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What is risk? What is probability?

Game-theoretic answers.

Glenn Shafer

• For 170 years: objective vs. subjective probability

• Game-theoretic probability (Shafer & Vovk, 2001) asks

more concrete question:

Is there a repetitive structure?



Distinction first made by Simon-Dénis Poisson in 1837:

• objective probability = frequency = stochastic uncertainty =

aleatory probability

• subjective probability = belief = epistemic probability

Our more concrete question:

Is there a repetitive structure for the question and the data?

• If yes, we can make good probability forecasts. No model,

probability assumption, or underlying stochastic reality re-

quired.

• If no, we must weigh evidence. Dempster-Shafer can be

useful here.



Who is Glenn Shafer?

A Mathematical Theory of Evidence (1976) introduced the

Dempster-Shafer theory for weighing evidence when the

repetitive structure is weak.

The Art of Causal Conjecture (1996) is about probability when

repetitive structure is very strong.

Probability and Finance: It’s Only a Game! (2001) provides a

unifying game-theoretic framework.

www.probabilityandfinance.com



I. Game-theoretic probability

New foundation for probability

II. Defensive forecasting

Under repetition, good probability forecasting is possible.

III. Objective vs. subjective probability

The important question is how repetitive your question is.



Part I. Game-theoretic probability

• Mathematics: The law of large numbers is a theorem about

a game (a player has a winning strategy).

• Philosophy: Probabilities are connected to the real world by

the principle that you will not get rich without risking

bankruptcy.



Basic idea of game-theoretic probability

• Classical statistical tests reject if an event 
of small probability happens.

• But an event of small probability is 
equivalent to a strategy for multiplying 
capital you risk.  (Markov’s inequality.)

• So generalize by replacing event of small 
probability will not happen with you will not 
multiply capital you risk by large factor.



Game-Theoretic 
Probability

Wiley 2001

Online at 
www.probabilityandfinance.com:
• 3 chapters
• 34 working papers

Working paper 22:  
Game-theoretic probability and 
its uses, especially defensive 
forecasting

http://www.probabilityandfinance.com/


Three heroes of game-theoretic probability

Blaise Pascal

(1623–1662)

Antoine Augustin

Cournot

(1801–1877)

Jean Ville

(1910–1988)



Blaise Pascal (1623–1662),
as imagined in the 19th
century by Hippolyte
Flandrin.

Pascal: Fair division

Peter and Paul play for $100. Paul is

behind. Paul needs 2 points to win,

and Peter needs only 1.

$?

$0Peter

Peter

Paul

Paul

$0

$100

If the game must be broken off, how

much of the $100 should Paul get?



It is fair for Paul to pay $a in

order to get $2a if he defeats

Peter and $0 if he loses to

Peter.

$0

$a

$2a

So Paul should get $25.

$25

$0Peter

Peter

Paul

Paul

$50

$0

$100

Modern formulation: If the game

on the left is available, the prices

above are forced by the principle

of no arbitrage.



Antoine Cournot (1801–1877)

“A physically impossible event

is one whose probability is

infinitely small. This remark

alone gives substance—an

objective and phenomenological

value—to the mathematical

theory of probability.” (1843)

Agreeing with Cournot:

• Émile Borel

• Maurice Fréchet

• Andrei Kolmogorov

Fréchet dubbed the

principle that an event of

small probability will not

happen Cournot’s principle.



Émile Borel

1871–1956

Inventor of measure
theory.

Minister of the French
navy in 1925.

Borel was emphatic: the principle

that an event with very small proba-

bility will not happen is the only law

of chance.

• Impossibility on the human

scale: p < 10−6.

• Impossibility on the terrestrial

scale: p < 10−15.

• Impossibility on the cosmic

scale: p < 10−50.



Andrei Kolmogorov

1903–1987

Hailed as the Soviet Euler,
Kolmogorov was credited
with establishing measure
theory as the mathematical
foundation for probability.

In his celebrated 1933 book, Kol-

mogorov wrote:

When P(A) very small, we

can be practically certain

that the event A will not hap-

pen on a single trial of the

conditions that define it.



Jean Ville,

1910–1988, on

entering the École

Normale Supérieure.

In 1939, Ville showed that the laws

of probability can be derived from a

game-theoretic principle:

If you never bet more than

you have, you will not get in-

finitely rich.

As Ville showed, this is equivalent

to the principle that events of small

probability will not happen. We call

both principles Cournot’s principle.



