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BASICS ON BAYESIAN STATISTICS
e X r.v. with density f(z|6)
e Prior m(6)
e Sample X = (X1,...,Xy)
e Bayes theorem = posterior m(6|X)
e Loss function L(0,a), e.9. (0 —a)?

e Minimize £79X)1,(9,a) = Bayes estimator, e.g. posterior mean for (0—a)?2

Is life so easy?



EXERCISE 1

e Car tyres failures

e X1,...,Xp lifetimes

e How to perform a Bayesian analysis?



EXERCISE 1

Bayesian analysis - what to choose?

e Model f(z|0)

e Prior w(60)

e Estimator @



EXERCISE 1 - MODEL SELECTION

Before the analysis - Model chosen according to

e physical laws

e Mmathematical convenience

e exploratory data analysis



EXERCISE 1 - MODEL SELECTION

After the analysis - Model chosen according to
e graphical displays (e.g. residuals in regression)
e goodness of fit tests (e.g. x2, Kolmogorov-Smirnov) (not very Bayesian!)

e Bayes factor to compare
My = {f1(x]01),m(01)} and Mz = {f2(z|02),7(02)}

[ f1(x|01)7(61)d6:

= BE= [ f2(z]02)7(62)do>

e Posterior odds

P(Mj1ldata) _ P(data| M) . P(My) _ B P(M1)
P(Mzldata)  P(data|M3) P(M>) P(M>)

e AIC, BIC, DIC et al.



EXERCISE 1 - MODEL SELECTION

Replacement policy

e New tyre replaced after each failure
— Good as new
— X1,..., X, i.i.d.

— Renewal process

e OIld tyre fixed after each failure
— Bad as old

- Xi1,...,X, from nonhomogeneous Poisson process



EXERCISE 1 - MODEL SELECTION

Renewal process - model choice
o X;~E\) = f(z|\) = Nexp{—\z}
e X;~G(a,B) = f(z]|o, ) = B L exp{—pz}/I (a)

o X;~ LN (u,02) = f(z|p,02) = {zov2M}Lexp{—(logz — u)?/(202)}

¢ Xi~GEV(i,0,N) = fla) =2 [14 A (54)] 7 exp {— 1+ (%ﬂlm}

(o g




EXERCISE 1 - MODEL SELECTION

Poisson process - model choice

e Nt > 0 # events by time ¢t

e N(y,s) # events in (v, s]

e A(t) = ENy mean value function

e N(y,s) = NA(s) — N(y) expected # events in (y, s]



EXERCISE 1 - MODEL SELECTION

Poisson process - model choice

N, t > 0, NHPP with intensity function A(t) iff
1. No=20
2. independent increments
3. P{# eventsin (t,t+ h)>2} = o(h)
4. P{# eventsin (t,t+h) =1} = A({t)h + o(h)

k
= P{N(y,s) =k} = /\(%!8) e NYS) vk e N
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EXERCISE 1 - MODEL SELECTION

Poisson process - model choice

A(t) = AVt = HPP
e \(t): intensity function of N;

P{N(t,t + A] > 1}

¢ A1) = lim X L VE>0
o u(t) = d/zigt): Rocof (rate of occurrence of failures)

Property 3. = u(t) = A(t) a.e. = A(y,s) = / A(t)dt
Yy
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EXERCISE 1 - MODEL SELECTION

How to choose NHPP?

e Musa-Okumoto

At o, 8) =a/(t+ B) and A(t; o, 8) = alog(t + 5)

e Cox-Lewis

At @, ) = aexp{Bt} and A(t; a, 8) = (/B) [exp{Bt} — 1]

e Power law
Mt o, 8) = aBtP~1 and At o, 8) = atP
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EXERCISE 1 - MODEL SELECTION

How to choose NHPP?

”mt—>oo /\(t)

im0 A(?)

Bounded A(t)

Monotonicity

Maximum of A\(t)
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EXERCISE 1 - MODEL SELECTION
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EXERCISE 1 - MODEL SELECTION

o X1,..., X, ii.d. EON)

e — renewal process and HPP

Which prior on \7
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EXERCISE 1 - PRIOR CHOICE

Where to start from?
o X ~&(N)
o f(x|A\) = Aexp{—Az}

e P(X<z)=F(x)=1-S(x) =exp{—Az}

= Physical properties of A\
e EX =1/)\
o VarX = 1/)?

f(x) _ Aexp{—Az}
S(x) exp{—Az}

o hix) = = X (hazard function)
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EXERCISE 1 - PRIOR CHOICE

Possible available information
e Exact prior w(\) (777)
e Quantiles of X;, i.e. P(X; <xy) =q
e Quantiles of A, i.e. P(A<)\y) =¢q
e Moments of ), i.e. E)NF
e Generalised moments of A, i.e. [A(A)7(A\)dXx =0

e Most likely value and upper and lower bounds

e None of them
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EXERCISE 1 - PRIOR CHOICE

How to get information?

e Results from previous experiments (e.g. 75% of car tyres had failed after
5 years of operation = 5 years is the 75% quantile of X;)

Split of possible values of A or X; into equally likely intervals = quantiles

e Most likely value and upper and lower bounds

Expected value of A and confidence on such value (mean and variance)
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EXERCISE 1 - PRIOR CHOICE

How to combine information?

