Bayesian robustness

Fabrizio Ruggeri

Istituto di Matematica Applicata e Tecnologie Informatiche Consiglio Nazionale delle Ricerche *Via Bassini 15, I-20133, Milano, Italy*

fabrizio@mi.imati.cnr.it

www.mi.imati.cnr.it/~fabrizio/

BASICS ON BAYESIAN STATISTICS

- X r.v. with density $f(x|\theta)$
- Prior $\pi(\theta)$
- Sample $\underline{X} = (X_1, \dots, X_n)$
- Bayes theorem \Rightarrow posterior $\pi(\theta|X)$
- Loss function $L(\theta, a)$, e.g. $(\theta a)^2$
- Minimize $\mathcal{E}^{\pi(\theta|\underline{X})}L(\theta,a) \Rightarrow$ Bayes estimator, e.g. posterior mean for $(\theta-a)^2$

Is life so easy?

EXERCISE 1

• Car tyres failures

• X_1, \ldots, X_n lifetimes

How to perform a Bayesian analysis?

EXERCISE 1

Bayesian analysis - what to choose?

- Model $f(x|\theta)$
- Prior $\pi(\theta)$
- Estimator $\hat{\theta}$

Before the analysis - Model chosen according to

physical laws

• mathematical convenience

exploratory data analysis

• . . .

After the analysis - Model chosen according to

- graphical displays (e.g. residuals in regression)
- goodness of fit tests (e.g. χ^2 , Kolmogorov-Smirnov) (not very Bayesian!)
- Bayes factor to compare $\mathcal{M}_1 = \{f_1(x|\theta_1), \pi(\theta_1)\}\$ and $\mathcal{M}_2 = \{f_2(x|\theta_2), \pi(\theta_2)\}\$

$$\Rightarrow BF = \frac{\int f_1(x|\theta_1)\pi(\theta_1)d\theta_1}{\int f_2(x|\theta_2)\pi(\theta_2)d\theta_2}$$

Posterior odds

$$\Rightarrow \frac{P(\mathcal{M}_1|data)}{P(\mathcal{M}_2|data)} = \frac{P(data|\mathcal{M}_1)}{P(data|\mathcal{M}_2)} \cdot \frac{P(\mathcal{M}_1)}{P(\mathcal{M}_2)} = BF \cdot \frac{P(\mathcal{M}_1)}{P(\mathcal{M}_2)}$$

• AIC, BIC, DIC et al.

Replacement policy

- New tyre replaced after each failure
 - Good as new
 - $-X_1,\ldots,X_n$ i.i.d.
 - Renewal process
- Old tyre fixed after each failure
 - Bad as old
 - $-X_1,\ldots,X_n$ from nonhomogeneous Poisson process

Renewal process - model choice

- $X_i \sim \mathcal{E}(\lambda) \Rightarrow f(x|\lambda) = \lambda \exp\{-\lambda x\}$
- $X_i \sim \mathcal{G}(\alpha, \beta) \Rightarrow f(x|\alpha, \beta) = \beta^{\alpha} x^{\alpha-1} \exp\{-\beta x\} / \Gamma(\alpha)$
- $X_i \sim \mathcal{LN}(\mu, \sigma^2) \Rightarrow f(x|\mu, \sigma^2) = \{x\sigma\sqrt{2\Pi}\}^{-1} \exp\{-(\log x \mu)^2/(2\sigma^2)\}$
- $X_i \sim \mathcal{GEV}(\mu, \sigma, \lambda) \Rightarrow f(x) = \frac{1}{\sigma} \left[1 + \lambda \left(\frac{x \mu}{\sigma} \right) \right]_+^{-1/\lambda 1} \exp \left\{ \left[1 + \lambda \left(\frac{x \mu}{\sigma} \right) \right]_+^{-1/\lambda} \right\}$

• . . .

Poisson process - model choice

• $N_t, t \ge 0$ # events by time t

• N(y,s) # events in (y,s]

• $\Lambda(t) = \mathcal{E}N_t$ mean value function

• $\Lambda(y,s) = \Lambda(s) - \Lambda(y)$ expected # events in (y,s]

Poisson process - model choice

 $N_t, t \geq 0$, NHPP with intensity function $\lambda(t)$ iff

- 1. $N_0 = 0$
- 2. independent increments
- 3. $\mathcal{P}\{\# \text{ events in } (t, t+h) \ge 2\} = o(h)$
- 4. $\mathcal{P}\{\# \text{ events in } (t, t+h) = 1\} = \lambda(t)h + o(h)$

$$\Rightarrow \mathcal{P}\{N(y,s) = k\} = \frac{\Lambda(y,s)^k}{k!} e^{-\Lambda(y,s)}, \forall k \in \mathcal{N}$$

Poisson process - model choice

$$\lambda(t) \equiv \lambda \ \forall t \Rightarrow \mathsf{HPP}$$

- $\lambda(t)$: intensity function of N_t
- $\lambda(t) := \lim_{\Delta \to 0} \frac{\mathcal{P}\{N(t, t + \Delta] \ge 1\}}{\Delta}, \ \forall t \ge 0$
- $\mu(t) := \frac{d\Lambda(t)}{dt}$: Rocof (rate of occurrence of failures)

Property 3.
$$\Rightarrow \mu(t) = \lambda(t)$$
 a.e. $\Rightarrow \Lambda(y,s) = \int_y^s \lambda(t)dt$

How to choose NHPP?

- Musa-Okumoto $\lambda(t; \alpha, \beta) = \alpha/(t + \beta)$ and $\Lambda(t; \alpha, \beta) = \alpha \log(t + \beta)$
- Cox-Lewis $\lambda(t; \alpha, \beta) = \alpha \exp{\{\beta t\}}$ and $\Lambda(t; \alpha, \beta) = (\alpha/\beta) [\exp{\{\beta t\}} 1]$
- Power law $\lambda(t; \alpha, \beta) = \alpha \beta t^{\beta-1}$ and $\Lambda(t; \alpha, \beta) = \alpha t^{\beta}$

• . . .

How to choose NHPP?

- $\lim_{t\to\infty} \Lambda(t)$
- $\lim_{t\to 0} \lambda(t)$
- Bounded $\lambda(t)$
- Monotonicity
- Maximum of $\lambda(t)$

• X_1, \ldots, X_n i.i.d. $\mathcal{E}(\lambda)$

→ renewal process and HPP

Which prior on λ ?

Where to start from?

- $X \sim \mathcal{E}(\lambda)$
- $f(x|\lambda) = \lambda \exp\{-\lambda x\}$
- $P(X \le x) = F(x) = 1 S(x) = \exp\{-\lambda x\}$
- \Rightarrow *Physical* properties of λ
 - $\mathbf{E}X = 1/\lambda$
 - $VarX = 1/\lambda^2$
 - $h(x) = \frac{f(x)}{S(x)} = \frac{\lambda \exp\{-\lambda x\}}{\exp\{-\lambda x\}} = \lambda$ (hazard function)

Possible available information

- Exact prior $\pi(\lambda)$ (???)
- Quantiles of X_i , i.e. $P(X_i \le x_q) = q$
- Quantiles of λ , i.e. $P(\lambda \leq \lambda_q) = q$
- Moments of λ , i.e. $\mathbf{E}\lambda^k$
- Generalised moments of λ , i.e. $\int h(\lambda)\pi(\lambda)d\lambda = 0$
- Most likely value and upper and lower bounds
- ...
- None of them

How to get information?

- Results from previous experiments (e.g. 75% of car tyres had failed after 5 years of operation \Rightarrow 5 years is the 75% quantile of X_i)
- Split of possible values of λ or X_i into equally likely intervals \Rightarrow quantiles
- Most likely value and upper and lower bounds
- Expected value of λ and confidence on such value (mean and variance)

• ...