Jean André Ville (1910-1989)

#1 on written entrance exam for Ecole Normale Supérieure in 1929.

Born 1910

Hometown:   Mosset, in Pyrenees

Mother’s family:  priests, schoolteachers 

Father’s family:  farmers

Father worked for PTT.



Ville’s family went back 8 generations in Mosset, 
to the shepherd Miguel Vila.





The basic protocol for game-theoretic probability

K0 = 1.

FOR n = 1,2, . . . , N :

Reality announces xn.

Forecaster announces a price fn for a ticket that pays yn.

Skeptic decides how many tickets to buy.

Reality announces yn.

Kn := Kn−1 + Skeptic’s net gain or loss.

Goal for Skeptic: Make KN very large without risking Kn ever

negative.

Ville showed that every statistical test of Forecaster’s prices

can be expressed as a strategy for Skeptic.



Example of a game-theoretic probability theorem.
K0 := 1.

FOR n = 1,2, . . . :

Forecaster announces pn ∈ [0,1].

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn(yn − pn).

Skeptic wins if

(1) Kn is never negative and

(2) either limn→∞ 1
n

∑n
i=1 (yi − pi) = 0

or limn→∞Kn = ∞.

Theorem Skeptic has a winning strategy.



Ville’s strong law of large numbers.

(Special case where probability is always 1/2.)

K0 = 1.

FOR n = 1,2, . . . :

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn(yn − 1

2).

Skeptic wins if

(1) Kn is never negative and

(2) either limn→∞ 1
n

∑n
i=1 yi = 1

2 or limn→∞Kn = ∞.

Theorem Skeptic has a winning strategy.



Who wins? Skeptic wins if (1) Kn is never negative and (2)

either

lim
n→∞

1

n

n∑

i=1

yi =
1

2
or lim

n→∞Kn = ∞.

So the theorem says that Skeptic has a strategy that (1) does

not risk bankruptcy and (2) guarantees that either the average

of the yi converges to 0 or else Skeptic becomes infinitely rich.

Loosely: The average of the yi converges to 0 unless Skeptic

becomes infinitely rich.



Ville’s strategy

K0 = 1.
FOR n = 1,2, . . . :

Skeptic announces sn ∈ R.
Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn(yn − 1

2
).

Ville suggested the strategy

sn(y1, . . . , yn−1) =
4

n + 1
Kn−1

(
rn−1 − n− 1

2

)
, where rn−1 :=

n−1∑

i=1

yi.

It produces the capital

Kn = 2nrn!(n− rn)!

(n + 1)!
.

From the assumption that this remains bounded by some constant C, you
can easily derive the strong law of large numbers using Stirling’s formula.



The weak law of large numbers (Bernoulli)

K0 := 1.

FOR n = 1, . . . , N :

Skeptic announces Mn ∈ R.

Reality announces yn ∈ {−1,1}.
Kn := Kn−1 + Mnyn.

Winning: Skeptic wins if Kn is never negative and either

KN ≥ C or |∑N
n=1 yn/N | < ε.

Theorem. Skeptic has a winning strategy if N ≥ C/ε2.



Definition of upper price and upper probability

K0 := α.
FOR n = 1, . . . , N :

Forecaster announces pn ∈ [0,1].
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn (yn − pn).

For any real-valued function X on ([0,1]× {0,1})N ,

EX := inf{α | Skeptic has a strategy guaranteeing KN ≥ X(p1, y1, . . . , pN , yN)}

For any subset A ⊆ ([0,1]× {0,1})N ,

PA := inf{α | Skeptic has a strategy guaranteeing KN ≥ 1 if A happens
and KN ≥ 0 otherwise}.

EX = −E(−X) PA = 1− PA



Put it in terms of upper probability

K0 := 1.

FOR n = 1, . . . , N :

Forecaster announces pn ∈ [0,1].

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Kn := Kn−1 + sn (yn − pn).

Theorem. P
{

1
N |

∑N
n=1(yn − pn)| ≥ ε

}
≤ 1

4Nε2
.



Part II. Defensive forecasting

Under repetition, good probability forecasting is possible.

• We call it defensive because it defends against a

quasi-universal test.

• Your probability forecasts will pass this test even if reality

plays against you.



Why Phil Dawid thought good probability prediction is impossible. . .

FOR n = 1,2, . . .
Forecaster announces pn ∈ [0,1].
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0,1}.
Skeptic’s profit := sn(yn − pn).