Combining opinions of n experts

e Individual analyses and comparison a posteriori

e Opinions as sample from the parameter distribution
= sample mean and sample variance

— Statements on quantiles G4 «— 6

— Statements on value of 0
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EXERCISE 1 - PRIOR CHOICE

How to use information?

choose a prior w(A|lw) of given functional form and use information to fit
w

choose a prior w(Aw) of given functional form and use data to fit w, i.e.
look for & = arg max [ f(data|\)7(A|w)dA

(empirical Bayes)

use information to choose parameters of a random distribution on the
space of probability measures

(Bayesian nonparametrics)

use Jeffreys'/reference/improper priors
(objective Bayes)

use a class of priors

(Bayesian robustness)
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EXERCISE 1 - PRIOR CHOICE

Choice of a prior

° A~ G(a,B) = f(Ne, B) = BX*" L exp{—BA}/T (a)

A~ LN (g, 02) = (Mg, 02) = {Aov2M}texp{—(log X — )?/(202)}

e A~ GEV(u,0,0) = f(A) =1 [1 +0 (A%,“)}:/H exp {— [1 0 (%ﬂ:/g}

e A\~ T(l,m,u) (triangular)
o \~U(lu)

§;

exp{—-(igﬁ) }

A~ W, B) = f(N) =2 (%LL)B
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EXERCISE 1 - PRIOR CHOICE

Choice of a prior

e Defined on suitable set (interval vs. positive real)

e Suitable functional form (monotone/unimodal, heavy/light
tails, etc.)

e Mathematical convenience

e Tradition (e.g. lognormal for engineers)
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EXERCISE 1 - PRIOR CHOICE

Gamma prior - choice of hyperparameters

L Xl,,XnNg(A)

o f(X1,...,Xn|lN) = N"exp{-2Y X;}

e A~ G(a,B) = f(Na, B) = BoAY Lexp{—BA}/I (@)

e = \X1q,...,Xn~G(a+n, 8+ X;)
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EXERCISE 1 - PRIOR CHOICE

Gamma prior - choice of hyperparameters

e EA=p=a/f and Vard = 02 = a/3?
= a=p?/o? and B = u/o?

e Two quantiles = («,8) using, say, Wilson-Hilferty approxi-
mation. Third quantile specified to check consistency

e Hypothetical experiment: posterior G(a +n, 8+ > X;)
= o sample size and 3 sample sum
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EXERCISE 1 - PARAMETER ESTIMATION

How to estimate A7

e MAP (Maximum a posteriori)
a+n-—1

B+ X;

=\ =

e LPM (Largest posterior mode)

= here it coincides with MAP (unique posterior mode)
e Minimum expected loss EL(A, a)

— L\, a) = (\—a)?

= E)\|data = (posterior mean)

(@8 n
B+ X
— L(\a) =|\—a]

= (posterior median)

— other L(\, a)
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EXERCISE 1 - CONCLUSIONS

(Bayesian) inference is often the result of many approximations
and arbitrary assumptions

e Awareness of it

e Development of safer procedures

e = Bayesian robustness is one of them

26



EXERCISE 1 - CONCLUSIONS

Prior influence

oa+n
B+ X;

e Posterior mean: u* =

. 84 . x
e Prior mean: u= 3 (and variance o° = @)

n

> Xi

e a1 =ka and 31 = kB = p1 = p and o2 = o0?/k

e MLE:

e k— 0= pu*— MLE

k—oco=pu" —pu
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EXERCISE 1 - CONCLUSIONS

Influence of prior choice (Berger, 1985)
e X ~N(6,1)

e EXxpert's opinion on prior P : median at 0, quartiles at +£1, symmetric
and unimodal

e = Possible priors include C(0,1) or N(0,2.19)

e Posterior mean

T 0O 1 2 4.5 10
C(z) 0 052 1.27 4.09 9.80
uN(z) 0 0.69 1.37 3.09 6.87

e Posterior median w.r.t. posterior mean
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CONCERNS ON BAYES

Motivations for Bayesian robustness

e Arbitrariness in the choice of n(60) et al.
= inferences and decisions heavily affected

e EXpert unable to provide, in a reasonable time, an exact prior
reflecting his/her beliefs = huge amount of information (e.g.
choice of the functional form of the prior) added by analyst,
although not corresponding to actual knowledge
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NEED FOR BAYESIAN ROBUSTNESS

partially specified priors

conflicting loss functions

opinions (priors and/or losses) expressed by a group of people
instead of one person
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BAYESIAN ROBUSTNESS

Mathematical tools and philosophical approach

e to model uncertainty through classes of priors/models/losses

e tO measure uncertainty and its effect

e to avoid arbitrary assumptions

e to favour acceptance of Bayesian approach

31



BAYESIAN ROBUSTNESS

e An helpful tool to convince agencies (e.g. FDA) to accept
Bayesian methods? An old, but still unsolved, problem ...

e Bayesian robustness applied to efficacy of drug: is the drug
efficient for all the priors in a class?

e Backward Bayesian robustness: what are the priors leading
to state the efficacy of the drug (or its inefficacy)?
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BAYESIAN ROBUSTNESS