How to combine information?

Combining opinions of n experts

- Individual analyses and comparison a posteriori
- Opinions as sample from the parameter distribution
 - ⇒ sample mean and sample variance
 - Statements on quantiles $G_q \leftrightarrow \theta$
 - Statements on value of θ

How to use information?

- choose a prior $\pi(\lambda|\omega)$ of given functional form and use information to fit ω
- choose a prior $\pi(\lambda|\omega)$ of given functional form and use data to fit ω , i.e. look for $\hat{\omega} = \arg\max\int f(data|\lambda)\pi(\lambda|\omega)d\lambda$ (empirical Bayes)
- use information to choose parameters of a random distribution on the space of probability measures
 (Bayesian nonparametrics)
- use Jeffreys'/reference/improper priors (objective Bayes)
- use a class of priors
 (Bayesian robustness)

Choice of a prior

- $\lambda \sim \mathcal{G}(\alpha, \beta) \Rightarrow f(\lambda | \alpha, \beta) = \beta^{\alpha} \lambda^{\alpha 1} \exp\{-\beta \lambda\} / \Gamma(\alpha)$
- $\lambda \sim \mathcal{LN}(\mu, \sigma^2) \Rightarrow f(\lambda | \mu, \sigma^2) = \{\lambda \sigma \sqrt{2\Pi}\}^{-1} \exp\{-(\log \lambda \mu)^2/(2\sigma^2)\}$
- $\lambda \sim \mathcal{GEV}(\mu, \sigma, \theta) \Rightarrow f(\lambda) = \frac{1}{\sigma} \left[1 + \theta \left(\frac{\lambda \mu}{\sigma} \right) \right]_{+}^{-1/\theta 1} \exp \left\{ \left[1 + \theta \left(\frac{\lambda \mu}{\sigma} \right) \right]_{+}^{-1/\theta} \right\}$
- $\lambda \sim \mathcal{T}(l, m, u)$ (triangular)
- $\lambda \sim \mathcal{U}(l, u)$
- $\lambda \sim \mathcal{W}(\mu, \alpha, \beta) \Rightarrow f(\lambda) = \frac{\beta}{\alpha} \left(\frac{\lambda \mu}{\alpha}\right)^{\beta 1} \exp\left\{-\left(\frac{\lambda \mu}{\alpha}\right)^{\beta}\right\}$
- . . .

Choice of a prior

- Defined on suitable set (interval vs. positive real)
- Suitable functional form (monotone/unimodal, heavy/light tails, etc.)
- Mathematical convenience
- Tradition (e.g. lognormal for engineers)

Gamma prior - choice of hyperparameters

•
$$X_1,\ldots,X_n \sim \mathcal{E}(\lambda)$$

•
$$f(X_1, ..., X_n | \lambda) = \lambda^n \exp\{-\lambda \sum X_i\}$$

•
$$\lambda \sim \mathcal{G}(\alpha, \beta) \Rightarrow f(\lambda | \alpha, \beta) = \beta^{\alpha} \lambda^{\alpha - 1} \exp\{-\beta \lambda\} / \Gamma(\alpha)$$

•
$$\Rightarrow \lambda | X_1, \dots, X_n \sim \mathcal{G}(\alpha + n, \beta + \sum X_i)$$

Gamma prior - choice of hyperparameters

•
$$\mathcal{E}\lambda = \mu = \alpha/\beta$$
 and $Var\lambda = \sigma^2 = \alpha/\beta^2$
 $\Rightarrow \alpha = \mu^2/\sigma^2$ and $\beta = \mu/\sigma^2$

- Two quantiles \Rightarrow (α, β) using, say, Wilson-Hilferty approximation. Third quantile specified to check consistency
- Hypothetical experiment: posterior $\mathcal{G}(\alpha + n, \beta + \sum X_i)$ $\Rightarrow \alpha$ sample size and β sample sum

EXERCISE 1 - PARAMETER ESTIMATION

How to estimate λ ?

• MAP (Maximum a posteriori)

$$\Rightarrow \hat{\lambda} = \frac{\alpha + n - 1}{\beta + \sum X_i}$$

- ▶ LPM (Largest posterior mode)
 ⇒ here it coincides with MAP (unique posterior mode)
- Minimum expected loss $\mathcal{E}L(\lambda,a)$

$$-L(\lambda, a) = (\lambda - a)^{2}$$

$$\Rightarrow \mathcal{E}\lambda | data = \frac{\alpha + n}{\beta + \sum X_{i}} \text{ (posterior mean)}$$

- $-L(\lambda, a) = |\lambda a|$ \$\Rightarrow\$ (posterior median)
- other $L(\lambda, a)$

EXERCISE 1 - CONCLUSIONS

(Bayesian) inference is often the result of many approximations and arbitrary assumptions

- Awareness of it
- Development of *safer* procedures
- → Bayesian robustness is one of them

EXERCISE 1 - CONCLUSIONS

Prior influence

- Posterior mean: $\mu^* = \frac{\alpha + n}{\beta + \sum X_i}$
- Prior mean: $\mu = \frac{\alpha}{\beta}$ (and variance $\sigma^2 = \frac{\alpha}{\beta^2}$)
- MLE: $\frac{n}{\sum X_i}$
- $\alpha_1 = k\alpha$ and $\beta_1 = k\beta \Rightarrow \mu_1 = \mu$ and $\sigma_1^2 = \sigma^2/k$
- $k \rightarrow 0 \Rightarrow \mu^* \rightarrow \mathsf{MLE}$
- $k \to \infty \Rightarrow \mu^* \to \mu$

EXERCISE 1 - CONCLUSIONS

Influence of prior choice (Berger, 1985)

- $X \sim \mathcal{N}(\theta, 1)$
- ullet Expert's opinion on prior P: median at 0, quartiles at ± 1 , symmetric and unimodal
- \Rightarrow Possible priors include $\mathcal{C}(0,1)$ or $\mathcal{N}(0,2.19)$
- Posterior mean

\overline{x}	0	1	2	4.5	10
$\mu^{C}(x)$	0	0.52	1.27	4.09	9.80
$\mu^N(x)$	0	0.69	1.37	3.09	6.87

Posterior median w.r.t. posterior mean

CONCERNS ON BAYES

Motivations for Bayesian robustness

- Arbitrariness in the choice of $\pi(\theta)$ et al.
 - ⇒ inferences and decisions heavily affected
- Expert unable to provide, in a reasonable time, an exact prior reflecting his/her beliefs ⇒ huge amount of information (e.g. choice of the functional form of the prior) added by analyst, although not corresponding to actual knowledge

NEED FOR BAYESIAN ROBUSTNESS

partially specified priors

• conflicting loss functions

 opinions (priors and/or losses) expressed by a group of people instead of one person

• . . .

BAYESIAN ROBUSTNESS

Mathematical tools and philosophical approach

- to model uncertainty through classes of priors/models/losses
- to measure uncertainty and its effect
- to avoid arbitrary assumptions
- to favour acceptance of Bayesian approach

BAYESIAN ROBUSTNESS

- An helpful tool to convince agencies (e.g. FDA) to accept Bayesian methods? An old, but still unsolved, problem ...
- Bayesian robustness applied to efficacy of drug: is the drug efficient for all the priors in a class?
- Backward Bayesian robustness: what are the priors leading to state the efficacy of the drug (or its inefficacy)?