Reality can make Forecaster uncalibrated by setting

yn :=

{
1 if pn < 0.5

0 if pn ≥ 0.5,

Skeptic can then make steady money with

sn :=

{
1 if p < 0.5

−1 if p ≥ 0.5,

But if Skeptic is forced to approximate sn by a continuous function of pn,
then the continuous function will be zero close to p = 0.5, and Forecaster
can set pn equal to this point.



Part II. Defensive Forecasting

1. Thesis. Good probability forecasting is possible.

2. Theorem. Forecaster can beat any test.

3. Research agenda. Use proof to translate tests of Forecaster

into forecasting strategies.

4. Example. Forecasting using LLN (law of large numbers).



We can always give probabilities with good calibration and

resolution.

PERFECT INFORMATION PROTOCOL

FOR n = 1,2, . . .

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.

There exists a strategy for Forecaster that gives pn with good

calibration and resolution.



FOR n = 1,2, . . .
Reality announces xn ∈ X.
Skeptic announces continuous Sn : [0,1] → R.
Forecaster announces pn ∈ [0,1].
Reality announces yn ∈ {0,1}.
Skeptic’s profit := Sn(pn)(yn − pn).

Theorem Forecaster can guarantee that Skeptic never makes money.

Proof:

• If Sn(p) > 0 for all p, take pn := 1.

• If Sn(p) < 0 for all p, take pn := 0.

• Otherwise, choose pn so that Sn(pn) = 0.
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Skeptic adopts a continuous strategy S.
FOR n = 1,2, . . .

Reality announces xn ∈ X.
Forecaster announces pn ∈ [0,1].
Skeptic makes the move sn specified by S.
Reality announces yn ∈ {0,1}.
Skeptic’s profit := sn(yn − pn).

Theorem Forecaster can guarantee that Skeptic never makes money.

We actually prove a stronger theorem. Instead of making Skeptic announce
his entire strategy in advance, only make him reveal his strategy for each
round in advance of Forecaster’s move.

FOR n = 1,2, . . .
Reality announces xn ∈ X.
Skeptic announces continuous Sn : [0,1] → R.
Forecaster announces pn ∈ [0,1].
Reality announces yn ∈ {0,1}.
Skeptic’s profit := Sn(pn)(yn − pn).

Theorem. Forecaster can guarantee that Skeptic never makes money.
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FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.

1. Fix p∗ ∈ [0,1]. Look at n for which pn ≈ p∗. If the frequency

of yn = 1 always approximates p∗, Forecaster is properly

calibrated.

2. Fix x∗ ∈ X and p∗ ∈ [0,1]. Look at n for which xn ≈ x∗ and

pn ≈ p∗. If the frequency of yn = 1 always approximates p∗,
Forecaster is properly calibrated and has good resolution.



FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.
Forecaster can give ps with good calibration and resolution no

matter what Reality does.

Philosophical implications:

• To a good approximation, everything is stochastic.

• Getting the probabilities right means describing the past
well, not having insight into the future.



THEOREM. Forecaster can beat any test.
FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Reality announces yn ∈ {0,1}.

• Theorem. Given a test, Forecaster has a strategy

guaranteed to pass it.

• Thesis. There is a test of Forecaster universal enough that

passing it implies the ps have good calibration and

resolution. (Not a theorem, because “good calibration and

resolution” is fuzzy.)



TWO APPROACHES TO FORECASTING

FOR n = 1,2, . . .
Forecaster announces pn ∈ [0,1].
Skeptic announces sn ∈ R.
Reality announces yn ∈ {0,1}.

1. Start with strategies for Forecaster. Improve by averaging (Bayes,
prediction with expert advice).

2. Start with strategies for Skeptic. Improve by averaging (defensive
forecasting).



The probabilities are tested by another player, Skeptic.

FOR n = 1,2, . . .

Reality announces xn ∈ X.

Forecaster announces pn ∈ [0,1].

Skeptic announces sn ∈ R.

Reality announces yn ∈ {0,1}.
Skeptic’s profit := sn(yn − pn).

A test of Forecaster is a strategy for Skeptic that is continuous
in the ps. If Skeptic does not make too much money, the
ps pass the test.

Theorem If Skeptic plays a known continuous strategy,
Forecaster has a strategy guaranteeing that Skeptic never
makes money.