A more formal statement about model and prior sensitivity
o M ={Qy;0 € ©}, Qp probability on (X, Fx)
e Sample z = (x1,...,x,) = likelihood 1,(0) = 1,(0|x1,...,Tn)
e Prior P su (©,F) = posterior P*
e Uncertainty about M and/or P = changes in
/ h(0)I1(0)P(do)
<)
/ 1(0)P(d)
©

— Ep.[h(0)] =

— p*

Bayesian robustness studies these changes

33



ROBUST BAYESIAN ANALYSIS

We concentrate mostly on sensitivity to changes in the prior
e Choice of a class [ of priors

e Computation of a robustness measure, €.9. range 6 =p—p
(p = sup Ep«[h(8)] and p = inf Ep«[h(0)])
Pelr pPel

— 0 “small’” = robustness
— ¢ “large”, '1 C T and/or new data

— o0 ‘“large”, ' and same data
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ROBUST BAYESIAN ANALYSIS

Relaxing the unique prior assumption (Berger and O'Hagan,
1988)

e X ~N(6,1)

e Prior 6 ~ N(0,2)

e Data x = 1.5 = posterior 0|z ~ N(1,2/3)

e Split R in intervals with same probability p; as prior N (0, 2)
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ROBUST BAYESIAN ANALYSIS

Refining the class of priors (Berger and O'Hagan, 1988)

I; i p; o Mou

(-00,-2) 0.08 .0001 (0,0.001) (0,0.0002)
(-2,-1) 0.16 .007 (0.001,0.029) (0.006,0.011)
(-1,0) 0.26 .103 (0.024,0.272) (0.095,0.166)
(0,1) 0.26 .390 (0.208,0.600) (0.322,0.447)
(1,2) 0.16 .390 (0.265,0.625) (0.353,0.473)
(2,+00,) 0.08 .110 (0,0.229) (0,0.156)

e [ quantile class and Iy unimodal quantile class

e Robustness in gy

e Huge reduction of § from Mg to gy

36



EXERCISE 2 - CLASSES OF PRIORS

Specify desirable features of classes of priors

e Easy elicitation and interpretation (e.g. moments, quantiles,
symmetry, unimodality)

e Compatible with prior knowledge (e.g. quantile class)

e Simple computations

e Without unreasonable priors (e.g. unimodal quantile class,
ruling out discrete distributions)
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EXERCISE 2 - CLASSES OF PRIORS

Specify reasonable classes of priors

p={P:p0,w),we Q} (Parametric class)

fog={P:0o; < P(;) <Bi,i=1,...,m} (Quantile class)

Mouv = {P € g, unimodal} (Unimodal quantile class)

Cam = {P: [hi(6)dP(0) =0,i=1,...,m} (Generalised moments class)
PR =1{P: L) <ap(d) <U(H),a > 0} (Density ratio class)

B ={P:LO) <p(0) <UH)} (Density bounded class)

P ={Fcd.f. : F0) <F@) < F,(0),v0} (Distribution bounded class)
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EXERCISE 2 - CLASSES OF PRIORS

Specify reasonable classes of priors

Neighborhood classes
o .={P:P=(1-¢)Ph+¢Q,Q € Q} (e—contaminations)

o MN'={P: 322 |P(A) — Po(A)| < e} (Total variation)

o Ky={P:ypp(x)>g(x),Vx € [0,1]}, g nondecreasing, continuous, convex:
g(0) =0 and ¢g(1) <1 (Concentration function class)

Classes driven more by mathematical convenience rather than ease of elicita-

tion
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COMPARISON OF PROBABILITY MEASURES
P . all probability measures on (©,F), © Polish space

Py(FE) = 16—0 . ranges of P(E) in neighbourhoods of Py

1. Variational distance : |P(A) — Po(A)| <e,VA e F
~ P(E) < 11—
10

2. e—contaminations (contaminating measures in P) :
—ePy(A) < P(A) — Po(A) < ePo(A°), VA€ F

:»(1—e>1iosp<E>s<1—s>1io+s

3. |P(A) — Po(A)| < emin{Py(A), Po(A®)},VA c F
= (1 -9 S PE) < (1+e)

4. |P(A) — Po(A)| < Po(A)Po(AC),VA € F
2

€ €, €
= —<PFE)2——)—
100 — () = ( 10)10
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CONCENTRATION FUNCTION CLASS

g monotone nondecreasing, continuous, convex function s.t. ¢(0) = 0
and ¢g(1) <1

Ky, ={P: P(A) > g(Py(A)) VA € F}, g-neighbourhood of a nonatomic
Po

PeKy=g(Po(A) <P(A)<1-g(1-PF(A))
{K,} generates a topology over P
3 at least one P : g is the concentration function ¢p(x) of P w.r.t. Py

The concentration function compares 2 probability measures, extending
the Lorenz curve comparing discrete and uniform distributions

Ky ={P :vp(x) > g(x),Vz € [0,1]}

41



CONCENTRATION FUNCTION CLASS

Lorenz curve

e n individuals with wealth z; = x(1),...,2(y)

k
o (k/n,S/Sn),k=0,...,n, So=0and Sy = Y a
1=1

e Uniformly distributed wealth = straight line
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CONCENTRATION FUNCTION CLASS