BAYESIAN ROBUSTNESS

A more formal statement about model and prior sensitivity

- $M = \{Q_{\theta}; \theta \in \Theta\}$, Q_{θ} probability on $(\mathcal{X}, \mathcal{F}_{\mathcal{X}})$
- Sample $\underline{x} = (x_1, \dots, x_n) \Rightarrow \text{likelihood } l_x(\theta) \equiv l_x(\theta|x_1, \dots, x_n)$
- Prior P su $(\Theta, \mathcal{F}) \Rightarrow$ posterior P^*
- Uncertainty about M and/or $P \Rightarrow$ changes in

$$- E_{P^*}[h(\theta)] = \frac{\int_{\Theta} h(\theta)l(\theta)P(d\theta)}{\int_{\Theta} l(\theta)P(d\theta)}$$
$$- P^*$$

Bayesian robustness studies these changes

ROBUST BAYESIAN ANALYSIS

We concentrate mostly on sensitivity to changes in the prior

- Choice of a class Γ of priors
- Computation of a robustness measure, e.g. range $\delta = \overline{\rho} \underline{\rho}$ $(\overline{\rho} = \sup_{P \in \Gamma} E_{P^*}[h(\theta)])$ and $\underline{\rho} = \inf_{P \in \Gamma} E_{P^*}[h(\theta)])$
 - $-\delta$ "small" \Rightarrow robustness
 - δ "large", $\Gamma_1 \subset \Gamma$ and/or new data
 - δ "large", Γ and same data

ROBUST BAYESIAN ANALYSIS

Relaxing the unique prior assumption (Berger and O'Hagan, 1988)

- $X \sim \mathcal{N}(\theta, 1)$
- Prior $\theta \sim \mathcal{N}(0,2)$
- Data $x = 1.5 \Rightarrow \text{posterior } \theta | x \sim \mathcal{N}(1, 2/3)$
- ullet Split \Re in intervals with same probability p_i as prior $\mathcal{N}(0,2)$

ROBUST BAYESIAN ANALYSIS

Refining the class of priors (Berger and O'Hagan, 1988)

$\overline{I_i}$	p_i	p_i^*	Γ_Q	$\overline{\Gamma_{QU}}$
$\overline{(-\infty,-2)}$	0.08	.0001	(0,0.001)	(0,0.0002)
(-2,-1)	0.16	.007	(0.001, 0.029)	(0.006, 0.011)
(-1,0)	0.26	.103	(0.024, 0.272)	(0.095, 0.166)
(0,1)	0.26	.390	(0.208, 0.600)	(0.322, 0.447)
(1,2)	0.16	.390	(0.265, 0.625)	(0.353, 0.473)
$(2,+\infty,)$	0.08	.110	(0,0.229)	(0,0.156)

- ullet Γ_Q quantile class and Γ_{QU} unimodal quantile class
- Robustness in Γ_{QU}
- Huge reduction of δ from Γ_Q to Γ_{QU}

EXERCISE 2 - CLASSES OF PRIORS

Specify desirable features of classes of priors

- Easy elicitation and interpretation (e.g. moments, quantiles, symmetry, unimodality)
- Compatible with prior knowledge (e.g. quantile class)
- Simple computations
- Without unreasonable priors (e.g. unimodal quantile class, ruling out discrete distributions)

EXERCISE 2 - CLASSES OF PRIORS

Specify reasonable classes of priors

- $\Gamma_P = \{P : p(\theta; \omega), \omega \in \Omega\}$ (Parametric class)
- $\Gamma_Q = \{P : \alpha_i \leq P(I_i) \leq \beta_i, i = 1, \dots, m\}$ (Quantile class)
- $\Gamma_{QU} = \{P \in \Gamma_Q, \text{ unimodal } \textit{quantile class}\}$
- $\Gamma_{GM} = \{P : \int h_i(\theta) dP(\theta) = 0, i = 1, ..., m\}$ (Generalised moments class)
- $\Gamma^{DR} = \{P : L(\theta) \le \alpha p(\theta) \le U(\theta), \alpha > 0\}$ (Density ratio class)
- $\Gamma^B = \{P : L(\theta) \le p(\theta) \le U(\theta)\}$ (Density bounded class)
- $\Gamma^{DB} = \{F \text{ c.d.} f. : F_l(\theta) \le F(\theta) \le F_u(\theta), \forall \theta\}$ (Distribution bounded class)

EXERCISE 2 - CLASSES OF PRIORS

Specify reasonable classes of priors

Neighborhood classes

- $\Gamma_{\varepsilon} = \{P : P = (1 \varepsilon)P_0 + \varepsilon Q, Q \in \mathcal{Q}\}$ (ε -contaminations)
- $\Gamma_{\varepsilon}^{T} = \{P : \sup_{A \in \mathcal{F}} |P(A) P_0(A)| \le \varepsilon\}$ (Total variation)
- $K_g = \{P : \varphi_P(x) \ge g(x), \forall x \in [0,1]\}, g \text{ nondecreasing, continuous, convex:} g(0) = 0 \text{ and } g(1) \le 1 \text{ (Concentration function class)}$

Classes driven more by mathematical convenience rather than ease of elicitation

COMPARISON OF PROBABILITY MEASURES

 \mathcal{P} : all probability measures on (Θ, \mathcal{F}) , Θ Polish space $P_0(E) = \frac{\varepsilon}{10}$: ranges of P(E) in neighbourhoods of P_0

- 1. Variational distance : $|P(A) P_0(A)| \le \varepsilon, \forall A \in \mathcal{F}$ $\Rightarrow P(E) \le 11 \frac{\varepsilon}{10}$
- 2. ε -contaminations (contaminating measures in \mathcal{P}): $-\varepsilon P_0(A) \leq P(A) P_0(A) \leq \varepsilon P_0(A^C), \forall A \in \mathcal{F}$ $\Rightarrow (1-\varepsilon)\frac{\varepsilon}{10} \leq P(E) \leq (1-\varepsilon)\frac{\varepsilon}{10} + \varepsilon$
- 3. $|P(A) P_0(A)| \le \varepsilon \min\{P_0(A), P_0(A^C)\}, \forall A \in \mathcal{F}$ $\Rightarrow (1 - \varepsilon) \frac{\varepsilon}{10} \le P(E) \le (1 + \varepsilon) \frac{\varepsilon}{10}$
- 4. $|P(A) P_0(A)| \le P_0(A)P_0(A^C), \forall A \in \mathcal{F}$ $\Rightarrow \frac{\varepsilon^2}{100} \le P(E) \le (2 - \frac{\varepsilon}{10}) \frac{\varepsilon}{10}$

CONCENTRATION FUNCTION CLASS

- ullet g monotone nondecreasing, continuous, convex function s.t. g(0)=0 and $g(1)\leq 1$
- $K_g = \{P : P(A) \ge g(P_0(A)) \ \forall A \in \mathcal{F}\}$, g-neighbourhood of a nonatomic P_0
- $P \in K_g \Rightarrow g(P_0(A)) \le P(A) \le 1 g(1 P_0(A))$
- $\{K_g\}$ generates a topology over $\mathcal P$
- \exists at least one P: g is the concentration function $\varphi_P(x)$ of P w.r.t. P_0
- The concentration function compares 2 probability measures, extending the Lorenz curve comparing discrete and uniform distributions
- $K_g = \{P : \varphi_P(x) \ge g(x), \forall x \in [0, 1]\}$

CONCENTRATION FUNCTION CLASS

Lorenz curve

• n individuals with wealth $x_i \Rightarrow x_{(1)}, \dots, x_{(n)}$

•
$$(k/n, S_k/S_n), k = 0, ..., n, S_0 = 0 \text{ and } S_k = \sum_{i=1}^k x_{(i)}$$

Uniformly distributed wealth ⇒ straight line

CONCENTRATION FUNCTION CLASS

Lorenz curve

Example: (0.2, 0.3, 0.5) vs. (0.1, 0.3, 0.6)