Example: Average strategies for Skeptic for a grid of values of

p∗. (The p∗-strategy makes money if calibration fails for pn

close to p∗.) The derived strategy for Forecaster guarantees

good calibration everywhere.

Example of a resulting strategy for Skeptic:

Sn(p) :=
n−1∑

i=1

e−C(p−pi)
2
(yi − pi)

Any kernel K(p, pi) can be used in place of e−C(p−pi)
2
.



Skeptic’s strategy:

Sn(p) :=
n−1∑

i=1

e−C(p−pi)
2
(yi − pi)

Forecaster’s strategy: Choose pn so that

n−1∑

i=1

e−C(pn−pi)
2
(yi − pi) = 0.

The main contribution to the sum comes from i for which pi is

close to pn. So Forecaster chooses pn in the region where the

yi − pi average close to zero.

On each round, choose as pn the probability value where

calibration is the best so far.



Skeptic’s strategy:

Sn(p) :=
n−1∑

i=1

K((p, xn)(pi, xi))(yi − pi).

Forecaster’s strategy: Choose pn so that

n−1∑

i=1

K((pn, xn)(pi, xi))(yi − pi) = 0.

The main contribution to the sum comes from i for which

(pi, xi) is close to (pn, xn). So we need to choose pn to make

(pn, xn) close (pi, xi) for which yi − pi average close to zero.

Choose pn to make (pn, xn) look like (pi, xi) for which we

already have good calibration/resolution.



Example 4: Average over a grid of values of p∗ and x∗. (The
(p∗, x∗)-strategy makes money if calibration fails for n where
(pn, xn) is close to (p∗, x∗).) Then you get good calibration and
good resolution.

• Define a metric for [0,1]×X by specifying an inner product space H
and a mapping

Φ : [0,1]×X → H

continuous in its first argument.

• Define a kernel K : ([0,1]×X)2 → R by

K((p, x)(p′, x′)) := Φ(p, x) ·Φ(p′, x′).

The strategy for Skeptic:

Sn(p) :=
n−1∑

i=1

K((p, xn)(pi, xi))(yi − pi).



Part III. Aleatory (objective) vs. epistemic (subjective)

From a 1970s perspective:

• Aleatory probability is the irreducible uncertainty that remains when
knowledge is complete.

• Epistemic probability arises when knowledge is incomplete.

New game-theoretic perspective:

• Under a repetitive structure you can make make good probability
forecasts relative to whatever state of knowledge you have.

• If there is no repetitive structure, your task is to combine evidence
rather than to make probability forecasts.



Three betting interpretations:

• De Moivre: P (E) is the value of a ticket that pays 1 if E

happens. (No explanation of what “value” means.)

• De Finetti: P (E) is a price at which YOU would buy or sell

a ticket that pays 1 if E happens.

• Shafer: The price P (E) cannot be beat—i.e., a strategy for

buying and selling such tickets at such prices will not

multiply the capital it risks by a large factor.



De Moivre’s argument for P (A&B) = P (A)P (B|A)

Abraham de Moivre

1667–1754

Gambles available:

• pay P (A) for 1 if A happens,

• pay P (A)x for x if A happens, and

• after A happens, pay P (B|A) for 1 if B
happens.

To get 1 if A&B if happens, pay

• P (A)P (B|A) for P (B|A) if A happens,

• then if A happens, pay the P (B|A) you
just got for 1 if B happens.



De Finetti’s argument for

P (A&B) = P (A)P (B|A)

Suppose you are required to

announce. . .

• prices P (A) and P (A&B) at which

you will buy or sell $1 tickets on

these events.

• a price P (B|A) at which you will buy

or sell $1 tickets on B if A happens.

Opponent can make money for sure if

you announce P (A&B) different from

P (A)P (B|A).

Bruno de Finetti

(1906–1985)



Cournotian argument for P (B|A) = P (A&B)/P (A)

Claim: Suppose P (A) and P (A&B) cannot be beat. Suppose

we learn A happens and nothing more. Then we can include

P (A&B)/P (A) as a new probability for B among the

probabilities that cannot be beat.

Structure of proof:

• Consider a bankruptcy-free strategy S against probabilities

P (A) and P (A&B) and P (A&B)/P (A). We want to show

that S does not get rich.

• Do this by constructing a strategy S ′ against P (A) and

P (A&B) alone that does the same thing as S.



Given: Bankruptcy-free strategy S that deals in A-tickets and

A&B-tickets in the initial situation and B-tickets in the

situation where A has just happened.