Lorenz curve

Example: (0.2,0.3,0.5) vs. (0.1,0.3,0.6)
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OBSERVABLE QUANTITIES

Actual prior elicitation better performed if done on observable quantities

Failures in repairable systems modelled by Nonhomogeneous Poisson pro-
cesses (NHPP)

PLP (Power Law process) = A\(t) = MBtP~1

Expert asked about time of first failure Ty, s.t. P(T1 > s;) = exp{—Msf},
1=1,n

Suppose M known

Generalised moments constrained class on 3 given by
oo

[; < / exp{—Msf}w(,B)dﬁ <wu;y, 1=1,n
0
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CLASSES OF MODELS

Finite classes (Shyamalkumar, 2000)

e Class M = {N(0,1),C(0,0.675)}
(same median and interquartile range)

e m9(0) ~ N(0,1) baseline prior

o My, ={m:7=0.97my+ 0.1q, ¢ arbitrary}

o M3Y = {r:m=0.979 + 0.1¢,q sSymmetric unimodal around zero}

e Interest in £(0|x)
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CLASSES OF MODELS

Finite classes (Shyamalkumar, 2000)

. : A U
Data | Likelihood | 0.1 _ 0.1
infE(0|z) | supE(0|x) | inf E(0|x) | sup E(0|x)
J— Normal 0.93 1.45 0.97 1.12
Cauchy 0.86 1.38 0.86 1.02
— Normal 1.85 4.48 1.96 3.34
Cauchy 0.52 3.30 0.57 1.62
=6 Normal 2.61 3.48 2.87 5.87
Cauchy 0.20 5.54 0.33 2.88
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CLASSES OF MODELS

Parametric models

Box-Tiao, 1962

(

Npr = f(yl0,0,8) =

\

for any 6,0 > 0,8 € (—1,1]

2
—0
exp | -4 147

02(1.5+0.56) (1.5 + 0.503) (

/

a7



CLASSES OF MODELS

Neighbourhood classes

0 < M() <U(-) given and [ likelihood

o Ie={f:/f(z[0) =(1—¢€)fo(z[0) + (1 —€)g(z[f),g € G}

(e—contaminations)

e MNpr={f:3as.t. M(x —0y) < af(x|fy) <U(x— 0p)Vz}
(density ratio class)

o [ ={l:U(8) <UO) < M)}
(likelihood neighbourhood)

Critical aspects: parameter and probabilistic interpretation
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CLASSES OF MODELS

Class of NHPPs Ng, t > 0

Intensity function A(t)

Mean value function M(t) = ENy = [§ A (u)du

(M ()] =

aM(t) + Gt

v+ ot
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CLASSES OF MODELS

M (%) A(t)
t 1
> ¢
; > i
Y
oY og (142
5 52 0od ( + ~ ) ,ya_|_ St
el |20/
ﬁ'y(et”—g—1> B (e —1)
5 1/6 5 1/6—1
(S_il{t—kvll—(l—l—;t) ” %{1—(14—75) }
6v<1+$)log(l+3>—ﬁt Blog<1+§>
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CLASSES OF LOSSES

Interest in behaviour of

e Bayesian estimator

e posterior expected loss
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CLASSES OF LOSSES

Parametric classes L, = {L = Ly,w € Q2}

L(A) = g(exp{aA} —aA —-1),a#0,6>0

e A1 = (a—0)= L(A1) LINEX (Varian, 1975)

— a=1= L(A1) asymmetric
(overestimation worse than underestimation)

— a<O0
= L(A1) =~ exponential for A1 <0
= L(A1) =~ linear for A; >0

— |la| = 0= L(A1) ~ 0?A2/2 (i.e. squared loss)

e N> =(a/0—1) (Basu and Ebrahimi, 1991)

52



CLASSES OF LOSSES

Example for L(a,0) = exp{a(a/0 — 1)} —a(a/0 —1) —1,a# 0

Estimate the mean failure time (in hours) of a freeze seal gate valve when
20 valves are tested until 5-th failure (Martz and Waller, Basu and Ibrahimi,
F.R.)

f(x]0) = (1/0) exp{—x/0}

e 05 < a<?25b

m1(0) = 1/6 = 21808.6 < £(0|data) < 25585.8

m(0) IG(a,b),a = 8.5,b = 286000 = 28253.1 < £(f|data) < 30234.3
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CLASSES OF LOSSES

e Ly ={L:L(0,a) = L(|6 —a|), L(-) any nondecreasing function}
(Hwang's universal class)

e L.={L:L(0O,a)=(1—¢)Lo(8,a) +eM(0,a) M € W}
(e—contamination class)

e Lix={L:vi.1<L(c)<w;, Vee(C;,i=1,...,n}
— (0,a) — c € C (consequence)
— {C1,...,Cy} partition of C

(Partially known class)

L,L+k € Ly give same Bayesian estimator minimising the posterior expected

loss, but very different posterior expected loss = robustness calibration
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CLASSES OF LOSSES

Mixtures of convex loss functions
o [, € WV, family of convex loss functions, A € A

G € P, class of all probability measures on (A, A)