OBSERVABLE QUANTITIES

- Actual prior elicitation better performed if done on observable quantities
- Failures in repairable systems modelled by Nonhomogeneous Poisson processes (NHPP)
- PLP (Power Law process) $\Rightarrow \lambda(t) = M\beta t^{\beta-1}$
- Expert asked about time of first failure T_1 , s.t. $\mathcal{P}(T_1 > s_i) = \exp\{-Ms_i^{\beta}\}$, i = 1, n
- Suppose *M* known
- Generalised moments constrained class on β given by $l_i \leq \int_0^\infty \exp\{-Ms_i^\beta\}\pi(\beta)d\beta \leq u_i, \ i=1,n$

Finite classes (Shyamalkumar, 2000)

- Class $\mathcal{M} = \{ \mathcal{N}(\theta, 1), \mathcal{C}(\theta, 0.675) \}$ (same median and interquartile range)
- $\pi_0(\theta) \sim \mathcal{N}(0,1)$ baseline prior
- $\Gamma_{0.1}^A = \{\pi : \pi = 0.9\pi_0 + 0.1q, q \text{ arbitrary}\}$
- $\Gamma_{0.1}^{SU} = \{\pi : \pi = 0.9\pi_0 + 0.1q, q \text{ symmetric unimodal around zero}\}$
- Interest in $\mathcal{E}(\theta|x)$

Finite classes (Shyamalkumar, 2000)

Data	Likelihood	$\Gamma_{0.1}^{A}$		$\Gamma^{SU}_{0.1}$	
		$\int \inf \mathbf{E}(heta x)$	$\operatorname{Sup} \mathbf{E}(heta x)$	$\int \inf \mathbf{E}(heta x)$	$sup\mathbf{E}(heta x)$
x = 2	Normal	0.93	1.45	0.97	1.12
	Cauchy	0.86	1.38	0.86	1.02
x = 4	Normal	1.85	4.48	1.96	3.34
	Cauchy	0.52	3.30	0.57	1.62
x = 6	Normal	2.61	8.48	2.87	5.87
	Cauchy	0.20	5.54	0.33	2.88

Parametric models

Box-Tiao, 1962

$$\Lambda_{BT} = \left\{ f(y|\theta, \sigma, \beta) = \frac{\exp\left\{-\frac{1}{2} \left| \frac{y-\theta}{\sigma} \right|^{\frac{2}{1+\beta}} \right\}}{\sigma 2^{(1.5+0.5\beta)} \Gamma(1.5+0.5\beta)} \right\}$$

for any $\theta, \sigma > 0, \beta \in (-1, 1]$

Neighbourhood classes

 $0 \le M(\cdot) \le U(\cdot)$ given and l likelihood

- $\Gamma_{\epsilon} = \{f : f(x|\theta) = (1 \epsilon)f_0(x|\theta) + (1 \epsilon)g(x|\theta), g \in \mathcal{G}\}\$ (ϵ -contaminations)
- $\Gamma_{DR} = \{f : \exists \alpha \text{ s.t. } M(x \theta_0) \le \alpha f(x|\theta_0) \le U(x \theta_0) \forall x \}$ (density ratio class)
- $\Gamma_L = \{l : U(\theta) \le l(\theta) \le M(\theta)\}$ (likelihood neighbourhood)

Critical aspects: parameter and probabilistic interpretation

- Class of NHPPs N_t , $t \ge 0$
- Intensity function $\lambda(t)$
- Mean value function $M(t) = \mathcal{E}N_t = \int_0^t \lambda(u)du$

•
$$[M(t)]' = \frac{\alpha M(t) + \beta t}{\gamma + \delta t}$$

M(t)	$\lambda(t)$
$\frac{t}{}$	$\frac{1}{2}$
δ	δ
$\frac{t^2}{t}$	$\frac{t}{t}$
$\overline{2\gamma}$	$\frac{\overline{\gamma}}{\gamma}$
$t \gamma \left(\frac{\delta}{1 + \delta} \right)$	t
$\frac{t}{\delta} - \frac{\gamma}{\delta^2} \log \left(1 + \frac{\delta}{\gamma} t \right)$	$\frac{\overline{\gamma + \delta t}}{}$
$ c t^{lpha/\delta}$	$ c \frac{\alpha}{\varsigma}t^{\alpha/\delta-1}$
	$ \delta ^{\delta}$
$eta \gamma \left(e^{t/\gamma} - rac{t}{\gamma} - 1 ight)$	$eta\left(e^{t/\gamma}-1 ight)$
$ \frac{\beta}{\delta - 1} \left\{ t + \gamma \left[1 - \left(1 + \frac{\delta}{\gamma} t \right)^{1/\delta} \right] \right\} $	$\beta = \left(\left(\left(\left(\delta \right) \right)^{1/\delta - 1} \right) \right)$
$\left \frac{1}{\delta - 1} \left\{ t + \gamma \left 1 - \left(1 + \frac{-t}{\gamma} \right) \right \right\} \right $	$\left \; rac{eta}{\delta-1} \left\{ 1 - \left(1 + rac{\delta}{\gamma} t ight)^{1/\delta-1} ight\} \; ight $
$\beta \gamma \left(1 + \frac{t}{-}\right) \log \left(1 + \frac{t}{-}\right) - \beta t$	$\beta \log \left(1 + \frac{t}{1}\right)$
γ γ γ	$\setminus \gamma$

Interest in behaviour of

- Bayesian estimator
- posterior expected loss

Parametric classes $\mathcal{L}_{\omega} = \{L = L_{\omega}, \omega \in \Omega\}$

$$L(\Delta) = \beta(\exp{\{\alpha\Delta\}} - \alpha\Delta - 1), \alpha \neq 0, \beta > 0$$

- $\Delta_1 = (a \theta) \Rightarrow L(\Delta_1)$ LINEX (Varian, 1975)
 - $-\alpha = 1 \Rightarrow L(\Delta_1)$ asymmetric (overestimation worse than underestimation)
 - $-\alpha < 0$ $\Rightarrow L(\Delta_1) \approx \text{ exponential for } \Delta_1 < 0$ $\Rightarrow L(\Delta_1) \approx \text{ linear for } \Delta_1 > 0$
 - $|\alpha| \approx 0 \Rightarrow L(\Delta_1) \approx \sigma^2 \Delta_1^2 / 2$ (i.e. squared loss)
- $\Delta_2 = (a/\theta 1)$ (Basu and Ebrahimi, 1991)

Example for
$$L(a, \theta) = \exp{\{\alpha(a/\theta - 1)\}} - \alpha(a/\theta - 1) - 1, \alpha \neq 0$$

Estimate the mean failure time (in hours) of a freeze seal gate valve when 20 valves are tested until 5-th failure (Martz and Waller, Basu and Ibrahimi, F.R.)

- $f(x|\theta) = (1/\theta) \exp\{-x/\theta\}$
- $0.5 \le \alpha \le 2.5$
- $\pi_1(\theta) = 1/\theta \Rightarrow 21808.6 \le \mathcal{E}(\theta|data) \le 25585.8$
- $\pi_2(\theta) \mathcal{IG}(a,b), a = 8.5, b = 286000 \Rightarrow 28253.1 \leq \mathcal{E}(\theta|data) \leq 30234.3$

- $\mathcal{L}_U = \{L : L(\theta, a) = L(|\theta a|), L(\cdot) \text{ any nondecreasing function} \}$ (Hwang's universal class)
- $\mathcal{L}_{\epsilon} = \{L : L(\theta, a) = (1 \epsilon)L_0(\theta, a) + \epsilon M(\theta, a) \ M \in \mathcal{W}\}\$ (ϵ -contamination class)
- $\mathcal{L}_K = \{L : v_{i-1} \leq L(c) \leq v_i, \forall c \in C_i, i = 1, ..., n\}$ $- (\theta, a) \rightarrow c \in \mathcal{C} \text{ (consequence)}$ $- \{C_1, ..., C_n\} \text{ partition of } \mathcal{C}$ (Partially known class)