Construct: Strategy S ′ that agrees with S except that it does

not buy the B-tickets but instead initially buys additional A-

and A&B-tickets.

B

A Anot A

not B

S

B

not A

not B

S¢



B

A Anot A

not B

S

B

not A

not B

S¢

1. A’s happening is the only new information used by S. So S ′ uses only
the initial information.

2. Because the additional initial tickets have net cost zero, S ′ and S have
the same cash on hand in the initial situation.

3. In the situation where A happens, they again produce the same cash
position, because the additional A-tickets require S ′ to pay M P (A&B)

P (A)
,

which is the cost of the B tickets that S buys.
4. They have the same payoffs if not A happens (0), if A&(not B) happens

(0), or if A&B happens (M).
5. By hypothesis, S is bankruptcy-free. So S ′ is also bankruptcy-free.
6. Therefore S ′ does not get rich. So S does not get rich either.



Crucial assumption for conditioning on A: You learn A and

nothing more that can help you beat the probabilities.

In practice, you always learn more than A.

• But you judge that the other things don’t matter.

• Probability judgement is always in a small world. We judge

knowledge outside the small world irrelevant.



Cournotian understanding of Dempster-Shafer

• Fundamental idea: transferring belief

• Conditioning

• Independence

• Dempster’s rule



Fundamental idea: transferring belief

• Variable ω with set of possible values Ω.

• Random variable X with set of possible values X .

• We learn a mapping Γ : X → 2Ω with this meaning:

If X = x, then ω ∈ Γ(x).

• For A ⊆ Ω, our belief that ω ∈ A is now

B(A) = P{x|Γ(x) ⊆ A}.

Cournotian judgement of independence: Learning the relationship between
X and ω does not affect our inability to beat the probabilities for X.



Example: The sometimes reliable witness

• Joe is reliable with probability 30%. When he is reliable, what he says is
true. Otherwise, it may or may not be true.

X = {reliable,not reliable} P(reliable) = 0.3 P(not reliable) = 0.7

• Did Glenn pay his dues for coffee? Ω = {paid,not paid}

• Joe says “Glenn paid.”

Γ(reliable) = {paid} Γ(not reliable) = {paid,not paid}

• New beliefs:

B(paid) = 0.3 B(not paid) = 0

Cournotian judgement of independence: Hearing what Joe said does not
affect our inability to beat the probabilities concerning his reliability.



Example: The more or less precise witness

• Bill is absolutely precise with probability 70%, approximate with
probability 20%, and unreliable with probability 10%.

X = {precise,approximate,not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

• What did Glenn pay? Ω = {0,$1,$5}

• Bill says “Glenn paid $ 5.”

Γ(precise) = {$5} Γ(approximate) = {$1,$5} Γ(not reliable) = {0,$1,$5}

• New beliefs:

B{0} = 0 B{$1} = 0 B{$5} = 0.7 B{$1,$5} = 0.9

Cournotian judgement of independence: Hearing what Bill said does not
affect our inability to beat the probabilities concerning his precision.



Conditioning

• Variable ω with set of possible values Ω.

• Random variable X with set of possible values X .

• We learn a mapping Γ : X → 2Ω with this meaning:

If X = x, then ω ∈ Γ(x).

•
Γ(x) = ∅ for some x ∈ X .

• For A ⊆ Ω, our belief that ω ∈ A is now

B(A) =
P{x|Γ(x) ⊆ A & Γ(x) 6= ∅}

P{x|Γ(x) 6= ∅} .

Cournotian judgement of independence: Aside from the impossibility of the
x for which Γ(x) = ∅, learning Γ does not affect our inability to beat the
probabilities for X.



Example: The witness caught out

• Tom is absolutely precise with probability 70%, approximate with
probability 20%, and unreliable with probability 10%.

X = {precise,approximate,not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

• What did Glenn pay? Ω = {0,$1,$5}

• Tom says “Glenn paid $ 10.”

Γ(precise) = ∅ Γ(approximate) = {$5} Γ(not reliable) = {0,$1,$5}

• New beliefs:

B{0} = 0 B{$1} = 0 B{$5} = 2/3 B{$1,$5} = 2/3

Cournotian judgement of independence: Aside ruling out his being
absolutely precise, what Tom said does not help us beat the probabilities for
his precision.
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Independence

XBill = {Bill precise,Bill approximate,Bill not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

XTom = {Tom precise,Tom approximate,Tom not reliable}
P(precise) = 0.7 P(approximate) = 0.2 P(not reliable) = 0.1

Product measure:

XBill & Tom = XBill ×XTom

P(Bill precise,Tom precise) = 0.7× 0.7 = 0.49

P(Bill precise,Tom approximate) = 0.7× 0.2 = 0.14

etc.