Q={L:L(0,a)= / L(0,a)dG(N)}

A

e a; Bayes action for loss L, under probability measure =«

e a= inf ar,, a=supar, =>a<ar<a, VL€
L)\ew L,\EW

— Ly(0,a) =10 —al’), X >1
- LA(07a') — GA(G_H) o )\(CL T 9) T 17 7>\1 S A S )\2
— Lz(0,a) = X[g—rat+2c(0), A >0
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CLASSES OF LOSSES

Mixtures of convex loss functions - examples

o L)(0,a)=1]0—al}, X >1
— M e = {All symmetric probability measures w.r.t.u}
— =ap =u,VL e QVI el

o L)(0,a) = X[g—rat2c(0), A >0
— = E&Lx=1—-MN([a— X, a+ A])
— = ar, midpoint of interval of size 2\ with the highest probability
— M~ Beta(3,2) =>a=1/2, ,a=2/3
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CLASSES OF LOSSES

Bands of convex loss functions

A(B,a) = A0 —a) : N(t) = \(2)

A(t) <O0fort<0,A(0) =0,X(t) >0fort>0

A(t) >0

L,U losses: L'(t) =1(t) and U (t) = u(t)
Q={N:1(t) < A() <u(t), Vt}

M probability measure: M(A) > 0 for any interval A

L1, Lo : Ly(t) < L,(t) = Bayes actions: ay, < ay,

a= inf apn, a =Supapn = a =ar, a = ay

NeQ AEQ
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CLASSES OF LOSSES

Bands of convex loss functions

3t t<0
° l(t):{t >0

[t t<oO
“(t)_{st t>0

Q= {A:1/2(0 — a)?> < A(b,a) < 3/2(6 — a)?}

A(O,a) = (0 —a)? €

e MN~N(0,1) =a=-.3989, a =.3989
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LOSS ROBUSTNESS

Preference among losses

pr(m, z,a) = ECPL(0,a) = [ L(0, a)n(0]2)do
posterior expected loss minimised by ak

L1 preferred to Lo (Makov, 1994) if

e sup,infypr.(m,x,a) <sup,inf,pr. (7, z,a)
(posterior minimax)

L

™

¢ EXle(W,ac,a#) < gXpL2(7T,ZU,CL

(preposterior)

o sup, |pr,(m z,ak)| < sup, | Zpr,(m,z,ak)|

(influence approach)

59



NON-DOMINATED ACTIONS

Foundations (Giron and Rios, 1980)

e Associate a — L(0,a), 6 € ©

e D={h|dac A h(0) =L (a,0),V0 €6}

e Preferences < are established over these functions
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NON-DOMINATED ACTIONS

Foundations (Giron and Rios, 1980)

(D, <) satisfies the following conditions
e (D,=) is a quasi order (reflexive and transitive)
o If L(a,0) < L(b,0),V0 € ©, then b < a

e For a,b,ce A, A€ (0,1), then L(a,0) < L(b,0) if and only if
AL(a,0) + (1 = A)L(c,0) = AL(b,0) + (1 — M) L(c,0)

e For f,,9,heD, if f, — f and f, <g, h X f,, Vn, then f<g, h < f
= dr ={r:7(0),0 € ©} s.t.
a=<b <— fL(a,H)w(@)dH > fL(b,G)W(G)dO,VW ()er
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NON-DOMINATED ACTIONS

Foundations (Giron and Rios, 1980)

e Provide a qualitative framework for sensitivity analysis in Sta-
tistical Decision Theory

e non-dominated actions as basic computational objective in
sensitivity analysis, when interested in decision theoretic prob-
lems
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NON-DOMINATED ACTIONS

pr(m,z,a) = ETCIPIL(0, a)
e a,b e A actions

e b=<a <— pr(mz,a) <pr(m,z,b),VL € LNT €T

(Action b at most as preferred as a)

e Strict inequality for some L and/or m = b < a

(a dominates b)
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NON-DOMINATED ACTIONS

Properties of the non-dominated set ND

e Non-empty action set A = non-empty ND

e Compact A and L generated by a finite number of loss func-
tions, continuous in a, uniformly w.r.t. § = non-empty ND

e Unique Bayes action aX forany Le L and 1 €T = B C ND,
B set of Bayes actions
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SENSITIVITY MEASURES

Global sensitivity

e Class of priors sharing some features (e.g. quantiles, moments)
e NoO prior plays a relevant role w.r.t. others
Measures

e Range: § = p — p, with p = sup Ep-[h(0)] and p = inf Ep-[h(0)]
- Per - Per

Simple interpretation

. 2
e Relative sensitivity sup, R;, with R, = (pr = po) , po = En;[h(0)], pr =

VT('
En-[h(0)] and V™ = Varp-[h(0)]
Scale invariant, decision theoretic interpretation, asymptotic behaviour
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SENSITIVITY MEASURES

LLocal sensitivity

e Small changes in one elicited prior

e Most influential x

e Approximating bounds for global sensitivity
Measures

e Derivatives of extrema in {K.},e > 0, neighbourhood of Ko = {Fp}

h(6)I(0)P(db) —
/ and D*(h) = {M}
e=0

E.(h|z) =
/ 1(0)P(d6) Oz

e Gatéaux differential
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SENSITIVITY MEASURES

Measures

e Fréchet derivative
— A={6:6(©) =0}
—Is={r:mn=P+d6deA}tand . ={r: 7= (1 —¢e)P+Q}
—P={eA:0=e(Q—-P)}=T.CTy
— [Ié]] = d(4,0)
— d(P,Q) = supcpe) |P(A) — Q(A)|