 $L, L + k \in \mathcal{L}_U$ give same Bayesian estimator minimising the posterior expected loss, but very different posterior expected loss \Rightarrow robustness calibration

Mixtures of convex loss functions

- $L_{\lambda} \in \Psi$, family of convex loss functions, $\lambda \in \Lambda$
- $G \in \mathcal{P}$, class of all probability measures on (Λ, \mathcal{A})

•
$$\Omega = \{L : L(\theta, a) = \int_{\Lambda} L_{\lambda}(\theta, a) dG(\lambda)\}$$

 \bullet a_L Bayes action for loss L, under probability measure π

•
$$\underline{a} = \inf_{L_{\lambda} \in \Psi} a_{L_{\lambda}}, \ \overline{a} = \sup_{L_{\lambda} \in \Psi} a_{L_{\lambda}} \Rightarrow \underline{a} \leq a_{L} \leq \overline{a}, \ \forall L \in \Omega$$

$$- L_{\lambda}(\theta, a) = |\theta - a|^{\lambda}, \ \lambda \geq 1$$

$$- L_{\lambda}(\theta, a) = e^{\lambda(a - \theta)} - \lambda(a - \theta) - 1, \ \lambda_{1} \leq \lambda \leq \lambda_{2}$$

$$- L_{\lambda}(\theta, a) = \chi_{[a - \lambda, a + \lambda]^{c}}(\theta), \ \lambda > 0$$

Mixtures of convex loss functions - examples

- $L_{\lambda}(\theta, a) = |\theta a|^{\lambda}, \ \lambda \ge 1$
 - Π ∈ Γ = {All symmetric probability measures w.r.t.μ}
 - $\Rightarrow a_L = \mu, \forall L \in \Omega, \forall \Pi \in \Gamma$
- $L_{\lambda}(\theta, a) = \chi_{[a-\lambda, a+\lambda]^c}(\theta), \ \lambda > 0$
 - $-\Rightarrow \mathcal{E}L_{\lambda} = 1 \Pi([a \lambda, a + \lambda])$
 - $-\Rightarrow a_{L_{\lambda}}$ midpoint of interval of size 2λ with the highest probability
 - $\Pi \sim \mathcal{B}eta(3,2) \Rightarrow \underline{a} = 1/2, \ , \overline{a} = 2/3$

Bands of convex loss functions

- $\Lambda(\theta, a) = \Lambda(\theta a) : \Lambda'(t) = \lambda(t)$
- $\lambda(t) < 0$ for $t < 0, \lambda(0) = 0, \lambda(t) > 0$ for t > 0
- $\lambda'(t) > 0$
- L, U losses: L'(t) = l(t) and U'(t) = u(t)
- $\Omega = \{ \Lambda : l(t) \le \lambda(t) \le u(t), \forall t \}$
- Π probability measure: $\Pi(A) > 0$ for any interval A
- $L_1, L_2: L_1'(t) \leq L_2'(t) \Rightarrow$ Bayes actions: $a_{L_1} \leq a_{L_2}$
- $\underline{a} = \inf_{\Lambda \in \Omega} a_{\Lambda}, \ \overline{a} = \sup_{\Lambda \in \Omega} a_{\Lambda} \Rightarrow \underline{a} = a_{L}, \ \overline{a} = a_{U}$

Bands of convex loss functions

$$u(t) = \begin{cases} t & t < 0 \\ 3t & t \ge 0 \end{cases}$$

•
$$\Omega = \{\Lambda : 1/2(\theta - a)^2 \le \Lambda(\theta, a) \le 3/2(\theta - a)^2\}$$

•
$$\Lambda(\theta, a) = (\theta - a)^2 \in \Omega$$

•
$$\Pi \sim \mathcal{N}(0,1) \Rightarrow \underline{a} = -.3989, \ \overline{a} = .3989$$

LOSS ROBUSTNESS

Preference among losses

 $\rho_L(\pi, x, a) = \mathcal{E}^{\pi(\cdot|x)} L(\theta, a) = \int L(\theta, a) \pi(\theta|x) d\theta$ posterior expected loss minimised by a_π^L

 L_1 preferred to L_2 (Makov, 1994) if

- $\sup_x \inf_a \rho_{L_1}(\pi, x, a) < \sup_x \inf_a \rho_{L_2}(\pi, x, a)$ (posterior minimax)
- $\mathcal{E}_X
 ho_{L_1}(\pi, x, a_\pi^L) < \mathcal{E}_X
 ho_{L_2}(\pi, x, a_\pi^L)$ (preposterior)
- $\sup_x \left| \frac{\partial}{\partial x} \rho_{L_1}(\pi, x, a_{\pi}^L) \right| < \sup_x \left| \frac{\partial}{\partial x} \rho_{L_2}(\pi, x, a_{\pi}^L) \right|$ (influence approach)

Foundations (Giron and Rios, 1980)

• Associate $a \to L(\theta, a)$, $\theta \in \Theta$

•
$$\mathcal{D} = \{h \mid \exists a \in \mathcal{A}, h(\theta) = L(a, \theta), \forall \theta \in \theta\}$$

ullet Preferences \leq are established over these functions

Foundations (Giron and Rios, 1980)

 (\mathcal{D}, \preceq) satisfies the following conditions

- (\mathcal{D}, \preceq) is a quasi order (reflexive and transitive)
- If $L(a,\theta) < L(b,\theta), \forall \theta \in \Theta$, then $b \prec a$
- For $a, b, c \in \mathcal{A}$, $\lambda \in (0, 1)$, then $L(a, \theta) \leq L(b, \theta)$ if and only if $\lambda L(a, \theta) + (1 \lambda)L(c, \theta) \leq \lambda L(b, \theta) + (1 \lambda)L(c, \theta)$
- For $f_n, g, h \in \mathcal{D}$, if $f_n \to f$ and $f_n \leq g$, $h \leq f_n$, $\forall n$, then $f \leq g$, $h \leq f$

$$\Rightarrow \exists \Gamma = \{\pi : \pi(\theta), \theta \in \Theta\} \text{ s.t.}$$

$$a \leq b \iff \int L(a,\theta)\pi(\theta)d\theta \geq \int L(b,\theta)\pi(\theta)d\theta, \forall \pi(\cdot) \in \Gamma$$

Foundations (Giron and Rios, 1980)

- Provide a qualitative framework for sensitivity analysis in Statistical Decision Theory
- non-dominated actions as basic computational objective in sensitivity analysis, when interested in decision theoretic problems

$$\rho_L(\pi, x, a) = \mathcal{E}^{\pi(\cdot|x)} L(\theta, a)$$

- $a, b \in \mathcal{A}$ actions
- $b \leq a \iff \rho_L(\pi, x, a) \leq \rho_L(\pi, x, b), \forall L \in \mathcal{L}, \forall \pi \in \Gamma$ (Action b at most as preferred as a)
- Strict inequality for some L and/or $\pi \Rightarrow b \prec a$ (a dominates b)

Properties of the non-dominated set $\mathcal{N}\mathcal{D}$

- Non-empty action set $A \Rightarrow$ non-empty \mathcal{ND}
- Compact \mathcal{A} and \mathcal{L} generated by a finite number of loss functions, continuous in a, uniformly w.r.t. $\theta \Rightarrow$ non-empty \mathcal{ND}
- Unique Bayes action a_{π}^{L} for any $L \in \mathcal{L}$ and $\pi \in \Gamma \Rightarrow \mathcal{B} \subseteq \mathcal{ND}$, \mathcal{B} set of Bayes actions

Global sensitivity

- Class of priors sharing some features (e.g. quantiles, moments)
- No prior plays a relevant role w.r.t. others

