider: we may have

P (X,Y = y|Z = z) = P (X|Z = z) P (Y = y|Z = z)

and yet

P (X|Y = y, Z = z) 6= P (X|Z = z) .

(Failure may happen when P (Y = y, Z = z) = 0.)
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Failure of symmetry

Take epistemic irrelevance:

P (X|Y = y, Z = z) = P (X|Z = z) .

But: this is not symmetric!!

Example:

A Ac

B bβc1 α

Bc b1 − βc1 1 − α

Note: P (A|B) = P (A), but P (B|A) 6= P (B)!
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As before: symmetrize!

Definition of epistemic independence:
Require

P (X|Y = y, Z = z) = P (X|Z = z)

and
P (Y |X = x, Z = z) = P (Y |Z = z) .

This is symmetric for sure.

How does it fare with respect to the theory of
graph-theoretical models?
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Reminder: graphoid properties

Symmetry: (X⊥⊥Y |Z) ⇒ (Y ⊥⊥X |Z)

Decomposition: (X⊥⊥(W,Y ) |Z) ⇒ (X⊥⊥Y |Z)

Weak union: (X⊥⊥(W,Y ) |Z) ⇒ (X⊥⊥W |(Y, Z))

Contraction:
(X⊥⊥Y |Z) & (X⊥⊥W |(Y, Z)) ⇒ (X⊥⊥(W,Y ) |Z)
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Problem with epistemic independence

It fails weak union!

w0y0 w1y0 w0y1 w1y1

x0 α bβc2 1 − α b1 − βc2
x1 bαc1 bγc3 b1 − αc1 b1 − γc3

Remember:

Weak union: (X⊥⊥(W,Y ) |Z) ⇒ (X⊥⊥W |(Y, Z))
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Hammond’s independence

Here is a proposal for independence:

P (B(Y )|A(X) ∩ D(Y )) = P (B(Y )|D(Y )) and

P (A(X)|B(Y ) ∩ C(X)) = P (A(X)|C(X)) .

This is symmetric.

It satisfies weak union! But if fails contraction...

Remember:

Contraction:
(X⊥⊥Y |Z) & (X⊥⊥W |(Y, Z)) ⇒ (X⊥⊥(W,Y ) |Z)
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Conclusion

There are many different structural assessments for
credal sets.

Vacuity/uniformity/exchangeability are quite useful.

Independence is the most important one.

There are many different concepts of independence for
credal sets.

A study of (conditional) independence touches on
convexity and decision-making;
conditioning and full conditional measures.

My humble suggestion:

We need to move to general credal sets, so that strict independence comes naturally

(and many other things come naturally then...).
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Conclusion

There are many different structural assessments for credal sets.

Vacuity/uniformity/exchangeability are quite useful.

Independence is the most important one.

There are many different concepts of independence for credal sets.

A study of (conditional) independence touches on

convexity and decision-making;

conditioning and full conditional measures.

My humble suggestion:
We need to move to general credal sets, so that strict
independence comes naturally (and many other things
come naturally then...).
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Final words on independence I

Epistemic irrelevance/independence is quite intuitive
and simple to state for convex credal sets.

Difficult to handle computationally.
Fails the contraction property (perhaps ok?).
Requires full conditional measures and associated
challenges (perhaps then use type-5/regular
independence?).
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Final words on independence II

Strict independence is simple to state and inherits all
the familiar properties of stochastic independence

Fails convexity, but this has behavioral meaning.
Nonlinear, but this is unavoidable in the end.
Can be adapted to full conditional measures (but
need extra work).
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Final words on independence III

Strong independence: popular because people want at
once convexity and stochastic independence, no matter
what.

It can be justified in some cases (exchangeability).
But hard to justify in general.
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