JOUOILCONNS

— T(P—I—O)ET(P)E/
' ' /z(e)P(de) Dp

— AP(8) = Th(P 4 5) = Th(P) + o(|8]]) = %(Thw) —Ti(P))
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SENSITIVITY MEASURES

Loss robustness

pr(m,z,a) = ECL(0,a) = [ L(0, a)n(0]2)do
posterior expected loss minimised by a,f;

L d SuDLEﬁ pL(ﬂ-7x7a) — infLEE pL(ﬂ-a'CUa CL)
o SUPscrak —infrcpak

® SUP; |51 (7,3, af)| — info |gtpp (m, 2, af)
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COMPUTATIONAL TECHNIQUES

Bayesian inference = complex computations
Robust Bayesian inference = more complex computations

FOP@)

sup L8 —sup 22

B FOVCONEEEN
©

= p = sup Ep.[h(H)] in
Perl

o [.={P:P=(1—-¢)Py+¢eQ,Q € Qa}

° rQ:{PZP(I@'):pZ’,i:1,...,m}

Probability measures as mixture of extremal ones
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COMPUTATIONAL TECHNIQUES

Linearisation technique

— p = inf{q|c(q) = 0} where
— o(q) = sup / ¢(0,q)P(d0) = 0
Pel Jo

— c(8,9) =1(0) (h(0) —q)
— Compute ¢(g;), 1 =1,...,m = solve ¢(q) =0

Discretisation of © = Linear programming

Linear Semi-infinite Programming (for Generalised moments constrained
classes)
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QUEST FOR ROBUSTNESS

Range ¢ ‘“large” and possible refinement of I

e Further elicitation by experts

— Software (currently unavailable) for interactive sensitivity
analysis

— Ad-hoc tools, e.g. Fréchet derivatives to determine inter-
vals to split in quantile classes

e Acquisition of new data
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QUEST FOR ROBUSTNESS

Inherently robust procedures

Robust priors (e.g. flat-tailed)

Robust models (e.g. Box-Tiao class)

Robust estimators

Hierarchical models

Bayesian nonparametrics
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LACK OF ROBUSTNESS

Range 6 ‘“large” and no further possible refinement of I

e Choice of a convenient prior in [, e.g. a Gaussian in the
symmetric, unimodal quantile class, or

e Choice of an estimate of Ep«[h(0)] according to an optimality
criterion, e.g.

— [—minimax posterior expected loss

— [—minimax posterior regret

e Report the range of Ep«[h(6)] besides the entertained value
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GAMMA-MINIMAX

o(m,a) = E™ L(6,a) posterior expected loss, minimised by ax

e pc = infuc4SUPrer p(,a)
(Posterior M-minimax expected 10ss)

Optimal action by interchanging inf and sup for convex losses

¢ pr = infaeasupmerp(r,a) — p(r, ar)]
(Posterior M-minimax regret)

Optimal action: ay; = (a4 a), for finite @ = inf,cr ar, and
a = SUP,cr ar,, A interval and L(6,a) = (6 — a)?
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APPLICATIONS

Very few applications of these robust Bayesian procedures

Typically, either
— informal analysis (a finite family of priors) or

— choice of robust procedures (e.g. hierarchical models), robust distri-
butions (e.g. Student) and robust estimators (e.g. median)

Need for sensitivity checks is nowadays widely accepted within the Bayesian
community

Classes and tools often driven more by maths rather than by practice

Lack of adequate software
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APPLICATIONS

8 different configurations of pipelines (diameter, depth, location)
Gas escapes modelled by P()\;), ¢t =1,8

Gamma priors on \;

Pipelines ranked according to posterior mean of \;'s

Classes of gamma priors with parameters in intervals

= Sensitivity of ranking w.r.t. priors

76



APPLICATIONS

Number of accidents X, for a company with n, workers at time period k
Xi|0, ng ~ P(nih)

M= {r: n(0,.38] = .25,7(.38,.58] = .25,7(.58,.98] = .25, 7(.98,00) =
25}

Year 1988: E[X|Di]/nr = 0.05 and E[Xy|D;]/nr = 0.58

Fréchet derivative of E[Xy|Dg]/nr = sum of contributions from each
interval

Split interval with largest contribution (here first)

Year 1988: E[Xk|Dk]/nk = 0.15 and E[Xk|Dk]/nk = 0.24
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APPLICATIONS

Wavelets in nonlinear regression
o y; = f(x;) + e & i.i.d. N(0,0%), i =1,N(=2")
e y;. NOiSy measurements
e r; =1i/N
e f: unknown signal
e ;. Noise

e wavelet transform W = d; =60, +n;,, 1 =1, N
[y —d=Wy, f >0=Wf,e —n=We¢]
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APPLICATIONS

Wavelets in nonlinear regression
e Model for d; = 0; + Mi

e d;|0 ~ f(d;|0) = f(d; — 6), symmetric and unimodal
e.g. d;|0,0% ~ N(0,0?)

e Loss L(0,a) = (0 — a)? = E4g optimal

e Signal smoothed by thresholding or shrinkage

Are Bayesian estimators shrinkers?
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APPLICATIONS