Measures

- Range: $\delta = \overline{\rho} \underline{\rho}$, with $\overline{\rho} = \sup_{P \in \Gamma} E_{P^*}[h(\theta)]$ and $\underline{\rho} = \inf_{P \in \Gamma} E_{P^*}[h(\theta)]$ Simple interpretation
- Relative sensitivity $\sup_{\pi} R_{\pi}$, with $R_{\pi} = \frac{(\rho_{\pi} \rho_{0})^{2}}{V^{\pi}}$, $\rho_{0} = E_{\Pi_{0}^{*}}[h(\theta)]$, $\rho_{\pi} = E_{\Pi^{*}}[h(\theta)]$ and $V^{\pi} = Var_{\Pi^{*}}[h(\theta)]$ Scale invariant, decision theoretic interpretation, asymptotic behaviour

Local sensitivity

- Small changes in one elicited prior
- Most influential x
- Approximating bounds for global sensitivity

Measures

• Derivatives of extrema in $\{K_{\varepsilon}\}, \varepsilon \geq 0$, neighbourhood of $K_0 = \{P_0\}$

$$\overline{E}_{\varepsilon}(h|x) = \frac{\int h(\theta)l(\theta)P(d\theta)}{\int l(\theta)P(d\theta)} \text{ and } D^*(h) = \left\{\frac{\partial \overline{E}_{\varepsilon}(h|x)}{\partial \varepsilon}\right\}_{\varepsilon=0}$$

Gatêaux differential

Measures

Fréchet derivative

$$\begin{split} &-\Delta = \{\delta : \delta(\Theta) = 0\} \\ &-\Gamma_{\delta} = \{\pi : \pi = P + \delta, \delta \in \Delta\} \text{ and } \Gamma_{\varepsilon} = \{\pi : \pi = (1 - \varepsilon)P + \varepsilon Q\} \\ &-\mathcal{P} = \{\delta \in \Delta : \delta = \varepsilon(Q - P)\} \Rightarrow \Gamma_{\varepsilon} \subset \Gamma_{\delta} \\ &-||\delta|| = d(\delta, 0) \\ &-d(P, Q) = \sup_{A \in \mathcal{B}(\Theta)} |P(A) - Q(A)| \\ &-T_{h}(P + 0) \equiv T_{h}(P) \equiv \frac{\int h(\theta)l(\theta)P(d\theta)}{\int l(\theta)P(d\theta)} = \frac{N_{P}}{D_{P}} \\ &-\Lambda_{h}^{P}(\delta) = T_{h}(P + \delta) - T_{h}(P) + o(||\delta||) = \frac{D_{\delta}}{D_{P}}(T_{h}(\delta) - T_{h}(P)) \end{split}$$

Loss robustness

 $\rho_L(\pi, x, a) = \mathcal{E}^{\pi(\cdot|x)} L(\theta, a) = \int L(\theta, a) \pi(\theta|x) d\theta$ posterior expected loss minimised by a_π^L

- $\sup_{L \in \mathcal{L}} \rho_L(\pi, x, a) \inf_{L \in \mathcal{L}} \rho_L(\pi, x, a)$
- $\bullet \ \operatorname{sup}_{L \in \mathcal{L}} a_\pi^L \operatorname{inf}_{L \in \mathcal{L}} a_\pi^L$
- $\sup_x \left| \frac{\partial}{\partial x} \rho_L(\pi, x, a_\pi^L) \right| \inf_x \left| \frac{\partial}{\partial x} \rho_L(\pi, x, a_\pi^L) \right|$

COMPUTATIONAL TECHNIQUES

Bayesian inference \Rightarrow complex computations Robust Bayesian inference \Rightarrow **more** complex computations

$$\sup_{P} \frac{\int_{\Theta} f(\theta) P(d\theta)}{\int_{\Theta} g(\theta) P(d\theta)} = \sup_{\theta \in \Theta} \frac{f(\theta)}{g(\theta)}$$

$$\Rightarrow \overline{
ho} = \sup_{P \ \in \ \Gamma} E_{P^*}[h(heta)]$$
 in

•
$$\Gamma_{\varepsilon} = \{P : P = (1 - \varepsilon)P_0 + \varepsilon Q, Q \in \mathcal{Q}_A\}$$

•
$$\Gamma_Q = \{P : P(I_i) = p_i, i = 1, \dots, m\}$$

Probability measures as mixture of extremal ones

COMPUTATIONAL TECHNIQUES

- Linearisation technique
 - $-\overline{\rho} = \inf\{q|c(q) = 0\}$ where

$$- c(q) = \sup_{P \in \Gamma} \int_{\Theta} c(\theta, q) P(d\theta) = 0$$

$$-c(\theta,q) = l(\theta) (h(\theta) - q)$$

- Compute $c(q_i)$, $i = 1, ..., m \Rightarrow \text{solve } c(q) = 0$
- Discretisation of $\Theta \Rightarrow$ Linear programming
- Linear Semi-infinite Programming (for Generalised moments constrained classes)

QUEST FOR ROBUSTNESS

Range δ "large" and possible refinement of Γ

- Further elicitation by experts
 - Software (currently unavailable) for interactive sensitivity analysis
 - Ad-hoc tools, e.g. Fréchet derivatives to determine intervals to split in quantile classes
- Acquisition of new data

QUEST FOR ROBUSTNESS

Inherently robust procedures

- Robust priors (e.g. flat-tailed)
- Robust models (e.g. Box-Tiao class)
- Robust estimators
- Hierarchical models
- Bayesian nonparametrics

LACK OF ROBUSTNESS

Range δ "large" and no further possible refinement of Γ

- Choice of a convenient prior in Γ, e.g. a Gaussian in the symmetric, unimodal quantile class, or
- Choice of an estimate of $E_{P^*}[h(\theta)]$ according to an optimality criterion, e.g.
 - Γ-minimax posterior expected loss
 - Γ-minimax posterior regret
- Report the range of $E_{P^*}[h(\theta)]$ besides the entertained value

GAMMA-MINIMAX

 $\rho(\pi,a)=E^{\pi^*}L(\theta,a)$ posterior expected loss, minimised by a_π

- $\rho_C = \inf_{a \in \mathcal{A}} \sup_{\pi \in \Gamma} \rho(\pi, a)$ (Posterior Γ -minimax expected loss)
 - Optimal action by interchanging inf and sup for convex losses
- $\rho_R = \inf_{a \in \mathcal{A}} \sup_{\pi \in \Gamma} [\rho(\pi, a) \rho(\pi, a_{\pi})]$ (Posterior Γ -minimax regret)
 - Optimal action: $a_M = \frac{1}{2}(\underline{a} + \overline{a})$, for finite $\underline{a} = \inf_{\pi \in \Gamma} a_{\pi_x}$ and $\overline{a} = \sup_{\pi \in \Gamma} a_{\pi_x}$, \mathcal{A} interval and $L(\theta, a) = (\theta a)^2$

- Very few applications of these robust Bayesian procedures
- Typically, either
 - informal analysis (a finite family of priors) or
 - choice of robust procedures (e.g. hierarchical models), robust distributions (e.g. Student) and robust estimators (e.g. median)
- Need for sensitivity checks is nowadays widely accepted within the Bayesian community
- Classes and tools often driven more by maths rather than by practice
- Lack of adequate software

- 8 different configurations of pipelines (diameter, depth, location)
- Gas escapes modelled by $\mathcal{P}(\lambda_i)$, i = 1,8
- Gamma priors on λ_i
- ullet Pipelines ranked according to posterior mean of λ_i 's
- Classes of gamma priors with parameters in intervals
- ◆ Sensitivity of ranking w.r.t. priors