Cournotian judgements of independence: Learning about the precision of
one of the witnesses will not help us beat the probabilities for the other.

Nothing novel here. Dempsterian independence = Cournotian independence.



Example: Independent contradictory witnesses

• Joe and Bill are both reliable with probability 70%.

• Did Glenn pay his dues? Ω = {paid,not paid}

• Joe says, “Glenn paid.” Bill says, “Glenn did not pay.”

Γ1(Joe reliable) = {paid} Γ1(Joe not reliable) = {paid,not paid}
Γ2(Bill reliable) = {not paid} Γ2(Bill not reliable) = {paid,not paid}

• The pair (Joe reliable,Bill reliable), which had probability 0.49, is ruled
out.

B(paid) =
0.21

0.51
= 0.41 B(not paid) =

0.21

0.51
= 0.41

Cournotian judgement of independence: Aside from learning that they are
not both reliable, what Joe and Bill said does not help us beat the
probabilities concerning their reliability.



Dempster’s rule (independence + conditioning)

• Variable ω with set of possible values Ω.

• Random variables X1 and X2 with sets of possible values X1 and X2.

• Form the product measure on X1 ×X2.

• We learn mappings Γ1 : X1 → 2Ω and Γ2 : X2 → 2Ω:

If X1 = x1, then ω ∈ Γ1(x1). If X2 = x2, then ω ∈ Γ2(x2).

• So if (X1,X2) = (x1, x2), then ω ∈ Γ1(x1) ∩ Γ2(x2).

• Conditioning on what is not ruled out,

B(A) =
P{(x1, x2)|∅ 6= Γ1(x1) ∩ Γ2(x2) ⊆ A}
P{(x1, x2)|∅ 6= Γ1(x1) ∩ Γ2(x2)}

Cournotian judgement of independence: Aside from ruling out some (x1, x2),
learning the Γi does not help us beat the probabilities for X1 and X2.



You can suppress the Γs and describe Dempster’s rule in terms

of the belief functions

Joe: B1{paid} = 0.7 B1{not paid} = 0

Bill: B2{not paid} = 0.7 B2{paid} = 0

0.7

not paid

0.3

??

0.3     ??

0.7  paid

Bill

Joe

Paid

Not paid

B(paid) =
0.21

0.51
= 0.41

B(not paid) =
0.21

0.51
= 0.41



Dempster’s rule is unnecessary. It is merely a composition of

Cournot operations: formation of product measures,

conditioning, transferring belief.

But Dempster’s rule is a unifying idea. Each Cournot operation
is an example of Dempster combination.

• Forming product measure is Dempster combination.

• Conditioning on A is Demspter combination with a belief function that
gives belief one to A.

• Transferring belief is Dempster combination of (1) a belief function on
X ×Ω that gives probabilities to cylinder sets {x} ×Ω with (2) a belief
function that gives probability one to {(x, ω)|ω ∈ Γ(x)}.



Parametric models are not the starting point!

• Mathematical statistics departs from probability by standing

outside the protocol.

• Classical example: the error model

• Parametric modeling

• Dempster-Shafer modeling



References

• Probability and Finance: It’s Only a Game! Glenn Shafer and Vladimir
Vovk, Wiley, 2001.

• www.probabilityandfinance.com: Chapters from book, reviews, many
working papers.

• www.glennshafer.com: Most of my published articles.

• Statistical Science, 21 70–98, 2006: The sources of Kolmogorov’s
Grundebegriffe.

• Journal of the Royal Statistical Society, Series B 67 747–764, 2005:
Good randomized sequential probability forecasting is always possible.



Art Dempster (born 1929) with his Meng & Shafer hatbox.

Retirement dinner at Harvard, May 2005.

See http://www.stat.purdue.edu/ chuanhai/projects/DS/ for Art’s D-S papers.
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• Born 1960.

• Student of Kolmogorov.
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Wiki for On-Line Prediction 
http://onlineprediction.net

Main topics
1. Competitive online prediction
2. Conformal prediction
3. Game-theoretic probability
4. Prequential statistics
5. Stochastic prediction

http://onlineprediction.net/
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