Wavelets in nonlinear regression

How to choose prior to have shrinkage, i.e. A = |E%49/d| < 17

o g = {all symmetric}
= SUPer, A > 1 (= oo for normal model)

o s, = {all symmetric 4+ mass p at 0}
= SUPrer, A < oo but > 1 for "small” p

e sy = {all symmetric, unimodal}
= SUPrer, A <1

e [ = {all symmetric, unimodal+ mass p at 0}
= SUPer, A < 1

80



PREFERENCES AMONG PRIORS

Expert able not only to specify a class I’ of priors but also preferences
among them or its subsets (e.g. elicitation of a quantile class, allowing
even for discrete distributions, but absolutely continuous unimodal priors
preferred to step functions and even more to discrete distributions)

Sensitivity analysis over [ could lead to lack of robustness but robustness
might be achieved in the subset of I more likely according to the expert

Instead of reporting lack of robustness in the larger class and choosing a
convenient prior in it (providing both Bayes estimator under it and range
over M), analyst could report a robust Bayesian estimator along with the
subset not considered in the computation of the range

How to make this formal in a probabilistic framework?
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PREFERENCES AMONG PRIORS

Given X ~ f(xz|0) = interest in posterior mean of 6

InFp ={P : p(O;,w),w € 2} preferences can be described by a function

m(w)

m(w) can be treated as a prior = formally a hierarchical model
X ~ f(z]0),0 ~ p(6;w) and m(w)

Posterior mean of 6 unique under hierarchical model but the original
problem, w € 2, leads to a set of values for the posterior mean

Compute the range on a subset of 2 such that its probability under m is
high but the range is as small as possible

How to make the procedure formally acceptable in a probabilistic frame-
work and how to extend it to a nonparametric class?
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PARTIAL AND INCOMPATIBLE INFORMATION

Combination of opinions of conflicting experts in different fields
(e.g. e-democracy) = partial and incompatible information

Three experts provide information on different pairs

Marginal | (0,0) | (0,1) | (1,0) | (1,1)
f1(x1,22) | 0.47 | 0.13 | 0.13 | 0.27
fo(xo,23) | 0.47 | 0.13 | 0.13 | 0.27
f3(x1,2z3) | 0.30 | 0.30 | 0.30 | 0.10

X1, Xo and X3: Bernoulli 86(0.4)

No joint density f(xq1,x5,x3) with those marginals

How to combine partial and incompatible priors, possibly in an

automatic way?




PARTIAL AND INCOMPATIBLE INFORMATION

Given the random quantities X4, ..., X,, how to combine them?
1. Choose a rule: chain’s rule!

2. Agree on an order for the chain’s rule, e.q.
f(X1,...,Xn) = f(Xn|Xn-1,..., X1) - f(Xp-1|Xpn—2...X1) - ... - f(X21)

3. For each component f(Xg|Xk_1,...,X1) look for all the contributions of
the stakeholders on it

4. Combine the contributions into f(Xk|Xk_1, oo, X1)

5. Get the joint density f(Xi,..., X,) via chain’s rule, combining all }’V(Xk|Xk_1, .
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PARTIAL AND INCOMPATIBLE INFORMATION

Marginal | (0,0) | (0,1) | (1,0) | (1,1)
fi(z1,22) | 0.47 | 0.13 | 0.13 | 0.27
fo(xo,z3) | 0.47 | 0.13 | 0.13 | 0.27
fa(x1,z3) | 0.30 | 0.30 | 0.30 | 0.10

Chain’s rule f(x1,x2,23) = f(z3|r2,z1) f(22]|71) f(21)
Assumptions like fa(z3,x2) = fo(xs|z2) fa(z2) = falxs|za, 1) f2(x2)
Contributions to each components

f(z1) afi(z1) + (1 — o) fa(z1)

f(x2|z1) Bfi(x2|z1) + (1 = B) fo(x2)
f(x3|r2, 1) vf2(z3|x2) + (1 — ) fa(x3|x1)

= X still Bernoulli Be(0.4) (and « disappears)

Conditional | (0,0) (0,1) (1,0) (1,1)
f1(x2|x1) 47/60 | 13/60 | 13/40 | 27/40
fo(ws|lze) | 47/60 | 13/60 | 13/40 | 27/40
fa(zs|z1) 0.50 | 0.50 | 0.75 | 0.25
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PARTIAL AND INCOMPATIBLE INFORMATION

Conditional densities of f on their support

(0,0) (0,1)
f(z2|z1) | (36 4+113)/60 | (24 —113)/60
(1,0) (1,1)
f(z2|z1) | (24 -115)/40 | (16 +113)/40
(0,0,0) (0,0,1)
f(z3|z2,21) | (30+17v)/60 | (30 —17v)/60
(0,1,0) (0,1,1)
f(z3|zo,21) | (20 —74)/40 | (204 7v)/40
(1,0,0) (1,0,1)
f(z3|z2,21) | (45+27)/60 | (15 —2v)/60
(1,1,0) (1,1,1)
f(xs|xo,21) | (30 —17~)/40 | (10+ 17+)/40
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PARTIAL AND INCOMPATIBLE INFORMATION

Joint density f(x1,22,23)