- Number of accidents X_k for a company with n_k workers at time period k
- $X_k | \theta, n_k \sim \mathcal{P}(n_k \theta)$
- $\Gamma = \{\pi : \pi(0,.38] = .25, \pi(.38,.58] = .25, \pi(.58,.98] = .25, \pi(.98,\infty) = .25\}$
- Year 1988: $\underline{E}[X_k|D_k]/n_k = 0.05$ and $\bar{E}[X_k|D_k]/n_k = 0.58$
- ullet Fréchet derivative of $E[X_k|D_k]/n_k \Rightarrow \mathrm{sum}$ of contributions from each interval
- Split interval with largest contribution (here first)
- Year 1988: $\underline{E}[X_k|D_k]/n_k=$ 0.15 and $\bar{E}[X_k|D_k]/n_k=$ 0.24

Wavelets in nonlinear regression

- $y_i = f(x_i) + \varepsilon_i$, ε_i i.i.d. $\mathcal{N}(0, \sigma^2)$, $i = 1, N(=2^n)$
- y_i : noisy measurements
- $x_i = i/N$
- \bullet f: unknown signal
- ε_i : noise
- wavelet transform $W \Rightarrow d_i = \theta_i + \eta_i, i = 1, N$ $[\underline{y} \to \underline{d} = W\underline{y}, \underline{f} \to \underline{\theta} = W\underline{f}, \underline{\varepsilon} \to \underline{\eta} = W\underline{\varepsilon}]$

Wavelets in nonlinear regression

- Model for $d_i = \theta_i + \eta_i$
- $d_i|\theta \sim f(d_i|\theta) = f(d_i \theta)$, symmetric and unimodal e.g. $d_i|\theta, \sigma^2 \sim \mathcal{N}(\theta, \sigma^2)$
- Loss $L(\theta, a) = (\theta a)^2 \Rightarrow E^{\theta|d_i}\theta$ optimal
- Signal smoothed by thresholding or shrinkage

Are Bayesian estimators shrinkers?

Wavelets in nonlinear regression

How to choose prior to have shrinkage, i.e. $\Delta = |E^{\theta|d}\theta/d| < 1$?

- $\Gamma_S = \{ \text{all symmetric} \}$ $\Rightarrow \sup_{\pi \in \Gamma_S} \Delta > 1 \ (= \infty \text{ for normal model})$
- $\Gamma_{Sp} = \{ \text{all symmetric} + \text{mass } p \text{ at } 0 \}$ $\Rightarrow \sup_{\pi \in \Gamma_S} \Delta < \infty \text{ but } > 1 \text{ for "small" } p$
- $\Gamma_{SU} = \{ \text{all symmetric, unimodal} \}$ $\Rightarrow \sup_{\pi \in \Gamma_S} \Delta \leq 1$
- $\Gamma_S = \{ \text{all symmetric, unimodal} + \text{mass } p \text{ at } 0 \}$ $\Rightarrow \sup_{\pi \in \Gamma_S} \Delta < 1$

PREFERENCES AMONG PRIORS

- Expert able not only to specify a class Γ of priors but also preferences among them or its subsets (e.g. elicitation of a quantile class, allowing even for discrete distributions, but absolutely continuous unimodal priors preferred to step functions and even more to discrete distributions)
- Sensitivity analysis over Γ could lead to lack of robustness but robustness might be achieved in the subset of Γ more likely according to the expert
- Instead of reporting lack of robustness in the larger class and choosing a convenient prior in it (providing both Bayes estimator under it and range over Γ), analyst could report a robust Bayesian estimator along with the subset not considered in the computation of the range
- How to make this formal in a probabilistic framework?

PREFERENCES AMONG PRIORS

- Given $X \sim f(x|\theta) \Rightarrow$ interest in posterior mean of θ
- In $\Gamma_P = \{P : p(\theta; \omega), \omega \in \Omega\}$ preferences can be described by a function $\pi(\omega)$
- $\pi(\omega)$ can be treated as a prior \Rightarrow formally a hierarchical model $X \sim f(x|\theta), \theta \sim p(\theta;\omega)$ and $\pi(\omega)$
- Posterior mean of θ unique under hierarchical model but the original problem, $\omega \in \Omega$, leads to a set of values for the posterior mean
- Compute the range on a subset of Ω such that its *probability* under π is high but the range is as small as possible
- How to make the procedure formally acceptable in a probabilistic framework and how to extend it to a nonparametric class?

Combination of opinions of conflicting experts in different fields (e.g. e-democracy) \Rightarrow partial and incompatible information

Three experts provide information on different pairs

Marginal	(0,0)	(0,1)	(1,0)	(1,1)
$f_1(x_1, x_2)$	0.47	0.13	0.13	0.27
$f_2(x_2,x_3)$	0.47	0.13	0.13	0.27
$f_3(x_1, x_3)$	0.30	0.30	0.30	0.10

 X_1 , X_2 and X_3 : Bernoulli $\mathcal{B}e(0.4)$

No joint density $f(x_1, x_2, x_3)$ with those marginals

How to combine partial and incompatible priors, possibly in an automatic way?

Given the random quantities X_1, \ldots, X_n , how to combine them?

- 1. Choose a rule: chain's rule!
- 2. Agree on an order for the chain's rule, e.g. $f(X_1, \ldots, X_n) = f(X_n | X_{n-1}, \ldots, X_1) \cdot f(X_{n-1} | X_{n-2} \ldots X_1) \cdot \ldots \cdot f(X_1)$
- 3. For each component $f(X_k|X_{k-1},\ldots,X_1)$ look for all the contributions of the stakeholders on it
- 4. Combine the contributions into $\widetilde{f}(X_k|X_{k-1},\ldots,X_1)$
- 5. Get the joint density $\widetilde{f}(X_1,\ldots,X_n)$ via chain's rule, combining all $\widetilde{f}(X_k|X_{k-1},\ldots,X_1)$

Marginal	(0,0)	(0,1)	(1,0)	(1,1)
$f_1(x_1,x_2)$	0.47	0.13	0.13	0.27
$f_2(x_2,x_3)$	0.47	0.13	0.13	0.27
$f_3(x_1,x_3)$	0.30	0.30	0.30	0.10

Chain's rule $f(x_1, x_2, x_3) = f(x_3|x_2, x_1)f(x_2|x_1)f(x_1)$

Assumptions like $f_2(x_3, x_2) = f_2(x_3|x_2)f_2(x_2) = f_2(x_3|x_2, x_1)f_2(x_2)$

Contributions to each components

$$f(x_1) = \alpha f_1(x_1) + (1 - \alpha) f_3(x_1)$$

$$f(x_2|x_1) = \beta f_1(x_2|x_1) + (1 - \beta) f_2(x_2)$$

$$f(x_3|x_2, x_1) = \gamma f_2(x_3|x_2) + (1 - \gamma) f_3(x_3|x_1)$$

 $\Rightarrow X_1$ still Bernoulli $\mathcal{B}e(0.4)$ (and α disappears)

Conditional	(0,0)	(0,1)	(1,0)	(1,1)
$f_1(x_2 x_1)$	47/60	13/60	13/40	27/40
$f_2(x_3 x_2)$	47/60	13/60	13/40	27/40
$f_3(x_3 x_1)$	0.50	0.50	0.75	0.25

Conditional densities of f on their support

	(0,0)	(0,1)
$f(x_2 x_1)$	$(36 + 11\beta)/60$	$(24-11\beta)/60$
	(1,0)	(1,1)
$f(x_2 x_1)$	$(24-11\beta)/40$	$(16 + 11\beta)/40$

	(0,0,0)	(0,0,1)
$f(x_3 x_2,x_1)$	$(30 + 17\gamma)/60$	$(30 - 17\gamma)/60$
	(0,1,0)	(0,1,1)
$f(x_3 x_2,x_1)$	$(20 - 7\gamma)/40$	$(20 + 7\gamma)/40$
	(1,0,0)	(1,0,1)
$f(x_3 x_2,x_1)$	$(45 + 2\gamma)/60$	$(15 - 2\gamma)/60$
	(1,1,0)	(1,1,1)
$f(x_3 x_2,x_1)$	$(30 - 17\gamma)/40$	$(10 + 17\gamma)/40$

Joint density $f(x_1, x_2, x_3)$

(x_1, x_2, x_3)	$f(x_1, x_2, x_3)$
(0,0,0)	$(30 + 17\gamma)(36 + 11\beta)/6000$
(0,0,1)	$(30-17\gamma)(36+11\beta)/6000$
(0,1,0)	$(20-7\gamma)(24-11\beta)/4000$
(0,1,1)	$(20 + 7\gamma)(24 - 11\beta)/4000$
(1,0,0)	$(45+2\gamma)(24-11\beta)/6000$
(1,0,1)	$(15-2\gamma)(24-11\beta)/6000$
(1,1,0)	$(30-17\gamma)(16+11\beta)/4000$
(1,1,1)	$(10+17\gamma)(16+11\beta)/4000$

Bivariate marginals

	(0,0)
$f(x_1, x_2)$	$0.36 + 0.11\beta$
$f(x_1, x_3)$	$0.3 + (0.06 + 0.05\beta)\gamma$
$f(x_2,x_3)$	$0.36 - (0.0275 - 0.0275\gamma)\beta + 0.11\gamma$
	(0,1)
$f(x_1, x_2)$	0.24-0.11eta
$f(x_1, x_3)$	$0.3 - (0.06 + 0.05 \beta)\gamma$
$f(x_2,x_3)$	$0.24 + (0.0275 - 0.0275\gamma)\beta - 0.11\gamma$
	(1,0)
$f(x_1, x_2)$	0.24-0.11eta
$f(x_1, x_3)$	$0.3 - (0.06 + 0.05 \beta)\gamma$
$f(x_2,x_3)$	$0.24 + (0.0275 - 0.0275\gamma)\beta - 0.11\gamma$
	(1,1)
$f(x_1,x_2)$	$0.16 + 0.11\beta$
$f(x_1, x_3)$	$0.1 + (0.06 + 0.05\beta)\gamma$
$f(x_2,x_3)$	$0.16 - (0.0275 - 0.0275\gamma)\beta + 0.11\gamma$

Univariate Bernoulli marginals are kept

$$\beta = 1 \Rightarrow f(x_1, x_2) = f_1(x_1, x_2)$$
$$\gamma = 0 \Rightarrow f(x_1, x_3) = f_3(x_1, x_3)$$
$$\beta = 1, \gamma = 0 \Rightarrow$$

	(0,0)	(0,1)	(1,0)	(1,1)
$f_2(x_2,x_3)$.47	.13	.13	.27
$f(x_2, x_3)$.3325	.2675	.2675	.1325

$$\beta = 0.5, \gamma = 0.5 \Rightarrow$$

	(0,0)	(0,1)	(1,0)	(1,1)
$f_1(x_1,x_2)$.47	.13	.13	.27
$f(x_1,x_2)$.415	.185	.185	.215
$f_2(x_2,x_3)$.47	.13	.13	.27
$f(x_2,x_3)$.408125	.191875	.191875	.208125
$f_3(x_1,x_3)$.30	.30	.30	.10
$f(x_1,x_3)$.3425	.2575	.2575	.1425

Now the marginals are compatible!

- ullet Risk analysis \Rightarrow extreme value theory \Rightarrow Generalized Extreme Value (GEV) distribution
- Cdf $F(x) = \exp\left\{-\left[1 + \lambda \left(\frac{x-\mu}{\sigma}\right)\right]_+^{-1/\lambda}\right\}$
- Density $f(x) = \frac{1}{\sigma} \left[1 + \lambda \left(\frac{x-\mu}{\sigma} \right) \right]_+^{-1/\lambda 1} \exp \left\{ \left[1 + \lambda \left(\frac{x-\mu}{\sigma} \right) \right]_+^{-1/\lambda} \right\}$
- ullet q-th quantile: $q=\exp\left\{-\left[1+\lambda\left(rac{G_q-\mu}{\sigma}
 ight)
 ight]_+^{-1/\lambda}
 ight\}$
- Expert gives 3 quantiles in the tails (e.g. .80, .95, .99) on the observable quantity $X \Rightarrow$ parameters μ, σ and λ determined
- Expert presented with plots of density functions until satisfied with the shape
- ullet Quantile specification in the tail \Rightarrow good approximation in the tail but bad elsewhere

- Generalised moments constrained class, given by $q_i = \int_0^{Q_i} \{ \int f(x|\mu,\sigma,\lambda) \pi(\mu,\sigma,\lambda) d\mu d\sigma d\lambda \} dx, i = 1,2,3 \}$
- As an alternative ⇒ Dirichlet process
 - $P \sim \mathcal{DP}(\eta) \text{ if } \forall (A_1, \dots, A_m)$ $\Rightarrow (P(A_1), \dots, P(A_m)) \sim \mathcal{D}(\eta(A_1), \dots, \eta(A_m))$
 - $-Z_1, \ldots, Z_n$ sample of size n from $P \Rightarrow P|Z_1, \ldots, Z_n \sim \mathcal{DP}(\eta + \sum_{1}^{n} \delta_{Z_i})$
- Embed the parametric model in a Dirichlet process with parameter $\eta(x) = \alpha F(x; \hat{\mu}, \tilde{\sigma}, \hat{\lambda})$

Uncertainty in the parameter $\eta \Rightarrow \eta \in \Gamma \Rightarrow$ changes in

- Dirichlet process
 - P and Q chosen by two Dirichlet processes with different η

$$- d_{DP}(P,Q) = \sup_{A \in \mathcal{A}} d(P(A), Q(A))$$

$$-d(X,Y)=\left\{\int (\sqrt{p}-\sqrt{q})^2 d\mu\right\}^{1/2}$$
 Hellinger distance

- Probability of subsets of p.m.'s on $(\mathcal{X}, \mathcal{A})$
 - $-\Theta = \{P \in \mathcal{M} : P(A) \in B\}, A \in \mathcal{A}, B \in \mathcal{B}([0,1]) \text{ (e.g. } \Theta = \{F : F(1/2) \le 1/2\})$
 - $-G \sim \mathcal{DP}(\eta) \Rightarrow G(A) \sim \mathcal{B}(\eta(A), \eta(A^C)) \Rightarrow \text{compute } \mathcal{P}(\Theta) = \mathcal{P}(G(A) \in B)$

Uncertainty in the parameter $\eta \Rightarrow \eta \in \Gamma \Rightarrow$ changes in

- Probabilities of set probabilities and random functionals
 - $-P(A) \sim \mathcal{B}(\eta(A), \eta(A^C))$
 - $(P(A_1), \ldots, P(A_n)) \sim \mathcal{D}(\eta(A_1), \ldots, \eta(A_n))$
 - $-\int_{\Re} ZdP$
- Bayes estimators of random distributions and functionals
 - Bayes estimator of the mean: $\frac{\int_{\Re} x \eta(x) dx}{\int_{\Re} \eta(x) dx}$
 - Distribution function $F^*(x) = \frac{\alpha \eta(x) + \sum_{i=1}^{n} \delta_{Z_i}(x)}{\alpha + n}$

IMPRECISE PROBABILITIES

• Similar tools but ...

• ... different philosophy

IMPORTANT PROBLEMS

- Software
- Efficient and parsimonious MCMC simulations for Bayesian robustness (current methods are for a unique prior)
- Classes more problem driven
- Applications

EXERCISE 3

• Flip of a coin

•
$$P(tail) = P(X = 1) = \theta$$

- Sample X_1, \ldots, X_n
- Perform a robust Bayesian analysis