(1,22, 23) f(x1,z2,23)
(0,0,0) | (30 + 177)(36 + 113)/6000
(0,0,1) | (30 — 17~)(36 + 113)/6000
(0,1,0) | (20 — 7~)(24 — 118) /4000
(0,1,1) | (204 7+)(24 — 1143) /4000

(1,0,0) (45 4+ 2+)(24 — 118)/6000
(1,0,1) (15 — 2¢)(24 — 118)/6000
(1,1,0) | (30— 177)(16 + 113)/4000
(1,1,1) | (104 17~)(16 + 113)/4000
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PARTIAL AND INCOMPATIBLE INFORMATION

Bivariate marginals

(0,0)

f(x1,z2) 0.36 4+ 0.1103

f(x1,23) 0.3 4 (0.06 + 0.053)~

f(x2,23) | 0.36 — (0.0275 — 0.0275~)5 + 0.11~
(0,1)

f(x1,x2) 0.24 —0.1173

f(x1,x3) 0.3 — (0.06 4+ 0.058)~

f(xo,23) | 0.24 4+ (0.0275 — 0.0275+)8 — 0.11~
(1,0)

f(x1,x2) 0.24 —0.110

f(x1,x3) 0.3 — (0.06 4+ 0.058)~

f(xo,x3) | 0.24 4+ (0.0275 — 0.0275+)8 — 0.11~
(1,1)

f(x1,x0) 0.16 +0.113

f(x1,x3) 0.1 4+ (0.06 + 0.053)~

f(x2,23) | 0.16 — (0.0275 — 0.0275~)5 + 0.11~
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PARTIAL AND INCOMPATIBLE INFORMATION
Univariate Bernoulli marginals are kept
B=1= f(z1,2z2) = f1(z1,x2)
v =0 = f(x1,23) = f3(r1,23)
B=1,vy=0=

(0,0) | (0,1) | (1,0) | (1,1)
fo(xo,23) | .47 13 13 27
f(z2,x3) 3325 | .2675 | .2675 | .1325
B=05~vy=05=
(0,0) (0.1) (1,0) (1.1)
fi(xz1,z2) | .47 13 13 27
f(x1,22) 415 .185 .185 215
fo(xo,x3) | .47 13 13 27
f(x2,x3) 408125 | .191875 | .191875 | .208125
fa(xz1,z3) | .30 .30 .30 .10
f(z1,23) 3425 2575 2575 1425

Now the marginals are compatible!
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BAYESIAN NONPARAMETRICS

Risk analysis = extreme value theory = Generalized Extreme Value
(GEV) distribution

Cdf Fz) = exp {~ [1 4+ (54)] "}

Density f(z) =2 [1+ A <%>]:/A—1 exp {_ 14 (%”_—'—1/)\}

~1/x
g-th quantile: ¢ = exp{— [1 A (%)]‘F }

Expert gives 3 quantiles in the tails (e.g. .80, .95, .99) on the observable
quantity X = parameters u,o and )\ determined

Expert presented with plots of density functions until satisfied with the
shape

Quantile specification in the tail = good approximation in the tail but
bad elsewhere
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BAYESIAN NONPARAMETRICS

e Generalised moments constrained class, given by
g = [4[ f(lp, 0, V7r(p, 0, N)dpdodA}de,i = 1,2, 3
e As an alternative = Dirichlet process

— P ~DP(n) if V(A1,...,An)
= (P(A1),...,P(An)) ~ D(n(A1),...,n(An))

— 41,...,Z, Sample of size n from P
:>P|Zl,...,ZnN'D7D(77+Z?5Zi)

e Embed the parametric model in a Dirichlet process with parameter n(z) =
aF(z; [,0, )
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BAYESIAN NONPARAMETRICS

Uncertainty in the parameter n = n € = changes in

e Dirichlet process

— P and @ chosen by two Dirichlet processes with different n
— dpp(P,Q) = sup d(P(A),Q(A))
S

1/2
— d(X,Y) = {/ (VD — \/5)2 du} Hellinger distance

e Probability of subsets of p.m.’'s on (X, .A)
—©@={PeM:P(A)eB}, Ac A BeB(0,1]) (e.g. © ={F : F(1/2) <1/2})
— G ~DP(n) = G(A) ~ B(n(A),n(A%)) = compute P(©) = P(G(A) € B)
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BAYESIAN NONPARAMETRICS

Uncertainty in the parameter n = n €[ = changes in

e Probabilities of set probabilities and random functionals
— P(A) ~ B(n(A),n(A%))
— (P(A1),...,P(An)) ~D(n(A1),...,m(An))

—/ZdP
R

e Bayes estimators of random distributions and functionals

i fwn(aﬁ)daz
— Bayes estimator of the mean:
f%n(a:)dx
"oy
— Distribution function F*(z) = an(z) +§1 z,(x)
(@7 n
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IMPRECISE PROBABILITIES

e Similar tools but ...

e ... different philosophy
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IMPORTANT PROBLEMS

Software

Efficient and parsimonious MCMC simulations for Bayesian robustness
(current methods are for a unique prior)

Classes more problem driven

Applications
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EXERCISE 3

Flip of a coin

P(tail) = P(X =1) = 0

Sample X1,...,Xn

Perform a robust Bayesian analysis
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